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On the XY-Model on Two-Sided
Infinite Chain

By

Huzihiro ARAKI*

Abstract

The ^Y-model on the one-dimensional lattice, infinitely extended to both directions,
is studied by a method of C*-algebras. Return to equilibrium is found for any vector
state in the cyclic representation of the equilibrium state.

A known relation between the algebras of Pauli spins and the algebra of canonical
anticommutation relations (CARs) is used to obtain an explicit solution. However the C*-
algebras generated by the two sets of operators become dissociated in the thermodynamic
limit of an infinite one-dimensional lattice extending in both directions (in contrast to one-
sided chain) and this causes a mathematical complication.

In particular, we find three features different from the case of one-sided infinite
chain: (1) There are no non-trivial constant observables. (2) The (twisted) asymptotic
abelian property holds only partially and not in general. (3) Return to equilibrium occurs
for all values of the parameter f and is proved by a method different from the case of
one-sided chain.

§ 1. Introduction

The XY-model with the Hamiltonian

will be studied in the C*-algebra approach, where

1 O/ 0™ = (i O/ ff*;) = U -1

are Pauli spin matrices at the lattice site j^Z (mutually commuting

for different sites j), J is real and — 1<J<1. For an observable Q

belonging to the C*-algebra 31 generated by all Pauli spins, we study

the asymptotic behavior of its time translation

(1.2) a / (Q)= l im«f w > (Q) ,
JV-.00

(1.3) tti
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, JAPAN.

* Received February 25, 1983.



278 HUZIHIRO ARAKI

where H(—N, N) is H of (1. 1) with the sum extending over j= — N,
— N+l, - • •, N—l. (The limit N^>oo of two-sided infinite chain.) We
study its expectation value in a state ^ of 21 given by an arbitrary
vector W^jfp in the cyclic representation x^ of the unique equilibrium
state <pp with the inverse temperature ft.

(We refer, for example, to [1] for a standard material.)
Our main result is the return to equilibrium:

Theorem 1. For any Qe2l

I—>oo

Such a return to equilibrium for the XY-model has been discussed
in [2] and [3], but the discussion has been limited to the so-called
even part of 21 (to be defined later). More recently [4], asymptotic
behavior of 0(a*(Q)) for large time t has been found for arbitrary
Qe2l in the case of the XY-model on the one-sided infinite chain.
The return to equilibrium (1. 5) does not occur in general (for ?'^0)
due to the existence of a constant observable 5re2I (i.e. at(Br) =Br)
given by

f-u if o<r<i
(1-6) - , _ - , - , - , - - , ( 2 . 1 } . ,

. 7—1 I (J y it

which is in 21 due to a= (1 - IH) / (1 + i r l ) ̂  (0, 1) for 7-^=0. However
the return to equilibrium do occur in any one of the following cases:

(a) 7 = 0, any ¥ ^ j f f t , any Q«E2l
(b) 79^0, any W^j^3 satisfying ^(5r) =0, any Qe2l.
(c) r^O, any f^Jf^, any Q satisfying <9(Q)=Q.

Here 6 is the automorphism of 21 satisfying

for all j (i.e. 180° rotation of all spins around z-axis), where j is
restricted to the natural numbers N for one-sided chain. In contrast,
the result given by Theorem 1 for the two-sided chain is simple.
However it disguises the complexity in its derivation.

The derivation of the results described above uses an explicit
solution of the model on a finite chain in terms of a relation between
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the algebra 31s of spins and the algebra 21CAR of CAR's [5]. In the
case of the two-sided chain, the two algebras become distinct C*-
subalgebras of a bigger C*-algebra 2t and this brings about some

complication, which we will describe in the next section for a general

one-dimensional spin lattice.

§ 2. Spin-Fermion Correspondence

Let 21CAR be the C*-algebra generated by Cj and cf (/eZ) sat-
isfying the following CAR's:

(2.2) [cy, cf]+=djkl. ([A E]+=AB + BA.)

Let 9 and 6L be automorphisms of 2ICAR satisfying

(2.3) 6 (<:/) = -<* e ( c f ) = -cf

(2.4) 0_(q)

They satisfy 62 = 62_ = 'id., 66_ = 0_6. Let 2t be the C*-algebra

generated by 21CAR and an element T satisfying

(2 5) T = T* T2 = 1

^ A . u J L X L L/_ \XJ , Xk=L<\,

(The C* crossed product of 2TCAR by the Z2-action 6L.)

Let 21s be the C*-subalgebra of $t generated by the following

Pauli spin matrices ^J) (a=x, y, z) on lattice sites j(

(2.7) a?--

(2.8) <tf> =

' ^1} - - - a<>-» if

(2.9) S^ = - I if y=l ,

(j;o) • • • o-iy) if j<i.
They satisfy the following relations which characterize 21s as a C*-
algebra.

(2.10) (<tf>)2 = l (a'^^' ^ «),
/Q 1 1 \ (j) (j) (j; 0") " (?")
\ Z,t 1 1 j t7ft O$ W O f f f J i Iffy

((a, p, 7-) =any cyclic permutation of (x, y, 2:)),



280 HUZIHIRO ARAKI

(2.12) [ap, *H=O if

The automorphisms 6 and ©_ are extended to & such that
= T, 6_(T)=T. We define even (+) and odd ( -) parts:

(2.13) a±=tre8, 8(x) = ±x}9

(2.14) §r£AR = srCAR n 8±, 2ts± = ?rs n 8±.
We have

(2.15) srs
+ - §r^AR, sri - Tsre.AR

Clearly T and 31s generates St

§3. Time Evolution

Let §P(7) be the C*-subalgebra of 21s generated by *#,, with j
belonging to a non-empty subset I of lattice points (i. e. IcZ).
Let $(/) e§T(I) (a many-body interaction potential between spins of
sites in a non-empty finite subset / of Z) and

(3.1) HN
AC/

(the total Hamiltonian for the interval [—AT,
We make the following assumptions in general.
(1) Evenness: 0(0(7)) =0(7) (/CZ).
(2) Bounded surface energy: For disjoint finite subsets / and J,

we denote

(3.2a) W(I9 J)=E{0(^): ^c7UJ, ^C/, ^crJ}.
z

Then, either for a finite interval II and any subset 72 of the com-
plement of /!, or for 7 i = ( — oo, f] and 72=[/+l, oo) with any ,/eZ,
the following limit exists

(3. 2b) lim T^C^n [-JV, N], I2fl [-AT, JV]) - W(715 72),
JV-^oo

and

(3.3) sup||PK[-AT5 AT|, (-00, -JV) U (JV, oo))||<oo.

Under assumption (2), the following limit exists and defines a
continuous one-parameter group of automorphisms of §t:

(3. 4) at(x) -lim e^xe'****. (arefi)
JV-»°o

The existence of limit for ^eSCs is by [6] and for T by the
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computation below, see (3. 14) and (3. 15). Due to the evenness
assumption (1), 0(1) belongs to Sl+ = 2l+AR and hence

(3.5)

(3.6)

In the case of the two-sided XT-model, we have

— 9 7" (/•*/• -4-r* r -L.v(r*r* -4-r r— £*<J \Lj ^j + 1 \ ^ j + "l^j~T'i\^j ^j + lt~^j+1^j

(0(1) =Q for all other I.) A computation of [4] yields

(3. 8) at(B(h)) = B(e2JiK^h),

where we have used the following notations:

(3. 9) c ( f ) ~ Zl fa'* c* (f) — 2 f'cf 3
3 3

(3.10) f=(fj)leM^k(Z),

(3.11) B(h)=c*(f)+c(g) for h = ( f }

\ o

,o 12^ K J U + U*
( 6 ' U ) J ^ r - ( _ r ( u _ u * ) _

(3.13) ( U f ) j = f i + » (U*f)j=J

The time evolution of T is given by

(3.14) at(T)=TVt,

(3. 15) Vt = lira Te' N Te ' N

,. ie_<av» fiBtf

= II tfdtX1 dt,--. \'""1 A.of ( A ) . - . a, (A)
j=o Jo Jo Jo tt 1

by the theory of inner perturbation of automorphism groups (for
example, see [1]), where

(3.16) A = lim(6_(HN)-Hv)=0-W((-oo, 0], [1, oo))

-W((-oo, 0], [1, oo))

due to the split

(3.17) HN=H(l-N9 0])+#([!, NU + Wd-N, 0], [1, AT]),

and the relation 9-(x)=x for x = H([l, AT]) eSTs([l? oo)), ©.(3;) =
= S(y) =y for y = /f([-JV; 0]) e2Ts((-oo, 0]). Note that Vt is a
unitary operator (both Vt and V? are strong limits of unitaries)
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belonging to 2ls
+-2I^AR and 6(Vt) = Vf (by the second line of (3. 15))

so that (TVt)
2 = l.

§4. Equilibrium States and Associated Representations

There exists an (at, ̂ )-KMS state $$ of SI as a weak accumula-
tion point of the Gibbs state for HN as N-^oo.

Let 0_ be the automorphism of 2t (the dual action of 0.) satisfying

(4. 1) ©_(T) - -T, 0_(a) =a (ae2tCAR).

Such 0. exists as an automorphism of 2t Since H#e3lCAR, it is 0_-
invariant and hence

(4.2) 0_a, = a,@_

and $£ is ©.-invariant.
Since 0 and 0. commute, we have the decomposition

(4.3) a=z Sw,
a, a'

(4.4) Sr^,= {^et; »(*)=<«:, 0_ (*)=*'*},

where a and </ are + or —. We have

(4.5) S,+ -2eR Sl_ = T2eR. (er-+5 -)

By (4.2), (fa + fo°6-)/2 is a ©.-invariant (a,, /3)-KMS state of
S and hence we assume that ^ is already ©.-invariant. By (3. 6)
and [©, ©_]=03 we may also assume that <f>0 is ©-invariant. Its
restrictions to Sls and SICAR are (at, /3)-KMS states and, as such, are
unique by the assumption (2). ([7], [8]) Hence such ^ is the
unique ©.-invariant extension of the unique (at, /3)-KMS state of
SICAR and at the same time the unique ©©.-invariant extension of the
unique (at, /S)-KMS state of $[s. In particular, the unique (at9 j£)-
KMS state of 21s can be obtained as the restriction (to SICAR) of the
unique ©.-invariant extension (to §1) of the unique (ah /$)-KMS
state of SICAR.

By the 0- and ©.-invariance, $& is 0 on Sl^/ except for 2t++=2lSAR

and hence explicitly determined by ^AR on 2I+AR. The cyclic
representation ## of SI associated with <p0 (on a Hilbert space $$
with a cyclic vector 0^ yielding ^) can also be constructed from the
cyclic representations of 21CAR as follows:

Let (^\ ^AR, 0,) and (^A
0

R_, ^A|_, ^,0_) be triplets of the
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Hilbert space, the cyclic representation of 21CAR and the cyclic vector
associated with states ^AR and 9^A|_ — ̂ ARo0_, respectively. The
triplet for <p& can then be constructed by the following formulas:
/ A r>\ 'Jp _ /i/^CAR/TN -^CAR
^T1. Dy <&£ $ — <?t j3 \i/c^^,0_'

(4.7) */,(<*)=*$**(«) 0>#g». (a£E§lCAR)

(4. 8) Ag(T) C^AR(a) 0f@i%$_ (6) 0,.8J

= ̂ CAR(0_(6)) 0,0^(0- (a)) 0,,0_.

(4.9) ^ = 0,00.

We note that two representations (^AR, jf^AR) and (^A
e
R_, Jf£A

9
R_)

are unitarily equivalent due to the following circumstances: Let

(4.10) a°(a}=\imeiHx'ae-iHN'

(4.11) H°N

Let ^ be the unique (a?, /3)-KMS state of 21CAR. By 0_-invariance
of H°N, a0

t9_ = 9_a° and hence ^o6L=y>°. Let (jf°, w°, 0°) be the
triplet associated with $. By the @_-invariance of <p% there exists a
unitary operator C/(0_) on Jf0 satisfying

(4.12) [7(6>_K(a)0° = A0_(a))0°.

Due to (3. 17), a, is an inner perturbation of a° by

(4.13) W=W((-°°, 0], [1, oo)).

Let

(4.14) £7(a?K(a)0° = ;r°(a?(<z))00,

(4.15) [/(a?) = Xf.

Then, by theory of inner perturbations, 0° is in the domain of
y=exP-/3(#°+WO/2 and \\V^\\-lV0° = 0f is a cyclic vector giving
rise to ^AR(«) =($a, 7r°(a)<Z>s), whilst U(6.)0e = 0f ,e_ is a cyclic vector
giving rise to ^A@_(a) = (^.e_, Tr^a)^.^). Therefore, representations

, (4AR, ^AR) and (^A|_, jf££_) are all unitarily equivalent.

§ 5. Asymptotic Behavior of 21CAR

Theorem 2. For a,

(5.1)
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where the graded commutator [ , ]0 is defined as follows:

(5.2) [a, b]9=ab-ba if @(a) =a or 0(b) =b.

(5. 3) [a, b~\Q=ab + ba if ©(a) - -a and 0(b) = -b.

A general element b is decomposed into a sum b = b+ + b_ of even and
odd elements b± = (b±0(b))/2 and the above formula is applied, i, e.

(5.4) [a, b-]e=(ab+-b+a) + (ab_-b.0(a».

The proof is based on the following spectral property of K:

Lemma 3. Kr has a Lebesgue spectrum on the union of closed
intervals [—2, — 2f] and [2f, 2] with a uniform multiplicity 4.

Proof of Lemma 3. By the Fourier expansion

(5.5)

U and 17* become multiplication operators

(5.6) (Uf)~(0)=e-»f(0), (E7*/)~

and hence Kr reduces to the matrix

From its eigenvalues ±2(cos2 (9 + ^2 sin2 ^)1/2, we obtain Lemma 3.

Proof of Theorem 2. By the absolute continuity of the spectrum
of Kr, we have

(5. 8) lim [£(/*!)*, *,(B(fca)):U = lim (h» e^'hj =0

due to the Riemann-Lebesgue Lemma.

By Lemma 2 of [4], we have the following consequence:

Corollary 4. For aeStCAR
5

(5. 9) w-lim fy(a,(a)) =^(a)l.
t-*<*>

In fact, ^AR being a unique KMS state, ^(21CAR) is a factor and
^ is 0-invariant. Hence Lemma 2 of [4] implies (5. 9) on Jf£AR.
The same holds for ^,0_ by the unitary equivalence of nff and 7rjS>0_
(0_ commutes with @) and hence (5. 9) holds also on ^A&_ and
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hence on the whole space 3?pAR.

§ 6, Asymptotic Behavior of T2TCAR

We first obtain the asymptotic behavior of Vt in the following
form:

Lemma 5. The following limit exists (in norm topology) for any
aeSlCAR and defines automorphisms 0± of §1CAR:

(6.1) 0±(a) = lim VtaVf.
t-*±°o

The automorphisms so defined satisfy the following relations'.

(6.2) (<9_<9±)2 = id., 0±0 = 00±.

Proof. By (3.15) and (2.6), we have

(6.3) Vta Vf = 0_a,0_a_, (a).

Hence it is enough to prove the norm convergence of at0_a_t on
the generating elements B(h) for the existence of (6. 1), for the
automorphism properties of 0± and for (6.2). We have

(6. 4) at8.a ~

where

(6.5)

We have

(6.6)

Hence 0__Kr6_ — Kr is at most rank 4. Since Kr and its unitary
transform 6_Kr6_ have absolutely continuous spectrum by Lemma 3,

(6.8) GJ±= lim e]lKji e 2Jl(e-Kre-n

fr n\ * r ZJi(6_KJ_}t -2JiKrt(b. y; &>± — lim e ' e '

both exist (in the strong topology) by Theorem X. 4. 4 (and Theorem
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X. 3. 5) of [9]. Thus we have the norm convergence

(6. 10) 0±(B(h)) = lim 0_a,0_a_,(B(A)) = B(6_a)J_h).
f-*±°°

We easily see the relation 0_a)^6^=o)^ from (6.8) and (6.9) so that
(a>j_r=i.

A key point in the subsequent discussion is the following lemma.

Lemma 6. There are no non-zero operator # e7r£AR(3l+AR)// satisfying

(6.11) xx™*(a)=^(0+(a»x

for all aeSlCAR. The same holds if 0+ is replaced by @_. Furthermore
there are no non-zero .re;r£AR(§l2AR)~l<' (—re ; denotes the weak closure}

if 0+ is replaced by 0±0. (The same statements hold also for rf£e_~~
-CAR N
K0 ')

The proof of this Lemma is given in the next section. In the
rest of this section, we apply this Lemma to obtain the asymptotic
behavior of {at(Ta)} for ae2tCAR.

Lemma 7. For any ae3lCAR,

(6.12) w-lim ^(

Proof. We consider two cases 0(a) = ±a separately. We have

(6. 13) fy(a,(7a)) =7t,(T)^(Vtat(a)).

Let s± be the weak accumulation point of fi$(Vtat(d)) as
Then

(6.14) z±*0(V=fy(e±b)z±

for all ie2TCAR if 6(d)=a whilst

(6.15) Z±7tB(b)=7t0(0±0b)z±

for all ieSTCAR if 0(a) = -a. We apply Lemma 6 for x = z±^
if 0a=a and for * =*±efy («?**)-" if 0a= -a on tff* and on
#f$_ separately (the restriction of fydF**)" to jf^AR is ^(81°^)' and
the restriction of ^(2tCAR)" to Jf^_ is unitarily equivalent to it, so that
Lemma 6 is applicable to each restriction) and obtain the conclusion
z±=Q. Hence

(6. 16) w-lim fifl(Vtat(a)) =0
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Thus (6. 12) holds. (The second equality is due to the definition of

&0
Combining Corollary 4 and Lemma 7, we obtain

(6. 17) w-lim ft$(at(x)} = fa(z)l
f-»oo

for all #e2t. Restricting x to 21s, we have the proof of Theorem 1.

§ 7. Proof of Lemma 6

Assume that a non-zero j:eSDfi+=7rgAR(8t$AR)-"' satisfies (6.11). By
substituting a* into a and taking the adjoint of (6. 11), we obtain

(7. 1) ^*4AR(0+(a)) =i$**(d)x*.

Combining with (6.11), we obtain

(7. 2) x*x^AR(a) = 7rCpAR(a)x*x.

Therefore a^e^CSO" n ^AR(2Q'. Since ^AR(2T)" is a factor,
x*x = Al with ^>0. (^0 due to #=£0) By considering A~l/2x instead
of x, we may assume that x*x = l.

By a similar argument, we obtain xx* — c\ with c>0. Since
c2l= (xx*)2 = x(x*x)x* = xx* (by o:*j;=l), we have c=l, namely ,r
is unitary.

The KMS state ^AR of the quasifree motion (3. 8) is a quasifree
state <ps with S=(l+e 7)""1 where

(7-3)

(Theorem 3 of [10].)

Let / denote the space of all h = (^J (the test function space

for B(-) of the CAR algebra 21CAR) : /=/20/2. Then the cyclic
representation TT^AR of §1CAR on ^AR associated with the quasifree state
^s( = ^AR) can be viewed as the restriction of an irreducible repre-
sentation TTIPS of a CAR algebra 3l?AR with the test function space
£®£ of twice size for B(-) on the same representation space jf^AR,
where B(h®0) of §TfAR identified with B (A) of 21CAR and 4S(^(0©A))
of 2lfAR identified with U(6) times an element of the commutant of
7r£AR(3ICAR) of the form J^AR(B(hl})J with J denoting the modular
conjugation and h^ depending on h. The cyclic vector $g giving rise
to the state ^5( = ^AR) yield a pure state <pl

fs of 2lfAR characterized
by the following (basis) projection operator Ps on /©/ :



288 HUZIHIRO ARAKI

C 7 4 ) P
^ ; s 1/2 l-S

(Lemma 4. 5 and proof of Theorem 3 of [10].)
By (6. 11), the unitary transformation A.dx on Slf*8 will give rise

to a Bogolubov automorphism through the following Bogolubov trans-
formation on £@4 because x e ^AE (§l+AR) " commutes with both

0

A necessary and sufficient condition for the Bogolubov auto-
morphism of 2l?AR by U+ to be implementable in a Fock representation
given by a pure state <pl

Ps is that (\—Ps)U+Ps is in the Hilbert
Schmidt class (Theorem 7 of [10]) or equivalently (Proof of Theorem
7 of [10])

(7.6) \\PS-U+PsU*+\\H.s.<oo,

where H. S. denotes the Hilbert Schmidt norm.

In the present situation, the Bogolubov automorphism is actually
implemented by a unitary operator x on Jf£AR. We derive a con-
tradiction by disproving (7.6), thereby showing non-existence of x.

By (7.3) and (7.4), we have

>V)-i (2 coshJ^)-1

and

(7.8) Ps-U+Ps

where

(7.9) B =

(7.10) 5+ =

We now have

(7.11) \\PS-U+

Since ||.Kr|1^2, the second term is larger than

We shall show that this is infinite in the next Lemma, completing the
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proof for the case of 6+. The proof for 6L is obtained exactly in
the same manner, using

(7.13) j _ = ( l - f l > _ )

instead of 5+ and U- instead of 17+ , where [/_ is defined by (1, 5)
with a)+ replaced by &>_.

In the case of x^K^tfX^y, x anticommutes with U(9) and
hence

(7. 14) *

Here the second equality is due to the circumstance that
is the product of (7(0) with J^AR(B(h1^J and U(6} commutes with
the modular conjugation J. Since

(7. 15)

we have the situation that Ad(U(6)x) induces the Bogolubov auto-
morphism of 3l?AR given by C7±. Therefore the same contradiction
arises also in this case and the proof is complete, once we prove the
following :

Lemma 8. tr s*s+=tr s*s^ = oo.

Proof. Let f ( 0 ) be defined as before and £(0) = ( Let

r7
±(0} and k T ( 6 ) be defined as follows:

(7.16) r°+(«)

." sin P « r((7)Tcos

(7.18) ^(^) = (cos2^ + r
2sin2^)1 /2 . (r^O)

The two operators rr
±(6} are spectral projections of K7(6~) satisfying

1 0
(7.19) r J (0 )+rL(0

(7.20) Kr(e)rl(d)--

Let hj (j=l, 2) have only finite number of non-zero components.
Then &,-(#) consists of polynomials of ei6 and e~ie and hence is an
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entire function with a period 2x. The operators rr
±(6) as well as

k r ( 6 } are holomorphic near the real axis and have a period 2?r. We
shall compute the limit of

(i on (I »i2JKrf 1—0- -i2JKrti,\(1,2,1) (/zl5 e
 r —=—* "2)

r2n

a o O N Taar f O +\. 2,2,) lrl (MI, t) •

as ^—>±oo (which will be (7.27)), where # and a' are + or — and

(7. 23) F,(.Ot-OJ = (l-e
iv^-'rl= Z eW.

l = Q

(We have used the fact that (1— #_)/2 is the multiplication of the
characteristic function £_(/) for (—°°3 0] and is a limit of the
multiplication operator 0L of e*li_(l) as e-» + 0.)

First, note that L2 norm of 7°f is bounded by \\h2\\ due to
11 #111 = 1 and |]rj/| | = l. Hence a small interval of 0l gives only a small
correction which tends to 0 as the relevant interval vanishes.

Second, by the periodicity, we may shift the range of 62 integration
so that it is centered around #P FB is then smooth and bounded
even in the limit of e->0 except for a neighbourhood (of any desired
small length) of 62

=@i- Hence the contribution from outside a small
neighbourhood of 62-=6l tends to 0 as £^±°o by the Riemann-
Lebesgue Lemma. This will then imply that the contribution to
(7.21) also tends to 0 by the dominated convergence theorem.

By the holomorphy, we may shift the ^"integration by ±^(#2)
(9(02)^0) in the neighbourhood of 62=6,. The shift by +ii)(02)
does not cause any change to the integral, whilst the shift by —ir](02)

yields an additional term (for £<5?(#2))> which is in the limit of £->0
given by

(7. 24) *Vl'^('l)a-'^Vj,(0i)«2(*i) =Ar (*i).
Let

(7. 25) a = 0jt(6) =sign(Jt(d/d0)kr(6)).

Then the #2-integral after the shift by —iafar](if]^>Q} tends to 0 as
£~> + 0 and £->oo (with a definite sign of t) due to the large t
exponential damping. The set of 6l for which (d/d6)kr(0) =Q at
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0 = 0X is of measure 0 and can be neglected. Therefore we have

(7. 26) lim lim {/?f (01? 0 -^c^r'^i)} -0.
f-^oo e-»o Jt l

Since terms in (7. 26) have uniformly bounded L2 norms, we can

use these estimates of 7™' in evaluating (7.21).
If oi=-o\ then the exponential oscillation of A™' makes (7.21)

vanish in the limit of £->oo. Hence we obtain

(7.27)

where q±= (1 — w±0_)/2 and

(7.28)
0 otherwise.

The sign function 0>(0) =sign k'r(0} is given by

(7. 29) <7r(0) = -sign(cos 0 sin 0)
f+ i f -7r/2<0<0 (mod 7r)5

" I - if 0<0<7r/2 (mod TT)

if r^O and

(7.30) <7r (6} = -sign (sin 6)

+ if -7r<0<0 (mod27r) 5

- if O<^<TT (mod 2;r)

if 7 = 0. For each 6, q± selects either r\ or rL and hence

(7.31) (h,, «±A2)

where <7(J) =sign J.

We can now compute

(7.32) t r5

Let *±=(l±0-)/2. Since wt = 6_a)+6_

(7.33) tr 5*5+

The trace can be split into the trace of the 2x2 matrices and the

trace on 12. Since the matrix traces of r\ and 1 — rr
+ = rL are both 1,

the trace in (7.33) is equal to the trace of t+ + t_ = I on 12, which is

infinite. This completes the proof of Lemma 8.
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Corollary 9.

Remark 10. By FK7F=-Kr we have Frr
±F=rl, for the multi-

plication operator rr
± of r r

± (0 } . Since F changes 6 to — 6 (due to
r(f@g} =g@f and /(#) =/( -#)), we have Fq±F = q±. Actually this
is required in order that o)±ff_ = l—2q± induces Bogolubov automor-
phisms.

§8. Twisted Asymptotic Abelian Property

The weak asymptotic property (6. 17) implies

w-lim[y, fy(a*(*))]=0

for any .reE® and any operator y on the representation space 3$^
On the other hand, such an asymptotic property has been derived in
the case of one-sided XY-model from a twisted asymptotic abelian
property (in norm) on the level of C* -algebra 21s. We now discuss
this problem for the two-sided XY-model.

Theorem 11. For Ql5 Q2e§T, the following holds:

(8.1) li
i-*

(8.2) H

(8.3) lim\Qlat(Q2)~at(Q2)0_&+(Ql)\\=0_

Proof. This is an immediate consequence of Theorem 2, Corollary
9, (3.14) and Lemma 5. For (8.2), note that 9_at = ata_t&_at,
a_t6_at->6_@± as £^=FOO and 0^a = 0+a for a <E 2TS

+ = 2T5.AR due to
Corollary 9.

Note that 0_0±= lim a,0_a_, implies the commutativity of 0_0,
£-»±oo

with at.

Remark 12. (6. 17) may be viewed as a consequence of (8. 1),
(8. 3) and Lemma 6.
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Remark 13. Since at commutes with & as well as @_0±, both of
which commute with each other, it might be thought that Theorem 13
has an extension to (9-odd Q's and possibly the result could be
formulated in terms of a Z^ — Zi^Z^ —graded commutator (two Z2

refering to 9 and 0_0±). However it is impossible to extend 9-&±
to a * -automorphism of 21 due to the following reason:

Let (p be an extension of 8_6+ (or 6L6L) to 2t First we prove
that </>2 = Y is either an identity or (9_ on the basis of j (a) =a for all

. Let

(8.4) r(T)=s+Tt, s,

From T* = T and T2=l, we obtain

(8.5)

(8.6)

From TaT=6_(a) and r(a) =a for «eSlCAR, we have r(T)ar(T)
= 7(TaT)=@_(a) and hence

(8. 7)

(8. 8)

By substituting sa into a of (8.7) and using (8.8) and (8.6), we
obtain

(8. 9) 6L(sa) - (s>-t*£)as= (2sz-l}as.

Setting a=sn~l , we obtain

(8.10) 0_(sn) = (2s2-l)sn.

Substituting (8.10) for n = l and 2 into 6L (s2) = ©_ (5) 2, we obtain
52(252-l)(l-52)-0. Substituting (l-s2)=£*£, we obtain A*A-0
for A = ts2(2s2-l~) and hence A = 0. It then implies BB* = Q for
B^ts((2.s2-l)=tS_(s) and hence J3 = 0. This implies t*s = 6_(B)=Q
and hence 5^=(i*5)*=0. Substituting (8.10) with n=l into the
second equation of (8.6), we obtain (2s2 — l)s£ + te = 0 and hence
^ = 0. Hence (1 — s2)s2 = t*ts2 = Q. Thus s2 is an orthogonal projection,
By substituting sa into a of (8. 8), using this result and applying 6L,
we obtain

(8. 11) Q = s2a0_(t)=s2at*.

Since the UHF algebra 2tCAR is simple, (8.11) implies 5 = 0 or
1 = 0. If £ = 0, (8.7) implies that <9_ is an inner automorphism of
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21CAR. Since 0_ is a Bogolubov transformation given by 6-, and since

1±0_ is not in the trace class (they are twice infinite projections),

©_ is not inner (Theorem 5 and Definition 8. 1 of [10]). Thus the

alternative t = Q is impossible.

The alternative s = Q implies t*t=l. Since 1 = £?_(**0 =«*, £ is a

unitary. (8.7) and (8.5) then imply that t=±l (since 3ICAR has a

trivial center) and hence 7" = id or 7*= &-•

Next, we set <f>(T}=s + Tt. We still have (8.5) and (8.6). Since

02 = r = id, or <9_ and 0(a) = <9_A(a) for ae2TCAR, we obtain

(8.12) @_0

From $(T}a<p(T}=8_e2
+(a} for aEE?ICAR, we obtain

(8. 13)

(8.14)

By (8.12), e_e+(t)t=S_S+(te.6+(f}} = ±1 and hence £ has an

inverse ±0_6>+(0- Substituting r1 times (8.14) into <« of (8.13)

and dividing by t from the right, we obtain

(8. is) ( -srie_(S) +**)e_(a) =e_e2
+(a)r1.

By setting a = l, and substituting the resulting expression into (8.15),

we obtain

(8. 16)

Substituting 6L(a) into a, we see that 6L016L must be inner. We

now prove that this is impossible.

The necessary and sufficient condition for 0_©+6L to be inner is

that G > + — 1 is in the trace class and det(W+ = l or (o2+ + l is in the trace

class and det ( — af+} = —1 by Theorem 5 of [10]. We shall exclude

the first case by showing that (a?+— 1) or equivalently (<#+ — 1)0_ is

not in the trace class and the second case by showing de t (— a)2
+} = \

if (o^ + l is in the trace class.

Since (&+&-) q±
 = I f q ± (also see Corollary 9), wre have

(8. 17) (a)2,

We shall prove that (a?+— 1) #_ is not in the trace class by proving

that it is even not in the Hilbert-Schmidt class. By (8. 17),
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(8. 18) H(w
2

+

= (8A2) Z lim
ff,<r' e-^0

(8. 19) Ga,a(62, 0J =tr(rj,(02) r;(0i)),

where FB is given by (7.23), o and #' are + or — , Jff is the set of
all 6 for which a7(6}=a (cf. (7.29) and (7.30)) and rj(0) is denned
by (7.16) and (7.17).

For a = a', (8.19) tends to 1 as 02 — 0l tends to 0. In this case,
Ol and 62 belongs to disjoint regions A0 and ZL^. Hence we may set
£ = 0. Since |2F0(02-0i) \2= {sin (^-#0/2} "2 is not integrable (relative
to d6ld02) near Ol — 02 (O^Am ^2eJ_0), and each term in the sum of
(8. 18) is positive, we have

(8.20) i| (o£ -l^JlLs. = °°-

Finally we prove d e t ( — a > + ) = l if o>+ + l is in the trace class. By
ra)+r = a)+, the multiplicity of the non-real eigenvalue a of a)+ is the
same as that of a. Let J be the componentwise complex conjuga-
tion of /20/2. Then (3.12) shows JKr = KrJ. Since JO_ = 0_J we
have J(o+J=a)_= —co+ by (6. 8) and Corollary 9. Therefore the
multiplicity of the eigenvalues ±1 of a)+ is the same. Since a)+ is
unitary, we obtain d e t ( — o>+) =1 if <w++l is in the trace class (so that
a)+ has a pure point spectrum and det (— a)2

+) is definable). This
proves the impossibility of extending (9_©+ to an automorphism of
t.

Since 0 is an automorphism of §t, the same conclusion holds for
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