$\overline{\partial}$ Cohomology of (H, C)-Groups

Dedicated to Professor Shigeo Nakano on his 60th birthday

By

Hideaki KAZAMA*

Introduction

In this paper we consider an *n*-dimensional connected complex Lie group *G* without nonconstant holomorphic functions (Such a Lie group is called an (H, C)-group). In the previous paper [8] we found a sufficient condition for $H^{\flat}(G, \mathcal{O}_{G})$ to be finite-dimensional $(p \ge 1)$, using the resolution: $0 \longrightarrow \mathcal{O}_{G} \longrightarrow \mathcal{A}^{0,0} \xrightarrow{\delta} \mathcal{A}^{0,1} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{A}^{0,n} \longrightarrow 0$ of \mathcal{O}_{G} , where $\mathcal{A}^{\flat,q}$ denotes the sheaf of germs of real analytic (p, q)-forms on *G*. It was not possible to find a necessary and sufficient condition for $H^{\flat}(G, \mathcal{O}_{G})$ to be finite-dimensional by the method of the paper [8]. Roughly speaking the cause of the above unsuccess is that the resolution by the sheaves of germs of real analytic forms is not good enough to calculate the $\overline{\delta}$ cohomology groups of *G*.

The purpose of this paper is to establish the cohomology groups $H^{\flat}(G, \mathcal{O}_{G})$ of an (H, C)-group G $(p \ge 1)$, using some number theoretical property of G. It is known that every (H, C)-group G has a structure of $C^{*\flat}$ -principal bundle $\pi: G \longrightarrow T_{C}^{q}$ over a q-dimensional complex torus T_{C}^{q} (p+q=n) ([14]). We take the subsheaf \mathscr{H} of $\mathscr{A}^{0,0}$ so that $\mathscr{H}:=\{f\in\mathscr{A}^{0,0}; f \text{ is holomorphic along each fiber of }\pi\}$. First we shall prove a cohomology vanishing theorem for the sheaf \mathscr{H} on G in Section 2. Using the sheaf \mathscr{H} , we shall get the resolution:

 $0 \longrightarrow \mathcal{O}_{G} \longrightarrow \mathscr{H}^{0,0} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathscr{H}^{0,q} \longrightarrow 0$

Communicated by S. Nakano, March 4, 1983.

^{*} Department of Mathematics, College of General Education, Kyushu University, Ropponmatsu, Fukuoka, 810 Japan.

of \mathcal{O}_G in Section 3 to calculate the $\bar{\partial}$ cohomology groups $H^p(G, \mathcal{O}_G)$ $(p \ge 1)$. In Section 4 we shall find a necessary and sufficient condition for $H^{p}(G, \mathcal{O}_{G})$ to be finite-dimensional and calculate the dimension of $H^{\flat}(G, \mathcal{O}_G)$ (Theorem 4.3). We can regard an (H, C)-group G as a quotient group C^n/Γ by a discrete subgroup Γ . The above necessary and sufficient condition is expressed by a Diophantine inequality with respect to the subgroup Γ of C^n . Unless the condition is fulfilled for Γ , then by Theorem 4.3, there exists j $(1 \le j \le q)$ such that $H^{i}(G, \mathcal{O}_{G})$ is infinite-dimensional. Further we shall prove that $H^{p}(G, \mathcal{O}_{G})$ is not Hausdorff for all p $(1 \leq p \leq q)$ (Theorem 4.4). By the theorems in Section 4 the cohomology groups $H^{p}(G, \mathcal{O}_{G})$ of an (H, C)-group G are completely determined by some number theoretical property of G and we have a classification of all (H, C)groups as follows. Let C^n/Γ be an *n*-dimensional (H, C)-group. If Γ is generated by R-linearly independent vectors v_1, \ldots, v_{n+q} , then C^n/Γ is called an (H, C)-group of rank n+q ([11]). Let $\mathcal{T}^{n,q}$ be the set of all *n*-dimensional (H, C)-groups of rank n+q. Then

$$\mathcal{T}^{n,q} = \{ C^n / \Gamma \in \mathcal{T}^{n,q} ; \dim H^p(C^n / \Gamma, \mathcal{O}) < \infty, p \ge 1 \}$$
$$\cup \{ C^n / \Gamma \in \mathcal{T}^{n,q} ; H^p(C^n / \Gamma, \mathcal{O}) \text{ is not Hausdorff for any}$$
$$p \text{ satisfying } 1 \le p \le q \} \quad (\text{disjoint}).$$

The author is very grateful to Prof. S. Nakano who raised the question in 1975 whether the cohomology groups $H^{\flat}(G, \mathcal{O}_G)$ for an (H, C)-group G are finite-dimensional.

§1. Preliminaries

In this paper we consider an *n*-dimensional connected complex Lie group G without nonconstant holomorphic functions. Such a Lie group G is said to be a toroid group or an (H, C)-group ([5], [9], [11]). We recall that G is abelian and then G is isomorphic onto C^n/Γ for some discrete subgroup Γ of C^n as a Lie group ([11]). We may assume that Γ is generated by R-linearly independent vectors $\{e_1, \ldots, e_n, v_1 = (v_{11}, \ldots, v_{1n}), \ldots, v_q = (v_{q1}, \ldots, v_{qn})\}$ of C^n $(1 \le q \le n)$, where e_j is the *j*-th unit vector of C^n . Since every holomorphic function on $G = C^n/\Gamma$ is constant, $\{v_1, \ldots, v_q\}$ must satisfy the condition:

(1.1)
$$\max\{|\sum_{j=1}^{n} v_{ij}m_j - m_{n+i}|; 1 \le i \le q\} > 0$$

for all $m = (m_1, \ldots, m_n, m_{n+1}, \ldots, m_{n+q}) \in \mathbb{Z}^{n+q} - \{0\}$ ([9], [11]). Since Im $v_1 := (\operatorname{Im} v_{11}, \ldots, \operatorname{Im} v_{1n}), \ldots, \operatorname{Im} v_q := (\operatorname{Im} v_{q1}, \ldots, \operatorname{Im} v_{qn})$ are *R*-linearly independent, we may assume det [Im v_{ij} ; $1 \leq i, j \leq q \neq 0$ without loss of generality. Throughout this paper we assume that $G = C^n / \Gamma$ and Γ denotes the discrete subgroup satisfying the above assumption and (1.1). Further we use the notations:

$$K_{m,i} := \sum_{j=1}^{n} v_{ij} m_j - m_{n+i}$$
 and $K_m := \max\{|K_{m,i}|; 1 \le i \le q\}$

for $m \in \mathbb{Z}^{n+q}$. Then from (1.1) we have

(1.2) $K_m > 0 \text{ for all } m \in Z^{n+q} - \{0\}.$

We denote the projection $C^n \ni (z_1, \ldots, z_n) \longmapsto (z_1, \ldots, z_q) \in C^q$ by $\pi_q: C^n \longrightarrow C^q$. Let $e_i^*: = \pi_q(e_i), v_i^*: = \pi_q(v_i)$ for $1 \le i \le q$ and $\Gamma^*: = \pi_q(\Gamma)$. Since e_i^*, v_i^* are *R*-linearly independent, we have a *q*-dimensional complex torus $T_c^q = C^q / \Gamma^*$.

We recall the following proposition due to [14].

Proposition 1.1. The projection $\pi_q: C^n \longrightarrow C^q$ induces the C^{*n-q} principal bundle $\pi_q: C^n/\Gamma \ni z + \Gamma \longmapsto \pi_q(z) + \Gamma^* \in T^q_C$ over T^q_C .

We put

$$\begin{aligned} \alpha_{ij} &:= \begin{cases} \operatorname{Re} \ v_{ij} & (1 \leq i \leq q, \ 1 \leq j \leq n) \\ 0 & (q+1 \leq i \leq n, \ 1 \leq j \leq n) \end{cases} \\ \beta_{ij} &:= \begin{cases} \operatorname{Im} \ v_{ij} & (1 \leq i \leq q, \ 1 \leq j \leq n) \\ \delta_{ii} & (q+1 \leq i \leq n, \ 1 \leq j \leq n), \end{cases} \end{aligned}$$

 $[\gamma_{ij}; 1 \leq i, j \leq n] := [\beta_{ij}; 1 \leq i, j \leq n]^{-1}$ and $v_i := \sqrt{-1} e_i$ for $q+1 \leq i \leq n$. Since $\{e_1, \ldots, e_n, v_1, \ldots, v_n\}$ are *R*-linearly independent, we have an isomorphism

$$\phi: C^n \ni (z_1, \ldots, z_n) \longmapsto (t_1, \ldots, t_{2n}) \in \mathbb{R}^{2n}$$

as a real Lie group, where $(z_1, \ldots, z_n) = \sum_{i=1}^n (t_i e_i + t_{n+i} v_i)$. Then we obtain the relations

(1.3)
$$t_j = x_j - \sum_{i,k=1}^n y_k \gamma_{ki} \alpha_{ij} \text{ and } t_{n+j} = \sum_{i=1}^n y_i \gamma_{ij}$$

for $1 \leq j \leq n$, where $z_i = x_i + \sqrt{-1} y_i$ $(1 \leq i \leq n)$. ϕ induces the isomorphism $\phi^{\sim}: C^n/\Gamma \cong T^{n+q} \times R^{n-q}$ as a real Lie group, where T^{n+q} is a n+q-dimensional real torus. Henceforth we identify C^n/Γ with the real Lie group $T^{n+q} \times R^{n-q}$ and use the real coordinate system (t_1, \ldots, t_{2n}) according to the need. We make the following change of

coordinates:

$$\zeta_i := \sum_{j=1}^n z_j \gamma_{ji} \ (1 \leq i \leq n)$$
 in C^n .

Then we can regard $(\zeta_1, \ldots, \zeta_n)$ as a local coordinate system of C^n/Γ and we have global vector fields

$$\frac{\partial}{\partial \bar{\zeta}_i} = \sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial \bar{z}_j}$$

and (0, 1)-forms

$$d\bar{\zeta}_i = \sum_{j=1}^n \gamma_{ji} d\bar{z}_j \quad (1 \le i \le n)$$

on C^n/Γ . It follows from (1.3) that

(1.4)
$$\frac{\partial}{\partial \zeta_i} = \frac{1}{2} \left(\sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial t_j} - \sqrt{-1} \sum_{j=1}^n \alpha_{ij} \frac{\partial}{\partial t_j} + \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right).$$

Then for $q+1 \leq i \leq n$ we have

(1.5)
$$\frac{\partial}{\partial \xi_i} = \frac{1}{2} \left(\frac{\partial}{\partial t_i} + \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right).$$

Let \mathscr{A} be the sheaf of germs of (complex valued) real analytic functions on C^n/Γ and

$$\mathscr{H} := \Big\{ f \in \mathscr{A} \mid \frac{\partial f}{\partial \zeta_i} = 0 \quad q+1 \leq i \leq n \Big\}.$$

Let $f \in H^0(\mathbb{C}^n/\Gamma, \mathscr{A})$. Then we have the following Fourier expansion of f:

(1.6)
$$f(t_1,\ldots, t_{2n}) = \sum_{m \in \mathbb{Z}^{n+q}} c^m(t') \exp 2\pi \sqrt{-1} \langle m, t' \rangle,$$

where $t' := (t_1, \ldots, t_{n+q}) \in T^{n+q}$, $t'' := (t_{n+q+1}, \ldots, t_{2n}) \in R^{n-q}$, $m = (m_1, \ldots, m_{n+q}) \in Z^{n+q}$, $\langle m, t' \rangle = \sum_{i=1}^{n+q} m_i t_i$ and $c^m(t'')$ is real analytic in $t'' \in R^{n-q}$ for any $m \in Z^{n+q}$. We put

$$f^m(t):=c^m(t'') \exp 2\pi \sqrt{-1} \langle m, t' \rangle.$$

It follows from (1.4), (1.5) and (1.6) that

(1.7)
$$\frac{\partial f^{m}}{\partial \zeta_{i}} = \begin{cases} \pi(\sum_{j=1}^{n} v_{ij}m_{j} - m_{n+i}) f^{m} = \pi K_{m,i}f^{m}, \ 1 \leq i \leq q \\ \frac{\sqrt{-1}}{2} \left(\frac{\partial c^{m}(t'')}{\partial t_{n+i}} + 2\pi m_{i}c^{m}(t'') \right) \exp 2\pi \sqrt{-1} \langle m, t' \rangle, \\ q+1 \leq i \leq n. \end{cases}$$

Furthermore suppose $f \in H^0(\mathbb{C}^n/\Gamma, \mathscr{H})$. Since $\frac{\partial f}{\partial \zeta_i} = 0$ $(q+1 \leq i \leq n)$, we have, by (1.6) and (1.7),

(1.8)
$$f(t) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp\left(-2\pi \sum_{i=q+1}^n m_i t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right),$$
where c^m is complex constant for any $m \in \mathbb{Z}^{n+q}$.

300

§ 2. Cohomology Groups with Coefficients in the Sheaf \mathscr{H}

Let M be a paracompact real analytic manifold and \mathscr{A}_{M} be the sheaf of germs of real analytic functions on M. By the result of [4] we can regard M as a closed real analytic submanifold of a complex manifold N and M has a Stein neighbourhood basis $\{U_i; i \in I\}$ in N. Since ind. $\lim \{H^{\flat}(U_j, \mathcal{O}_N); U_j \supset M\} = 0$, we have $H^{\flat}(M, \mathscr{A}_M) = 0$ for $p \ge 1$ ([10]).

In this section we treat cohomology groups as the following type. Let \mathscr{F} the sheaf $\left\{f(z, t) \in \mathscr{A}_{C\times R}; \frac{\partial f}{\partial z} = 0\right\}$ on $C \times R$. We wish to consider whether $H^{\mathfrak{p}}(C \times R, \mathscr{F})$ vanishes for $\mathfrak{p} \geq 1$. Using a power series expansion of a function $f \in \mathscr{A}_{C\times R}$, we can prove that a homomorphism $\frac{\partial}{\partial z}: \mathscr{A}_{C\times R} \longrightarrow \mathscr{A}_{C\times R}$ is surjective. Then we have an exact sequence $0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{A}_{C\times R} \xrightarrow{\partial} \mathscr{A}_{C\times R} \longrightarrow 0$. From this exact sequence and the lemma of [6, Lemma 2, p. 25], we can regard $H^{\mathfrak{p}}(C \times R, \mathscr{F})$ as $H^{\mathfrak{p}}(C, \mathcal{O}^{E})$, where \mathcal{O}^{E} is the sheaf of germs of holomorphic functions with values in the locally convex space $E:=H^{0}(R, \mathscr{A}_{R})$. Since E admits no structures of Frechet spaces, then we cannot apply the result of [1] and [2] to $H^{\mathfrak{p}}(C \times R, \mathscr{F})$. And since $C \times R$ has no Stein neighbourhood bases in $C \times C$, then we cannot prove the vanishing of $H^{\mathfrak{p}}(C, \mathscr{A}_{R})$ by the same method of the proof of the theorem: $H^{\mathfrak{p}}(M, \mathscr{A}_{M}) = 0$. To get our purpose in this section, we must investigate a property of Stein open neighbourhood of $C^{k} \times R^{l}$ in $C^{k} \times C^{l}$.

We will use the following notations in the rest of this paper. For an *m*-tuple $\xi = (\xi_1, \ldots, \xi_m), ||\xi|| := \max\{|\xi_i|; 1 \le i \le m\}$. And the notation {equalities and inequalities involving functions h_1, \ldots, h_m } denotes the set of all points in the intersection of the domains of definition of h_1, \ldots, h_m satisfying the given equalities and inequalities.

Lemma 2.1. Let $\pi: S \longrightarrow C^k \times C^l$ be a (unramified Riemann) domain of holomorphy over $C^k \times C^l$ (k, $l \ge 1$), $\Delta_r := \{(w_1, \ldots, w_l) \in C^l; |w_j - a_j| < r_j, 1 \le j \le l\}$, where $r = (r_1, \ldots, r_l), r_j > 0$ and $(a_1, \ldots, a_l) \in C^l$ and let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_l)$ for $\varepsilon_j \ge 0$ ($1 \le j \le l$). Further assume there exist an open subset V_1 of S and $\delta > 0$ such that $\pi|_{V_1}$ is biholomorphic into $C^k \times C^l$ and $\pi(V_1) \supset (C^k \times \Delta_r) \cup \{||z|| < \delta\} \times \Delta_{r+\varepsilon}$, where $\Delta_{r+\varepsilon}$: $\{|w_j - a_j| < r_j + \varepsilon_j, 1 \le j \le l\}$. Then there exists an open subset V_2 of S with $V_1 \subset V_2$ such that $\pi|_{V_2}$ is biholomorphic into $C^k \times C^l$ and $\pi(V_2) \supset C^k \times \Delta_{r+\varepsilon}$.

Proof. We may assume $a_1 = \cdots = a_i = 0$. Let $f \in H^0(S, \mathcal{O}_S)$. Then f can be expanded in the power series: $f|_{(\pi|V_1)^{-1}}(C^k \times \mathcal{A}_r)(x) =$ $\sum_{\nu,\mu} a_{\nu\mu} (z \circ \pi(x))^{\nu} (w \circ \pi(x))^{\mu}, \text{ where } (z \circ \pi(x))^{\nu} = (z_1 \circ \pi(x))^{\nu_1} \cdots (z_k \circ \pi(x))^{\nu_k}$ and $(w \circ \pi(x))^{\mu} = (w_1 \circ \pi(x))^{\mu_1} \cdots (w_l \circ \pi(x))^{\mu_l}$. Then the power series $F(z, w) := \sum_{\nu,\mu} a_{\nu\mu} z^{\nu} w^{\mu}$ converges in $(C^k \times \mathcal{A}_r) \cup \{||z|| < \delta\} \times \mathcal{A}_{r+\epsilon}$. We put $D_d := (\{||z|| < d\} \times \{|w_j| < r_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{||z|| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < r_j + \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \delta\} \times \{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le l\}) \cup (\{|w_j| < \varepsilon_j, 1 \le j \le j \le j$ $1 \leq j \leq l$) for $d > \delta$. The envelope of holomorphy of D_d is the smallest logarithmically convex complete Reinhardt domain \hat{D}_d : = {||z|| < d, $|w_j| < r_j + \varepsilon_j, \quad \log |w_j| - \log r_j < \frac{\log d - \log ||z||}{\log d - \log \delta} (\log (r_j + \varepsilon_j) - \log r_j) \}$ which contains D_d (for instance see [13]). Since F converges in D_d for all $d > \delta$, then F can be continued holomorphically in \hat{D}_d for any $d > \delta$. We take any point $(z, w) \in C^k \times \mathcal{A}_{r+\varepsilon}$. Then we can find a sufficiently large positive number d_0 such that $\log |w_j| - \log r_j <$ $\frac{\log d_0 - \log ||z||}{\log d_0 - \log \delta} (\log (r_j + \varepsilon_j) - \log r_j). \text{ Then } (z, w) \in \hat{D}_{d_0}. \text{ This implies}$ that F converges in $C^k \times \mathcal{A}_{r+\varepsilon}$. Since $\pi: S \longrightarrow C^k \times C^l$ is a domain of holomorphy, we find an open subset V_2 of S satisfying the statements of the lemma (for instance see [6, Theorem 18, p. 55]).

The following lemma asserts that $C \times R$ admits no Stein open neighbourhood bases in $C \times C$. For instance we take an open neighbourhood $V := \{(z, w) \in C^2; |\text{Im } w| < (1+|z|)^{-1}\}$ of $C \times R$ in $C \times C$. Then we cannot find a Stein open subset V^* so that $C \times R \subset V^* \subset V$.

Lemma 2. 2. Let I_j : = { $w_j \in C$; Im $w_j = 0$, $a_j < \text{Re } w_j < b_j$ }, where $-\infty \leq a_j < b_j \leq \infty$ ($1 \leq j \leq l$), I: = $I_1 \times \cdots \times I_l \subset R^l \subset C^l$ and f a holomorphic function in a neighbourhood of $C^k \times I$ in $C^k \times C^l$. Then there exists a Stein open neighbourhood V of I in C^l such that f can be continued holomorphically to $C^k \times V$.

Proof. First we assume l=1. Then $I = \{w \in C; \text{ Im } w = 0, a < \text{Re } w < b\}$, where $-\infty \leq a < b \leq \infty$. We have an open and connected neighbourhood D of $C^k \times I$ in $C^k \times C$ so that f is holomorphic in D. Let $\pi: \hat{D} \longrightarrow C^k \times C$ be the envelope of holomorphy of D which is given

by a Riemann domain over $C^k \times C$. Then there exists a holomorphic injection $j: D \longrightarrow \hat{D}$ such that $\pi \circ j = \text{identity}$ and the mapping $H^0(\hat{D}, \mathcal{O}_D) \ni g \longmapsto g \circ j \in H^0(D, \mathcal{O}_D)$ is an isomorphism. Put U:=j(D), for $\varepsilon = \pm 1$ $\hat{D}_1^{\varepsilon}:=$ the connected component of $\pi^{-1}(C^k \times \{a < \text{Re } w < b, \\ \varepsilon \text{ Im } w < 0\})$ satisfying $\hat{D}_1^{\varepsilon} \cap U \neq \phi$ and $D^{\varepsilon}:= \{(z, w) \in D ; a < \text{Re } w < b\}$ $\cup C^k \times \{w \in C ; a < \text{Re } w < b, \\ \varepsilon \text{ Im } w > 0\}$. Then $\pi : \hat{D}_1^{\varepsilon} \longrightarrow C^k \times C$ is a domain of holomorphy. We identify $(z, w) \in D^{\varepsilon}$ and $x \in \hat{D}_{1^{\varepsilon}}^{\varepsilon}$, if $(z, w) \in D$ and j(z, w) = x. We write this identification by $(z, w) \sim x$. Then for $\varepsilon = \pm 1$ we get Riemann domains

$$\pi_{\varepsilon}: G^{\varepsilon}: \hat{D}_1^{\varepsilon} \cup D^{\varepsilon} / \sim \longrightarrow C^k \times C,$$

where $\pi_{\varepsilon}(x) := \pi(x)$ if $x \in \hat{D}_{1}^{\varepsilon}$ and $\pi_{\varepsilon}(z, w) := (z, w)$ if $(z, w) \in D^{\varepsilon}$. Now we consider the case $\varepsilon = 1$. We put

$$G_{i}^{1} := G^{1} \cap \pi_{1}^{-1}(C^{k} \times \{a + t < \operatorname{Re} w < b - t\}) \text{ for } 0 < t < (b - a)/2.$$

Since G_t^1 is p_4 -convex in the sense of [3], $G^1 = \bigcup_{\substack{0 < t < (b-a)/2 \\ 0 < t < (b-a)/2}} G_t^1$ is a domain of holomorphy. We take $x_0 \in U$ with $\pi_1(x_0) = (z^0, w^0)$ for some $w^0 \in I$. We put

$$\begin{aligned} &\tau_0 := 1/2 \min \{ w^0 - a, \ b - w^0 \} > 0 \\ &P_{\tau_0} := C^k \times \{ |w - w^0 - \sqrt{-1} \ \tau_0 | < \tau_0 \}. \end{aligned}$$

Then we have $P_{\tau_0} \subset D^1 \subset G^1$. And there exist $\delta_1 > 0$ and an open subset U_1 of G^1 with $x_0 \in U_1$ such that $\pi_1|_{U_1}$ is biholomorphic into $C^k \times C$ and $\pi_1(U_1) \supset \{||z|| < \delta_1\} \times \{|w - w^0 - \sqrt{-1} \tau_0| < \tau_0 + \delta_1\}$. By Lemma 2. 1 we have an open subset U_2 of G^1 with $x_0 \in U_2$ so that $\pi_1|_{U_2}$ is biholomorphic into $C^k \times C$ and

$$\pi_1(U_2) \supset C^k \times \{ |w - w^0 - \sqrt{-1} \tau_0| < \tau_0 + \delta_1 \}.$$

Then $\pi(\hat{D}_1^1 \cap U_2) \supset C^k \times \{|w-w^0| < \delta_1, \text{ Im } w \leq 0\}$. Applying the above method to the case $\varepsilon = -1$, we get $\delta_2 > 0$ and an open subset U_3 of G^{-1} with $x_0 \in U_3$ so that $\pi_{-1} | U_3$ is biholomorphic and $\pi(\hat{D}_1^{-1} \cap U_3) \supset C^k$ $\times \{|w-w^0| < \delta_2, \text{ Im } w \geq 0\}$. Then there exists an open neighbourhood U_4 of x_0 in \hat{D} such that $\pi|_{U_4}$ is biholomorphic into $C^k \times C$ and $\pi(U_4)$ $\supset C^k \times \{|w-w^0| < \min\{\delta_1, \delta_2\}\}$. This means that f can be continued holomorphically to $C^k \times V^*$ for some open neighbourhood V^* of I in C. Then we complete the proof in the case l=1. We can prove the assertion of the lemma for $l \geq 3$ similarly to the case l=2. Then we shall only prove the lemma in the case l=2. Let $I:=I_1 \times I_2=$ $\{(w_1, w_2); \text{ Im } w_i = 0, a_i < \text{Re } w_i < b_i, i = 1, 2\} \subset R^2 \subset C^2, f \text{ a holomorphic function in a neighbourhood } E \text{ of } C^k \times I \text{ in } C^k \times C^2 \text{ and } \hat{E} \text{ the envelope of holomorphy of } E.$ In general \hat{E} is given by a Riemann domain over $C^k \times C^2$. Using the same technique of the proof in the case l = 1, we may treat \hat{E} as a univalent domain of holomorphy in $C^k \times C^2$ which contains E without loss of generality. We take $(t_1^0, t_2^0) \in I_1 \times I_2$ and $\delta > 0$ satisfying $\delta < \min\{t_1^0 - a_i, b_i - t_i^0; i = 1, 2\}$ and $\{||z|| < \delta\} \times \{|w_i - t_i^0| < \delta, i = 1, 2\} \subset E$. Let $I_i^0 := R \cap \{w_i \in C; |w_i - t_i^0| < \delta\}$ $(i = 1, 2), I_1' := = I_1^0 \cap \{|w_1 - t_1^0| < \delta/3\}$ and $\hat{E}(t_2) := \{(z, w_1) \in C^k \times C; (z, w_1, t_2) \in \hat{E}, \text{Re } w_1 \in I_1^0\}$ for $t_2 \in I_2^0$. And we put

 $\hat{E}(t_2)^{\varepsilon} := \hat{E}(t_2) \cup C^k \times \{w_1; \varepsilon \text{ Im } w_1 \ge 0, \text{ Re } w_1 \in I_1^0\}$

for $\varepsilon = \pm 1$. Then $\hat{E}(t_2)^{\varepsilon}$ is a domain of holomorphy for $\varepsilon = \pm 1$ and $t_2 \in I_2^0$. We have $C^k \times \{ |w_1 - t_1 - \sqrt{-1}(\delta/3)| < \delta/3 \} \subset \hat{E}(t_2)^{+1}$ and $\{ ||z|| < \delta \} \times \{ |w_1 - t_1 - \sqrt{-1}(\delta/3)| < (2\delta/3) \} \subset \hat{E}(t_2)^{+1}$ for $t_2 \in I_2^0$ and $t_1 \in I_1'$. It follows from Lemma 2. 1 that

$$C^{k} \times \{ |w_{1} - t_{1} - \sqrt{-1}(\delta/3)| < 2\delta/3 \} \subset \hat{E}(t_{2})^{+1}$$

for $t_2 \in I_2^0$ and $t_1 \in I_1'$. Similarly we have

$$C^{k} \times \{ |w_{1} - t_{1} + \sqrt{-1}(\delta/3)| < 2\delta/3 \} \subset \hat{E}(t_{2})^{-1} \}$$

for $t_2 \in I_2^0$ and $t_1 \in I_1'$. We put $V_1^0 := \{w_1; |\text{Im } w_1| < \delta/3, \text{ Re } w_1 \in I_1'\}$. Then we have $C^k \times V_1^0 \times I_2^0 \subset \hat{E}$. We set

$$\begin{split} \hat{E}_1 &:= \{ (z, w_1, w_2) \in \hat{E}; w_1 \in V_1^0, \text{ Re } w_2 \in I_2^0 \}, \\ \hat{E}_1^{\mathfrak{c}} &:= \hat{E}_1 \cup C^{\mathfrak{k}} \times V_1^0 \times \{ w_2 ; \mathfrak{c} \text{ Im } w_2 \geqq 0, \text{ Re } w_2 \in I_2^0 \} \end{split}$$

for $\varepsilon = \pm 1$. Since $C^k \times V_1^0 \times \{w_2; |w_2 - t_2^0 - \sqrt{-1}(\varepsilon \delta/2) | < \delta/2 \} \subset \hat{E}_1^{\varepsilon}$ and $\{||z|| < \delta\} \times V_1^0 \times \{w_2; |w_2 - t_2^0 - \sqrt{-1}(\varepsilon \delta/2) | < \delta\} \subset \hat{E}_1^{\varepsilon} \ (\varepsilon = \pm 1),$ it follows from Lemma 2. 1 that

$$C^{k} \times V_{1}^{0} \times \{ |w_{2} - t_{2}^{0}| < \delta/2 \} \subset \hat{E}.$$

Since (t_1^0, t_2^0) is an arbitrary point of *I*, we find an open subset *V* of *I* in C^2 so that *f* can be continued holomorphically to $C^k \times V$. *I* has a Stein neighbourhood basis in C^2 . Then we may regard *V* as a Stein open subset of C^2 ([4]).

Lemma 2.3. Let I be as in Lemma 2.2 and f a holomorphic function in a neighbourhood of $C^{**} \times I$ in $C^{**} \times C^{!}$. Then there exists a Stein open neighbourhood V of I in $C^{!}$ such that f can be continued holomorphically to $C^{*k} \times V$.

Proof. It is sufficient to prove the lemma in the case k=2. Let $a_{\nu}(t) := 1/(2\pi\sqrt{-1})^2 \int_{|z_1|=1} \int_{|z_2|=1} \frac{f(z_1, z_2, t)}{z_1^{\nu_1+1} z_2^{\nu_2+1}} dz_1 dz_2$ for $\nu = (\nu_1, \nu_2) \in Z^2$ and $t \in I$. And we use the notations: $\sum_{(1)} := \sum_{\nu_1, \nu_2 \geq 0}, \sum_{(2)} := \sum_{\nu_1 \geq 0, \nu_2 < 0}, \sum_{(3)} := \sum_{\nu_1 < 0, \nu_2 \geq 0}, \sum_{(4)} := \sum_{\nu_1, \nu_2 < 0}$ and $f_i(z_1, z_2, t) := \sum_{(i)} a_{\nu}(t) z_1^{\nu_1} z_2^{\nu_2}$. Then we can apply Lemma 2. 2 to each f_i . For instance we take $f_4^*(z_1, z_2, t) := f_4(z_1^{-1}, z_2^{-1}, t)$ which is holomorphic in $(z_1, z_2) \in C^2$. By Lemma 2. 2 f_4^* can be continued to $C^2 \times V$ for some Stein open neighbourhood V of I in C^l . Since $f=f_1+f_2+f_3+f_4$, we get the proof of the lemma.

Let $\pi_q: C^n/\Gamma \ni (z_1, \ldots, z_n) + \Gamma \longmapsto (z_1, \ldots, z_q) + \Gamma^* \in T_c^q = C^q/\Gamma^*$ be the C^{*n-q} -principal bundle over T_c^q as in Proposition 1. 1. Since $\alpha_{ij} = 0$ for $1 \le j \le n$, $q+1 \le i \le n$ and $\gamma_{ij} = 0$ for $q+1 \le i \le n$, $1 \le j \le q$, from (1. 3) it follows that $t_j = x_j - \sum_{s=1}^q \sum_{i=1}^q y_i \gamma_{is} \alpha_{sj}$ and $t_{n+j} = \sum_{i=1}^q y_i \gamma_{ij}$ for $1 \le j \le q$. This relation induces an isomorphism $\sigma: T_c^q \ni (z_1, \ldots, z_q)$ $+\Gamma^* \longmapsto (\exp 2\pi \sqrt{-1} t_1, \ldots, \exp 2\pi \sqrt{-1} t_q, \exp 2\pi \sqrt{-1} t_{n+1}, \ldots, \exp 2\pi \sqrt{-1} t_{n+q}) \in T^{2q}$, where T^{2q} is a real 2q-dimensional torus. And we have an isomorphism $\phi: C^n/\Gamma \ni (z_1, \ldots, z_n) + \Gamma \longmapsto (\exp 2\pi \sqrt{-1} (t_{q+1} + \sqrt{-1} t_{n+q+1}), \ldots, \exp 2\pi \sqrt{-1} (t_n + \sqrt{-1} t_{2n}); \sigma \circ \pi_q(z_1, \ldots, z_n)) \in C^{*n-q} \times T^{2q}$ with a commutative diagram:

where $\pi'(\xi, \eta) = \eta$ for $\xi = (\xi_1, \ldots, \xi_{n-q}) \in C^{*n-q}$ and $\eta \in T^{2q}$. We take the sheaf \mathscr{F} of germs of real analytic functions which is holomorphic in each fibre of π' on $C^{*n-q} \times T^{2q}$, that is

$$\mathscr{F} := \{ f \in \mathscr{A}' ; \frac{\partial f}{\partial \bar{\xi}_i} = 0, \ 1 \leq i \leq n-q \},\$$

where \mathscr{A}' is the sheaf of germs of real analytic functions on $C^{*n-q} \times T^{2q}$. And we consider the sheaf $\mathscr{H} := \{f \in \mathscr{A}; \frac{\partial f}{\partial \bar{\zeta}_i} = 0 \ q+1 \leq i \leq n\}$ on C^n/Γ as in Section 1. Then by (1.5)

$$(2.1) \qquad \phi^*: H^0(W, \mathscr{F}) \ni f \longmapsto f \circ \phi \in H^0(\phi^{-1}(W), \mathscr{H})$$

is an isomorphism for any open subset W of $C^{*n-q} \times T^{2q}$. We put J :=

 $\{j = (\varepsilon_1, \ldots, \varepsilon_{2q}); \varepsilon_i = \pm 1\} \text{ and for } j = (\varepsilon_1, \ldots, \varepsilon_{2q}) \in J \quad U_j := \{(\exp 2\pi\sqrt{-1} t_1, \ldots, \exp 2\pi\sqrt{-1} t_q, \exp 2\pi\sqrt{-1} t_{n+1}, \ldots, \exp 2\pi\sqrt{-1} t_{n+q}) \in T^{2q}; -1/2 \leq t_s, t_{n+s} \leq 1/2, t_{n+s} \neq \varepsilon_{q+s}/4, t_s \neq \varepsilon_s/4 \text{ for } 1 \leq s \leq q\}.$ Then we have open coverings $\mathfrak{U} := \{C^{*n-q} \times U_j; j \in J\}$ and $\mathfrak{V} := \{\phi^{-1}(C^{*n-q} \times U_j); j \in J\}$ of $C^{*n-q} \times T^{2q}$ and C^n/Γ , respectively.

Proposition 2.4. Let $H^{p}(\mathfrak{V}, \mathcal{H})$ be the p-th Cech cohomology group of the covering \mathfrak{V} of C^{n}/Γ . Then

$$H^p(\mathfrak{V}, \mathscr{H}) = 0 \text{ for } p \ge 1.$$

Proof. We have an isomorphism $\phi^*: H^p(\mathfrak{U}, \mathscr{F}) \longrightarrow H^p(\mathfrak{V}, \mathscr{H})$ by (2.1). Then we may prove $H^{p}(\mathfrak{U}, \mathscr{F}) = 0$ for $p \ge 1$. We regard T^{2q} as the closed real analytic submanifold $\{(w_1, \ldots, w_{2q}); |w_i|=1,$ $1 \leq i \leq 2q$ of C^{2q} . Let C be any connected component of $U_{j_0} \cap \ldots \cap U_{j_k}$. Then there exist a rectangular set $I \subset R^{2q} \subset C^{2q}$ as in Lemma 2. 2 and an open neighbourhood V of I in C^{2q} such that $\psi: V \ni (u_1, \ldots, u_{2q})$ $\longmapsto (\exp 2\pi\sqrt{-1} u_1, \ldots, \exp 2\pi\sqrt{-1} u_{2q}) \in C^{2q}$ is biholomorphic and $\psi(I) = C$. We take $\{c_{j_0, j_p}\} \in \mathbb{Z}^p(\mathfrak{U}, \mathscr{F})$. In virtue of such mapping ψ and by Lemma 2. 3 there exist a Stein and connected open neighbourhood $U_{i_0 \dots i_p}^*$ of $U_{i_0} \cap \dots \cap U_{i_p}$ in C^{2q} and a unique holomorphic function c_{j_0,j_p}^* in $C^{*n-q} \times U_{j_0,j_p}^*$ such that $c_{j_0,j_p}^* |C^{*n-q} \times U_{j_0}|$ $\cap \ldots \cap U_{j_h} = c_{j_0 \ldots j_h}$. Since each U_j admits a Stein neighbourhood basis in C^{2q} , we can choose a Stein neighbourhood $U_{\tilde{j}}$ of U_{j} in C^{2q} so that $\begin{array}{l} U_{\widetilde{i}_0} \cap \ldots \cap U_{\widetilde{j}_p} \subset U_{j_0 \ldots j_p}^* \text{. We take } \varepsilon \ (0 < \varepsilon < 1) \text{ satisfying } \mathcal{A}_{\varepsilon} = \{1 - \varepsilon < |w_i| \\ < 1 + \varepsilon, \ 1 \leq i \leq 2q\} \subset \cup_{j \in J} U_{\widetilde{j}}^* \text{. Then we have } (\{c_{j_0 \ldots j_p}^*\}; \{C^{*n-q} \times U_{\widetilde{j}_0} \cap \ldots \} \\ \end{array}$ $\cap U_{\tilde{j}_p} \cap \mathcal{A}_{\varepsilon}\}) \in Z^p(\{C^{*n-q} \times (U_{\tilde{j}} \cap \mathcal{A}_{\varepsilon})\}, \mathcal{O}). \text{ Since } C^{*n-q} \times \mathcal{A}_{\varepsilon} \text{ is a Stein}$ open set, there exists $\{d^*_{j_0 \dots j_{p-1}}\} C^{p-1}(\{C^{*n-q} \times (U_{\tilde{j}} \cap \mathcal{A}_{\varepsilon})\}, \mathcal{O})$ such that $\delta\{d_{j_0}^* | j_{p-1}\} = \{c_{j_0}^* | C^{*n-q} \times (U_{j_0}^* \cap \ldots \cap U_{j_p}^* \cap \mathcal{A}_{\varepsilon})\}.$ This completes the proof.

Let $f \in H^0(C^n/\Gamma, \mathscr{H}) = Z^0(\mathfrak{B}, \mathscr{H})$. From (1.8) we have $f(t) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp\left(-2\pi \sum_{i=q+1}^n m_i t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right),$ (2.2) $f \circ \phi^{-1}(\xi, \eta) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \xi_1^{mq+1} \dots \xi_{n-q}^{m_n} \eta_1^{m_1} \dots \eta_q^{m_q} \eta_{q+1}^{m_{n+1}} \dots \eta_{2q}^{m_n+q}$ for $(\xi, \eta) \in C^{*n-q} \times T^{2q}$. Observing the proof of Proposition 2.4 and by Lemma 2.3, we have the following

Proposition 2.5. There exists $\varepsilon > 0$ such that the Laurent series

expansion:

$$\sum_{m \in \mathbb{Z}^{n+q}} c^m \hat{\xi}_1^{m_{q+1}} \cdots \hat{\xi}_{n-q}^{m_n} w_1^{m_1} \cdots w_q^{m_q} w_{q+1}^{m_{n+1}} \cdots w_{2q}^{m_{n+q}}$$

which induced by (2.2) converges for all $(\xi, w) \in C^{*n-q} \times \Delta_{\varepsilon}$, where $\Delta_{\varepsilon} = \{1 - \varepsilon < |w_i| < 1 + \varepsilon\}.$

§ 3. A Special Resolution of the Structure Sheaf \mathcal{O} of C^n/Γ

Let U be an open subset of C^l , \mathscr{A}^{\sim} be the sheaf of germs of real analytic functions on $C^{*k} \times U$. We consider the sheaf $\mathscr{G} :=$ $\{f \in \mathscr{A}^{\sim}; \frac{\partial f(z, w)}{\partial z_j} = 0, \ 1 \leq j \leq k\}, \text{ where } (z, w) \in C^{*k} \times U \text{ and } \mathscr{G}^{0,p} :=$ $(1/p! \sum_{1 \leq i_1, \cdots, i_p \leq l} f_{i_1 \cdots i_p} d\bar{w}_{i_1} \wedge \cdots \wedge d\bar{w}_{i_p}; f_{i_1 \cdots i_p} \in \mathscr{G}\} \text{ for } 0 \leq p \leq l.$ Here any form treated in the rest of this paper is written skew-symmetrically in all indices.

Let $f \in H^0(C^{**} \times U, \mathscr{G})$ and $w^0 = (w_1^0, \ldots, w_l^0) \in U$. By Lemma 2. 3 there exists an open neighbourhood U^0 of w^0 in U such that f has the following expansion:

(3.1)
$$f(z, w) = \sum_{v \in Z^k} \sum_{\alpha_i, \beta_i \ge 0} b_{v, \alpha, \beta} z^v (w - w^0)^{\alpha} \overline{(w - w^0)}^{\beta}$$

which converges for all $(z, w) \in C^{*k} \times U^0$, where $(w - w^0)^{\alpha} = (w_1 - w_1^0)^{\alpha_1}$... $(w_l - w_l^0)^{\alpha_l}$ and $\overline{(w - w^0)^{\beta}} = \overline{(w_1 - w_l^0)^{\beta_1}} \dots \overline{(w_l - w_l^0)^{\beta_l}}$.

Lemma 3.1. Let $f=1/p! \sum_{1 \leq i_1, \dots, i_p \leq l} f_{i_1 \dots i_p} d\bar{w}_{i_1} \wedge \dots \wedge d\bar{w}_{i_p} \in H^0(C^{*k} \times U, \mathscr{G}^{0,p})$ with $\bar{\partial}f=0$ $(p \geq 1)$. For any $w^0 \in U$ choose an open neighbourhood U^0 of w^0 so that any $f_{i_1 \dots i_p}$ can be expanded in $C^{*k} \times U^0$ as in (3.1). Then there exists $g^0 \in H^0(C^{*k} \times U^0, \mathscr{G}^{0,p-1})$ such that $\bar{\partial}g^0 = f$.

Proof. Let *m* be the least integer such that the explicit representation of *f* in coordinate form involves only the conjugate differentials $d\bar{w}_1, \ldots, d\bar{w}_m$. The proof will be by induction on *m*. First we consider m = p. Then $f = f_{12...p} d\bar{w}_1 \wedge \ldots \wedge d\bar{w}_p$ and we have an expansion $f_{12...p} = \sum a_{\nu\alpha\beta} z^{\nu} (w - w^0)^{\alpha} \overline{(w - w^0)^{\beta}}$ in $C^{*k} \times U^0$ as in (3.1). Since $\bar{\partial}f = 0$, $f_{12...p}$ must be holomorphic in w_{p+1}, \ldots, w_l . Putting $g_{12...p-1} := \sum a_{\nu\alpha\beta}/(\beta_p + 1)z^{\nu} (w - w^0)^{\alpha} \overline{(w - w^0)^{\beta}} \overline{(w_p - w_p^0)}$ and $g := g_{12...p-1} d\bar{w}_1 \wedge \ldots \wedge d\bar{w}_{p-1}$, $g_{12...p-1}$ is also holomorphic in w_{p+1}, \ldots, w_l and $\bar{\partial}g = f$. Using the standard argument for the Dolbeault lemma (for instance)

see [6, the proof of Theorem 3, p. 27]), we can complete the proof.

Observing the proof of Proposition 2. 4, we have the following lemma.

Lemma 3. 2. Let $\{U_i\}$ be a locally finite open covering of $U \subset C^l$ and each U_i is a rectangular open subset $\{a_j^{(i)} < \operatorname{Re} w_j < b_j^{(i)}, c_j^{(i)} < \operatorname{Im} w_j < d_j^{(i)}; 1 \leq j \leq l\}$ for some $a_j^{(i)}, b_j^{(i)}, c_j^{(i)}$ and $d_j^{(i)} \in \mathbb{R}$. Take the open covering $\mathfrak{U} := \{C^{*k} \times U_i\}$ of $C^{*k} \times U$. Then $H^p(\mathfrak{U}, \mathscr{G}^{0.s}) = 0$ for $p \geq 1$, $0 \leq s \leq l$.

By Lemmata 3. 1 and 3. 2 we have the following lemma.

Lemma 3.3. Let U be a Stein open subset of C^{l} and $f \in H^{0}(C^{*k} \times U, \mathscr{G}^{0,p})$ with $\bar{\partial}f=0$. Then there exists $g \in H^{0}(C^{*k} \times U, \mathscr{G}^{0,p-1})$ such that $\bar{\partial}g=f$.

Now we need the sheaf $\mathscr{H} = \{f \in \mathscr{A} : \frac{\partial f}{\partial \zeta_j} = 0 \quad q+1 \leq j \leq n\}$ on C^n/Γ defining in Section 1. Further we consider the sheaf

$$\mathscr{H}^{0,p}$$
: = {1/p! $\sum_{1 \leq i_1 \dots i_p \leq q} f_{i_1 \dots i_p} d\zeta_{i_1} \land \dots \land d\zeta_{i_p}$; $f_{i_1 \dots i_p} \in \mathscr{H}$ }

308

of germs of \mathscr{H} -forms of type (0, p) which involves only the differentials $d\bar{\zeta}_1, \ldots, d\bar{\zeta}_q$.

Proposition 3. 4. The sequence

 $0 \longrightarrow \mathcal{O} \longrightarrow \mathscr{H}^{0,0} \xrightarrow{\delta} \mathscr{H}^{0,1} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathscr{H}^{0,q} \longrightarrow 0$

is exact. And $H^{\mathfrak{p}}(\mathbb{C}^n/\Gamma, \mathcal{O})$ is isomorphic to the quotient space $\{f; f \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,\mathfrak{p}}), \ \bar{\partial}f = 0\} / \{\bar{\partial}g; g \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,\mathfrak{p}-1})\}$ for $p \ge 1$.

Proof. We can regard $(\zeta_1, \ldots, \zeta_n)$ as a local coordinate system of C^n/Γ . Let f be a germ belonging to a stalk H_{ζ^0} at $\zeta^0 \in C^n/\Gamma$. f has an expansion

$$f = \sum_{\alpha,\beta} a_{\alpha\beta} (\zeta_{q+1}, \ldots, \zeta_n) (\zeta_1 - \zeta_1^0)^{\alpha_1} \cdots (\zeta_q - \zeta_q^0)^{\alpha_q} \overline{(\zeta_1 - \zeta_1^0)}^{\beta_1} \cdots \overline{(\zeta_q - \zeta_q^0)}^{\beta_q}$$

which is similar to (3.1) and converges in a small neighbourhood U^0 of ζ^0 in C^n/Γ , where $a_{\alpha\beta}$ is holomorphic in $\zeta_{q+1}, \ldots, \zeta_n$. Applying the method of the proof of Lemma 3.1 to this expansion of $f \in \mathscr{H}_{\zeta^0}$, we can prove the exactness of the sequence of the proposition. We put Ker $\bar{\partial}_k := \operatorname{Ker} \{\bar{\partial} : \mathscr{H}^{0,k} \longrightarrow \mathscr{H}^{0,k+1}\}$ and $\operatorname{Im} \bar{\partial}_k := \operatorname{Im} \{\bar{\partial} : \mathscr{H}^{0,k} \longrightarrow \mathscr{H}^{0,k+1}\}$. Then we have $\operatorname{Im} \bar{\partial}_k = \operatorname{Ker} \{\bar{\partial}_{k+1} \text{ and the short exact sequences}\}$

$$(3.2) \qquad 0 \longrightarrow \operatorname{Ker} \bar{\partial}_k \longrightarrow \mathscr{H}^{0,k} \longrightarrow \operatorname{Im} \bar{\partial}_k \longrightarrow 0 \quad \text{for } 0 \leq k \leq q.$$

Let $\mathfrak{V} = \{\phi^{-1}(C^{*n-q} \times U_j)\}$ be the same locally finite covering of C^n/Γ as in Proposition 2. 4. Since $\phi^{-1}(C^{*n-q} \times U_j)$ is biholomorphic to $C^{*n-q} \times U_j$, it follows from Lemma 3. 3 that

$$\bar{\partial}: C^p(\mathfrak{V}, \mathscr{H}^{0,k}) \longrightarrow C^p(\mathfrak{V}, \operatorname{Im} \bar{\partial}_k)$$

is an epimorphism. Then we have an exact sequence

$$0 \longrightarrow C^{p}(\mathfrak{V}, \text{ Ker } \bar{\partial}_{k}) \longrightarrow C^{p}(\mathfrak{V}, \mathscr{H}^{0,k}) \longrightarrow C^{p}(\mathfrak{V}, \text{ Im } \bar{\partial}_{k}) \longrightarrow 0.$$

From (3. 2) there exists a long exact sequence $0 \longrightarrow H^{0}(\mathfrak{V}, \operatorname{Ker} \bar{\partial}_{k}) \longrightarrow H^{0}(\mathfrak{V}, \operatorname{H}^{0,k}) \longrightarrow H^{0}(\mathfrak{V}, \operatorname{Im} \bar{\partial}_{k}) \longrightarrow H^{1}(\mathfrak{V}, \operatorname{Ker} \bar{\partial}_{k}) \longrightarrow H^{1}(\mathfrak{V}, \mathscr{H}^{0,k}) \longrightarrow H^{1}(\mathfrak{V}, \mathfrak{H}^{0,k}) \longrightarrow H^{$

$$\begin{split} H^{\mathfrak{p}}(C^{\mathfrak{n}}/\Gamma, \ \mathcal{O}\,) &\cong H^{1}(\mathfrak{B}, \ \mathrm{Ker} \ \bar{\partial}_{\mathfrak{p}-1}) \cong \\ H^{0}(\mathfrak{B}, \ \mathrm{Im} \ \bar{\partial}_{\mathfrak{p}-1}) / \mathrm{Im} \left\{ \bar{\partial} : H^{0}(\mathfrak{B}, \ \mathscr{H}^{0,\mathfrak{p}-1}) \longrightarrow H^{0}(\mathfrak{B}, \ \mathrm{Im} \ \bar{\partial}_{\mathfrak{p}-1}) \right\}. \end{split}$$

This coincides with the quotient space asserten in this proposition.

Remark. By Proposition 3. 4 we obtain $H^p(\mathbb{C}^n/\Gamma, \mathcal{O}) = 0$ for $p \ge q+1$. This comes from the result of [7] directly, since we showed in [7] that \mathbb{C}^n/Γ is strongly (q+1)-complete in the sense of Andreotti and Grauert.

§4. $\overline{\partial}$ Cohomology Groups of (H, C)-Groups

Let $f \in H^0(C^n/\Gamma, \mathscr{H})$. By (1. 8) we have the Fourier expansion: $f = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+1}) \exp 2\pi \sqrt{-1} \langle m, t \rangle$. For $m = (m_1, \ldots, m_{n+q}) \in \mathbb{Z}^{n+q}$ we put $m' := (m_1, \ldots, m_q, m_{n+1}, \ldots, m_{n+q}), m'' := (m_{q+1}, \ldots, m_n), ||m'|| := \max\{|m_i|, |m_{n+i}|; 1 \le i \le q\}$ and $||m''|| := \max\{|m_j|; q+1 \le j \le n\}$. Then we have the following

Lemma 4.1. The following conditions on a sequence $\{c^m \in C; m \in Z^{n+q}\}$ are equivalent.

- (a) The Fourier expansion $\sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp(2\pi \sqrt{-1})$ $\langle m, t' \rangle$ converges to a function in $H^0(\mathbb{C}^n/\Gamma, \mathscr{H})$.
- (b) There exists $\varepsilon > 0$ such that for all a > 0 $C(a) := \sup \{ |c^m| \exp(\varepsilon ||m'|| + a ||m''||) ; m \in \mathbb{Z}^{n+q} \} < \infty.$

For $m \in \mathbb{Z}^{n+q}$ we use the notation: $||m^*|| := \max\{|m_i|, 1 \le i \le n\}$.

Lemma 4.2. The following conditions (0) and (1) are equivalent.

- (0) For any $\varepsilon > 0$ there exists a positive number $a = a(\varepsilon)$ such that $\sup_{m \neq 0} \exp(-\varepsilon ||m'|| - a||m''||) / K_m < \infty.$
- (1) There exists a > 0 such that $\sup_{m \neq 0} \exp(-a||m^*||) / K_m < \infty.$

Proof. Since $K_m = \max_{1 \le i \le q} \sqrt{(\sum_{j=1}^n \operatorname{Re} v_{ij}m_j - m_{n+i})^2 + (\sum_{j=1}^n \operatorname{Im} v_{ij}m_j)^2}$ and the $q \times q$ -matrix $[\operatorname{Im} v_{ij}; 1 \le i, j \le q]$ is non-singular, we can find $C_1, C_2 > 0$ so that $S := \{m; m \ne 0, |K_m| \le 1\} \subset \{m; m \ne 0, ||m'|| \le C_1 + C_2 ||m''||\}$. We shall show that the statement (1) is equivalent to the following

(*) There exists a > 0 such that $\sup_{m \neq 0} \exp(-a||m''||)/K_m < \infty$. Since $||m''|| \le ||m^*||$, the implication (*) \Longrightarrow (1) is trivial. Assume (1) holds. We have $||m^*|| \le ||m'|| + ||m''|| \le C_1 + (C_2 + 1)||m''||$ for $m \in S$. We put $b := (C_2 + 1)a > 0$. Then $\sup_{m \in S} \exp(-b||m''||)/K_m \le \exp(bC_1/(C_2 + 1))$ $\sup_{m \in S} \exp(-a||m^*||)/K_m < \infty$. This implies (*) holds. We prove (0) \Longrightarrow (*). Assume (0) holds. We get a > 0 such that $\sup_{m \neq 0} \exp(-||m'||)/K_m \le \exp(-||m'||)/K_m \le \exp(-||m'||)/K_m \le \exp(-||m''||)/K_m \le \exp(-||m''||)$

Remark. The condition (0) depends on our assumption that det $[\operatorname{Im} v_{ij}; 1 \leq i, j \leq q] \neq 0$. But the condition (1) is independent on that.

Let $\rho = 1/p! \sum_{1 \le i_1 \cdots i_p \le q} \rho_{i_1 \ i_p} d\zeta_{i_1} \wedge \cdots \wedge d\zeta_{i_p} \in H^0(\mathbb{C}^n/\Gamma, \mathscr{H}^{0,p})$. We expand each $\rho_{i_1 \cdots i_p}$ as in (1.8): $\rho_{i_1 \ \cdot i_p} = \sum_{m \in \mathbb{Z}^{n+q}} b_{i_1 \ i_p}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i})$ exp $2\pi\sqrt{-1} \langle m, t' \rangle$. We put $\rho_{i_1 \ i_p}^m := b_{i_1 \ i_p}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i})$ exp $2\pi\sqrt{-1} \langle m, t' \rangle$, $\rho^m := 1/p! \sum_{1 \le i_1 \cdots i_p \le q} b_{i_1 \ i_p}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i})$ exp $2\pi\sqrt{-1} \langle m, t' \rangle$ $d\zeta_{i_1} \wedge \cdots \wedge d\zeta_{i_p}$. Then $\rho = \sum_{m \in \mathbb{Z}^{n+q}} \rho^m$. Suppose ρ is $\bar{\partial}$ -exact. Namely there exists a (0, p-1)-form $\lambda = \sum_{m \in \mathbb{Z}^{n+q}} \lambda^m \in H^0(\mathbb{C}^n/\Gamma, \mathscr{H}^{0,p-1})$ such that $\rho = \bar{\partial}\lambda$. Then we have $\rho^m = \bar{\partial}\lambda^m$ for any $m \in \mathbb{Z}^{n+q}$. We write $\lambda^m = 1/(p-1)! \sum_{1 \le i_1 \cdots i_{p-1} \le q} \lambda_{i_1}^m \sum_{i_{p-1} d\zeta_{i_1} \wedge \cdots \wedge d\zeta_{i_{p-1}}} d\zeta_{i_{p-1}}$ and $\lambda_{i_1 \cdots i_{p-1}}^m = d_{i_1 \cdots i_{p-1}}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}))$ exp $2\pi\sqrt{-1} \langle m, t' \rangle$. The equation $\rho^m = \bar{\partial}\lambda^m$ implies

HIDEAKI KAZAMA

(4.1)
$$\rho_{i_1\cdots i_p}^m = \sum_{k=1}^p (-1)^{k+1} \frac{\partial \lambda_{i_1\cdots i_p}^m}{\partial \zeta_{i_k}}.$$

Combining (4.1) with (1.7), we have for any $m \in \mathbb{Z}^{n+q}$

(4.2)
$$b_{i_1\cdots i_p}^m = \sum_{k=1}^p (-1)^{k+1} \pi K_{m,i_k} d_{i_1\cdots \hat{i_k}\cdots i_p}^m$$

Now suppose $\phi = \sum_{m \in \mathbb{Z}^{n+q}} \phi^m \in H^0(\mathbb{C}^n/\Gamma, \mathscr{H}^{0,p})$ is $\bar{\partial}$ -closed. From $\bar{\partial}\phi = 0$ and (4.2) it follows that

(4.3)
$$\pi \sum_{k=1}^{p+1} (-1)^{k+1} K_{m,i_k} c_{i_1 \dots i_{k-1}}^{m, i_{k-1}} = 0$$

where we denote $\phi^m = 1/p ! \sum_{1 \leq i_1, \dots, i_p \leq q} c^m_{i_1 \dots i_p} \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i})$ exp $2\pi \sqrt{-1} \langle m, t' \rangle d\zeta_{i_1} \land \dots \land d\zeta_{i_p}$. We put

$$i(m) := \min \{i ; |K_{m,i}| = K_{m'} \quad 1 \le i \le q\}$$

and the indices $(i(m), i_1, \ldots, i_p)$ in the place of (i_1, \ldots, i_{p+1}) of the formula (4.3), then we have

(4.4)
$$\pi K_{m,i(m)} c^m_{i_1 \dots i_p} = \pi \sum_{k=1}^p (-1) K^{k+1} K_{m,i_k} c^m_{i(m)i_1 \dots i_k \dots i_p}$$

Since $K_m > 0$ for $m \neq 0$ by (1. 2), we can put

(4.5)
$$\begin{aligned} \psi^{m} &:= 1/\pi (p-1) ! \sum_{1 \le i_{1} \cdots i_{p-1} \le q} c^{m}_{i(m)i_{1} \cdots i_{p-1}} / K_{m,i(m)} \\ &\exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \right) \langle m, t' \rangle d\bar{\zeta}_{i_{1}} / \cdots / d\bar{\zeta}_{i_{p-1}} \end{aligned}$$

for $m \neq 0$. Observing (4. 2), it follows from (4. 4) and (4. 5) that (4. 6) $\phi^m = \bar{\partial} \phi^m$ for any $m \neq 0$.

Remark. For any $\bar{\partial}$ -closed (0, p)-form $\phi = \sum \phi^m$ we have always a formal solution $\sum_{m\neq 0} \phi^m$ for the $\bar{\partial}$ -equation $\bar{\partial} \sum_{m\neq 0} \phi^m = \sum_{m\neq 0} \phi^m$ by (4.6).

Here we need to topologize $H^0(\mathbb{C}^n/\Gamma, \mathscr{H})$. Let $\mathscr{A}(R)$ be the vector space of real analytic functions on R. We regard R as a closed real analytic submanifold of C under the natural inclusion. We take a compact subset K of R and an open and connected neighbourhood U_j of K in C, $1 \leq j \leq \infty$ satisfying $U_{j+1} \subset U_j$ and $\bigcap_j U_j = K$. Let $\mathscr{A}(K)$ be the vector space of real analytic functions in a neighbourhood of K in R. We denote by $\mathscr{H}(U_j)$ the space of bounded holomorphic functions on U_j , $j \geq 1$. Put $||f|| := \sup\{|f(z)|; z \in U_j\}$, $f \in \mathscr{H}(U_j)$. This norm makes $\mathscr{H}(U_j)$ into a Banach space.

312

By the inductive limit: $\mathscr{A}(K) = \operatorname{ind} \lim \mathscr{H}(U_j)$ we regard $\mathscr{A}(K)$ as a (D, F, S)-space. The restriction mapping $\mathscr{A}(K_1) \longrightarrow \mathscr{A}(K_2), K_2 \subset K_1$ induces the projective limit: $\mathscr{A}(R) = \operatorname{proj} \lim \mathscr{A}(K)$. It is known that the above locally convex topology on $\mathscr{A}(R)$ is complete and semi-Montel. Similarly to the topology of $\mathscr{A}(R)$ we can make the vector space $H^0(C^n/\Gamma, \mathscr{A})$ into a locally convex space. Then $H^0(C^n/\Gamma, \mathscr{H})$ is regarded as a closed subspace of $H^0(C^n/\Gamma, \mathscr{A})$ and itself a locally convex space. And we have the locally convex topology of $H^0(C^n/\Gamma, \mathscr{H})$. Further by Proposition 3. 4 we have the locally convex topology of $H^b(C^n/\Gamma, \mathscr{O})$, using the quotient topology.

The following theorem gives a characterization of an (H, C)-group C^n/Γ whose cohomology groups $H^p(C^n/\Gamma, \mathcal{O})$ $(p \ge 1)$ are finite-dimensional.

Theorem 4.3. Let C^n/Γ be an (H, C)-group, where Γ is generated by $\{e_1, \ldots, e_n, v_1, \ldots, v_q\}, K_{m,i} := \sum_{j=1}^n v_{ij}m_j - m_{n+i} \quad (1 \le i \le q)$ and $K_m := \max\{|K_{m,i}|; 1 \le i \le q\}$ for $m \in \mathbb{Z}^{n+q}$. Then the following statements (1), (2), (3) and (4) are equivalent.

- (1) There exists a > 0 such that $\sup_{\substack{m \neq 0 \\ m \neq 0}} \exp(-a||m^*||) / K_m < \infty,$ where $||m^*|| = \max\{|m_i|; 1 \le i \le n\}.$ (2) $\dim H^p(C^n/\Gamma, \mathcal{O}) = \begin{cases} \frac{q!}{(q-p)! p!} & \text{if } 1 \le p \le q\\ 0 & \text{if } p > q. \end{cases}$ (3) $\dim H^p(C^n/\Gamma, \mathcal{O}) < \infty \quad \text{for any } p \ge 1.$
- (4) $\bar{\partial}(H^0(\mathbb{C}^n/\Gamma, \mathscr{H}^{0,p-1}))$ is a closed subspace of $H^0(\mathbb{C}^n/\Gamma, \mathscr{H}^{0,p})$ for any $p \ge 1$.

Proof. Assume (1) holds. Then by Lemma 4. 2 we may suppose that the statement (0) of Lemma 4. 2 holds. We take a $\bar{\partial}$ -closed form $\phi = 1/p! \sum_{m \in \mathbb{Z}^{n+q}} \sum_{1 \le i_1 \dots i_p \le q} \phi_{i_1 \dots i_p}^m d\tilde{\zeta}_{i_1} \wedge \dots \wedge d\tilde{\zeta}_{i_p} \in H^0(\mathbb{C}^n/\Gamma, \mathscr{H}^{0,p})$, where $\phi_{i_1 \dots i_p}^m = \mathbb{C}_{i_1 \dots i_p}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle$. By Lemma 4. 1 there exists $\varepsilon_0 > 0$ such that for any a > 0 $C(a) := \sup \{ |\mathcal{C}_{i_1 \dots i_p}^m| | \exp(\varepsilon_0 ||m'|| + a ||m''||); m \in \mathbb{Z}^{n+q} \} < \infty$ $(1 \le i_1, \dots, i_p \le q)$. By the statement (0) of Lemma 4. 2 we find $a_0 > 0$ such that HIDEAKI KAZAMA

$$\sup_{m\neq 0} \exp(-\varepsilon_0/2||m'||-a_0||m''||)/K_m = C_0 < +\infty.$$

Then for any a > 0, $m \neq 0$ and $1 \leq i_1, \ldots, i_p \leq q ||c_{i_1 \cdots i_p}^m| \exp(\varepsilon_0/2||m'|| + a||m''||) / K_m \leq C_0 ||c_{i_1 \cdots i_p}^m| \exp(\varepsilon_0||m'|| + (a+a_0)||m''||) \leq C_0 C(a+a_0) < \infty$. This means that $\sum_{m\neq 0} \phi^m$ given by (4.5) converges to a (0, p-1)-form ϕ in $H^0(C^n/\Gamma, \mathscr{H}^{0,p-1})$. And by (4.6) we have $\phi - \bar{\partial}\phi = \phi^0 + \sum_{m\neq 0} (\phi^m - \bar{\partial}\phi^m) = \sum_{1\leq i_1 \cdots i_p \leq q} c_{i_1 \cdots i_p}^0 d\bar{\zeta}_{i_1} \wedge \cdots \wedge d\bar{\zeta}_{i_p}$. This shows (2) holds. It is obvious that (2) \Longrightarrow (3) \Longrightarrow (4). Finally we prove (4) \Longrightarrow (1). By Lemma 4.2 we may prove that (4) implies the statement (0) of Lemma 4.2 instead of (4) \Longrightarrow (1). Suppose that $\{K_m; m \in \mathbb{Z}^{n+q}\}$ doesn't satisfy the statement (0) of Lemma 4.2. Then there exists $\varepsilon_1 > 0$ such that we can choose $\{m_\nu; \nu \geq 1\} \subset \mathbb{Z}^{n+q} - \{0\}$ satisfying $\exp(-\varepsilon_1||m'_\nu|| - \nu||m''_\nu||) / K_{m_0} \geq \nu$ for any $\nu \geq 1$. We put

$$\delta^{m} := \begin{cases} \exp\left(-\varepsilon_{1}||m_{\nu}'||-\nu||m_{\nu}''||\right)/K_{m_{\nu}} & \text{if } m = m_{\nu} \text{ for some } \nu \geq 1. \\ 0 & \text{otherwise} \end{cases}$$

and $\psi^m := \delta^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle$ for any $m \in \mathbb{Z}^{n+q}$. Since $\bar{\partial} \psi^m = \sum_{j=1}^q \pi K_{m_y,j} \exp(-\varepsilon_1 ||m'_y|| - \nu ||m''_y||) \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i})/K_{m_y}$ exp $2\pi \sqrt{-1} \langle m, t' \rangle d\bar{\zeta}_j$, if $m = m_y$ for some $\nu \ge 1$ and $|K_{m_y,j}/K_{m_y}| \le 1$, then $\sum_m \bar{\partial} \psi^m$ converges to a form $\phi \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,1})$. By the choice of the sequence $\{m_y\}$, $\sum_m \psi^m$ cannot converge to any function in $H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,0})$. Suppose $\phi = \bar{\partial}\lambda$ for some $\lambda = \sum_m \lambda^m \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,0})$, then $\lambda^m = \psi^m$ for $m \ne 0$. It is a contradiction. Then $\phi = \lim_{N \to \infty} \bar{\partial} (\sum_{\|m\| < N} \psi^m)$ belongs not to $\bar{\partial} (H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,0}))$, but to the closure of $\bar{\partial} (H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,0}))$. This contradicts the statement (4).

By the above proof of the implication $(4) \Longrightarrow (1)$, if $\{K_m; m \in \mathbb{Z}^{n+q}\}$ doesn't satisfy the statement (1) of Theorem 4. 3, then $H^1(\mathbb{C}^n/\Gamma, \mathcal{O})$ is a non-Hausdorff locally convex space and then infinite-dimensional. Further in the above situation we shall prove that $H^p(\mathbb{C}^n/\Gamma, \mathcal{O})$ are also non-Hausdorff spaces for all p satisfying $2 \leq p \leq q$.

Theorem 4.4. Every (H, C)-group C^n/Γ satisfies either of the following statements (a) and (b).

- (a) $H^{p}(C^{n}/\Gamma, \mathcal{O})$ is finite-dimensional for any p.
- (b) $H^{p}(C^{n}/\Gamma, \mathcal{O})$ is a non-Hausdorff locally convex space for any p satisfying $1 \leq p \leq q$.

Further the statement (b) is equivalent to the following (c) $\sup_{\substack{m\neq 0 \\ m \neq 0}} \exp(-a||m^*||) / K_m = \infty$ for any a > 0, where $||m^*|| = \max\{|m_i|; 1 \le i \le n\}$.

Proof. By Lemma 4.2 and Theorem 4.3, we must prove (b) holds on the assumtion that $\{K_m\}$ doesn't satisfy the statement (0) of Lemma 4.2. We choose $\varepsilon_1 > 0$, the sequence $\{m_\nu\}$ and δ^m as in the proof of (4) \implies (1) in Theorem 4.3. We can find i_0 so that $1 \le i_0 \le q$ and $\sup\{\nu; |K_{m_\nu,i_0}| = K_{m_\nu}\} = \infty$. We may assume $i_0 = q$ without loss of generality. We take a (0, p-1)-form

$$\begin{split} \psi^{m} &:= \delta^{m} \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle d\bar{\zeta}_{1} \wedge \ldots \wedge d\bar{\zeta}_{p-1}\right) \\ \text{Then } \sum_{m} \psi^{m} \text{ cannot converge to any } (0, p-1) \text{-form in } H^{0}(C^{n}/\Gamma, \mathcal{H}^{0,p-1}). \end{split}$$

$$\begin{split} & \mathcal{H}^{0,p-1}). \quad \text{On the other hand } \sum_{m} \bar{\partial} \psi^{m} \text{ converges to a } (0, p) \text{-form } \phi = \\ & \sum_{m} \sum_{j=p}^{q} \pi K_{m,j} \delta^{m} \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle d\bar{\zeta}_{j} \wedge d\bar{\zeta}_{1} \wedge \ldots \wedge d\bar{\zeta}_{p-1} \neq 0. \end{split}$$

$$\begin{split} & \dots \wedge d\bar{\zeta}_{p-1} \neq 0. \quad \text{Suppose } \phi = \bar{\partial} \lambda \text{ for some } \lambda = \sum_{m} \lambda^{m} \in H^{0}(C^{n}/\Gamma, \mathcal{H}^{0,p-1}). \end{split}$$
 \end{split}

$$\lambda^{m} = 1/(p-1)! \sum b_{i_{1} \dots i_{p-1}}^{m} \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle d\bar{\zeta}_{i_{1}} \wedge \dots \wedge d\bar{\zeta}_{i_{p-1}}\right)$$

Comparing the term of $\bar{\partial}\psi^m$ with that of $\bar{\partial}\lambda^m$ involving only the exterior differential $d\zeta_q \wedge d\zeta_1 \wedge \ldots \wedge d\zeta_{p-1}$ of type (0, p), we have $\pi K_{m_{\nu},q} b_{12}^{m_{\nu}}{}_{p-1} + \sum_{i=1}^{p-1} (-1)^i \pi K_{m_{\nu},i} b_{q1..i}^{m_{\nu}}{}_{p-1} = \pi K_{m_{\nu},q} \delta^{m_{\nu}}$. Then $\delta^{m_{\nu}} = b_{12..p-1}^{m_{\nu}} + \sum_{i=1}^{p-1} (-1)^i b_{q1..i}^{m_{\nu}}{}_{p-1} K_{m_{\nu},i} / K_{m_{\nu},q}$ for $\nu \ge 1$. Since $\sup \{\nu; |K_{m_{\nu},q}| = K_{m_{\nu}}\}$ = ∞ , we can choose a subsequence $\{m_{\nu}^{\sim}\}$ of $\{m_{\nu}\}$ so that $|K_{m_{\nu},i}/K_{m_{\nu},q}| \le 1$ for any $1 \le i \le q$ and that

$$\lim_{\nu \to \infty} (b_{12 \dots p-1}^{m_{\nu}} + \sum_{i=1}^{p-1} (-1)^{i} b_{q1 \dots p-1}^{m_{\nu}}) K_{m_{\nu} \dots i} / K_{m_{\nu} \dots q} = 0.$$

This contradicts that $\lim_{\nu\to\infty} \delta^{m_{\nu}} = \infty$. Hence ϕ belongs not to $\bar{\partial}(H^0(C^n/\Gamma, \mathscr{H}^{0,p-1}))$ but to the closure of $\bar{\partial}(H^0(C^n/\Gamma, \mathscr{H}^{0,p-1}))$.

Remark. When the author was making the preprint for this paper, he got the following information which was given by S. Takeuchi. Independently C. Vogt [15] showed in his Dissertation that the statements (a) and (b) are equivalent.

- (a) There exist C>0 and a>0 such that $K_m \ge C \exp(|-a||m^*||)$.
- (b) dim $H^1(C^n/\Gamma, \mathcal{O}) \leq \infty$.

By Theorem 4. 3 and 4. 4 we have the following

Corollary 4.5. The statements (1), (2), (3) and (4) in Theorem 4.3 are equivalent to each of the following statements (5) and (6).

- (5) For some p $(1 \leq p \leq q)$ dim $H^{p}(C^{n}/\Gamma, \mathcal{O}) < \infty$.
- (6) For some p $(1 \le p \le q)$ $\overline{\partial}(H^0(C^n/\Gamma, \mathscr{H}^{0,p-1}))$ is a closed subspace of $H^0(C^n/\Gamma, \mathscr{H}^{0,p})$.

Remark. We constructed an example of an (H, C)-group C^n/Γ so that $H^1(C^n/\Gamma, \mathcal{O})$ is not Hausdorff ([7]). By Corollary 4.5 we can show $H^p(C^n/\Gamma, \mathcal{O})$ are not Hausdorff for this (H, C)-group C^n/Γ $(2 \leq p \leq q)$.

References

- [1] Bishop, E., Analytic functions with values in a Frechet space, *Pacific J. Math.*, 12 (1962), 1177-1192.
- [2] Bungart, L., Holomorphic functions with values in locally convex spaces and applications to integral formulas, *Trans. Amer. Math. Soc.*, 110 (1964), 317-344.
- [3] Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz f
 ür Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123.
- [4] Grauert, H., On Levi's Problem and the imbedding of real analytic manifold, Ann. Math., 68 (1958), 460-472.
- [5] Grauert, H. and Remmert, R., Theorie der Steinschen Räume, Springer-Verlag, Berlin-Heideberg-New York, 1977.
- [6] Gunning, R. C. and Rossi, H., Analytic functions of several complex variables, Prentice Hall, Inc., Englewood Cliffs, N. J., 1965.
- [7] Kazama, H., On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan, 25 (1973), 329-333.
- [8] Kazama, H. and Umeno, T., Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91-106.
- [9] Kopfermann, K., Maximale Untergruppen Abelischer komplexer Liescher Gruppen, Schr. Math. Inst. Univ. Münster, 29 (1964).
- [10] Malgrange, B., Faisceaux sur des variétés analytiques réelles, Bul. Soc. math. France, 85 (1957), 231-237.
- [11] Morimoto, A., Non-compact complex Lie groups without non-constant holomorphic functions, Springer-Verlag, Proc.Conf. on Complex Analysis at Univ. of Minn., 1965.
- [12] On the classification of non-compact abelian Lie groups, Trans. Amer. Math. Soc., 123 (1966), 200-228.
- [13] Siu, Y.-T., Every Stein subvariety admits a Stein neighborhood, Inventiones Math., 38 (1976), 89-100.
- [14] Takeuchi, S., On completeness of holomorphic principal bundles, Nagoya Math. J., 57 (1974), 121-138.
- [15] Vogt, C., Geradenbündel auf Toroiden Gruppen, Dissertation Düsseldorf, 1981.

Supplementary notes:

After this paper was submitted, the referee informed the author the following results.

By another method L. C. Piccinini showed implicitly that $C \times R$ admits no Stein neighbourhood bases in $C \times C$ in the article :

[16] Non surjectivity of $\partial^2/\partial x^2 + \partial^2/\partial y^2$ as an operator on the space of analytic functions on R^3 , Lecture Notes of the Summer College on Global Analysis, Trieste, August 1972,

and C. Vogt has published the paper:

[17] Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217-232.

In [17] he showed independently that the statements (1) and (2) of Theorem 4.3 of this paper are equivalent.