On the XY-Model on Two-Sided Infinite Chain

By

Huzihiro ARAKI*

Abstract

The XY-model on the one-dimensional lattice, infinitely extended to both directions, is studied by a method of C^* -algebras. Return to equilibrium is found for any vector state in the cyclic representation of the equilibrium state.

A known relation between the algebras of Pauli spins and the algebra of canonical anticommutation relations (CARs) is used to obtain an explicit solution. However the C*algebras generated by the two sets of operators become dissociated in the thermodynamic limit of an infinite one-dimensional lattice extending in both directions (in contrast to onesided chain) and this causes a mathematical complication.

In particular, we find three features different from the case of one-sided infinite chain: (1) There are no non-trivial constant observables. (2) The (twisted) asymptotic abelian property holds only partially and not in general. (3) Return to equilibrium occurs for all values of the parameter γ and is proved by a method different from the case of one-sided chain.

Introduction **§** 1.

The XY-model with the Hamiltonian

$$(1.1) H = -J \sum \{ (1+\gamma) \sigma_x^{(j)} \sigma_x^{(j+1)} + (1-\gamma) \sigma_y^{(j)} \sigma_y^{(j+1)} \}$$

will be studied in the C^* -algebra approach, where

$$\sigma_{\mathbf{x}}^{(j)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{\mathbf{y}}^{(j)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{\mathbf{z}}^{(j)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

are Pauli spin matrices at the lattice site $j \in \mathbb{Z}$ (mutually commuting for different sites j), J is real and $-1 < \gamma < 1$. For an observable Q belonging to the C*-algebra A generated by all Pauli spins, we study the asymptotic behavior of its time translation

(1.2)
$$\alpha_t(Q) = \lim_{N \to \infty} \alpha_t^{(N)}(Q),$$

(1.2)
$$\alpha_t(Q) = \lim_{N \to \infty} \alpha_t^{(N)}(Q),$$
(1.3)
$$\alpha_t^{(N)}(Q) = e^{itH(-N,N)} Q e^{-itH(-N,N)},$$

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, JAPAN.

^{*} Received February 25, 1983.

where H(-N, N) is H of (1.1) with the sum extending over j = -N, $-N+1, \dots, N-1$. (The limit $N\to\infty$ of two-sided infinite chain.) We study its expectation value in a state ψ of $\mathfrak A$ given by an arbitrary vector $\Psi \in \mathscr{H}_{\beta}$ in the cyclic representation π_{β} of the unique equilibrium state φ_{β} with the inverse temperature β .

(1.4)
$$\psi(\alpha_t(Q)) = (\Psi, \ \pi_{\theta}(\alpha_t(Q)) \Psi).$$

(We refer, for example, to [1] for a standard material.)

Our main result is the return to equilibrium:

Theorem 1. For any $Q \in \mathfrak{A}$

(1.5)
$$\lim_{t \to \infty} \psi(\alpha_t(Q)) = \varphi_{\beta}(Q).$$

Such a return to equilibrium for the XY-model has been discussed in [2] and [3], but the discussion has been limited to the so-called even part of $\mathfrak A$ (to be defined later). More recently [4], asymptotic behavior of $\psi(\alpha_t(Q))$ for large time t has been found for arbitrary $Q \in \mathfrak A$ in the case of the XY-model on the one-sided infinite chain. The return to equilibrium (1.5) does not occur in general (for $\gamma \neq 0$) due to the existence of a constant observable $B_{\gamma} \in \mathfrak A$ (i.e. $\alpha_t(B_{\gamma}) = B_{\gamma}$) given by

(1.6)
$$B_{\gamma} = \sum_{j=1}^{\infty} (-\alpha)^{j-1} \sigma_{x}^{(1)} \cdots \sigma_{x}^{(2j-2)} \times \begin{cases} \sigma_{x}^{(2j-1)} & \text{if } 0 < \gamma < 1 \\ \sigma_{y}^{(2j-1)} & \text{if } -1 < \gamma < 0 \end{cases}$$

which is in \mathfrak{A} due to $\alpha \equiv (1-|\gamma|)/(1+|\gamma|) \in (0, 1)$ for $\gamma \neq 0$. However the return to equilibrium do occur in any one of the following cases:

- (a) $\gamma = 0$, any $\Psi \in \mathcal{H}_{\beta}$, any $Q \in \mathfrak{A}$.
- (b) $\gamma \neq 0$, any $\Psi \in \mathcal{H}_{\beta}$ satisfying $\psi(B_{\gamma}) = 0$, any $Q \in \mathfrak{A}$.
- (c) $\gamma \neq 0$, any $\Psi \in \mathcal{H}_{\beta}$, any Q satisfying $\Theta(Q) = Q$.

Here Θ is the automorphism of $\mathfrak A$ satisfying

(1.7)
$$\Theta(\sigma_x^{(j)}) = -\sigma_x^{(j)}, \ \Theta(\sigma_y^{(j)}) = -\sigma_y^{(j)}, \ \Theta(\sigma_z^{(j)}) = \sigma_z^{(j)}$$

for all j (i.e. 180° rotation of all spins around z-axis), where j is restricted to the natural numbers N for one-sided chain. In contrast, the result given by Theorem 1 for the two-sided chain is simple. However it disguises the complexity in its derivation.

The derivation of the results described above uses an explicit solution of the model on a finite chain in terms of a relation between

the algebra \mathfrak{A}^s of spins and the algebra \mathfrak{A}^{CAR} of CAR's [5]. In the case of the two-sided chain, the two algebras become distinct C^* -subalgebras of a bigger C^* -algebra \mathfrak{A} and this brings about some complication, which we will describe in the next section for a general one-dimensional spin lattice.

§ 2. Spin-Fermion Correspondence

Let \mathfrak{A}^{CAR} be the C^* -algebra generated by c_j and c_j^* $(j \in \mathbb{Z})$ satisfying the following CAR's:

(2.2)
$$[c_j, c_k^*]_+ = \delta_{jk} \mathbf{1}. ([A, B]_+ = AB + BA.)$$

Let Θ and Θ_- be automorphisms of \mathfrak{A}^{CAR} satisfying

$$(2.3) \Theta(c_j) = -c_j, \ \Theta(c_j^*) = -c_j^* \quad (j \in \mathbf{Z}),$$

(2.4)
$$\theta_{-}(c_{j}) = \begin{cases} c_{j} & \theta_{-}(c_{j}^{*}) = \begin{cases} c_{j}^{*} & (j \geq 1), \\ -c_{j}^{*} & (j \leq 0). \end{cases}$$

They satisfy $\Theta^2 = \Theta^2_- = \mathrm{id}$, $\Theta\Theta_- = \Theta_-\Theta$. Let \mathfrak{A} be the C^* -algebra generated by \mathfrak{A}^{CAR} and an element T satisfying

$$(2.5) T = T^*, T^2 = 1,$$

$$(2.6) TxT = \Theta_{-}(x), x \in \mathfrak{A}^{CAR}.$$

(The C^* crossed product of \mathfrak{A}^{CAR} by the \mathbb{Z}_2 -action Θ_{-} .)

Let \mathfrak{A}^s be the C^* -subalgebra of $\widehat{\mathfrak{A}}$ generated by the following Pauli spin matrices $\sigma_{\alpha}^{(j)}$ ($\alpha = x, y, z$) on lattice sites $j \in \mathbb{Z}$:

(2.7)
$$\sigma_z^{(j)} = 2c_i^*c_i - 1,$$

(2.8)
$$\sigma_x^{(j)} = TS^{(j)}(c_i + c_i^*), \ \sigma_y^{(j)} = TS^{(j)}i(c_i - c_i^*),$$

(2.9)
$$S^{(j)} \equiv \begin{cases} \sigma_z^{(1)} \cdots \sigma_z^{(j-1)} & \text{if } j > 1, \\ 1 & \text{if } j = 1, \\ \sigma_z^{(0)} \cdots \sigma_z^{(j)} & \text{if } j < 1. \end{cases}$$

They satisfy the following relations which characterize \mathfrak{A}^s as a C^* -algebra.

(2.10)
$$(\sigma_{\alpha}^{(j)})^2 = 1 \quad (\alpha = x, y, z),$$

(2.11)
$$\sigma_{\alpha}^{(j)}\sigma_{\beta}^{(j)} = -\sigma_{\beta}^{(j)}\sigma_{\alpha}^{(j)} = i\sigma_{\gamma}^{(j)}$$

$$((\alpha, \beta, \gamma) = \text{any cyclic permutation of } (x, y, z)),$$

$$[\sigma_{\alpha}^{(j)}, \sigma_{\beta}^{(k)}] = \mathbf{0} \quad \text{if} \quad j \neq k \ (\alpha, \beta = x, y, z).$$

The automorphisms Θ and Θ_- are extended to $\widehat{\mathfrak{A}}$ such that $\Theta(T) = T$, $\Theta_-(T) = T$. We define even (+) and odd (-) parts:

$$\widehat{\mathfrak{A}}_{+} = \{ x \in \widehat{\mathfrak{A}}, \ \Theta(x) = \pm x \},$$

$$\mathfrak{A}_{\pm}^{\text{CAR}} = \mathfrak{A}^{\text{CAR}} \cap \widehat{\mathfrak{A}}_{\pm}, \quad \mathfrak{A}_{\pm}^{s} = \mathfrak{A}^{s} \cap \widehat{\mathfrak{A}}_{\pm}.$$

We have

$$\mathfrak{A}_{+}^{s} = \mathfrak{A}_{+}^{CAR}, \ \mathfrak{A}_{-}^{s} = T\mathfrak{A}_{-}^{CAR}.$$

Clearly T and \mathfrak{A}^s generates \mathfrak{A} .

§ 3. Time Evolution

Let $\mathfrak{A}^s(I)$ be the C^* -subalgebra of \mathfrak{A}^s generated by $\sigma_{x,y,z}^{(j)}$ with j belonging to a non-empty subset I of lattice points (i. e. $I \subset \mathbb{Z}$). Let $\Phi(I) \in \mathfrak{A}^s(I)$ (a many-body interaction potential between spins of sites in a non-empty *finite* subset I of \mathbb{Z}) and

(3.1)
$$H_N = H([-N, N]), H(I) = \sum_{\Lambda \in I} \Phi(\Lambda)$$

(the total Hamiltonian for the interval [-N, N]).

We make the following assumptions in general.

- (1) Evenness: $\Theta(\Phi(I)) = \Phi(I)$ $(I \subset \mathbf{Z})$.
- (2) Bounded surface energy: For disjoint finite subsets I and J, we denote

$$(3.2a) W(I, J) \equiv \sum_{K} \{ \phi(K) : K \subset I \cup J, K \not\subset I, K \not\subset J \}.$$

Then, either for a finite interval I_1 and any subset I_2 of the complement of I_1 , or for $I_1 = (-\infty, j]$ and $I_2 = [j+1, \infty)$ with any $j \in \mathbb{Z}$, the following limit exists

(3. 2b)
$$\lim_{N\to\infty} W(I_1\cap [-N, N], I_2\cap [-N, N]) = W(I_1, I_2),$$

and

(3.3)
$$\sup_{N} ||W([-N, N], (-\infty, -N) \cup (N, \infty))|| < \infty.$$

Under assumption (2), the following limit exists and defines a continuous one-parameter group of automorphisms of $\widehat{\mathfrak{A}}$:

(3.4)
$$\alpha_t(x) = \lim_{N \to \infty} e^{iH_N t} x e^{-iH_N t}. \qquad (x \in \widehat{\mathfrak{A}})$$

The existence of limit for $x \in \mathfrak{A}^s$ is by [6] and for T by the

computation below, see (3.14) and (3.15). Due to the evenness assumption (1), $\Phi(I)$ belongs to $\mathfrak{A}_+^s = \mathfrak{A}_+^{CAR}$ and hence

$$(3.5) \alpha_t(\mathfrak{A}^s) = \mathfrak{A}^s, \ \alpha_t(\mathfrak{A}^{CAR}) = \mathfrak{A}^{CAR},$$

$$\alpha_t \Theta = \Theta \alpha_t.$$

In the case of the two-sided XY-model, we have

(3.7)
$$\Phi(\{j, j+1\}) = -J\{(1+\gamma)\sigma_x^{(j)}\sigma_x^{(j+1)} + (1-\gamma)\sigma_y^{(j)}\sigma_y^{(j+1)}\}$$

$$= 2J\{c_j^*c_{j+1} + c_{j+1}^*c_j + \gamma(c_j^*c_{j+1}^* + c_{j+1}c_j)\}.$$

 $(\Phi(I) = 0$ for all other I.) A computation of [4] yields

(3.8)
$$\alpha_t(B(h)) = B(e^{2JiK_{\tau}t}h),$$

where we have used the following notations:

(3.9)
$$c(f) = \sum_{i} f_{i}c_{i}, \quad c^{*}(f) = \sum_{i} f_{i}c_{i}^{*},$$

(3.10)
$$f = (f_j)_{j \in \mathbb{Z}} \in l_2(\mathbb{Z}),$$

(3.11)
$$B(h) = c^*(f) + c(g) \text{ for } h = \binom{f}{g},$$

(3. 12)
$$K_{\tau} = \begin{bmatrix} U + U^* & \gamma(U - U^*) \\ -\gamma(U - U^*) & -(U + U^*) \end{bmatrix},$$

(3.13)
$$(Uf)_j = f_{j+1}, \quad (U^*f)_j = f_{j-1}.$$

The time evolution of T is given by

$$(3.14) \alpha_t(T) = TV_t,$$

$$(3.15) V_{t} = \lim_{N \to \infty} Te^{iH_{N}t} Te^{-iH_{N}t}$$

$$= \lim_{N \to \infty} e^{i\theta_{-}(H_{N})t} e^{-iH_{N}t}$$

$$= \sum_{j=0}^{\infty} i^{n} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \cdots \int_{0}^{t_{n-1}} dt_{n} \alpha_{t_{n}}(A) \cdots \alpha_{t_{1}}(A)$$

by the theory of inner perturbation of automorphism groups (for example, see [1]), where

(3.16)
$$A = \lim_{N \to \infty} (\Theta_{-}(H_{N}) - H_{N}) = \Theta_{-}W((-\infty, 0], [1, \infty)) - W((-\infty, 0], [1, \infty))$$

due to the split

(3.17)
$$H_N = H([-N, 0]) + H([1, N]) + W([-N, 0], [1, N]),$$

and the relation $\Theta_{-}(x) = x$ for $x = H([1, N]) \in \mathfrak{A}^{s}([1, \infty))$, $\Theta_{-}(y) = \Theta(y) = y$ for $y = H([-N, 0]) \in \mathfrak{A}^{s}((-\infty, 0])$. Note that V_{t} is a unitary operator (both V_{t} and V_{t}^{*} are strong limits of unitaries)

belonging to $\mathfrak{A}_{+}^{s} = \mathfrak{A}_{+}^{CAR}$ and $\Theta(V_{t}) = V_{t}^{*}$ (by the second line of (3.15)) so that $(TV_{t})^{2} = 1$.

§ 4. Equilibrium States and Associated Representations

There exists an (α_t, β) -KMS state $\hat{\varphi}_{\beta}$ of $\widehat{\mathfrak{A}}$ as a weak accumulation point of the Gibbs state for H_N as $N \rightarrow \infty$.

Let $\hat{\theta}_{-}$ be the automorphism of $\hat{\mathfrak{A}}$ (the dual action of θ_{-}) satisfying

$$(4.1) \hat{\theta}_{-}(T) = -T, \ \hat{\theta}_{-}(a) = a \ (a \in \mathfrak{A}^{CAR}).$$

Such $\hat{\Theta}_{-}$ exists as an automorphism of $\hat{\mathfrak{A}}$. Since $H_N \in \mathfrak{A}^{CAR}$, it is $\hat{\Theta}_{-}$ invariant and hence

$$(4.2) \qquad \widehat{\Theta}_{-}\alpha_{t} = \alpha_{t}\widehat{\Theta}_{-}$$

and $\hat{\varphi}_{\beta}$ is $\hat{\Theta}_{-}$ -invariant.

Since Θ and $\hat{\Theta}_{-}$ commute, we have the decomposition

$$\widehat{\mathfrak{A}} = \sum_{\sigma,\sigma'} \widehat{\mathfrak{A}}_{\sigma,\sigma'},$$

$$\widehat{\mathfrak{A}}_{\sigma,\sigma'} = \{ x \in \widehat{\mathfrak{A}} : \Theta(x) = \sigma x, \ \widehat{\Theta}_{-}(x) = \sigma' x \},$$

where σ and σ' are + or -. We have

$$\widehat{\mathfrak{A}}_{\sigma+} = \mathfrak{A}_{\sigma}^{\text{CAR}}, \ \widehat{\mathfrak{A}}_{\sigma-} = T \mathfrak{A}_{\sigma}^{\text{CAR}}. \quad (\sigma = +, -)$$

By (4.2), $(\hat{\varphi}_{\beta} + \hat{\varphi}_{\beta} \circ \hat{\Theta}_{-})/2$ is a $\hat{\Theta}_{-}$ -invariant (α_{t}, β) -KMS state of \mathfrak{A} and hence we assume that $\hat{\varphi}_{\beta}$ is already $\hat{\Theta}_{-}$ -invariant. By (3.6) and $[\Theta, \hat{\Theta}_{-}] = \mathbf{0}$, we may also assume that $\hat{\varphi}_{\beta}$ is Θ_{-} -invariant. Its restrictions to \mathfrak{A}^{s} and \mathfrak{A}^{CAR} are (α_{t}, β) -KMS states and, as such, are unique by the assumption (2). ([7], [8]) Hence such $\hat{\varphi}_{\beta}$ is the unique $\hat{\Theta}_{-}$ -invariant extension of the unique (α_{t}, β) -KMS state of \mathfrak{A}^{CAR} and at the same time the unique Θ_{-} -invariant extension of the unique (α_{t}, β) -KMS state of \mathfrak{A}^{s} . In particular, the unique (α_{t}, β) -KMS state of \mathfrak{A}^{s} can be obtained as the restriction (to \mathfrak{A}^{CAR}) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) of the unique $\hat{\Theta}_{-}$ -invariant extension (to $\hat{\mathfrak{A}}$) is the unique (to $\hat{\Phi}_{-}$).

By the Θ - and Θ --invariance, $\hat{\varphi}_{\beta}$ is 0 on $\mathfrak{A}_{\sigma\sigma'}$ except for $\mathfrak{A}_{++} = \mathfrak{A}_{+}^{CAR}$ and hence explicitly determined by φ_{β}^{CAR} on \mathfrak{A}_{+}^{CAR} . The cyclic representation $\hat{\pi}_{\beta}$ of \mathfrak{A} associated with $\hat{\varphi}_{\beta}$ (on a Hilbert space \mathscr{H}_{β} with a cyclic vector $\hat{\Psi}_{\beta}$ yielding $\hat{\varphi}_{\beta}$) can also be constructed from the cyclic representations of \mathfrak{A}^{CAR} as follows:

Let $(\mathscr{H}^{\mathrm{CAR}}_{\beta},\ \pi^{\mathrm{CAR}}_{\beta},\ \varPhi_{\beta})$ and $(\mathscr{H}^{\mathrm{CAR}}_{\beta,\varTheta_{-}},\ \pi^{\mathrm{CAR}}_{\beta,\varTheta_{-}},\ \varPhi_{\beta,\varTheta_{-}})$ be triplets of the

Hilbert space, the cyclic representation of \mathfrak{A}^{CAR} and the cyclic vector associated with states φ_{β}^{CAR} and $\varphi_{\beta,\Theta_{-}}^{CAR} = \varphi_{\beta}^{CAR} \circ \Theta_{-}$, respectively. The triplet for φ_{β} can then be constructed by the following formulas:

$$(4.6) \qquad \hat{\mathcal{H}}_{\beta} = \mathcal{H}_{\beta}^{CAR} \oplus \mathcal{H}_{\beta,\Theta}^{CAR}.$$

(4.7)
$$\hat{\pi}_{\beta}(a) = \pi_{\beta}^{\text{CAR}}(a) \oplus \pi_{\beta,\Theta}^{\text{CAR}}(a). \quad (a \in \mathfrak{A}^{\text{CAR}})$$

(4.8)
$$\hat{\pi}_{\beta}(T) \left(\pi_{\beta}^{\text{CAR}}(a) \boldsymbol{\varPhi}_{\beta} \oplus \pi_{\beta,\theta_{-}}^{\text{CAR}}(b) \boldsymbol{\varPhi}_{\beta,\theta_{-}} \right)$$

$$= \pi_{\beta}^{\text{CAR}}(\boldsymbol{\varTheta}_{-}(b)) \boldsymbol{\varPhi}_{\beta} \oplus \pi_{\beta,\theta}^{\text{CAR}} \left(\boldsymbol{\varTheta}_{-}(a) \right) \boldsymbol{\varPhi}_{\beta,\theta_{-}} .$$

$$(4.9) \hat{\boldsymbol{\Phi}}_{\beta} = \boldsymbol{\Phi}_{\beta} \oplus \mathbf{0}.$$

We note that two representations $(\pi_{\beta}^{\text{CAR}}, \mathcal{H}_{\beta}^{\text{CAR}})$ and $(\pi_{\beta,\Theta_{-}}^{\text{CAR}}, \mathcal{H}_{\beta,\Theta_{-}}^{\text{CAR}})$ are unitarily equivalent due to the following circumstances: Let

(4.10)
$$\alpha_t^0(a) = \lim_{N \to \infty} e^{iH_N^0 t} a e^{-iH_N^0 t} \quad (a \in \mathfrak{A}^{CAR}),$$

(4.11)
$$H_N^0 = H([-N, 0]) + H([1, N]).$$

Let φ_{β}^{0} be the unique (α_{t}^{0}, β) -KMS state of \mathfrak{A}^{CAR} . By Θ_{-} -invariance of H_{N}^{0} , $\alpha_{t}^{0}\Theta_{-}=\Theta_{-}\alpha_{t}^{0}$ and hence $\varphi_{\beta}^{0}\circ\Theta_{-}=\varphi_{\beta}^{0}$. Let $(\mathcal{H}^{0}, \pi^{0}, \Phi^{0})$ be the triplet associated with φ_{β}^{0} . By the Θ_{-} -invariance of φ_{β}^{0} , there exists a unitary operator $U(\Theta_{-})$ on \mathcal{H}^{0} satisfying

(4.12)
$$U(\Theta_{-})\pi^{0}(a)\Phi^{0} = \pi^{0}(\Theta_{-}(a))\Phi^{0}.$$

Due to (3.17), α_t is an inner perturbation of α_t^0 by

$$(4.13) W = W((-\infty, 0], \lceil 1, \infty)).$$

Let

(4. 14)
$$U(\alpha_t^0) \pi^0(a) \Phi^0 = \pi^0(\alpha_t^0(a)) \Phi^0,$$

$$(4.15) U(\alpha_t^0) = e^{iH^0t}.$$

Then, by theory of inner perturbations, Φ^0 is in the domain of $V = \exp{-\beta(H^0 + W)/2}$ and $||V\Phi^0||^{-1}V\Phi^0 \equiv \Phi_{\beta}$ is a cyclic vector giving rise to $\varphi_{\beta}^{\text{CAR}}(a) = (\Phi_{\beta}, \pi^0(a) \Phi_{\beta})$, whilst $U(\Theta_-) \Phi_{\beta} = \Phi_{\beta,\Theta_-}$ is a cyclic vector giving rise to $\varphi_{\beta,\Theta_-}^{\text{CAR}}(a) = (\Phi_{\beta,\Theta_-}, \pi^0(a) \Phi_{\beta,\Theta_-})$. Therefore, representations (π^0, \mathcal{H}^0) , $(\pi_{\beta}^{\text{CAR}}, \mathcal{H}_{\beta}^{\text{CAR}})$ and $(\pi_{\beta,\Theta}^{\text{CAR}}, \mathcal{H}_{\beta,\Theta}^{\text{CAR}})$ are all unitarily equivalent.

§ 5. Asymptotic Behavior of \mathfrak{A}^{CAR}

Theorem 2. For $a, b \in \mathfrak{A}^{CAR}$,

(5.1)
$$\lim_{t \to \infty} ||[a, \alpha_t(b)]_{\theta}|| = 0$$

where the graded commutator $[,]_{\Theta}$ is defined as follows:

(5.2)
$$[a, b]_{\theta} = ab - ba \text{ if } \Theta(a) = a \text{ or } \Theta(b) = b.$$

$$[a, b]_{\theta} = ab + ba \quad if \quad \Theta(a) = -a \quad and \quad \Theta(b) = -b.$$

A general element b is decomposed into a sum $b=b_++b_-$ of even and odd elements $b_{\pm}=(b\pm\Theta(b))/2$ and the above formula is applied, i, e.

$$[a, b]_{\theta} = (ab_{+} - b_{+}a) + (ab_{-} - b_{-}\theta(a)).$$

The proof is based on the following spectral property of K:

Lemma 3. K_r has a Lebesgue spectrum on the union of closed intervals $[-2, -2\gamma]$ and $[2\gamma, 2]$ with a uniform multiplicity 4.

Proof of Lemma 3. By the Fourier expansion

(5.5)
$$\tilde{f}(\theta) \equiv \sum_{l \in \mathbb{Z}} f_l e^{il\theta}, \quad f_l = \frac{1}{2\pi} \int_0^{2\pi} \tilde{f}(\theta) e^{-il\theta} d\theta,$$

U and U^* become multiplication operators

$$(5.6) (Uf)^{\sim}(\theta) = e^{-i\theta}\tilde{f}(\theta), (U^*f)^{\sim}(\theta) = e^{i\theta}\tilde{f}(\theta)$$

and hence K_{τ} reduces to the matrix

(5.7)
$$(K_{7}h)^{-}(\theta) = \tilde{K}_{7}(\theta)\tilde{h}(\theta), \quad \tilde{K}_{7}(\theta) = 2 \begin{bmatrix} \cos \theta & -i\gamma \sin \theta \\ i\gamma \sin \theta & -\cos \theta \end{bmatrix}.$$

From its eigenvalues $\pm 2(\cos^2\theta + \gamma^2\sin^2\theta)^{1/2}$, we obtain Lemma 3.

Proof of Theorem 2. By the absolute continuity of the spectrum of K_r , we have

(5.8)
$$\lim_{t\to\infty} [B(h_1)^*, \ \alpha_t(B(h_2))]_{\theta} = \lim_{t\to\infty} (h_1, \ e^{2JiK_{\tau}t}h_2) = 0$$

due to the Riemann-Lebesgue Lemma.

By Lemma 2 of [4], we have the following consequence:

Corollary 4. For $a \in \mathfrak{A}^{CAR}$,

(5.9)
$$\operatorname{w-lim}_{t\to\infty} \hat{\pi}_{\beta}(\alpha_{t}(a)) = \phi_{\beta}(a) 1.$$

In fact, $\varphi_{\beta}^{\text{CAR}}$ being a unique KMS state, $\pi_{\beta}(\mathfrak{A}^{\text{CAR}})$ is a factor and φ_{β} is Θ -invariant. Hence Lemma 2 of [4] implies (5.9) on $\mathscr{H}_{\beta}^{\text{CAR}}$. The same holds for $\varphi_{\beta,\Theta_{-}}$ by the unitary equivalence of π_{β} and $\pi_{\beta,\Theta_{-}}$ (Θ_{-} commutes with Θ) and hence (5.9) holds also on $\mathscr{H}_{\beta,\Theta_{-}}^{\text{CAR}}$ and

hence on the whole space $\hat{\mathscr{H}}_{\beta}^{CAR}$.

§ 6. Asymptotic Behavior of $T\mathfrak{A}^{CAR}$

We first obtain the asymptotic behavior of V_t in the following form:

Lemma 5. The following limit exists (in norm topology) for any $a \in \mathfrak{A}^{CAR}$ and defines automorphisms $\tilde{\theta}_{\pm}$ of \mathfrak{A}^{CAR} :

(6.1)
$$\tilde{\Theta}_{\pm}(a) = \lim_{t \to +\infty} V_t a V_t^*.$$

The automorphisms so defined satisfy the following relations:

(6.2)
$$(\theta_-\tilde{\theta}_+)^2 = \mathrm{id.}, \quad \tilde{\theta}_+\theta = \theta\tilde{\theta}_\pm.$$

Proof. By (3.15) and (2.6), we have

$$(6.3) V_t a V_t^* = \Theta_{-\alpha_t} \Theta_{-\alpha_{-t}}(a).$$

Hence it is enough to prove the norm convergence of $\alpha_t \Theta_{-\alpha_{-t}}$ on the generating elements B(h) for the existence of (6.1), for the automorphism properties of $\tilde{\Theta}_{\pm}$ and for (6.2). We have

(6.4)
$$\alpha_t \Theta_- \alpha_{-t}(B(h)) = B(e^{2JiK_T t}\theta_- e^{-2JiK_T t}h)$$
$$= B(e^{2JiK_T t}e^{-2Ji(\theta_- K_T \theta_-)t}\theta_- h),$$

where

(6.5)
$$\theta_{-} \begin{bmatrix} f \\ g \end{bmatrix} = \begin{bmatrix} \theta_{-}f \\ \theta_{-}g \end{bmatrix}, \quad (\theta_{-}f)_{j} = \begin{bmatrix} f_{j} & \text{if } j \ge 1, \\ -f_{j} & \text{if } j \le 0. \end{bmatrix}$$

We have

(6.6)
$$(\theta_{-}U\theta_{-}f)_{j} = \begin{cases} (Uf)_{j} & \text{if } j \neq 0, \\ -(Uf)_{j} & \text{if } j = 0, \end{cases}$$

(6.7)
$$(\theta_{-}U^{*}\theta_{-}f)_{j} = \begin{cases} (U^{*}f)_{j} & \text{if } j \neq 1, \\ -(U^{*}f)_{j} & \text{if } j = 1. \end{cases}$$

Hence $\theta_- K_\tau \theta_- - K_\tau$ is at most rank 4. Since K_τ and its unitary transform $\theta_- K_\tau \theta_-$ have absolutely continuous spectrum by Lemma 3,

(6.8)
$$\omega_{\pm} = \lim_{t \to \pm \infty} e^{2JtK_{\gamma}t} e^{-2Jt(\theta_{-}K_{\gamma}\theta_{-})t}$$

(6.9)
$$\omega_{\pm}^* = \lim_{t \to +\infty} e^{2Ji(\theta_- K_{\gamma}\theta_-)t} e^{-2JiK_{\gamma}t}$$

both exist (in the strong topology) by Theorem X. 4.4 (and Theorem

X. 3. 5) of [9]. Thus we have the norm convergence

(6.10)
$$\tilde{\theta}_{\pm}(B(h)) = \lim_{t \to \pm \infty} \theta_{-}\alpha_{t}\theta_{-}\alpha_{-t}(B(h)) = B(\theta_{-}\omega_{\pm}\theta_{-}h).$$

We easily see the relation $\theta_-\omega_\pm\theta_-=\omega_\pm^*$ from (6.8) and (6.9) so that $(\omega_\pm\theta_-)^2=1$.

A key point in the subsequent discussion is the following lemma.

Lemma 6. There are no non-zero operator $x \in \pi_{\beta}^{CAR}(\mathfrak{A}_{+}^{CAR})''$ satisfying (6.11) $x\pi_{\beta}^{CAR}(a) = \pi_{\beta}^{CAR}(\tilde{\theta}_{+}(a))x$

for all $a \in \mathfrak{A}^{CAR}$. The same holds if $\tilde{\Theta}_{+}$ is replaced by $\tilde{\Theta}_{-}$. Furthermore there are no non-zero $x \in \pi_{\beta}^{CAR}(\mathfrak{A}^{CAR}_{-})^{-w}$ (-w denotes the weak closure) if $\tilde{\Theta}_{+}$ is replaced by $\tilde{\Theta}_{\pm}\Theta$. (The same statements hold also for $\pi_{\beta,\Theta_{-}}^{CAR} \sim \pi_{\beta}^{CAR}$.)

The proof of this Lemma is given in the next section. In the rest of this section, we apply this Lemma to obtain the asymptotic behavior of $\hat{\pi}_{\beta}\{\alpha_{t}(Ta)\}$ for $a \in \mathfrak{A}^{CAR}$.

Lemma 7. For any $a \in \mathfrak{A}^{CAR}$,

(6. 12)
$$\text{w-lim } \hat{\pi}_{\beta}(\alpha_t(Ta)) = \mathbf{0} = \hat{\varphi}_{\beta}(Ta) \mathbf{1}.$$

Proof. We consider two cases $\Theta(a) = \pm a$ separately. We have

$$\hat{\pi}_{\beta}(\alpha_{t}(Ta)) = \hat{\pi}_{\beta}(T)\hat{\pi}_{\beta}(V_{t}\alpha_{t}(a)).$$

Let z_{\pm} be the weak accumulation point of $\hat{\pi}_{\beta}(V_t\alpha_t(a))$ as $t \to \pm \infty$. Then

$$(6.14) z_{\pm}\hat{\pi}_{\beta}(b) = \hat{\pi}_{\beta}(\tilde{\Theta}_{\pm}b)z_{\pm}$$

for all $b \in \mathfrak{A}^{CAR}$ if $\Theta(a) = a$ whilst

$$(6.15) z_{\pm}\hat{\pi}_{\beta}(b) = \hat{\pi}_{\beta}(\tilde{\Theta}_{\pm}\Theta b) z_{\pm}$$

for all $b \in \mathfrak{A}^{CAR}$ if $\Theta(a) = -a$. We apply Lemma 6 for $x = z_{\pm} \in \hat{\pi}_{\beta}(\mathfrak{A}^{CAR}_{+})''$ if $\Theta a = a$ and for $x = z_{\pm} \in \hat{\pi}_{\beta}(\mathfrak{A}^{CAR}_{-})^{-w}$ if $\Theta a = -a$ on $\mathscr{H}^{CAR}_{\beta}$ and on $\mathscr{H}^{CAR}_{\beta,\Theta_{-}}$ separately (the restriction of $\hat{\pi}_{\beta}(\mathfrak{A}^{CAR})''$ to $\mathscr{H}^{CAR}_{\beta,\Theta_{-}}$ is unitarily equivalent to it, so that Lemma 6 is applicable to each restriction) and obtain the conclusion $z_{\pm} = \mathbf{0}$. Hence

Thus (6.12) holds. (The second equality is due to the definition of $\hat{\varphi}_{\beta}$.)

Combining Corollary 4 and Lemma 7, we obtain

(6.17)
$$\operatorname{w-lim}_{t\to\infty} \hat{\pi}_{\beta}(\alpha_{t}(x)) = \hat{\varphi}_{\beta}(x) \mathbf{1}$$

for all $x \in \hat{\mathfrak{A}}$. Restricting x to \mathfrak{A}^s , we have the proof of Theorem 1.

§ 7. Proof of Lemma 6

Assume that a non-zero $x \in \mathfrak{M}_+ \equiv \pi_{\beta}^{CAR} (\mathfrak{A}_+^{CAR})^{-w}$ satisfies (6.11). By substituting a^* into a and taking the adjoint of (6.11), we obtain

(7.1)
$$x^* \pi_{\beta}^{\text{CAR}}(\tilde{\Theta}_+(a)) = \pi_{\beta}^{\text{CAR}}(a) x^*.$$

Combining with (6.11), we obtain

$$(7.2) x^*x\pi_{\beta}^{CAR}(a) = \pi_{\beta}^{CAR}(a)x^*x.$$

Therefore $x^*x \in \pi_{\beta}^{\text{CAR}}(\mathfrak{A})'' \cap \pi_{\beta}^{\text{CAR}}(\mathfrak{A})'$. Since $\pi_{\beta}^{\text{CAR}}(\mathfrak{A})''$ is a factor, $x^*x = \lambda 1$ with $\lambda > 0$. ($\lambda \neq 0$ due to $x \neq 0$) By considering $\lambda^{-1/2}x$ instead of x, we may assume that $x^*x = 1$.

By a similar argument, we obtain $xx^*=c1$ with c>0. Since $c^21=(xx^*)^2=x(x^*x)x^*=xx^*$ (by $x^*x=1$), we have c=1, namely x is unitary.

The KMS state $\varphi_{\beta}^{\text{CAR}}$ of the quasifree motion (3.8) is a quasifree state φ_{S} with $S=(1+e^{-2JK_{\gamma}\beta})^{-1}$ where

(7.3)
$$\varphi_{S}(B(h_{1})*B(h_{2})) = (h_{1}, Sh_{2}).$$

(Theorem 3 of [10].)

Let \mathscr{L} denote the space of all $h = \binom{f}{g}$ (the test function space for $B(\cdot)$ of the CAR algebra \mathfrak{A}^{CAR}): $\mathscr{L} = l_2 \oplus l_2$. Then the cyclic representation π_{β}^{CAR} of \mathfrak{A}^{CAR} on $\mathscr{H}^{CAR}_{\beta}$ associated with the quasifree state $\varphi_S(=\varphi_{\beta}^{CAR})$ can be viewed as the restriction of an irreducible representation $\pi_{P_S}^1$ of a CAR algebra \mathfrak{A}^{CAR}_1 with the test function space $\mathscr{H}^{CAR}_{\beta}$ of twice size for $B(\cdot)$ on the same representation space $\mathscr{H}^{CAR}_{\beta}$, where $B(h \oplus 0)$ of \mathfrak{A}^{CAR}_1 identified with B(h) of \mathfrak{A}^{CAR}_1 and $\pi_{P_S}^1$ ($B(0 \oplus h)$) of \mathfrak{A}^{CAR}_1 identified with $U(\Theta)$ times an element of the commutant of $\pi_{\beta}^{CAR}(\mathfrak{A}^{CAR})$ of the form $J\pi_{\beta}^{CAR}(B(h_1))J$ with J denoting the modular conjugation and h_1 depending on h. The cyclic vector Φ_{β} giving rise to the state $\varphi_S(=\varphi_{\beta}^{CAR})$ yield a pure state $\varphi_{P_S}^1$ of \mathfrak{A}^{CAR}_1 characterized by the following (basis) projection operator P_S on $\mathscr{L} \oplus \mathscr{L}$:

(7.4)
$$P_{S} = \begin{bmatrix} S & \{S(1-S)\}^{1/2} \\ \{S(1-S)\}^{1/2} & 1-S \end{bmatrix}.$$

(Lemma 4.5 and proof of Theorem 3 of [10].)

By (6.11), the unitary transformation Ad x on \mathfrak{A}_1^{CAR} will give rise to a Bogolubov automorphism through the following Bogolubov transformation on $\mathscr{A} \oplus \mathscr{A}$ because $x \in \pi_{\beta}^{CAR}(\mathfrak{A}_+^{CAR})''$ commutes with both $\pi_{\beta}^{CAR}(\mathfrak{A}_+^{CAR})'$ and $U(\Theta)$:

$$(7.5) U_{+} = \begin{bmatrix} \boldsymbol{\omega}_{+}^{*} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}.$$

A necessary and sufficient condition for the Bogolubov automorphism of $\mathfrak{A}_{1}^{\text{CAR}}$ by U_{+} to be implementable in a Fock representation given by a pure state $\varphi_{P_{S}}^{1}$ is that $(1-P_{S})U_{+}P_{S}$ is in the Hilbert Schmidt class (Theorem 7 of [10]) or equivalently (Proof of Theorem 7 of [10])

$$||P_{S}-U_{+}P_{S}U_{+}^{*}||_{H.S.} < \infty,$$

where H. S. denotes the Hilbert Schmidt norm.

In the present situation, the Bogolubov automorphism is actually implemented by a unitary operator x on $\mathcal{H}_{\beta}^{CAR}$. We derive a contradiction by disproving (7.6), thereby showing non-existence of x.

By (7.3) and (7.4), we have

(7.7)
$$P_{S} = \begin{bmatrix} (1 + e^{-2JK_{\gamma}\beta})^{-1} & (2\cosh JK_{\gamma}\beta)^{-1} \\ (2\cosh JK_{\gamma}\beta)^{-1} & (1 + e^{2JK_{\gamma}\beta})^{-1} \end{bmatrix}$$

and

(7.8)
$$P_{S} - U_{+} P_{S} U_{+}^{*} = \begin{bmatrix} B & s_{+}^{*} (\cosh J K_{7} \beta)^{-1} \\ (\cosh J K_{7} \beta)^{-1} s_{+} & \mathbf{0} \end{bmatrix},$$

where

(7.9)
$$B = (1 + e^{-2JK_{\gamma}\beta})^{-1} - (1 + e^{-2J\omega_{+}^{*}K_{\gamma}\omega_{+}\beta})^{-1},$$

$$(7.10) s_{+} = (1 - \omega_{+}).$$

We now have

$$(7.11) ||P_S - U_+ P_S U_+^*||_{H.S.}^2 = \operatorname{tr} B^2 + 2 \operatorname{tr} (s_+^* (\cosh J K_\tau \beta)^{-2} s_+).$$

Since $||K_r|| \le 2$, the second term is larger than

(7. 12)
$$2(\cosh 2J\beta)^{-1} \operatorname{tr} s_{+}^{*} s_{+}$$
.

We shall show that this is infinite in the next Lemma, completing the

proof for the case of $\tilde{\Theta}_+$. The proof for $\hat{\Theta}_-$ is obtained exactly in the same manner, using

$$(7.13) s_{-} = (1 - \omega_{-})$$

instead of s_+ and U_- instead of U_+ , where U_- is defined by (7.5) with ω_+ replaced by ω_- .

In the case of $x\!\in\!\pi_\beta^{\text{CAR}}(\mathfrak{A}^{\text{CAR}}_-)''$, x anticommutes with $U(\Theta)$ and hence

(7. 14)
$$x\pi_{P_{S}}^{1}(B(\mathbf{0}\oplus h))x^{*} = -\pi_{P_{S}}^{1}(B(\mathbf{0}\oplus h))$$
$$= U(\Theta)\pi_{P_{S}}^{1}(B(\mathbf{0}\oplus h))U(\Theta)^{*}.$$

Here the second equality is due to the circumstance that $\pi_{P_S}^1(B(\mathbf{0} \oplus h))$ is the product of $U(\Theta)$ with $J\pi_{\beta}^{CAR}(B(h_1))J$ and $U(\Theta)$ commutes with the modular conjugation J. Since

(7. 15)
$$x\pi_{P_{S}}^{1}(B(h \oplus \mathbf{0})) x^{*} = \pi_{\beta}^{CAR}(\hat{\Theta}_{\pm}\Theta(B(h)))$$

$$= U(\Theta) \pi_{P_{S}}^{1}(B(\omega_{\pm}^{*}h \oplus \mathbf{0})) U(\Theta)^{*},$$

we have the situation that $\mathrm{Ad}(U(\theta)x)$ induces the Bogolubov automorphism of $\mathfrak{A}_{1}^{\mathrm{CAR}}$ given by U_{\pm} . Therefore the same contradiction arises also in this case and the proof is complete, once we prove the following:

Lemma 8. tr $s_{+}^{*}s_{+} = \text{tr } s_{-}^{*}s_{-} = \infty$.

Proof. Let $\tilde{f}(\theta)$ be defined as before and $\tilde{h}(\theta) = \begin{pmatrix} \tilde{f}(\theta) \\ \tilde{g}(\theta) \end{pmatrix}$. Let $r_+^{\tau}(\theta)$ and $k_{\tau}(\theta)$ be defined as follows:

(7.16)
$$r_{+}^{0}(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad r_{-}^{0}(\theta) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad k_{0}(\theta) = \cos \theta.$$

$$(7.17) r_{\pm}^{\tau}(\theta) = (2k_{\tau}(\theta))^{-1} \begin{bmatrix} k_{\tau}(\theta) \pm \cos \theta & \mp i\gamma \sin \theta \\ \pm i\gamma \sin \theta & k_{\tau}(\theta) \mp \cos \theta \end{bmatrix},$$

(7.18)
$$k_{\gamma}(\theta) = (\cos^2 \theta + \gamma^2 \sin^2 \theta)^{1/2}. \ (\gamma \neq 0)$$

The two operators $r_{\pm}^{r}(\theta)$ are spectral projections of $\tilde{K}_{r}(\theta)$ satisfying

$$(7.19) r_+^r(\theta) + r_-^r(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

(7.20)
$$\tilde{K}_{\tau}(\theta) r_{\pm}^{\tau}(\theta) = \pm 2k_{\tau}(\theta) r_{\pm}^{\tau}(\theta).$$

Let h_j (j=1, 2) have only finite number of non-zero components. Then $\tilde{h}_j(\theta)$ consists of polynomials of $e^{i\theta}$ and $e^{-i\theta}$ and hence is an entire function with a period 2π . The operators $r_{\pm}^{r}(\theta)$ as well as $k_{\tau}(\theta)$ are holomorphic near the real axis and have a period 2π . We shall compute the limit of

(7.21)
$$(h_1, e^{i2JK_{T}t} \frac{1-\theta_{-}}{2} e^{-i2JK_{T}t} h_2)$$

$$= \lim_{\varepsilon \to +0} \sum_{\sigma,\sigma'} \int_{0}^{2\pi} \overline{(r_{\sigma}'\tilde{h}_{1})} (\theta_{1}) I_{\tau\varepsilon}^{\sigma\sigma'}(\theta_{1}, t) \frac{d\theta_{1}}{2\pi},$$

$$(7.22) I_{\gamma\varepsilon}^{\sigma\sigma'}(\theta_1, t) = \int_0^{2\pi} e^{4Ji(\sigma k_{\gamma}(\theta_1) - \sigma' k_{\gamma}(\theta_2))t} F_{\varepsilon}(\theta_2 - \theta_1) r_{\sigma'}^{\tau}(\theta_2) \tilde{h}_2(\theta_2) \frac{d\theta_2}{2\pi},$$

as $t \to \pm \infty$ (which will be (7.27)), where σ and σ' are + or - and

(7.23)
$$F_{\varepsilon}(\theta_{2}-\theta_{1}) = (1-e^{i(\theta_{2}-\theta_{1})-\varepsilon})^{-1} = \sum_{l=0}^{\infty} e^{i\theta_{1}l} e^{-i\theta_{2}l} e^{\varepsilon l}.$$

(We have used the fact that $(1-\theta_-)/2$ is the multiplication of the characteristic function $\chi_-(l)$ for $(-\infty, 0]$ and is a limit of the multiplication operator θ^{ε}_- of $e^{\varepsilon l}\chi_-(l)$ as $\varepsilon \to +0$.)

First, note that L_2 norm of $I_{r\varepsilon}^{\sigma\sigma'}$ is bounded by $||h_2||$ due to $||\theta_-^{\varepsilon}||=1$ and $||r_{\sigma'}^{\tau}||=1$. Hence a small interval of θ_1 gives only a small correction which tends to 0 as the relevant interval vanishes.

Second, by the periodicity, we may shift the range of θ_2 integration so that it is centered around θ_1 . F_{ε} is then smooth and bounded even in the limit of $\varepsilon \to 0$ except for a neighbourhood (of any desired small length) of $\theta_2 = \theta_1$. Hence the contribution from outside a small neighbourhood of $\theta_2 = \theta_1$ tends to 0 as $t \to \pm \infty$ by the Riemann-Lebesgue Lemma. This will then imply that the contribution to (7.21) also tends to 0 by the dominated convergence theorem.

By the holomorphy, we may shift the θ_2 -integration by $\pm i\eta(\theta_2)$ $(\eta(\theta_2) \ge 0)$ in the neighbourhood of $\theta_2 = \theta_1$. The shift by $+i\eta(\theta_2)$ does not cause any change to the integral, whilst the shift by $-i\eta(\theta_2)$ yields an additional term (for $\varepsilon < \eta(\theta_2)$), which is in the limit of $\varepsilon \to 0$ given by

$$(7.24) \qquad \qquad e^{4Ji\sigma k_{\mathbf{r}}(\theta_{1})\cdot(1-\delta_{\sigma\sigma'})t}r_{\sigma'}^{\mathbf{r}}(\theta_{1})\,\tilde{h}_{2}(\theta_{1})\equiv A_{t}^{\sigma\sigma'}(\theta_{1}).$$

Let

(7.25)
$$\bar{\sigma} = \bar{\sigma}_{Jt}(\theta) \equiv \operatorname{sign}(Jt(d/d\theta)k_{\tau}(\theta)).$$

Then the θ_2 -integral after the shift by $-i\sigma'\bar{\sigma}\eta(\eta>0)$ tends to 0 as $\epsilon\to+0$ and $t\to\infty$ (with a definite sign of t) due to the large t exponential damping. The set of θ_1 for which $(d/d\theta)k_{\tau}(\theta)=0$ at

 $\theta = \theta_1$ is of measure 0 and can be neglected. Therefore we have

$$\lim_{t\to\infty} \lim_{\varepsilon\to 0} \left\{ I^{\sigma\sigma'}_{\tau\varepsilon}(\theta_1,\ t) - \delta_{\sigma',\sigma_{Jt}(\theta_1)} A^{\sigma\sigma'}_t(\theta_1) \right\} = 0.$$

Since terms in (7.26) have uniformly bounded L_2 norms, we can use these estimates of $I_{\tau \epsilon}^{\sigma \sigma'}$ in evaluating (7.21).

If $\sigma \neq \sigma'$, then the exponential oscillation of $A_t^{\sigma\sigma'}$ makes (7.21) vanish in the limit of $t \rightarrow \infty$. Hence we obtain

(7.27)
$$(h_1, q_{\pm}h_2) = \sum_{\sigma} (r_{\sigma}^{\tau}\tilde{h}_1, \tilde{q}_{\pm\sigma}^{J}r_{\sigma}^{\tau}\tilde{h}_2),$$

where $q_{\pm} = (1 - \omega_{\pm} \theta_{-})/2$ and

(7.28)
$$(\tilde{q}_{\pm}^{J}h)^{\sim}(\theta) = \begin{cases} \tilde{h}(\theta) & \text{if } \pm J(d/d\theta)k_{\tau}(\theta) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

The sign function $\sigma_r(\theta) = \text{sign } k'_r(\theta)$ is given by

(7.29)
$$\sigma_{\tau}(\theta) = -\operatorname{sign}(\cos \theta \sin \theta)$$

$$= \begin{cases} + & \text{if } -\pi/2 < \theta < 0 \pmod{\pi}, \\ - & \text{if } 0 < \theta < \pi/2 \pmod{\pi} \end{cases}$$

if $\gamma \neq 0$ and

(7.30)
$$\begin{split} \sigma_{\tau}(\theta) &= -\mathrm{sign} \left(\sin \, \theta \right) \\ &= \left\{ \begin{array}{ll} + & \mathrm{if} \quad -\pi < \theta < 0 \qquad (\mathrm{mod} \, \, 2\pi) \,, \\ - & \mathrm{if} \quad 0 < \theta < \pi \qquad (\mathrm{mod} \, \, 2\pi) \,. \end{array} \right. \end{split}$$

if $\gamma = 0$. For each θ , q_{\pm} selects either r_{+}^{γ} or r_{-}^{γ} and hence

$$(7.31) (h_1, q_{\pm}h_2) = \int (\tilde{h}_1(\theta), r_{\pm\sigma(J)\sigma_{\gamma}(\theta)}^{\gamma}(\theta) \tilde{h}_2(\theta)) d\theta/(2\pi),$$

where $\sigma(J) = \text{sign } J$.

We can now compute

$$(7.32) tr s_{+}^{*}s_{+} = tr(2 - \omega_{+} - \omega_{+}^{*}).$$

Let $t_{\pm} = (1 \pm \theta_{-})/2$. Since $\omega_{+}^{*} = \theta_{-}\omega_{+}\theta_{-}$

(7.33)
$$\operatorname{tr} s_{+}^{*} s_{+} = 2 \operatorname{tr} \left\{ t_{+} (1 - \omega_{+} \theta_{-}) t_{+} + t_{-} (1 + \omega_{+} \theta_{-}) t_{-} \right\}$$
$$= 4 \operatorname{tr} \left\{ t_{+} q_{+} t_{+} + t_{-} (1 - q_{+}) t_{-} \right\}.$$

The trace can be split into the trace of the 2×2 matrices and the trace on l_2 . Since the matrix traces of r_+^{τ} and $1-r_+^{\tau}=r_-^{\tau}$ are both 1, the trace in (7.33) is equal to the trace of $t_++t_-=1$ on l_2 , which is infinite. This completes the proof of Lemma 8.

Corollary 9.
$$q_+ + q_- = 1$$
, $\omega_- = -\omega_+$, $\tilde{\Theta}_+ = \tilde{\Theta}_-\Theta$.

Remark 10. By $\Gamma K_7 \Gamma = -K_7$, we have $\Gamma r_\pm^r \Gamma = r_\pm^r$ for the multiplication operator r_\pm^r of $r_\pm^r(\theta)$. Since Γ changes θ to $-\theta$ (due to $\Gamma(f \oplus g) = \bar{g} \oplus \bar{f}$ and $\bar{f}(\theta) = \bar{f}(-\theta)$), we have $\Gamma q_\pm \Gamma = q_\pm$. Actually this is required in order that $\omega_\pm \theta_- = 1 - 2q_\pm$ induces Bogolubov automorphisms.

§ 8. Twisted Asymptotic Abelian Property

The weak asymptotic property (6.17) implies

$$\text{w-lim}[y, \hat{\pi}_{\beta}(\alpha_t(x))] = \mathbf{0}$$

for any $x \in \mathfrak{A}$ and any operator y on the representation space \mathscr{R}_{β} . On the other hand, such an asymptotic property has been derived in the case of one-sided XY-model from a twisted asymptotic abelian property (in norm) on the level of C^* -algebra \mathfrak{A}^s . We now discuss this problem for the two-sided XY-model.

Theorem 11. For Q_1 , $Q_2 \in \mathfrak{A}^s$, the following holds:

(8.1)
$$\lim_{t \to \infty} ||[Q_1, \alpha_t(Q_2)]|| = 0 \text{ if } \Theta(Q_1) = Q_1, \Theta(Q_2) = Q_2.$$

(8.2)
$$\lim_{t \to \pm \infty} ||Q_1 \alpha_t(Q_2) - \Theta_- \tilde{\Theta}_+(\alpha_t(Q_2)) Q_1|| = 0$$

$$if \ \Theta(Q_1) = -Q_1, \ \Theta(Q_2) = Q_2.$$

$$\begin{array}{ll} (8.3) & \lim_{t \to \pm \infty} \mid \mid Q_{1}\alpha_{t}(\mid Q_{2}) \mid -\alpha_{t}(\mid Q_{2})\mid \Theta_{-}\tilde{\Theta}_{+}(\mid Q_{1})\mid \mid = 0 \\ & if \mid \Theta(\mid Q_{1}) = Q_{1}, \mid \Theta(\mid Q_{2}) = -Q_{2}. \end{array}$$

Proof. This is an immediate consequence of Theorem 2, Corollary 9, (3.14) and Lemma 5. For (8.2), note that $\Theta_{-}\alpha_{t} = \alpha_{t}\alpha_{-t}\Theta_{-}\alpha_{t}$, $\alpha_{-t}\Theta_{-}\alpha_{t} \to \Theta_{-}\tilde{\Theta}_{\pm}$ as $t \to \mp \infty$ and $\tilde{\Theta}_{-}a = \tilde{\Theta}_{+}a$ for $a \in \mathfrak{A}_{+}^{s} = \mathfrak{A}_{+}^{CAR}$ due to Corollary 9.

Note that $\Theta_{-}\tilde{\Theta}_{\pm} = \lim_{t \to \pm \infty} \alpha_{t}\Theta_{-}\alpha_{-t}$ implies the commutativity of $\Theta_{-}\tilde{\Theta}_{\pm}$ with α_{t} .

Remark 12. (6.17) may be viewed as a consequence of (8.1), (8.3) and Lemma 6.

Remark 13. Since α_t commutes with Θ as well as $\Theta_-\Theta_\pm$, both of which commute with each other, it might be thought that Theorem 13 has an extension to Θ -odd Q's and possibly the result could be formulated in terms of a $Z_4(=Z_2\times Z_2)$ —graded commutator (two Z_2 referring to Θ and $\Theta_-\tilde{\Theta}_\pm$). However it is impossible to extend $\Theta_-\tilde{\Theta}_\pm$ to a *-automorphism of $\tilde{\mathfrak{A}}$ due to the following reason:

Let ψ be an extension of $\Theta_{-}\tilde{\Theta}_{+}$ (or $\Theta_{-}\tilde{\Theta}_{-}$) to $\tilde{\mathfrak{A}}$. First we prove that $\psi^{2} \equiv \gamma$ is either an identity or $\tilde{\Theta}_{-}$ on the basis of $\gamma(a) = a$ for all $a \in \mathfrak{A}^{CAR}$. Let

$$(8.4) \gamma(T) = s + Tt, s, t \in \mathfrak{A}^{CAR}.$$

From $T^* = T$ and $T^2 = 1$, we obtain

(8.5)
$$s^* = s, t^* = TtT = \Theta_-(t),$$

(8.6)
$$s^2 + t^*t = 1$$
, $\theta_-(s)t + ts = 0$.

From $TaT = \Theta_{-}(a)$ and $\gamma(a) = a$ for $a \in \mathfrak{A}^{CAR}$, we have $\gamma(T)a\gamma(T) = \gamma(TaT) = \Theta_{-}(a)$ and hence

$$(8.7) sas + t*\Theta_{-}(a)t = \Theta_{-}(a),$$

$$(8.8) tas + \Theta_{-}(sa) t = \mathbf{0}.$$

By substituting sa into a of (8.7) and using (8.8) and (8.6), we obtain

(8.9)
$$\Theta_{-}(sa) = (s^2 - t^*t)as = (2s^2 - 1)as.$$

Setting $a = s^{n-1}$, we obtain

(8.10)
$$\Theta_{-}(s^{n}) = (2s^{2} - 1)s^{n}.$$

Substituting (8.10) for n=1 and 2 into $\Theta_-(s^2) = \Theta_-(s)^2$, we obtain $s^2(2s^2-1)(1-s^2) = \mathbf{0}$. Substituting $(1-s^2) = t^*t$, we obtain $A^*A = \mathbf{0}$ for $A = ts^2(2s^2-1)$ and hence $A = \mathbf{0}$. It then implies $BB^* = \mathbf{0}$ for $B = ts(2s^2-1) = t\Theta_-(s)$ and hence $B = \mathbf{0}$. This implies $t^*s = \Theta_-(B) = \mathbf{0}$ and hence $st = (t^*s)^* = \mathbf{0}$. Substituting (8.10) with n=1 into the second equation of (8.6), we obtain $(2s^2-1)st+ts=0$ and hence $ts = \mathbf{0}$. Hence $(1-s^2)s^2=t^*ts^2=\mathbf{0}$. Thus s^2 is an orthogonal projection. By substituting sa into a of (8.8), using this result and applying Θ_- , we obtain

(8.11)
$$\mathbf{0} = s^2 a \Theta_-(t) = s^2 a t^*.$$

Since the UHF algebra \mathfrak{A}^{CAR} is simple, (8.11) implies s=0 or t=0. If t=0, (8.7) implies that Θ_- is an inner automorphism of

 $\mathfrak{A}^{\text{CAR}}$. Since Θ_{-} is a Bogolubov transformation given by θ_{-} , and since $1 \pm \theta_{-}$ is not in the trace class (they are twice infinite projections), Θ_{-} is not inner (Theorem 5 and Definition 8.1 of [10]). Thus the alternative $t = \mathbf{0}$ is impossible.

The alternative s=0 implies $t^*t=1$. Since $1=\theta_-(t^*t)=tt^*$, t is a unitary. (8.7) and (8.5) then imply that $t=\pm 1$ (since \mathfrak{A}^{CAR} has a trivial center) and hence $\gamma=\mathrm{id}$ or $\gamma=\widehat{\theta}_-$.

Next, we set $\psi(T) = s + Tt$. We still have (8.5) and (8.6). Since $\psi^2 = \gamma = \mathrm{id}$, or $\hat{\theta}_-$ and $\psi(a) = \theta_- \tilde{\theta}_+(a)$ for $a \in \mathfrak{A}^{CAR}$, we obtain

(8.12)
$$\Theta_{-}\tilde{\Theta}_{+}(s) + s\Theta_{-}\tilde{\Theta}_{+}(t) = \mathbf{0}, \ t\Theta_{-}\tilde{\Theta}_{+}(t) = \pm \mathbf{1}.$$

From $\psi(T)a\psi(T) = \Theta_-\tilde{\Theta}_+^2(a)$ for $a \in \mathfrak{A}^{CAR}$, we obtain

(8.13)
$$sas + t^* \Theta_-(a) t = \Theta_- \tilde{\Theta}_+^2(a),$$

(8. 14)
$$tas + \Theta_{-}(sa) t = \mathbf{0}.$$

By (8.12), $\Theta_-\tilde{\Theta}_+(t)t = \Theta_-\tilde{\Theta}_+(t\Theta_-\tilde{\Theta}_+(t)) = \pm 1$ and hence t has an inverse $\pm \Theta_-\tilde{\Theta}_+(t)$. Substituting t^{-1} times (8.14) into as of (8.13) and dividing by t from the right, we obtain

(8.15)
$$(-st^{-1}\Theta_{-}(s) + t^{*})\Theta_{-}(a) = \Theta_{-}\tilde{\Theta}_{+}^{2}(a)t^{-1}.$$

By setting a=1, and substituting the resulting expression into (8.15), we obtain

(8.16)
$$t^{-1}\Theta_{-}(a) = \Theta_{-}\tilde{\Theta}_{+}^{2}(a) t^{-1}.$$

Substituting $\Theta_{-}(a)$ into a, we see that $\Theta_{-}\tilde{\Theta}_{+}^{2}\Theta_{-}$ must be inner. We now prove that this is impossible.

The necessary and sufficient condition for $\Theta_-\tilde{\Theta}_+^2\Theta_-$ to be inner is that ω_+^2-1 is in the trace class and det $\omega_+^2=1$ or ω_+^2+1 is in the trace class and det $(-\omega_+^2)=-1$ by Theorem 5 of [10]. We shall exclude the first case by showing that (ω_+^2-1) or equivalently $(\omega_+^2-1)\theta_-$ is not in the trace class and the second case by showing det $(-\omega_+^2)=1$ if ω_+^2+1 is in the trace class.

Since $(\omega_{-}\theta_{-})q_{\pm} = \mp q_{\pm}$ (also see Corollary 9), we have

(8.17)
$$(\omega_{+}^{2} - 1) \theta_{-} = (\omega_{+} \theta_{-}) \theta_{-} (\omega_{+} \theta_{-}) - \theta_{-}$$

$$= -2 (q_{+} \theta_{-} q_{-} + q_{-} \theta_{-} q_{+}).$$

We shall prove that $(\omega_+^2 - 1)\theta_-$ is not in the trace class by proving that it is even not in the Hilbert-Schmidt class. By (8.17),

$$\begin{aligned} (8.18) \quad ||(\omega_{+}^{2}-\mathbf{1}) \, \theta_{-}||_{\mathrm{H} \, \mathrm{S}.}^{2} &= 4 \, (||q_{+}\theta_{-}q_{-}||_{\mathrm{H.S}.}^{2} + ||q_{-}\theta_{-}q_{+}||_{\mathrm{H} \, \mathrm{S}.}^{2}) \\ &= 8 ||q_{-}\theta_{-}q_{+}||_{\mathrm{H} \, \mathrm{S}.}^{2} \\ &= (8/\pi^{2}) \sum_{\sigma,\sigma'} \lim_{\varepsilon \to 0} \int_{A_{-\sigma}} d\theta_{1} \int_{A_{\sigma'}} d\theta_{2} \, |F_{\varepsilon}(\theta_{2}-\theta_{1}) \, |^{2} G_{\sigma'\sigma}(\theta_{2}, \, \theta_{1}) \,, \end{aligned}$$

(8.19)
$$G_{\sigma'\sigma}(\theta_2, \theta_1) \equiv \operatorname{tr}(r_{\sigma'}^{\tau}(\theta_2) r_{\sigma}^{\tau}(\theta_1)),$$

where F_{ε} is given by (7.23), σ and σ' are + or -, \mathcal{L}_{σ} is the set of all θ for which $\sigma_{\tau}(\theta) = \sigma$ (cf. (7.29) and (7.30)) and $r_{\sigma}^{\tau}(\theta)$ is defined by (7.16) and (7.17).

For $\sigma = \sigma'$, (8.19) tends to 1 as $\theta_2 - \theta_1$ tends to 0. In this case, θ_1 and θ_2 belongs to disjoint regions \mathcal{L}_{σ} and $\mathcal{L}_{-\sigma}$. Hence we may set $\varepsilon = 0$. Since $|2F_0(\theta_2 - \theta_1)|^2 = \{\sin(\theta_2 - \theta_1)/2\}^{-2}$ is not integrable (relative to $d\theta_1 d\theta_2$) near $\theta_1 = \theta_2$ ($\theta_1 \in \mathcal{L}_{\sigma}$, $\theta_2 \in \mathcal{L}_{-\sigma}$), and each term in the sum of (8.18) is positive, we have

$$||(\omega_{+}^{2}-1)\theta_{-}||_{H.S}^{2}=\infty.$$

Finally we prove $\det(-\omega_+^2)=1$ if ω_+^2+1 is in the trace class. By $\Gamma\omega_+\Gamma=\omega_+$, the multiplicity of the non-real eigenvalue α of ω_+ is the same as that of $\bar{\alpha}$. Let J be the componentwise complex conjugation of $l_2 \oplus l_2$. Then (3.12) shows $JK_{\gamma}=K_{\gamma}J$. Since $J\theta_-=\theta_-J$ we have $J\omega_+J=\omega_-=-\omega_+$ by (6.8) and Corollary 9. Therefore the multiplicity of the eigenvalues ± 1 of ω_+ is the same. Since ω_+ is unitary, we obtain $\det(-\omega_+^2)=1$ if ω_+^2+1 is in the trace class (so that ω_+ has a pure point spectrum and $\det(-\omega_+^2)$ is definable). This proves the impossibility of extending $\Theta_-\tilde{\Theta}_+$ to an automorphism of $\tilde{\mathfrak{A}}$.

Since Θ is an automorphism of $\widehat{\mathfrak{A}}$, the same conclusion holds for $\Theta_{-}\widetilde{\Theta}_{-}=\Theta_{-}\widetilde{\Theta}_{+}\Theta$.

References

- [1] Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical mechanics II, Springer, 1981.
- [2] Emch, G. G. and Radin, C., Relaxation of local thermal deviations from equilibrium, J. Math. Phys., 12 (1971), 2043-2046.
- [3] Robinson, D. W., Return to Equilibrium, Comm. Math. Phys., 31 (1973), 171-189.
- [4] Araki, H. and Barouch, E., On the dynamics and ergodic properties of the XY-model, J. Statist. Phys., 31 (1983), 327-345.
- [5] Lieb, E., Schultz, T. and Mattis, D., Two soluble models of an antiferromagnetic chain, *Annals of Phys.*, **16** (1961), 407-466.
- [6] Kishimoto, A., Dissipations and derivations, Comm. Math. Phys., 47 (1976), 25-32.
- [7] Araki, H., On uniqueness of KMS states of one-dimensional quantum lattice systems,

- Comm. Math. Phys., 44 (1975), 1-7.
- [8] Kishimoto, A., On uniqueness of KMS states of one-dimensional quantum lattice systems, Comm. Math. Phys., 47 (1976), 167-170.
- [9] Kato, T., Perturbation theory for linear operators, Springer, 1966.
- [10] Araki, H., On quasifree states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ., 6 (1970), 385-442.