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On the XY-Model on Two-Sided
Infinite Chain

By

Huzihiro ARAKI*

Abstract

The XY-model on the one-dimensional lattice, infinitely extended to both directions,
is studied by a method of C*-algebras. Return to equilibrium is found for any vector
state in the cyclic representation of the equilibrium state.

A known relation between the algebras of Pauli spins and the algebra of canonical
anticommutation relations (CARs) is used to obtain an explicit solution. However the C¥-
algebras generated by the two sets of operators become dissociated in the thermodynamic
limit of an infinite one-dimensional lattice extending in both directions (in contrast to one—
sided chain) and this causes a mathematical complication.

In particular, we find three features different from the case of one-sided infinite
chain: (1) There are no non-trivial constant observables. (2) The (twisted) asymptotic
abelian property holds only partially and not in general. (3) Return to equilibrium occurs
for all values of the parameter y and is proved by a method different from the case of
one-sided chain.

§1. Introduction

The XY-model with the Hamiltonian
(1. 1) H=—JX {(1+7) 696940+ (1 —1) aDa+D)
will be studied in the C*-algebra approach, where

(0 l> <~_<O —i> (1 0
U”])—(l 0 ) O-y])_ ; 0 ) o = 0 _1>

are Pauli spin matrices at the lattice site j&€Z (mutually commuting
for different sites j), J is real and —1<y<{l. For an observable Q
belonging to the C*-algebra ¥ generated by all Pauli spins, we study
the asymptotic behavior of its time translation

(1.2) «(Q =lim af(Q),

(1.3) a® (Q) = eHtHCNN) Qe itHEN. 1)
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where H(—N, N) is H of (1. 1) with the sum extending over j= —N,
—N+1,---, N—1. (The limit N—co of two-sided infinite chain.) We
study its expectation value in a state ¢ of ¥ given by an arbitrary
vector ¥ &, in the cyclic representation 7, of the unique equilibrium
state ¢g with the inverse temperature 8.

(1.4) $(a,(Q) =¥, mp(a,(Q)Y).

(We refer, for example, to [1] for a standard material.)
Our main result is the return to equilibrium:

Theorem 1. For any Q¥
(1.5) lim ¢(,(Q) =(Q).

Such a return to equilibrium for the XY-model has been discussed
in [2] and [3], but the discussion has been limited to the so-called
even part of & (to be defined later). More recently [4], asymptotic
behavior of ¢(a,(Q)) for large time ¢ has been found for arbitrary
Qe in the case of the XY-model on the one-sided infinite chain.
The return to equilibrium (1. 5) does not occur in general (for y#0)
due to the existence of a constant observable B,e¥% (i.e. «,(B,) =B,)
given by
(—a)/"® ... gli=8 x 022].—1) %f O<r<l
1 eV if —1<y<0

which is in % due to a=(1—|7])/(1+]7]) €(0, 1) for y#0. However
the return to equilibrium do occur in any one of the following cases:

™

(1.6)  B,=

J

(a) 7=0, any ¥es#, any QU
(b) 7#0, any ¥, satisfying ¢(B,) =0, any Q.
(¢) 7+#0, any ¥e#, any Q satisfying 0(Q) = Q.

Here O is the automorphism of U satisfying
(1.7) 6(s9) = —, O(s") = —oP, 6(sP) =00

for all j (i.e. 180° rotation of all spins around z-axis), where j is
restricted to the natural numbers N for one-sided chain. In contrast,
the result given by Theorem 1 for the two-sided chain is simple.
However it disguises the complexity in its derivation.

The derivation of the results described above uses an explicit
solution of the model on a finite chain in terms of a relation between
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the algebra %° of spins and the algebra A°*® of CAR’s [5]. In the
case of the two-sided chain, the two algebras become distinct C*-
subalgebras of a bigger C*-algebra % and this brings about some
complication, which we will describe in the next section for a general
one-dimensional spin lattice.

§2. Spin-Fermion Correspondence

Let AR be the C*-algebra generated by ¢; and c¢f (jEZ) sat-
isfying the following CAR’s:

(2.1 Les cale=1Lcfs ci]l. =0,
(2.2) [ci» ¢l =0il. ([4, B].=AB+BA.)
Let @ and @_ be automorphisms of AR satisfying
(2.3) O(c;))=—cj O(cH)=—c} (jEB),

N o _[cF Gz,
(2' 4) @— (C]) - _Cj @—‘ (CJ ) - _C]* (j§0>.

They satisfy 6*=0*=id., 600_=60_60. Let % be the C*-algebra
generated by AR and an element T satisfying

(2.5) T=T* T*=1,

(2.6) TxT=0_(x), x&UYR,

(The C* crossed product of A°*® by the Z,-action 6_.)

Let % be the C*-subalgebra of % generated by the following
Pauli spin matrices ¢¢’ (a=z, y, 2) on lattice sites j€Z:

2.7 o’ =2fc;—1,

(2.8) 0P =TS8V (c;4c}), 6 =TSVi(c;—c}),
oo™ if >,

(2.9 SH=1{1 if j=1,

-0 if j<L
They satisfy the following relations which characterize 9°* as a C*-
algebra.
(2.10) (@)?=1 (a=z, y, 2),
(2.11D) 00 =—af'ad =ic?

((a, B, v) =any cyclic permutation of (z, y, 2)),
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(2.12) [6P, oP1=0 if j#k (a, B=2z, ¥, 2).

The automorphisms @ and O_ are extended to ¥ such that 6(T)
=T, O_(T)=T. We define even (+) and odd (—) parts:

(2.13) A.={ze, 6(x)=+z},
(2.14) ASAR=QICARN I, AL =ANN,.
We have

(2.15) A =UPR, A = TYR,

Clearly T and %° generates 9.

§3. Time Evolution

Let %°(]) be the C*-subalgebra of %° generated by oY), with j
belonging to a non-empty subset I of lattice points (i. e. ICZ).
Let @(I) e%*(I) (a many-body interaction potential between spins of
sites in a non-empty finite subset I of Z) and

(3.1 Hy=H([—-N, N, H(D) =X o (4)

(the total Hamiltonian for the interval [ —N, NJ).

We make the following assumptions in general.

(1) Evenness: (@) =0(1) (IcCZ).

(2) Bounded surface energy: For disjoint finite subsets I and J,
we denote

(8. 2a) 1408 J)E; {0(K): KcIUJ, K¢I, K¢ J}.

Then, either for a finite interval I; and any subset I, of the com-
plement of I, or for I;=(—oo, j] and I,=[j+1, o) with any jEZ,
the following limit exists
(3. 2b) ]lvlm w(I,N[—N, N1, L,n[—N, N])=W({, 1),
and
(3.3) sup |W([—=N, N], (=00, —N)U (N, o0))]||<oo.

Under assumption (2), the following limit exists and defines a
continuous one-parameter group of automorphisms of 9:
(3.4) a,(z) =lim e (zeN)

N->o0

iH it —iH prt
Nge 7N,

The existence of limit for z&¥%* is by [6] and for T by the
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computation below, see (3.14) and (3.15). Due to the evenness
assumption (1), @(I) belongs to U, =A* and hence

(3.5) o, (A) =Ae, a, (YCAR) = YCAR,
(3.6) a,0=0q,.
In the case of the two-sided XY-model, we have
(3.7 O j+1D) = —T{(1+D)ePed* +(1 ~pofai™)
=2J{cfcimtcfuci+r(cfcftciac)}-

(0(I) =0 for all other I.) A computation of [4] yields

(3.8) a(B(h)) =B(e '),

where we have used the following notations:

(3.9 c(f)=3 fiey (=X fef,
(3.10) f=(fiez€L(2),

(3.11) B(h) =c* (f)+c(g) for h=<§>,
(.12 k=l %ol Curon )

(3.13) (Uf)i=Ffisv (U*f)i:'fi—l'

The time evolution of 7 is given by
(3.14) a,(T) =TV,
(8.15)  V,=lim Te'"¥' Te v

N-soco
—lim &€ ! i

N—>oo

=3 i"gtdtlgtl dty - - - St"“ dty, (A)- -~ a, (A)
i=0 0 0 0 "

by the theory of inner perturbation of automorphism groups (for

example, see [1]), where

(3.16) A=11\jm (0_(Hy) —Hy) =6_W((—o0, 0], [1, o))
—W((_OO, 0]= [ls °°)>

due to the split

(3.17) Hy=H([—-N, 0D +H([1, N)+W([-N, 0], [1, ND),

and the relation 6_(z) =z for z=H([1, N]) €%([1, =)), O_(y)=
=0(y) =y for y=H([—N, 0]) e¥*((—co, 0]). Note that V, is a
unitary operator (both V, and V} are strong limits of unitaries)
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belonging to A5 =AS*® and O(V,) =V} (by the second line of (3. 15))
so that (TV,)2=1.

§4. Equilibrium States and Associated Representations

There exists an (a,, 8)-KMS state ¢, of % as a weak accumula-
tion point of the Gibbs state for Hy as N—oo.
Let O_ be the automorphism of % (the dual action of 6_) satisfying

(4.1) O0_(T)=—T, 6_(a) =a (as=UR).
Such 6_ exists as an automorphism of %. Since HycAR, it is 6_-
invariant and hence
(4.2) O_a,=a,6_
and ¢, is O_-invariant.
Since © and @_ commute, we have the decomposition

(4‘- 3) 91 = Z ﬁa,a’s

o,0/

(4.4) Vo= [z €U; O(x) =0x, O_(x) =0d'z},
where ¢ and ¢ are 4+ or — We have
(4.5) %, =¥, G, =TA (o=+, —)

By (4.2), (¢s+¢p00_)/2 is a O_-invariant (a, f)-KMS state of
% and hence we assume that ¢, is already 6_-invariant. By (3.6)
and [0, ©_1=0, we may also assume that ¢, is O-invariant. Its
restrictions to U° and YAR are (a,, B)-KMS states and, as such, are
unique by the assumption (2). ([7], [8]) Hence such ¢, is the
unique O _-invariant extension of the unique (@, B)-KMS state of
AR and at the same time the unique @O _-invariant extension of the
unique (a;,, B)-KMS state of 2% In particular, the unique (a, B)-
KMS state of 2° can be obtained as the restriction (to Y°4®) of the
unique O _-invariant extension (to %) of the unique (a, B)-KMS
state of YCOAR,

By the ©- and @ _-invariance, ¢; is 0 on %, except for o, , =YCAR
and hence explicitly determined by ¢§*® on U¥X.  The cyclic
representation #, of 9 associated with ¢; (on a Hilbert space 2,
with a cyclic vector @, yielding ¢;) can also be constructed from the
cyclic representations of Y% as follows:

Let (5%, 7528, @p) and (H#FE, 75, Do ) be triplets of the
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Hilbert space, the cyclic representation of A“* and the cyclic vector
associated with states ¢§** and ¢35 =¢§*®o0_, respectively. The

triplet for ¢, can then be constructed by the following formulas:

(4. 6) Hy=HGRDH S -

4.7 #5(a) =75 (@) Or5le (a). (a€AY)

(4.8) #5(T) (7§"% (@) PuDr55_(0) Ppg )
=n§"*(6-(0)) DDrsle (0-(a)) Py .

(4.9) b= D,P0.

We note that two representations (z5*%, #5*%) and (7$4% , #FR

are unitarily equivalent due to the following circumstances: Let
(4.10) a%(a) =lim eiH?Vtae—iH%,t (a EACAR),

N-oo
(4. 11 y=H([—N, 0D) +H([1, ND.
Let ¢% be the unique (af, B)-KMS state of AR, By O_-invariance
of Hy, a)0_=0_a} and hence ¢360_=¢}) Let (#° z° ©@°) be the
triplet associated with ¢} By the ©_-invariance of ¢}, there exists a
unitary operator U(6_) on #° satisfying

(4.12) U(6_)z°(a)?°=7"(0_(a)) 2"
Due to (3.17), a, is an inner perturbation of «f by
(4.13) W=W((—o0, 0], [1, ©)).

Let

(4.19) U(ap)*(a) 9°=x"(al(a)) @,
(4.15) U(ad) = e,

Then, by theory of inner perturbations, @° is in the domain of
V=exp—B(H"+W)/2 and ||V@°||"'V@° =0, is a cyclic vector giving
rise to 5% (a) = (@, 7°(a) @y), whilst U(O_)@,=d,, is a cyclic vector
giving rise to ¢§'a (a) =(Ds4 , 7°(a)@s ). Therefore, representations

(7% #°), ($*®, #5*®) and (a%'y, #5a ) are all unitarily equivalent.

§5. Asymptotic Behavior of CA®

Theorem 2. For a, be=UCAR

(5.1 lim [[[a, «(b)]el[=0
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where the graded commutator [ , 1o is defined as follows:
(5.2) [a, blg=ab—ba if O@(a) =a or O(b) =b.
(5.3) [a, blg=ab+ba if O(a) =—a and O(b) = —b.

A general element b is decomposed into a sum b=>b,+b_ of even and
odd elements b, =(b+0 (b)) /2 and the above formula is applied, i, e.

(5.4) [a, b]lo=(ab, —b,a)+ (ab_—b_0O(a)).
The proof is based on the following spectral property of K:

Lemma 3. K, has a Lebesgue spectrum on the union of closed
intervals [ —2, —2y] and [2r, 2] with a uniform multiplicity 4.

Proof of Lemma 3. By the Fourier expansion

(5.5 FO = 3 e, fi=g{ FOye s,
U and U* become multiplication operators
(5.6) (UNH~(0) =e“f(0), (U*f)~(0) =€"f(6)

and hence K, reduces to the matrix

From its eigenvalues 42(cos? #+7%sin? )% we obtain Lemma 3.

Proof of Theorem 2. By the absolute continuity of the spectrum
of K,, we have

(5.8) lim [B(h)*, a:(B(hy)e=lim (hy, e

2JiK ¢

"hy) =0

due to the Riemann-Lebesgue Lemma.

By Lemma 2 of [4], we have the following consequence:

Corollary 4. For ac¥U°4R,
(5.9) W‘}i_)fil tg(a;(a)) =¢pla) L.

In fact, ¢§*® being a unique KMS state, 7z(Y%¥) is a factor and
¢p is O-invariant. Hence Lemma 2 of [4] implies (5.9) on 5%
The same holds for ¢z¢_ by the unitary equivalence of 7 and 7,4
(6_ commutes with ©) and hence (5.9) holds also on #§% and
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hence on the whole space JZ§*%.

§6. Asymptotic Behavior of 7%

We first obtain the asymptotic behavior of V, in the following
form:

Lemma 5. The following limit exists (in norm topology) for any
asUAR qnd defines automorphisms O, of AAR:

(6.1) 6, (a) = lim V,aV?.

t—>to0
The automorphisms so defined satisfy the following relations:
(6.2) (0_6,)*=id., 6.,0=0606,.

Proof. By (3.15) and (2.6), we have
(6.3) VaVi=0_a0_a_(a).
Hence it is enough to prove the norm convergence of a,0_a_, on
the generating elements B(h) for the existence of (6.1), for the
automorphism properties of 6, and for (6.2). We have
(6.4) a,0_a_,(B(h)) =B (" "0_e

—2JiK t

rh)

:B(eZJiKTte_zji(e_KTG_)te_h) ,
where
(1 of [ f i gz,
O A RV BT A
We have
wo wmne] G5
6.7) -0 0-pi={ e Iy

Hence 6_K,0_—K, is at most rank 4. Since K, and its unitary
transform 6_K,0_ have absolutely continuous spectrum by Lemma 3,

. LK —2Ji6_K0_)
(6.8) w,= lime "Te 0T
i—>+too

. 2Ji(6_K 6_)t —2JiK t
(6.9) wt= lim ¢ " A
t—>too

both exist (in the strong topology) by Theorem X. 4.4 (and Theorem
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X. 3.5) of [9]. Thus we have the norm convergence
(6.10)  6.(B(h))=lim O_a,0_a_,(B(h)) =B(6_w.0_h).
t>to0
We easily see the relation 0_w_0_=w* from (6.8) and (6.9) so that
(w,.0)2=1.

A key point in the subsequent discussion is the following lemma.

Lemma 6. There are no non-zero operator x zx3*® (YAR)” satisfying
(6.11) zr3*® (a) =7$*R (6, (a)) x
for all a AR, The same holds if O, is replaced by 6_. Furthermore
there are no non-zero x a3 (USAR) ™ (—w denotes the weak closure)

if 6, is replaced by 6,6. (The same statements hold also for n$"F ~
CAR
ﬂﬂ .)

The proof of this Lemma is given in the next section. In the
rest of this section, we apply this Lemma to obtain the asymptotic
behavior of #;{a,(Ta)} for a =YX

Lemma 7. For any a €UR,

(6.12) w-lim (@, (Ta)) =0=,(Ta) 1

Proof. We consider two cases O(a) =+a separately. We have
(6.13) #g(a,(Ta)) =ﬁ'ls(T)ﬁﬂ(Vt0‘t @)).

Let =, be the weak accumulation point of #;(V,a,(a@)) as t—+co.
Then

(6.14) 2.ta(b) =#,(0.b) 2.

for all b&UR if @(a) =a whilst

(6. 15) 2. #5(b) =#,(0,60b) 2,

for all bEAARif O(a) = —a. We apply Lemma 6 for x =2, E#4(AAR)"
if Ga=a and for z=z,E#,(U**) ™ if Oa=—a on #E** and on

HG'E separately (the restriction of #z(UAR)" to AR is ms(AR)” and
the restriction of #,(U*®)” to A5’ is unitarily equivalent to it, so that
Lemma 6 is applicable to each restriction) and obtain the conclusion
z.=0. Hence

(6. 16) w-lim #,(Vie,(2)) =0
t>too
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Thus (6.12) holds. (The second equality is due to the definition of
Ps-)
Combining Corollary 4 and Lemma 7, we obtain

(6.17) w-lim (e, (2)) =¢s(2) 1
t—o0
for all ze¥. Restricting z to A°, we have the proof of Theorem 1.
§7. Proof of Lemma 6

Assume that a non-zero x &I, =z§AR(YLAR) ~ satisfies (6.11). By
substituting a* into @ and taking the adjoint of (6.11), we obtain

(7.1) z*7$*R (6, (a)) =75 (a) z*.
Combining with (6.11), we obtain
(7.2) z*xri?®(a) =n5* (a) x*x.

Therefore z*ze&a$*®(A)” N 7§ (A)". Since aF**(A)” is a factor,
z*x=21 with 2>0. (2#0 due to £+#0) By considering 2%z instead
of z, we may assume that zr*x=1.

By a similar argument, we obtain zz*=cl with ¢>0. Since
Al=(zxz*)’=zx(z*z)x*=22* (by z*x=1), we have c¢=1, namely z
is unitary.

The KMS state ¢g*® of the quasifree motion (3.8) is a quasifree
state ¢s with S=(1+4¢ 7)1

(7.3) @s(B(h) *B(hy)) = (hy, Sh,).
(Theorem 3 of [10].)
Let # denote the space of all h=(£> (the test function space

for B(+) of the CAR algebra UA°*®): £ =[Pl  Then the cyclic
representation 7% of YR on H#GAR associated with the quasifree state

where

os(=¢§*") can be viewed as the restriction of an irreducible repre-
sentation 7p. of a CAR algebra U{*® with the test function space
4@ # of twice size for B(+) on the same representation space #5"F,
where B(A@0) of ATAR identified with B(k) of AR and wp (B(0DA))
of AAR identified with U(O) times an element of the commutant of
7" R (UCAR) of the form Jn§**(B(hy))J with J denoting the modular
conjugation and A, depending on A. The cyclic vector @, giving rise
to the state ¢s(=g¢§"") yield a pure state @b, of A characterized
by the following (basis) projection operator Ps on £@ #:
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[ s Q-9 )
7 =l sa-ope 1-s )
(Lemma 4.5 and proof of Theorem 3 of [10].)
By (6.11), the unitary transformation Ad z on AR will give rise
to a Bogolubov automorphism through the following Bogolubov trans-
formation on £@ # because zErFR(A¥R)” commutes with both

7GR (ACARY and U(O):

(7.5) U+=[“’i 0}

0 1/,

A necessary and sufficient condition for the Bogolubov auto-
morphism of UF*® by U, to be implementable in a Fock representation
given by a pure state go};s is that (1—Pg)U,Ps is in the Hilbert
Schmidt class (Theorem 7 of [10]) or equivalently (Proof of Theorem
7 of [10])

(7.6) [|[Ps— U, PsU¥|ln.s. <00,
where H. S. denotes the Hilbert Schmidt norm.

In the present situation, the Bogolubov automorphism is actually
implemented by a unitary operator z on #§*®. We derive a con-
tradiction by disproving (7.6), thereby showing non-existence of z.

By (7.3) and (7.4), we have

.7 P (14¢ 75y (2 cosh JK, ) !
-1 s -1 2K B,
(2 cosh JK, ) (L+e”7

and

— ¥ B s¥(cosh JK,B) 7! ]
(1.8) Ps—U,PsUx —{ (cosh JK,8)%s, 0 b
where
(7. 9) B: (1+e—2]KTﬁ) -1__ (1 +e—2]4’_tKTw+ﬁ) _1,
(7.10) s, =(1-w,).

We now have
(7.11)  ||Ps—U,PsUf%|lis. =tr B?+2tr(sf(coshJK,f) 7%.,).
Since ||K;||=2, the second term is larger than
(7.12) 2(cosh 2JB) ' tr sks,.

We shall show that this is infinite in the next Lemma, completing the
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proof for the case of @,. The proof for 6_ is obtained exactly in
the same manner, using
(7.13) se=1—w.)
instead of s, and U_ instead of U,, where U_ is defined by (7.5)
with @, replaced by o_.
In the case of ze&a§*R(AR)", x anticommutes with U(O) and

hence
(7.14) zrp (B(0ODA) ) x* = —mp (B(ODA))

=U(0)x} (B(0OBR)) UO)*.
Here the second equality is due to the circumstance that z3 (B(0DA))
is the product of U(O) with Ja§**(B(k,))J and U(6) commutes with
the modular conjugation J. Since
(7.15) amh (B(ADO))x*=n5R (60,0 (B(h)))

= U(6) 7 (Blah@0)) U(6)%,
we have the situation that Ad(U(@)z) induces the Bogolubov auto-
morphism of AfA® given by U,. Therefore the same contradiction

arises also in this case and the proof is complete, once we prove the
following :

Lemma 8. tr s*s, =trs¥s_=o0.

N - [ f
Proof. Let f(6) be defined as before and h(ﬂ):kggz;). Let
r7.(8) and k,(0) be defined as follows:

(7.16) 7“1(0)=<(1) 8), r[’_(ﬁ)z(g ?) ko (0) = cos 0.

[ k() £cos &  Fiysin 0
_ 1| R
(71.17)  rL.(0) = (2k,(0)) L tiysin 0 k,(0) Fcos 6 }

(7.18) k. (6) = (cos? O+ sin® 6) /2. (y#0)

The two operators 77, (#) are spectral projections of K,(ﬁ) satisfying

(7.19) rl(ﬁ)—l—rl(ﬁ):( (1) (1) >,
(7. 20) K, (0) r.(0) = £2k,(0) 7. (6).

Let h; (j=1, 2) have only finite number of non-zero components.
Then 4;(f) consists of polynomials of e’ and e and hence is an



290 HUZIHIRO ARAKI

entire function with a period 2z. The operators 7, (#) as well as
k,(8) are holomorphic near the real axis and have a period 2z. We
shall compute the limit of

(1.21) (kT IS0 )
. m__ , de
= tim =0T (0 I (6, -9
- (% 4ficr, 6 -0’k 6 - de,
(7.22) L0, t)y=\ e 7 T2V F (0,—0) T, (6,) hy (0,) 9
0

as t— oo (which will be (7.27)), where ¢ and ¢ are 4 or — and

(7. 23) F.(0,—0,) = (1 _emz—el)—s) -1 —Z":" eiﬁlle—iﬂzleel.

1=0

(We have used the fact that (1—60_)/2 is the multiplication of the
characteristic function y_(/) for (—oo, 0] and is a limit of the
multiplication operator 6% of e*y_(l) as ¢ —>+0.)

First, note that L, norm of I is bounded by ||k due to
116=]!=1 and !|77,]|]=1. Hence a small interval of ¢, gives only a small
correction which tends to 0 as the relevant interval vanishes.

Second, by the periodicity, we may shift the range of 6, integration
so that it is centered around 6#,. F, is then smooth and bounded
even in the limit of e—>0 except for a neighbourhood (of any desired
small length) of 6,=0,. Hence the contribution from outside a small
neighbourhood of 6,=6, tends to 0 as t—>40o by the Riemann-
Lebesgue Lemma. This will then imply that the contribution to
(7.21) also tends to 0 by the dominated convergence theorem.

By the holomorphy, we may shift the 6@,-integration by =+in(6,)
(9(8;)=0) in the neighbourhood of #,=0,. The shift by +in(6,)
does not cause any change to the integral, whilst the shift by —i%(6,)
yields an additional term (for e<(%(6;)), which is in the limit of e—0
given by

(7.24) VIO (0)) hy(0)) = AT (6)).
Let
(7.25) G=3dy,(0) =sign(Jt(d/dO)k,(0)).

Then the 0,-integral after the shift by —io’d9(»>0) tends to 0 as
e—>+0 and ¢—co (with a definite sign of z) due to the large ¢
exponential damping. The set of 6, for which (d/df)k,(6) =0 at
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0=40, is of measure 0 and can be neglected. Therefore we have

(7.26) lim lim {13 (6,, t) —5,,,,;ﬂ(91)A§"”(01)} =0.

too -0
Since terms in (7.26) have uniformly bounded L, norms, we can
use these estimates of I% in evaluating (7.21).

If o+#0’, then the exponential oscillation of A7 makes (7.21)
vanish in the limit of t—>c0. Hence we obtain

(7. 27) (hl’ qihz) = ; (r;iil’ q{tor;h~2> )
where ¢.= (1 —w.0_) /2 and

h(0) if +£J(d/d6)k,(6) >0,

..] ~ —
(7.28) (@Lh)=(0) =} otherwise.

The sign function ¢,(6) =sign k,(6) is given by

(7.29) 0,(0) = —sign(cos 0 sin 6)
_1 + if —z/2<0<0 (mod =),
Tl = if 0<0<n/2 (mod =)

if y#0 and
(7.30) 0,(0) = —sign (sin )

_{ + if —x<6<0 (mod 2n),
Sl = if 0<0<x (mod 2=)

if y=0. For each 6, ¢, selects either 7% or 7. and hence

(7.3D) (b @) =((Bi(0), 7Lep0 () Fa0))d0/ (2,

where o (J) =sign J.
We can now compute
(7.32) tr s¥s, =tr (2 —w. —w?).
Let t,=(14+60_)/2. Since w*=0_w,_0_
(7.33) trs¥s, =2tr{t, (1~ 0 )t +t_(1+w. 0.)t_}
=4tr{t.q. .+t (1—q)t }.
The trace can be split into the trace of the 2X2 matrices and the
trace on [, Since the matrix traces of 7. and 1—7% =7 are both 1,

the trace in (7.33) is equal to the trace of t,+¢_=1 on [, which is
infinite. This completes the proof of Lemma 8.
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Corollary 9. ¢, +q¢ =1, 0o_.=—0,, 60,=0_6.

Remark 10. By I'K,I'=—K,, we have I'r.I'=r% for the multi-
plication operator 7. of r7(6). Since I' changes § to —@ (due to
I'(f®g) =g®f and F(0) =f(—0)), we have I'q,I'=q,. Actually this
is required in order that o,0_=1-—2g, induces Bogolubov automor-
phisms.

§8. Twisted Asymptotic Abelian Property

The weak asymptotic property (6.17) implies
w-lim[y, #s(a,(x))]=0

for any &% and any operator y on the representation space g
On the other hand, such an asymptotic property has been derived in
the case of one-sided XY-model from a twisted asymptotic abelian
property (in norm) on the level of C*-algebra %°. We now discuss
this problem for the two-sided XY-model.

Theorem 11. For Q, Q,€%°, the following holds:
@D lm|I[Qy a(Q)]I=0 if 6(Q)=Qy 6(Q)=Q:
(8.2  lim[|Qa(Q) —6-6, (a(Q)) Q=0

if 9(Q)=-Qs 6(Q)=Qx
(8.3)  lim [|Qu(Q) —a:(Q)0-6,(Q||=0
if 0(Q)=Q» 6(Q)=—Q.

Proof. This is an immediate consequence of Theorem 2, Corollary
9, (3.14) and Lemma 5. For (8.2), note that O_a,=a,a_,0_a,
a_B_a,~0_60, as t>Foo and G_a=6,a for acW=UR due to
Corollary 9.

Note that @_@iz lim a,0_a_, implies the commutativity of ©_6,

t—>too

with a,.

Remark 12. (6.17) may be viewed as a consequence of (8.1),
(8.3) and Lemma 6.
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Remark 13. Since a, commutes with © as well as ©_60,, both of
which commute with each other, it might be thought that Theorem 13
has an extension to ©-odd Q’s and possibly the result could be
formulated in terms of a Z,(=Z,;XZ,;) —graded commutator (two Z,
refering to © and @_@i). However it is impossible to extend @_@i

toa *

~automorphism of ¥ due to the following reason:
Let ¢ be an extension of @_@+ (or @_@_) to 9. First we prove
that ¢?*=7 is either an identity or @_ on the basis of y(a) =a for all

acYCAR, Let

(8.4) 7(T) =s+Tt, s, tSUCAR,
From T*=T and T?=1, we obtain

(8.5) st=s, t*=TiT=0_(1),
(8.6) s4t*t=1, O_(s)t+ts=0.

From TaT=6_(a) and 7(a) =a for a€Y*}, we have y(Day(T)
=7(TaT)=06_(a) and hence

(8.7 sas+t*0_(a)t=0_(a),
(8.8) tas+60_(sa)t=0.

By substituting sa into a of (8.7) and using (8.8) and (8.6), we
obtain

(8.9 O_(sa) = ($*—t*Das= (2s*—1)as.
Setting a=s"", we obtain
(8.10) O_(s") = (252 —1)s™

Substituting (8. 10) for n=1 and 2 into O_(s*) =6_(s)% we obtain
s2(2s2—1) (1 —s®) =0.  Substituting (1 —s%) =t*t, we obtain A*A=0
for A=1*(2s—1) and hence A=0. It then implies BB*=0 for
B=15(2s*—1) =t0_(s) and hence B=0. This implies t*s=6_(B)=0
and hence st=(t*s)*=0. Substituting (8.10) with n=1 into the
second equation of (8.6), we obtain (2s?—1)st+ts=0 and hence
ts=0. Hence (1—s*)s’=t*ts’=0. Thus s’is an orthogonal projection.
By substituting sa into a of (8.8), using this result and applying 6_,
we obtain
(8.11) 0=5%6_(¢) =sat*.

Since the UHF algebra UA®* is simple, (8.11) implies s=0 or
t=0. If t=0, (8.7) implies that @_ is an inner automorphism of
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ACAR, Since O_ is a Bogolubov transformation given by 6_, and since
1+6_ is not in the trace class (they are twice infinite projections),
O_ is not inner (Theorem 5 and Definition 8.1 of [10]). Thus the
alternative =0 is impossible.

The alternative s=0 implies t*t=1. Since 1=0_(t*t) =u*, ¢ is a
unitary. (8.7) and (8.5) then imply that t=+1 (since YA°® has a
trivial center) and hence y=id or y=6_.

Next, we set ¢(T) =s+Tt. We still have (8.5) and (8.6). Since
¢*=r=id, or O_ and ¢(a) =66, (@) for a =YX, we obtain

(8.12) 0.6, (s) +560_6, (1) =0, t0_6, (t) = +1.
From ¢(T)a¢(T) =6_6% (a) for a =A%, we obtain
(8.13) sas+t*0_(a)t=0_6% (a),

(8.14) tas+6_(sa)t=0.

By (8.12), @_@+(t)t=9_@+(t@_@+(t))=i1 and hence ¢ has an
inverse :I:@_@+(t). Substituting ¢! times (8.14) into as of (8.13)
and dividing by ¢ from the right, we obtain

(8. 15) (—st70_(s) +1*)0_(a) =6_6% (a) 1.

By setting a=1, and substituting the resulting expression into (8.15),
we obtain

(8.16) t710_(a) =0_6% (a) 1

Substituting ©_(a) into a, we see that ©_620_ must be inner. We
now prove that this is impossible.

The necessary and sufficient condition for @_@i@, to be inner is
that % —1 is in the trace class and det > =1 or % -+1 isin the trace
class and det (—%)= —1 by Theorem 5 of [10]. We shall exclude
the first case by showing that (% —1) or equivalently (&% —1)0_ is
not in the trace class and the second case by showing det(—w?)=1
if @2 +1 is in the trace class.

Since (w.0_)g.=Fgq, (also see Corollary 9), we have
(8.17) (2 —-1)0_= (0. 0_)0_(w,0_) —0_
=—2(q.0-q-+q-0_q,).
We shall prove that (0% —1)0_ is not in the trace class by proving
that it is even not in the Hilbert-Schmidt class. By (8.17),
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(8.18) [[(@i =1)0_|[hs =4(llg:0-q_Ifis +lg-0_q.1[ks)
=8lg-0_q.|ks.
=(8/7") 2 lim SA dﬁlSAdez |Ee (0, = 0)) 12Gors (02 01)

/
g,0/ e-0 o

(8.19)  Guo(by 6)) =tr(r],(0,) r5(6))),

where F, is given by (7.23), ¢ and ¢ are + or —, 4, is the set of
all 6 for which ¢,(0) =0 (cf. (7.29) and (7.30)) and r7(6) is defined
by (7.16) and (7.17).

For o=0¢’, (8.19) tends to 1 as 0,—0, tends to 0. In this case,
¢, and 0, belongs to disjoint regions 4, and 4_, Hence we may set
e=0. Since |2F,(0;—0,) |?*= {sin(0,—0,) /2} ? is not integrable (relative
to d6,df,) near 6,=0, (6,4, 0,=4_,), and each term in the sum of
(8.18) is positive, we have

(8.20) (0} —1) 0 11 s, =oo.

Finally we prove det(—o%) =1 if oi+1 is in the trace class. By
I'v,I’=w,, the multiplicity of the non-real eigenvalue a of w, is the
same as that of & Let J be the componentwise complex conjuga-
tion of Pl Then (3.12) shows JK,=K,J. Since JO_=0_J we
have Jo,J=0w_= —w, by (6.8) and Corollary 9. Therefore the
multiplicity of the eigenvalues +1 of ., is the same. Since w, is
unitary, we obtain det(—o%) =1 if &% 41 is in the trace class (so that
@, has a pure point spectrum and det (—e?) is definable). This
proves the impossibility of extending ©_6, to an automorphism of
oq.

Since © is an automorphism of %, the same conclusion holds for

6_6_=6_6.6.

References

[1] Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical mechanics 11,
Springer, 1981.

[2] Emch, G. G. and Radin, C., Relaxation of local thermal deviations from equilibrium,
J. Math. Phys., 12 (1971), 2043-2046.

[3] Robinson, D. W., Return to Equilibrium, Comm. Math. Phys., 31 (1973), 171-189.

[4] Araki, H. and Barouch, E., On the dynamics and ergodic properties of the X¥Y-model,
J. Statist. Phys., 31 (1983), 327-345.

[5]1 Lieb, E., Schultz, T. and Mattis, D., Two soluble models of an antiferromagnetic
chain, Annals of Phys., 16 (1961), 407-466.

[67 Kishimoto, A., Dissipations and derivations, Comm. Math. Phys., 47 (1976), 25-32.

[7] Araki, H,, On uniqueness of KMS states of one-dimensional quantum lattice systems,



296

L8}

[91
[10]

HUZIHIRO ARAKI

Comm. Math. Phys., 44 (1975), 1-7.

Kishimoto, A., On uniqueness of KMS states of one-dimensional quantum lattice
systems, CGomm. Math. Phys., 47 (1976), 167-170.

Kato, T., Perturbation theory for linear operators, Springer, 1966.

Araki, H., On quasifree states of CAR and Bogoliubov automorphisms, Publ. RIMS
Kyoto Univ., 6 (1970), 385-442.



