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By
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Introduction

In this paper we consider an n-dimensional connected complex
Lie group G without nonconstant holomorphic functions (Such a
Lie group is called an (H, C)-group). In the previous paper [8]
we found a sufficient condition for H?(G, @) to be finite-dimensional
(p=1), using the resolution: 0—— @ s—— /"ot t... °
/%"——0 of 0Og, where &*? denotes the sheaf of germs of real

analytic (p, g)-forms on G. It was not possible to find a necessary
and sufficient condition for H?(G, @;) to be finite-dimensional by
the method of the paper [8]. Roughly speaking the cause of the
above unsuccess is that the resolution by the sheaves of germs of real
analytic forms is not good enough to calculate the d cohomology
groups of G.

The purpose of this paper is to establish the cohomology groups
H?(G, O) of an (H, C)-group G (p=1), using some number theoretical
property of G. It is known that every (H, C)-group G has a
structure of C*’-principal bundle = : G——T% over a g-dimensional
complex torus T% (p+qg=n) ([14]). We take the subsheafl # of &°°
so that #: = {fe/""; f is holomorphic along each fiber of z}. First
we shall prove a cohomology vanishing theorem for the sheal £ on
G in Section 2. Using the sheaf 4, we shall get the resolution:
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of 0 in Section 3 to calculate the 0 cohomology groups H?(G, 0)
(p=1). In Section 4 we shall find a necessary and sufficient condition
for H?(G, O¢) to be finite-dimensional and calculate the dimension
of H?(G, O;) (Theorem 4.3). We can regard an (H, C)-group G
as a quotient group C"/I' by a discrete subgroup I'. The above
necessary and sufficient condition is expressed by a Diophantine
inequality with respect to the subgroup I" of C* TUnless the condition
is fulfilled for I', then by Theorem 4.3, there exists j (1<7=<¢q) such
that H'(G, 0;) is infinite-dimensional. Further we shall prove that
H! (G, 0¢) is not Hausdorff for all p (1=p=q) (Theorem 4. 4). By
the theorems in Section 4 the cohomology groups H?(G, @) of an
(H, C)-group G are completely determined by some number
theoretical property of G and we have a classification of all (H, C)-
groups as follows. Let C*/I' be an n-dimensional (H, C)-group. If
I' is generated by R-linearly independent vectors v, ..., V., then
C*/I' is called an (H, C)-group of rank n+g ([11]). Let I™¢ be
the set of all n-dimensional (H, C)-groups of rank n+q. Then
Fgri={C/I'eg™?; dim H(C"/[, 0)< oo, p=1}
ui{C/regm™; H(C*/I', 0) is not Hausdorff for any
p satisfying 1<p=<gq} (disjoint).

The author is very grateful to Prof. S. Nakano who raised the
question in 1975 whether the cohomology groups H?(G, @;) for an
(H, C)-group G are finite-dimensional.

§1. Preliminaries

In this paper we consider an zn-dimensional connected complex
Lie group G without nonconstant holomorphic functions. Such a Lie
group G is said to be a toroid group or an (H, C)-group ([5], [9],
[11]). We recall that G is abelian and then G is isomorphic onto
C*/I" for some discrete subgroup I' of C" as a Lie group ([11]). We
may assume that I is generated by R-linearly independent vectors
fen eves €m V1I=(Veeos Vi)senes Vg=(Ugs«ess Ugn)} of C* (1=¢g=n),
where e; is the j-th unit vector of C". Since every holomorphic
function on G=C"/I" is constant, {v,, ..., v,} must satisfy the condition:

(1. 1) max { |2y vim;—may; | 5 1=5i<g} >0
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for all m=(my .oy Py Mysyy o vvy M) €271 —{0} ([9], [11]). Since
Imov:=(Imuvy ..., Imoy),..., Imov,:=Um vy ..., Imuv,) are
R-linearly independent, we may assume det [Im v;;; 1=<¢7 j<q]+#0
without loss of generality. Throughout this paper we assume that
G=C"/I' and I' denotes the discrete subgroup satisfying the above
assumption and (1.1). Further we use the notations:

K, .:=X" " 1v;mj—m,; and K,,:=max{|K, .|;1=ZiZq}

for meZ%. Then from (1.1) we have
(1.2) K,>0 for all meZ"*1—{0}.
We denote the projection C'= (2 ..., 2,)— (2 ..., 2,) €C? by
1, C*——C%. Letef:=m,(e), v}:=r,(v;) for 1ISi<qand I'*:=r,([).
Since ef, v} are R-linearly independent, we have a ¢-dimensional
complex torus T¢=C?/I"*.

We recall the following proposition due to [14].

Proposition 1. 1. The projection =,:C* —> C? induces the C*'1
principal bundle n,:C"/I'Sz+1 —— r,(2) +I'* € T% over T}
We put
o _[ Re v; (1=£i=¢q, 1=j7=<n)
Lo (g+1<i=n, 1=<j<n)
8 ,_1 Im v; (1£iZq, 1=Sj=n)
Ty (g+1=i=n, 1Sj=<n),
[rs31<i j<n]:=[fsi1<i, j<n]™ and v:={—Te, for g+1<i<n
Since {ey, «.» €m» Up..., U} are R-linearly independent, we have
an isomorphism
G:C"D (2 00y 2)r—>(ty eee, by) ER™

as a real Lie group, where (2y,..., 2,) =2 1(t,e;+1,.;,v;)). Then we
obtain the relations

(1.3) =2 — 2= Yaln@y; and L= 200 yiryj

for 1IZj<n, where 2;=2;+{—1y; (I=7<n). ¢ induces the isomor-
phism ¢7:C"/I'=T***xX R*? as a real Lie group, where 7" is a
n+g-dimensional real torus. Henceforth we identify C"/I" with the

real Lie group T"*¢X R*™? and use the real coordinate system (¢, ...,
;) according to the need. We make the following change of
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coordinates:

Gri=Xraziri (1Si<n) in C
Then we can regard (§, ..., {,) as a local coordinate system of C"/I’
and we have global vector fields

35; —Z] 1:81] az

and (0, 1)-forms
dli=X3.75d2; (1=i<n)

on C*/I'. 1t follows from (1. 3) that

P P 5
oC. 2(2’ 1B at —V =1 X EA - 1at,,+t>

Then for ¢g+1=7=<#n we have

0 _ 1 0
(1.5) T 2(3: - latﬁ,>
Let & be the sheaf of germs of (complex valued) real analytic func-
tions on C*/I" and

(1.4)

:{fem%:o g+1=i=nl.

Let feH(C"/I', o). Then we have the following Fourier expansion
of f:

(1.6) floworss )= 3, ") exp 21y —1 {m, 1),

WhCI'C tl L= (tla 9900 n+q) S5 Tn+q t” L= (tn-r-q+1a ©co ey i2n> & Rn—q, m= (mls

cos Mapg) EZ" Cm, )= mit; and c¢™(¢") is real analytic in
€ R*? for any meZ"% We put

() i =c"(t") exp 2m{ —1 {m, t".

It follows from (1.4), (1.5) and (1.6) that

af ”S_Z_ﬁl vifm;' —myy) fP=2K, f" 15i5¢q

—357_{ ‘/—;1 (M +2nmicm(t”)) exp 2z —1<{m, £},
g+1=i=n.

Furthermore suppose feH’(C"/I', #). Since —aa—ffi—=0 (g+1=i<n),

we have, by (1.6) and (1.7),

(1.8  f® =m§zn+4 c™ exp(—2m 21t g Mutey;) exp 2ny —1 {m, 1D,

where ¢” is complex constant for any meZ**%

(1.7)
atn-{—i
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§2. Cohomology Groups with Coefficients in the Sheaf #

Let M be a paracompact real analytic manifold and &/, be the
sheaf of germs of real analytic functions on M. By the result of [4]
we can regard M as a closed real analytic submanifold of a complex
manifold N and M has a Stein neighbourhood basis {U;;Z €I} in N.
Since ind. im {H?(U;, 04); U;DM} =0, we have H?(M, «,) =0 for
p=1 ([10D).

In this section we treat cohomology groups as the following type.

Let & the sheaf {f(z, t) €L oxrs %:O} on Cx R. We wish to

consider whether H?(CX R, &) vanishes for p=1. Using a power
series expansion of a function f&./( we can prove that a homo-

. 0 . ..
morphism —- & ¢, z—>Fcxr is surjective. Then we have an exact
oz )

oz

sequence 0 F A oy r A cxr 0. From this exact sequence
and the lemma of [6, Lemma 2, p. 25], we can regard H?(CX R, &)
as H?(C, 0F), where OF is the sheaf of germs of holomorphic
functions with values in the locally convex space E:=H°(R, &3).

Since E admits no structures of Frechet spaces, then we cannot apply
the result of [1] and [2] to H?(CXx R, &#). And since CXR has
no Stein neighbourhood bases in CXxC, then we cannot prove the
vanishing of H?(CX R, &) by the same method of the proof of the
theorem: H?(M, #/,)=0. To get our purpose in this section, we
must investigate a property of Stein open neighbourhood of C*Xx R’
in C*xC".

We will use the following notations in the rest of this paper. For
an m-tuple §=(&,..., &), |l&ll:=max{|];1=<i<m}. And the
notation {equalities and inequalities involving functions Aj, ..., h,}
denotes the set of all points in the intersection of the domains of
definition of Ay, ..., &, satisfying the given equalities and inequalities.

Lemma 2. 1. Let n:S——C*XC' be a (unramified Riemann)
domain of holomorphy over C*xC! (k, I=1), 4,:={(wy, ..., w) €C’;
lw; —a; | r, 1271}, where r=(r, ..., 1), ri>0 and (ap ..., a;)
eC and let e= (e, ..., &) for =0 (1<j<1). Further assume there
exist an open subset V, of S and 0>0 such that ly, s biholomorphic
into C*xC' and =n(Vy) D(C*x 4) U {liz]| <0} X 4,,., where 4,,.:=
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{lwj—a;|<rj+e 171}, Then there exists an open subset V, of S
with ViCV, such that zl|y, is bikolomorphic into C*xC' and z(V,)
DC*x 4,,,.

Proof. We may assume a,=:-:--=¢g;=0. Let f€HS, 0).
Then f can be expanded in the power series :f|<n|vl)—1(C"xA,) (x) =
S w207 () ¥ (wor (2)) % where (zom(x))?= (zi0m(2))™ - - (zgom(x)) "
and (won(x))”=(wlon(:c))”1--- (w,o:r(x))“’. Then the power series
F(z, w): =}, ,a,2"w" converges in (C*x4,) U {||2]|<0} X 4,... We put
D, = ({ll=l|<d} x {lw; |[<rj, 1=7=1}) U ({{lzl[<8} X {|w; | <7+
1<j7<1}) for d>0. The envelope of holomorphy of D, is the smallest
logarithmically convex complete Reinhardt domain Dy = {llz]| < d,

log d —log ||z}l Ly .
Togd—logd (log (rj+¢) —log r;)}

which contains D; (for instance see [13]). Since F converges in D,
for all d>0, then F can be continued holomorphically in Dd for any
d>0. We take any point (2, w) €C*Xx4,,.. Then we can find a
sufficiently large positive number d, such that log |w;| —log r; <C

log dy—log ||2|| Ly . A .

-————-—log d,—log 6 (log(r;+¢;) —log ;). Then (z, w) EDdO. This implies
that F converges in C*X4,,.. Since 7:S——C*xC' is a domain of
holomorphy, we find an open subset V, of S satisfying the statements

of the lemma (for instance see [6, Theorem 18, p. 55]).

|w; [ <rjt+ej log [w;| —log r; <

The following lemma asserts that CX R admits no Stein open
neighbourhood bases in CxC. For instance we take an open neigh-
bourhood V:={(2, w)eC% Imw|<(1+[2])7} of CxR in CxC.
Then we cannot find a Stein open subset V* so that Cx RCV*C V.

Lemma 2. 2. Let I;: ={w;eC; Im w;=0, a;<Re w;<b;}, where
—o<ZLg;<bjgo (1£5&D, I: =L)X ---- x[L,CR'CC' and f a holo-
morphic function in a neighbourhood of C*XxI in C*x C'. Then there
exists a Stein open neighbourhood V of I in C' such that f can be
continued holomorphically to C*x V.

Proof. First we assume [=1. Then I={we(C; Im w=0, a<
Re w<b}, where —oo=a<b=<o. We have an open and connected
neighbourhood D of C*xI in C*xC so that f is holomorphic in D.
Let 7:D——C*x C be the envelope of holomorphy of D which is given
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by a Riemann domain over C* XxC. Then there exists a holomorphic
injection j: D-——>D such that zoj=identity and the mapping
H'D, 0p)5g+—> gojcH(D, @) is an isomorphism. Put U:=;(D),
for e=+1 Df:=the connected component of 77'(C* x {a<Re w<b,
¢ Im w<0}) satisfying DiNU#¢ and D°: = {(z, w) €D ; a<Re w<b}
UC*X {weC; a<Re w<b, eImw>0}. Then 7:D:—— C*xC is a
domain of holomorphy. We identify (2, w) €D and zeDs, if (2, w)
€D and j(z, w) =x. We write this identification by (2, w)~ux.
Then for e=+1 we get Riemann domains

7. 1 G : Diy D /~— CExC,
where m (z):=n(z) if z€Df and =.(2, w):=(z w) if (2, w) D"
Now we consider the case e=1. We put
Gl:=G'Na{ (C*x {a+t<Re w<b—t}) for 0<t<(b—a)/2.

Since G}! is p,~convex in the sense of [3], G'= U ) Gt is a
0<i<b—a)/2
domain of holomorphy. We take z,&U with m(x) = (2" ) for

some w'el. We put

7o :=1/2min {w’—a, b—w" >0

P =Crx {Jw—w®—{ =1 7 | <7o}-
Then we have P,OCchGI. And there exist 0, >0 and an open
subset U; of G' with z,=U, such that My, s biholomorphic into
C*x C and = (U D {||2]|<0)} X {|w—w"—y—117,|<tp+0,}. By Lemma
2. 1 we have an open subset U, of G' with z,&U, so that m |y, is
biholomorphic into C*x C and

m(Up) DC X {|w—w®— =1 70| <zo+0y}.

Then #(DINU) DC*x {|lw—u|<d, Imw=<0}. Applying the above
method to the case e= —1, we get J,>0 and an open subset U; of
G™! with z,€U; so that z_,|U, is biholomorphic and =(Di'n Uy) DC*
X {|w—w"| <0, Im w=0}. Then there exists an open neighbourhood
U, of z, in D such that 7|y, is biholomorphic into C*xC and =(U,)
DC*X {|w—w|<<min{d;, d,}}. This means that f can be continued
holomorphically to C*x V* for some open neighbourhood V* of I in
C. Then we complete the proof in the case /=1. We can prove
the assertion of the lemma for /=3 similarly to the case [=2. Then
we shall only prove the lemma in the case [=2. Let I:=IXxI,=
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{(w, wy) ; Im w;=0, a;<<Re w;<<b;,, i=1, 2} C R*c C?% f a holomorphic
function in a neighbourhood E of C*xI in C*x C? and E the envelope
of holomorphy of E. In general E is given by a Riemann domain over
C*x C% Using the same technique of the proof in the case /=1, we
may treat £ as a univalent domain of holomorphy in C*xC? which
contains E without loss of generality. We take (&, #) I, x I, and
0>0 satisfying 0<min {! —a,, b;—t! ; i=1, 2} and {ll2||<0} X {|w; —2)]
<0, i=1, 2}CE. Let I!:=RN {w,eC; |w,—1%|<8} (=1, 2), I1:=
=IN {|w,—#1<8/3} and E(t):={(2, w) EC*x C; (2, w, t,) EL,
Re w,lf} for t,€I}. And we put
E(t)*:=E(t) UCtX {w;; ¢ Im v, =0, Re w, 1Y

for e=+1. Then E(2,)° is a domain of holomorphy for ¢=+1 and
t, I3 We have C*X {|w,—t,—{—1(8/3) |<d/3} cE(t;)™ and {jl2]|
<0} X {|w —4— —1(8/3) |<(28/3)} CE(t;)** for t,€I and I
It follows from Lemma 2. 1 that

Ctx {|w—t,——1(6/3) |<<23/3} CE(2) ™
for t,&I) and t,I;. Similarly we have

Ctx {jwy =1+ —1(8/3) |<20/3} CE () ™!

for t,elj and €l We put V9:={w; |Im w,[<08/3, Re w,l}}.
Then we have Ctx VIXIJCE. We set

E:={(z2, w, w)<€k;w,eV Re w,I},

Ee:=E UC*X VO {wy;¢ Im w,=0, Re w, &Iy
for e=+1. Since C*x VIx {wy; |w,—1)— —1(8/2) |<6/2} cE; and
{1211<<0} X VO {wy; |w, —13—y —1(e8/2) | <0} CE: (e=+1), it follows
from Lemma 2. 1 that

Ctx VOx {|w,—12|<8/2} CE.

Since (), t9) is an arbitrary point of I, we find an open subset V of
I in C? so that f can be continued holomorphically to C*x V. I has
a Stein neighbourhood basis in C% Then we may regard V as a
Stein open subset of C? ([4]).

Lemma 2.3. Let I be as in Lemma 2. 2 and f a holomorphic
function in a neighbourhood of C**XI in C**x C'. Then there exists
a Stein open neighbourhood V of I in C' such that f can be continued
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holomorphically to C**x V.

Proof. It is sufficient to prove the lemma in the case k=2. Let
— 2, 2y 1
a,(t) : :1/(271\/—1)28 S %dzldzz for v= (v, v,) €2?
l2)1=1J1z51=1 g 17" 2,2
and t€l. And we use the notations: Z<1>:=Zv1.v2203 2(2)::Zp1>0,u2<g,

2@ = Lin<omyze L' = Lo a0d fi(2 2 1) 1= D@ (t) z/'z;%. Then
we can apply Lemma 2. 2 to each f. For instance we take
fi(&y 2 ) 1= f,(47% %Y ) which is holomorphic in (%, %) e C2
By Lemma 2. 2 ff can be continued to C*Xx V for some Stein open
neighbourhood V of I in C. Since f=fi+fi+fi+fs we get the
proof of the lemma.

Let 7:C/I'S (21 0ees 20) L —> (21 .0, 2) H ¥ ETE=CY/T* be
the C*"~“-principal bundle over T% as in Proposition 1. 1. Since a;; =0
for 1=j<n, q+1=i<n and 7;=0 for ¢+1=i<n, 1=j=gq, from
(1. 3) it follows that t;=x;— 21, X% yiruay and t,;= 211 yi7s; for
1=<j=<gq. This relation induces an isomorphism ¢: T3 (25, ..., 2,)
+I'™* —— (exp 20y —1 1ty ..., €xp 2wy —1t, €xp 20y —1tyipp oo-> €XP
2my —1 tne,) €ET%, where T# is a real 2g-dimensional torus. And we
have an isomorphism ¢:C*/I'S (2,..., 2,) +1——(exp 2m{ —1 (¢41
FV =1 tyegit)s o oer €XP 2] —1 (L, —1 830) 5 00T (21 00 s 2,)) EC*"7IX
T* with a commutative diagram:

Cu/l" ¢ 5 C*n—q X TZq
ln'q , ’

T T,
where 7'(§, ) =7 for §=(§,..., §,_,)€C*? and n=T% We take
the sheaf & of germs of real analytic functions which is holomorphic
in each fibre of # on C*"9X T%, that is

f::{fed’;%zo, 1<i<n—gl,
where &£’ is the sheaf of germs of real analytic functions on C*"~?x T%.
And we consider the sheaf Jf::{feﬂ;—gg—ZO g+1=i<n} on
C"/I" as in Section 1. Then by (l.5)

(2.1) ¢* HY (W, F)2fr—s fogH (5~ (W), #)

i

is an isomorphism for any open subset Wof C**?xT*. We put J:=
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{f=(ep...r&y)ie,==%1) and for j=(e..., )] U;: = {(exp 2n{ -1,

ves €Xp 2y —1 by €xXp 200y —1 tpyy o o o5 €Xp 21y —1 b)) €T%; —1/250,,
b =S1/2, t,oFeg /4 tFe/4 for 1=<s=q}. Then we have open
coverings U:={C*"*x U;;jeJ} and B :={¢"1(C*"*xU;); jeJ} of
C*~1x T# and C"/I’, respectively.

Proposition 2. 4. Let H*(B, #) be the p-th Cech cohomology
group of the covering B of C*/I". Then

HY (B, #)=0 for p=1.

Proof. We have an isomorphism ¢*:H?(Il, #)—— H?(B, #) by
(2.1). Then we may prove H?(U, #)=0 for p=1. We regard
T% as the closed real analytic submanifold {(wy, ..., wy); |w;|=1,
1<i<2q} of C*. Let C be any connected component of U; N...N Uj,
Then there exist a rectangular set ICR¥CC* as in Lemma 2. 2
and an open neighbourhood V of I in C¥* such that ¢: V3 (uy, ..., uy)
—> (exp 2y —1 %y, ..., €Xp 2wy —] uy) € C¥ is biholomorphic and
¢I)=C. We take {¢;; ;}€2"(ll, #). In virtue of such mapping
¢ and by Lemma 2. 3 there exist a Stein and connected open
neighbourhood U;‘:),_,-P of U;N ... NnU;, in C* and a unique holo-
morphic function ¢f . ; in C*"7*XUj ; such that cf ,,-pIC*”‘qXUjO
N...N Ujpzcjo .iy Since each U; admits a Stein neighbourhood basis
in C% we can choose a Stein neighbourhood U; of U; in C* so that
U,Toﬂ ... N U,-'pC U;;’.“jp- We take ¢ (0<e<{1) satisfying 4. = {1 —e<|w; |
<l+e 1=2i=2¢} CUje; Uj. Then we have ({cf; ;}:; {C*xUzNn...
ﬂUj”pﬂds})EZ"({C*"“’X(U,-”OAS)}, 0). Since C* x4, is a Stein
open set, there exists {d};,,,-p_l} Cr1({C**tx (U N4}, 0) such that
o{d;; ,.H} = {c}; . J-p[C*""qx (Upn...n U;;mds)}. This completes the
proof.

Let feH'(C/I, #)=2°(8, #). From (1.8) we have f(t)=
2 c™oexp (—2x Xt gu mut,) exp 2ay —1 {m, £,

mez" 4

(22) fod™ (& M=% ET G

for (& n) €C**¢x T?  Observing the proof of Proposition 2. 4 and
by Lemma 2. 3, we have the following

Proposition 2. 5. There exists ¢ >0 such that the Laurent series
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expansion:
m,

Mg41 n ™y m Myl "ntq
ZZHQ T S LR /TN /YR b 7%
me

which induced by (2. 2) converges for all (& w)eC* X4, where
de= {1 —e|w; [l +e}.

§3. A Special Resolution of the Structure Sheaf ¢ of C"/I

Let U be an open subset of C', &/~ be the sheaf of germs of
real analytic functions on C**x U. We consider the sheat % :=

(feo; af(zz’ W) _0, 1<j <k}, where (2 w) €C*XU and @%: =
j

(/! X ﬁlvipdw,-l/\.../\d'a'),-ﬁ;ﬂl_ ,,-pE.‘f} for 0=p=<Il Here
léil. .ipé

any form treated in the rest of this paper is written skew-symmetrically
in all indices.

Let feHY(C*xU, ¢) and w'=(w) ..., w)eU. By Lemma

2. 3 there exists an open neighbourhood U° of @’ in U such that f

has the following expansion:
(3.1) flz, w)= Z;k Za..ﬂ.zo by.a s’ (w—w")*(w—u’)?

which converges for all (2, w) €C** x U°, where (w—u°)%= (w; —uf)"

(w—wd) and (w—w°)f = (w, —wh) fr . (w,—w?) P

Lemma 3. 1. Let f=1/p! Y fi idw A ... \dw,&H(C*x

léil,...,ipé
U %°") with df=0 (p=1). For any w'&U choose an open neigh-
bourhood U° of w’ so that any f; i, can be expanded in C**x U° as

in (3. 1). Then there exists g EH°(C*k>< U &°*™Y) such that dg’=f.

Proof. Let m be the least integer such that the explicit repre-
sentation of f in coordinate form involves only the conjugate differen-
tials dwy ..., dw,. The proof will be by induction on m. First we
consider m=p. Then f=jf, ,dw,/\.../\dw, and we have an
expansion fi p= N2’ (w—1w")*(w—w")? in C*xU° as in (3. 1).
Since df=0, fi;., must be holomorphic in w,.y ..., w;. Putting
&2 p-11 = 2iluap/ (Bp+ 1)2" (w — ") *(w — ") # (w, —w}) and g: =gy, . ,1dw,
N «e. NdWs_1, €1 -1 is also holomorphic in w,.y,...w, and dg=f.
Using the standard argument for the Dolbeault lemma (for instance
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see [6, the proof of Theorem 3, p. 27]), we can complete the proof.

Observing the proof of Proposition 2. 4, we have the following
lemma.

Lemma 3. 2. Let {U;} be a locally finite open covering of UcCC!
and each U; is a rectangular open subset {af’<Re w;< b, ¢f?<Im w;
<dP; 1=} for some af’, b, ¢’ and d?=R. Take the open
covering U: = {C**x U} of C**x U. Then H*(U, %) =0 for p=1,
0<s< L

By Lemmata 3. 1 and 3. 2 we have the following lemma.

Lemma 3. 3. Let U be a Stein open subset of C' and feH'(C**
XU, 4% with 0f=0. Then there exists geH'(C*xU, #%1)
such that dg=f.

Proof. By Lemma 3. 1 we have a Stein covering {U;} and
g €EH(C* XU, %) with dg;=f We put hf):=g; —g;; Then

giy

hf;)l—O Further by Lemma 3. 1 we get gif} e H(C* x U,o, @002
with agféi —hf;ﬁ, where we use the notation U, .:=U,N...NU.
We set (.} :=01{g}}. Then 3hf§212—0 Inductlvely we find
sequences {gf ;}eC*(U, #°=7) for 1=s<p and {AY ;}eC,
@0y for 1=s<p, W:={C**x U} so that 8h,(;),- =0, {hff)) i} =
o{glh J and Gg,(;’ i—hfg’ i Since {h§0"?,_ip} eZ!l, 0) and U is a

Stein covering of the Stein open set C**x U, then there exists
e,y eC' M, 0) such that (R} =6{f2 _}. Then {gf7}

igreeip_y igee.d igerip—y gty
— Eg_'_,lzp_l} ez ', ¢°%. By Lemma 3. 2 we get { ,So"_f?ﬁp_z} eCc2(l,
990 so that [(g¢h  —f¢ }=3{f¢% ). We have (gl
— £-D — (b—2) —_ (p—1) (6-1) — (6-2)

’.0""? 1} =39 {afto ;P 2} {agzo...zp 1} - {hlo zp 1} 5 {glo ’p 2} ThCn

{gdn ,—ofi: 2, €Z7P(M, %Y. Repeating the above argument,

finally we find {f®} B, %% so that A{} =gi —8&:\,= “” —af Q.

101

We put g:=g;—df®. Then geH'(C*x U, %% ') and og= f

Now we need the sheaf #={feo; ag —0 g+1<j=<n) on C'/I’

defining in Section 1. Further we consider the sheaf

A0 ={1/p! X frl ’pdc’l/\ /\dC‘P Fip. K =4

1=iy.. 1
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of germs of #-forms of type (0, p) which involves only the differen-
tials di, ..., dg,

Proposition 3. 4. The sequence
0—s O ——a" 0 01 A0
is exact. And H!(C"/I', O) is isomorphic to the quotient space {f;
feH (C/I, #°*), of=0}/{og: gH(C*/", #°*™)} for p=1.

E]

Proof. We can regard ({,..., {,) as a local coordinate system
of C*/I'. Let f be a germ belonging to a stalk Hc° at {’eC/I. f

has an expansion

V=D I P (P & N (SR 4 ) RPN (4 ) W (s ) .. -(Cq—Cg)B"
which is similar to (3.1) and converges in a small neighbourhood
U° of £® in C"/I', where a4 is holomorphic in £y, ..., {,. Applying
the method of the proof of Lemma 3. 1 to this expansion of fE,;fCO,

we can prove the exactness of the sequence of the proposition. We
put Ker 9,: =Ker {0: #*——#**""} and Im 0,: =Im {0: #**—— "4},
Then we have Im d,=Ker 0,.; and the short exact sequences
(3.2) 0 Ker 9, A Im o, 0 for 0<k<q.
Let B={¢ 1 (C**x U;)} be the same locally finite covering of C*/I’
as in Proposition 2. 4. Since ¢71(C**™*x Uj;) is biholomorphic to C*"~¢
x U, it follows from Lemma 3. 3 that

0:C*(B, #*)——C* (B, Im )

is an epimorphism. Then we have an exact sequence

0——C? (%, Ker d,) —C*(B, #*"H——C?(B, Im 9,) —0.
From (3. 2) there exists a long exact sequence 0——H(Y, Ker 0d,)
——HY B, #°"——H" (L, Im o) —— H'(B, Ker d,) —H (B, #°%)
——> ... Using this exact sequence and the result of Proposition 2. 4,
we have H(%B, #**) =0 for s=1, H*(C"/I', 0)=H! B, 0)=H"(DQ,
Ker 0,) =H* (B, Im d,) and H**(®B, Ker d,) =H?"* (LB, Im d,) for
0<k<p—1. Then we obtain

H*C*/I', 0)=H (B, Ker 9, ;)=

H°(8, Im d,_,) /Im{d: H*(B, #°*")—H(B, Im 5,_,)}.

This coincides with the quotient space asserten in this proposition.
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Remark. By Proposition 3. 4 we obtain H?(C"/I, 0)=0 for
p=qg+1. This comes from the result of [7] directly, since we showed
in [7] that C"/I' is strongly (¢+1)-complete in the sense of Andreotti

and Grauert.

§4. & Cohomology Groups of (H, C)-Groups

Let feH(C*/I', #). By (1. 8) we have the Fourier expansion:
f=m§Z”+q c™ exp( =2z g mit, ) exp 2ny —1 <m, t'>. For m=(my, ...,
Myrg) EZ™0 we put m' 1=(my o, My Myrps oony Myyy)s m' = (Mg

vy M), [t =max{|m; ]|, |m.;|; 1=57=<q} and ||m’||: =max{|m;|;
g+1=j=n}. Then we have the following

Lemma 4. 1. The jfollowing conditions on a sequence {c"&C;
meZ"t} are equivalent.
(a) The Fourier expansion m§2"+q c™ exp(—2n ) 7 gmit,. ) exp 2myf —1
{m, t'> converges to a function in H°(C*/I', #).
(b) There exists ¢ >0 such that for all a™>0
C(a) :=sup{|c”| exp (¢f|m’|| +alim’|]) smeZ"} oo

Proof. We first prove (a) == (b). Put f(2): :m§"+q cm
exp(—2x )" gyt ) exp 2myy —1 <m, £ 5>EH(CY/I, #), (wpy oy wy):
=(exp 2y —1tpeees €Xp2my —1 1, €Xp 27y —1 byigy ooy €Xp 270y —1 ty0y)
e{lw =1, 1£i<2q} CC¥ and §&;:=exp 2ny —1(+V =1 tyiges) ECH,
1=i=n-—q. Then by Proposition 2. 5 we have ¢ >0 so that
(& w): :m;"+q c"é™w™ is holomorphic in (§ w)eC*1x {1 —0<

lw; | <140}, where £ 1 =& .. £ w™ i =w - - wy fw, i -y
Put e:=1/2min{—log (1—-0), log (14+06)}. Then for any a>0
e I R [ e £ L e L R LM M =

Zm exp(—a) = |6 |Zexpa, exp(—e) = |w;|Zexp e} <. Conversely

assume (b) holds. Then 2, c"&™w™ converges uniformly on every
mez

compact subset of C**7?X {exp( —e)<|w;|<expe}. This implies (a).
For meZ""? we use the notation: |[m*||: =max{|m;]|, 1=<71=<n}.

Lemma 4. 2. The following conditions (0) and (1) are equivalent.
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(0) For any ¢>0 there exists a positive number a=a(e) such that
sup exp( —el|l| —al |m'|]) / K< 00.

(1) There exists a >0 such that
sup exp ( —al|m*|)) /Ky <oo.

Proof. Since sz?gliaj; V(Xi Re vmj—m,. )2+ (X7 Im v,jm;)?
and the ¢ X g-matrix [In; '(_Jl-,-;l§ i, =4q] is non-singular, we can find
C, C,>0 so that S:={m;m+0, |K,|Z1}C{m;m+0, ||m||ZC+
Cy|lm"|]}. We shall show that the statement (1) is equivalent to the
following

(*) There exists ¢ >0 such that sup exp (—al|m”|]) / K,,<oo.

Since ||m"||<||m*||, the implication (*)==(1) is trivial. Assume (1)
holds. We have ||m*||Z||m||+]||m"||=C,+ (Cy+1)||m"]} for meS. We
put b:=(C;+1)a>0. Then sup exp(—b|lm"|]) /K,Zexp(bC,/(Cy,+1))
sup exp(—allm*||)/K,<oo. This implies (*) holds. We prove (0)
meS

== (*). Assume (0) holds. We get a >0 such that sup exp(—||m'||

m=0

—allm'|])/ K,<o. We have exp(— (C+ Glim"|| —a|lm"|))/K, =
exp(—||m'|| —a|lm"|]) /K, for me&S. This implies the statement (*)
holds. The implication (*)==(0) is trivial.

Remark. The condition (0) depends on our assumption that
det [Imv;;;1=<1¢, j=<q]+#0. But the condition (1) is independent
on that.

Let p:l/z‘,! Z pil ipdéil/\ co e /\dc—,-pEHO(C"/F, %O'P)- WC €X-
1=i i,2q

i1 o ip=

asin (1. 8) : p; gy 2 bt exp(—2m )t oamit,y )

pand each o; e i i

»
exp 2ny —1<{m, t'’>. We put o i)t =b{’; i exp( =2z 7 jimitey ;)

exp 2ny—1<m, t'D, p":=1/p! > ) br exp (— 2w 7 e Mty ;)

i 1si S R
exp 2my —1<m, t'> dG A ... NdC,. Then p= Zz"“ o™ Suppose p is
d-exact. Namely there exists a (0, p—1)-form 1= \ imeHyCcr,
mez"t

#%* 1) such that p=04 Then we have p"=0A" for any meZ"*.
We write 2#=1/(—1)! > an diil/\ ces /\a?(';-l’_1 and A®

1 T, et
IETHEN N 1l

=dr exp(—2x )7 411 Mmit,;) exp 2my —1<m, t'>. The equation

BRI

o™= 0a™ implies
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m A

4.1) PED R BTG DL =L a2
(4. Oy = Zik= =1( ) o, .

'k
Combining (4. 1) with (1. 7), we have for any m&Z"*?
(4.2) by i, = Lt (—D*'2 K, dY,
Now suppose ¢=m§;n+q om"eH(C*/[", #*?) is d-closed. From d¢=0
and (4. 2) it follows that

iy tk lp

(4.3) x T4 (— DMK, el ‘1; =0,
where we denote ¢"=1/p! - Zi - ch.i, €xp(— 21 3t g1 M tars)
exp 2m{ —1 {m, t') d('il/\ . /\dc'—i: o
We put

i(m):=min{i; | K, ;| =K. 1Zi=<gq}

and the indices (¢(m), 7, ..., 7,) in the place of (4,..., 7, of the
formula (4. 3), then we have
(4.4) K somCl i, = 0ha (= 1) KMIK, Ty 5, i
Since K, >0 for m+0 by (1. 2), we can put
(4.5 ¢m:=1/z(p—=1) !1§i1§_p~1§ CHomyiy...ipy/ Ko, icm

exp (—2a 037 1mitey;) €xp 2ny —1 <m, ¢ dC,-l/\ - /\afC-ip_1
for m#0. Observing (4. 2), it follows from (4.4) and (4.5) that
(4.6) ¢™=0¢™ for any m=0,

tl !p

Remark. For any d-closed (0, p)-form ¢=3 ¢" we have always
a formal solution },.o¢™ for the d-equation 0 ,.0P"= Dimzo ™ by
(4. 6).

Here we need to topologize H°(C"/I’, #). Let & (R) be the
vector space of real analytic functions on R. We regard R as a
closed real analytic submanifold of C under the natural inclusion.
We take a compact subset K of R and an open and connected
neighbourhood U; of K in C, 1=j=co satisfying U;.,€U; and
N;U;=K. Let &(K) be the vector space of real analytic functions
in a neighbourhood of K in R. We denote by s#(U;) the space of
bounded holomorphic functions on Uj; j=1. Put ||fll:=sup{|f(2) |;
ze U}, fe#(U;). This norm makes #(U;) into a Banach space.
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By the inductive limit: &/ (K) =ind lim s (U;) we regard & (K) as a
(D, F, S)-space. The restriction mapping & (K;)—/(K;), K,CK,
induces the projective limit: &/ (R) =proj lim &/ (K). It is known
that the above locally convex topology on &/(R) is complete and
semi-Montel. Similarly to the topology of &/ (R) we can make the
vector space H°(C"/I', /) into a locally convex space. Then
H°(C*/I', #) is regarded as a closed subspace of H°(C*/I', &) and
itself a locally convex space. And we have the locally convex topology
of H°(C"/I", #*?) induced by H°(C"/I', #). Further by Proposition
3. 4 we have the locally convex topology of H?(C"/I', 0), using the
quotient topology.

The following theorem gives a characterization of an (H, C)-
group C"/I" whose cohomology groups H?(C"/I', 0) (p=1) are finite-
dimensional.

Theorem 4. 3. Let C*/I" be an (H, C)-group, where I' is gene-
rated by f{eyp...; € Vpeoo, U}y Kpii=2lcvymi—m,,, (1£2iZq)
and K,:=max{| K, ;|; 1=i<q} for meZ*"*" Then the following
statements (1), (2), (3) and (4) are equivalent.

(1) There exists a >0 such that

sup exp(—allm*|)/Kn<oo,

where ||m*||=max{|m;|; 1=Zi<n}.

a <p=
@ dim HNCYT, 0)=] q-p)Tpl S 1=P=4
0 if p>q.

(3) dim H*(C*/I', 0)<o©  for any p=1.
) A(HY(C/T, A7) is a closed subspace of H'(C"/I', #"%)
for any p=1.

Proof. Assume (1) holds. Then by Lemma 4. 2 we may suppose
that the statement (0) of Lemma 4. 2 holds. We take a 0-closed form
p=1/p! 5 N gnsdb N ... NG, EH(CYT, #%), where

mez™? 154,750
,-”;“_,.p=c§-”l,_ i, exp( —2x 27 g 1mit, ;) exp 2y —1 {m, ¢'>. By Lemma 4. 1
there exists ¢ >0 such that for any a>0 C(a):=sup {|c? ;|

tl...ip
exp (&||m'||+allm’|]) s meZ} oo (1=5i,..., ,=q). By the state-
ment (0) of Lemma 4. 2 we find a,>0 such that
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sup. exp ( —eo/2{|m’|| —aolm|]) / Ky = Cr 400
Then for any a>0, m#0 and 154, ..., ,=<q |cI ; |exp(e&/2||m'||+

N
allm’l]) /Kp= Golely, 5, | exp (ailm|| 4+ (a+ao)||m]]) = CC(a +ao) < o.
This means that 2, . ¢” given by (4. 5) converges to a (0, p—1)-
form ¢ in H°(CY/I', #°*"). And by (4.6) we have ¢—op=g¢"+
neo(gm—0¢™) = 3} ;,dl/\... \dl,. This shows (2) holds.

Siq.. 1,54
It is obvious that (é)——lj———>(3)=>(4-). Finally we prove (4)==(1).
By Lemma 4.2 we may prove that (4) implies the statement (0)
of Lemma 4. 2 instead of (4)==(1). Suppose that {K,;meZ"*%}
doesn’t satisfy the statement (0) of Lemma 4. 2. Then there exists
& >0 such that we can choose ({m,;v=1}CZ"?— {0] satistying
exp ( —allm|| —v||m|)) / K, Zv for any v=1. We put

P exp (—allm|| —v||m;1) /Ky, if m=m, for some v=1.

) 0 otherwise

and ¢™: =0" exp( —2x ) 411 Mit,y;) €xp 2my —1 <m, ¢’} for any meZ"*2
Since 9gm= 1 7K, ; exp(—a|lm||—v||mi|]) exp (=270 qs1 Milyis)/
K, exp 2y —1 <{m, ¢ di;, if m=m, for some v=1 and |K, ;/K,)|
<1, then };, d¢™ converges to a form ¢=H’(C"/I', #"!). By the
choice of the sequence {m,)}, }.,¢™ cannot converge to any function
in H(C"/I", #*°. Suppose ¢ =02 for some A=), A"€H (C"/I", #™°),
then 2"=¢" for m+0. It is a contradiction. Then ¢=lim 0 (X jmy <™
belongs not to d(H°(C"/I’, #°°), but to the closureA:fo o(H(C*/T,
A" in H(C*/I', #"°). This contradicts the statement (4).

By the above proof of the implication (4)=—=(1), if {K,; m
27" doesn’t satisfy the statement (1) of Theorem 4. 3, then
HY(C*/I'y 0) is a non-Hausdorff locally convex space and then
infinite-dimensional. Further in the above situation we shall prove
that H?(C*/I', 0) are also non-Hausdorfl spaces for all p satisfying
2=p=gq.

Theorem 4. 4. Every (H, C)-group C*/I" satisfies either of the
Jollowing statements (a) and (b).
(@) H!(C/I, O) is finite-dimensional for any p.
(b) H!(C"/I', 0) is a non-Hausdorff locally convex space for any
P satisfying 1=p=gq.
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Further the statement (b) is equivalent to the following
(¢) sup exp(—al|lm*|])/K,=0c0 for any a>0,
m+0

where ||m*||=max{|m;]; 1=i=<n}.

Proof. By Lemma 4.2 and Theorem 4. 3, we must prove (b)
holds on the assumtion that {K,} doesn’t satisfy the statement (0) of
Lemma 4. 2. We choose ¢ >0, the sequence {m,} and 6™ as in the
proof of (4)==(1) in Theorem 4. 3. We can find 7, so that 1<{,<q
and sup {v; 1K, ; |=K,}=0o. We may assume ;=g without loss of
generality. We take a (0, p—1)-form

gmr=0" exp(—2x ) 7 g1 mytyy;) exp 2my —1 <m, ) dG/N\ ... ANdG1e
Then J.,¢™ cannot converge to any (0, p—1)-form in H°(C"/I,
#"*"1). On the other hand )], 0¢™ converges to a (0, p)-form ¢=
Sn Dop 1K 0 exp(— 25 gy mityss) xp 2 =1 <my ¢ dG NG
... A\dZ,_1#0. Suppose ¢=02 for some 2=}, A"SH(C*/I, #°t7").
Then 0¢™=02". We write

m=1/(—-D!Zb ., exp (=27 Xt mit,.,) exp 2ny—1<m, t')

dg; /\ ... \dC

Comparing the term of 0¢™ with that of 04" involving only the
exterior differential d{AdGNA ... Adl-, of type (0, p), we have
tK, byt D=1 7K, b’ o =7K, 8. Then 5™=b ,,
+Z{’;{(—l)"b$’i; p_lev,,-/KmD,q for v=1. Since sup {v; |Kmu,q}=Kmu}
=00, we can choose a subsequence {m;} of {m,} so that | Ky i/
K,>q,=1 for any 1=7=q and that

ip—1

b |12 .51

This contradicts that lim 6™ =co. Hence ¢ belongs not to d(H*(C"/I’,

oo

A1) but to the closure of o(H(C*/I", #%t7Y)).

Remark. When the author was making the preprint for this paper,
he got the following information which was given by S. Takeuchi.
Independently C. Vogt [15] showed in his Dissertation that the
statements (a) and (b) are equivalent.

(a) There exist C>0 and a>0 such that K,=C exp (—al|m*||).
(b) dim H*(C*/I", 0)<co.
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By Theorem 4. 3 and 4. 4 we have the following

Corollary 4. 5. The statements (1), (2), (3) and (4) in Theorem

4. 3 are equivalent to each of the following statements (5) and (6).

(5) For some p (1=p=q) dim H?(C*/[’, 0)<co.
(6) Foer some p (1=p=q) d(H(C*/I", #"*7Y)) isa closed subspace

of H(C*/T, #").

Remark. We constructed an example of an (H, C)-group C*/I’

so that H*(C"/I', @) is not Hausdorff ([7]). By Corollary 4. 5 we
can show H!*(C*/I', 0) are not Hausdorff for this (H, C)-group C*/I

2=p=9).
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