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By

Hideaki KAZAMA*

Introduction

In this paper we consider an ^-dimensional connected complex

Lie group G without noriconstant holomorphic functions (Such a

Lie group is called an (H, C)-group). In the previous paper [8]

we found a sufficient condition for HP(G, 0 G) to be finite-dimensional

(P^l), using the resolution: 0 &G >j/0'0-^^0'1-^» s—>

j/o.n ^Q of 0G? where ^p-q denotes the sheaf of germs of real

analytic (p, q) -forms on G. It was not possible to find a necessary

and sufficient condition for HP(G, 0G) to be finite-dimensional by

the method of the paper [8]. Roughly speaking the cause of the

above unsuccess is that the resolution by the sheaves of germs of real

analytic forms is not good enough to calculate the d cohomology

groups of G.

The purpose of this paper is to establish the cohomology groups

HP(G, (!) G) of an (H, C)-group G (/>^1), using some number theoretical

property of G. It is known that every (H, C)-group G has a

structure of C*p-principal bundle K : G >Tq
c over a g-dimensional

complex torus Tq
c (p + q = n) ([14]). We take the subsheaf tf of j/°-°

so that tf\ = {/e^0>0 ; / is holomorphic along each fiber of n]. First

we shall prove a cohomology vanishing theorem for the sheaf Jf on

G in Section 2. Using the sheaf jf, we shall get the resolution:

0 > 0 G >Jf °-° -̂ -» *—*tf°-* >0
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of (9G in Section 3 to calculate the 3 cohomology groups HP(G,
(p^l). In Section 4 we shall find a necessary and sufficient condition
for HP(G, 0 G) to be finite-dimensional and calculate the dimension
of H*(G, 0G) (Theorem 4.3). We can regard an (H, C)-group G
as a quotient group Cn/F by a discrete subgroup F. The above
necessary and sufficient condition is expressed by a Diophantine
inequality with respect to the subgroup F of C*. Unless the condition
is fulfilled for F, then by Theorem 4. 3, there exists j (l^j^q) such
that Hj(G, 0 G) is infinite-dimensional. Further we shall prove that
HP(G, 0G) is not HausdorfT for all p (l^p^q) (Theorem 4. 4). By
the theorems in Section 4 the cohomology groups HP(G, 0G) of an
(H, C)-group G are completely determined by some number
theoretical property of G and we have a classification of all (H, C) -
groups as follows. Let C"/F be an ^-dimensional (H, C)-group. If
F is generated by jR-linearly independent vectors z>l5 ..., vn+q, then
C*/F is called an (H, C)-group of rank n + q ([11]). Let 3Tn'q be
the set of all n-dimensional (H, C)-groups of rank n + q. Then

#-*•*= [C*/F&&*•* ; dim Hp(Cn/F, 0)<oo, p^l}
U {Cn/F^3rn'« ; Hp(Cn/F, 0) is not Hausdorff for any

p satisfying l^p^q] (disjoint).

The author is very grateful to Prof. S. Nakano who raised the
question in 1975 whether the cohomology groups HP(G, (DG) for an
(H, C)-group G are finite-dimensional.

§ 1. Preliminaries

In this paper we consider an n-dimensional connected complex
Lie group G without nonconstant holomorphic functions. Such a Lie
group G is said to be a toroid group or an (H, C)-group ([5], [9],
[11]). We recall that G is abelian and then G is isomorphic onto
Cn/F for some discrete subgroup F of C" as a Lie group ([11]). We
may assume that jT is generated by jR-linearly independent vectors

{*!,..., *«, Vi=(vu, ..., V m ) > . . . , vq=(vql,..., vqn)} of Cn (l^q^ri),
where 6j is the j-th unit vector of C". Since every holomorphic
function on G = Cn/F is constant, [v^ ..., vq] must satisfy the condition:

(1.1) max [lEl-iVvmj-mn
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for all m=(ml9..., mm mn+l, . . . , mn+J ^Zn+q - {0} ([9], [11]). Since
Im Vi : = (Im vn, . . . , Im vln) , . . . , Im vq : = (Im vql, . . . , Im t;?fl) are
^-linearly independent, we may assume det [Im v^; l^z, /^<?]^0
without loss of generality. Throughout this paper we assume that
G = Cn/F and F denotes the discrete subgroup satisfying the above
assumption and (1.1). Further we use the notations:

Km.i'- =Hl=iVijmi—mn+i and Km:=max[\Kmti\;l^i^q}

for m^Zn+q. Then from (1.1) we have

(1.2) Km>0 for all m^Zn+q-{0}0

We denote the projection C"B (%, . . . , *B) ' - » ( * ! , . . . > 2g)eCe by
V-C" - >Cq. Let^f :-7r , (O 5 w? 1=^(1;,.) for l ^ f ^ g a n d r*:=^(r).
Since ^f, t;f are ^-linearly independent, we have a g-dimensional
complex torus Tq

c = Cq/r*.
We recall the following proposition due to [14].

Proposition L 1. The projection xq:C
n - > Cq induces the C**~q

principal bundle 7rq:C
n/r=>z + F i - > nq(z) +T* &T9

C over Tq
c.

We put

_ I Re Vij (l^i^q, 1SS j ^
0

Im u£j- ( l ^ z^^ , l^ j^

[Tijll^i, J^n]- = \_Pij ''l^-i, J^-n]~l and ^.:=V^T^ for g+l^
Since {el5 . . . , en, vl9 . . . , ?;„} are JR-linearly independent, we have
an isomorphism

as a real Lie group, where (%, . . . , sj = S?=i(Mt + ^+t^i)- Then we
obtain the relations

(1.3) ^=^j-S"*

for l^ j^n , where 2:f=^ + V — 1 >'; (1 ̂  i^n). <j> induces the isomor-
phism <f>~:Cn/r=Tn+qxRn~q as a real Lie group, where Tn+q is a
n + g-dimensional real torus. Henceforth we identify Cn/F with the
real Lie group Tn+q x .R""9 and use the real coordinate system (^, . . . ,
^2J according to the need. We make the following change of
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coordinates :

U^*^») in C".

Then we can regard (C13 . . . > d) as a local coordinate system of Cn/F
and we have global vector fields

and (0, 1)-forms

<&='Li-iTnd*i

on C"/r. It follows from (1.3) that

(1.4) 4-= '=1 r" a, v -1 ^3=l 'J at,
Then for q + l^i^n we have

Let $4 be the sheaf of germs of (complex valued) real analytic func-

tions on C'/F and

Let /eH°(C*/r, J/). Then we have the following Fourier expansion

of/: _

(1.6) / («! , . . . , **) = 2., '"( "^

where *' : = (^, . . . , *.+,) e T"+«, f' : = (*^,+1, . . . , tin) e ^"-9, wz = (w1;

..., wn+4)eZ"+?, <w, t'y=^"it{miti and c"(O is real analytic in
ft^R"-" for any weZ"+9. We put

/m(0 : =c"(t') exp Z^V71! <»», O-

It follows from (1.4), (1.5) and (1.6) that

a.?)

Furthermore suppose f^HQ(Cn/r, tf). Since -J£=0

we have, by (1.6) and (1.7),

(1. 8) /(*) - Ln+o c» exp( -27T Zl^i ̂ A+,-
mezn+g

where cm is complex constant for any
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§ 28 Cohomology Groups with Coefficients in the Sheaf jP

Let M be a paracompact real analytic manifold and ^ M be the
sheaf of germs of real analytic functions on M. By the result of [4]
we can regard M as a closed real analytic submanifold of a complex
manifold N and M has a Stein neighbourhood basis { [7>,z el} in AT.
Since ind. lim {H* ( J7y, <%) ; [7,oM} -0, we have HP(M, J*M) =0 for
p^l ([10]).

In this section we treat cohomology groups as the following type.

Let & the sheaf f/U, t)^^CxR\ -J^ = ol on Cx R. We wish to
v OZ )

consider whether Hp(CxR, &} vanishes fo r^>g r l . Using a power
series expansion of a function /ej/CX;R, we can prove that a homo-

morphism -^~'^CXR - >^cx# is surjective. Then we have an exact
OZ Q

sequence 0 - >^ - *<^CXR— — >J^CXR - >0. From this exact sequence
and the lemma of [6, Lemma 2, p. 25], we can regard Hp(CxR, ^)
as HP(C, 6E}, where 0E is the sheaf of germs of holomorphic
functions with values in the locally convex space E:=H°(R, J/#).
Since E admits no structures of Frechet spaces, then we cannot apply
the result of [1] and [2] to Hp(CxR, &). And since CxR has
no Stein neighbourhood bases in CxC, then we cannot prove the
vanishing of Hp(CxR, ZF} by the same method of the proof of the
theorem: HP(M, <s$M) =0. To get our purpose in this section, we
must investigate a property of Stein open neighbourhood of CkxRl

in CkxCl.
We will use the following notations in the rest of this paper. For

an w-tuple £=(?!,.. . , <?m), | ?|| : =max{ |ff | ; 1<^ i^m}. And the
notation (equalities and inequalities involving functions h^ . . . , hm}
denotes the set of all points in the intersection of the domains of
definition of kly . . . , hm satisfying the given equalities and inequalities.

Lemma 2. 1. Let x : 5 - >CkxCl be a (unramified Riemanri)
domain of holomorphy over CkxCl (k, Z ^ l ) , Ar\ = {(wl9 . . . , w/)eC';
NJ— « j l < ^ > 1^7^0 ? where r = ( r l 3 . 9 0 , r/), ry>0 and (<21? . . . , a/)
eC* and let e= (% „ . . , £ / ) jfor ey^O ( l^j^ /). Further assume there
exist an open subset Vl of S and <5^>0 such that K\V is biholomorphic

into CkxCl and ^(V^ H (Ck x 4) U {li*||<5} X Jr+e, where Jr+B : =
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{\Wj-dj Kr^ + sy, l^j^l}. Then there exists an open subset V2 of S
with ViC.V2 such that x\V2 is biholomorphic into CkxCl and ?r(F2)

Proof. We may assume a1=-"=al = 0. Let f<EHQ(S, 0S).

Then / can be expanded in the power series '•f\(Z\v rl(.^kxAr) (x) =

Sp,,M*°<*))"(wo*(*))fl> where (*<>*(*) )" = (^offC*))"1 . . .(^o^(^))^
and (won(x}Y— (w\Qn(x)Yl • • • (Z^OTT^))^. Then the power series

FO, w) : = 2«.^X^ converges in (C*X Jr) U {||*|i<d} X Jr+e. We put
A: = ({ |MI<^x{|w, |<ry , 1^/fS/}) U ({\\z\\<d}x{\w, <rj + £,,

l^ j^ /}) for d^>d. The envelope of holomorphy of Dd is the smallest
logarithmically convex complete Reinhardt domain £)d: = [\\z\\ <^d,

I «/y l< r, + £;> log | w, | - log ry <M^J2|M (log ( r. + e,) - log r,) }

which contains Z)d (for instance see [13]). Since F converges in Dd

for all d^>d, then F can be continued holomorphically in £)d for any

d^>d. We take any point (z, w) e C* X Jr+E. Then we can find a

sufficiently large positive number d0 such that log \Wj —log r^-^

log J0-log \\z\\ (i0g(r +e) -log r.). Then (*,«;)€=£,. This implies
log a0— log <) u

that F converges in Ck X Jr+E. Since TT : 5 - > Cfe X C' is a domain of
holomorphy, we find an open subset V2 of S satisfying the statements

of the lemma (for instance see [6, Theorem 18, p. 55]).

The following lemma asserts that Cx^ admits no Stein open

neighbourhood bases in CxC. For instance we take an open neigh-

bourhood V: = { ( z , w)e:C2; | Imw|<( l+ H)"1} of C x ^ i n CxC.
Then we cannot find a Stein open subset V* so that CxRc:V*c:V.

Lemma 2.2. Let Iji ={wj^C', Imw>/ = 0, ay<Re wy<&y}, where

-oo^a,<^oo (l^j^l), I-.^^x ••- X^dRtdC1 and f a holo-

morphic function in a neighbourhood of Ckxl in CkxCl. Then there

exists a Stein open neighbourhood V of I in Cl such that f can be

continued holomorphically to CkxV.

Proof. First we assume 1=1. Then 1= [w&C; Im w = 0, a<
Ret*;<fe}, where — oo^a<&^oo. We have an open and connected

neighbourhood D of C*x/ in Ck X C so that / is holomorphic in D.

Let x:£) - >C*x C be the envelope of holomorphy of D which is given
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by a Riemann domain over Ck X C. Then there exists a holomorphic
injection j : D - > f) such that no j ={d entity and the mapping
H°(A 0 5 )B£i - >goj^H°(D, 00) is an isomorphism. Put C7: =/(£>),
for s=± l D{ :=the connected component of rc~l(Ck X {a<Re w<6,
£lmw<0}) satisfying DKMJ^-6 and D E :={(z 5 w) eD ; a<Re w<b]
U C f e X {weC; a<Re w<b, £ Im w>0}. Then ;r : £>? - > C f e x C i s a
domain of holomorphy. We identify (z, w) eZ)e and x^t>\, if (z, w)
eD and 7(2:, w) =x. We write this identification by (z, w)*~x.
Then for e = ± 1 we get Riemann domains

where TTE(J:) : =^(j:) if x<^.D\ and 7reO3 w) : = (z, w) if (2,
Now we consider the case e=l. We put

G} :=G1n^r1(C*X {a + KRe w<6-^}) for 0<f<(fe-a)/2-

Since GJ is ^-convex in the sense of [3], G1= U GJ is a
0<i<(&-«)/2

domain of holomorphy. We take xQ^U with KI(XQ} = (2;°, w°) for
some tf° el. We put

r0 : = l/2min {ze;°-a, &-w°}

Then we have PTQdDlc:G1. And there exist ^i>0 and an open

subset Ul of G1 with xQ^Ul such that TrJ^ is biholomorphic into

C f e xC and ^(C/OD {||^ |<5J X { | w-te;°-V^T ^o K^o + ^i}- By Lemma

2. 1 we have an open subset U2 of G1 with xQ^U2 so that n\\u2 is
biholomorphic into Ck X C and

Then ^(jDJn C72) =^C f ex { \w-w* \<dl9 Imw^O}. Applying the above
method to the case e= — 1, we get ^2^>0 and an open subset C73 of
G"1 with xQ^U3 so that 7r_l\U3 is biholomorphic and ^(D^n f/3) Z)Cfe

X {|w — w°| <^25 Im te;^0}. Then there exists an open neighbourhood
1/4 of ^0 in D such that TT^ is biholomorphic into CkxC and 7r(f74)

I)Cfex { w — wQ\<^imn[d1, d2}}. This means that / can be continued
holomorphically to Ck X V* for some open neighbourhood V* of I in
C. Then we complete the proof in the case 1=1. We can prove
the assertion of the lemma for Z^3 similarly to the case Z = 2- Then
we shall only prove the lemma in the case / = 2. Let 7:=71X/2 =
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{(wi, w2) ; Im wf- = 0, a,<Re «;,-<&,•, z = l, 2} C jR2cC2, / a holomorphic
function in a neighbourhood E of C f eX/ in Cfe X C2 and £ the envelope
of holomorphy of E. In general E is given by a Riemann domain over
C*xC2. Using the same technique of the proof in the case Z=l , we
may treat E as a univalent domain of holomorphy in CkxC2 which
contains E without loss of generality. We take (£°, t$) GE I\ X Z2 and
<5>0 satisfying 3<min{^-aI., fc,.-f? ; * = 1, 2} and {Ns||<3} X { w,-*?j
<3, i = l, 2}c£. Let 7 J : = U n { w , - e = C ; |wf--*?|<3} (z = l, 2), IJ: =
=JTn {lwj-fSKfl/3} and £(*2) :={(*, wO e Ck X C ; fe t^, *2)e£
Re Wte/?} for t2el§. And we put

£(£2)e: =£(O \jCkx[w1'te Im tw^O, Re ^e/?}

for e=±l . Then £(^2)E is a domain of holomorphy for s=±l and
t2^I°2. We have C fex { ^-^-^=1(8/3) |<^/3} c£(^2)+1 and {||*||

<5} x {|w^-^-V"^TCa/3) |<(2^/3)}c£(f2)+1 for
It follows from Lemma 2. 1 that

Ckx [\Wl-tl-^(d/3) \<2d/3}

for £2<El2 and ^e/J. Similarly we have

ckx t l u ^ - ^ + v
for ^GElSJ and ^e/;. We put ^ = {w^ ; j Im w^ | <3/3, Re
Then we have C*x FJx^cE. We set

f1ey?, Re w2e

£f : = JSX U Cfe x V\ x {w2 ; e Im w2^ 0, Re

for e=± l . Since C*x F?X {te;2; Iwa-^-V^TC^/Z) |<3/2} cj£f and
{||*!|<<5} xF?X {w2\ \w2-tl-^(ed/2) \<d] c£j (e=±l ) , it follows

from Lemma 2. 1 that

Since (^J, i°) is an arbitrary point of I, we find an open subset V of
I in C2 so that / can be continued holomorphically to Ck X V0 I has
a Stein neighbourhood basis in C2. Then we may regard V as a
Stein open subset of C2 ([4]).

Lemma 2- 3. Let I be as in Lemma 2. 2 and / a holomorphic
function in a neighbourhood of C*kxl in C*kxCl. Then there exists
a Stein open neighbourhood V of I in C1 such that f can be continued
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holomorphically to C*kxV.

Proof, It is sufficient to prove the lemma in the case k = 2. Let

irV=T)'\ \ f(*£**? dz,dz2 for »= (,1? i*
J l* l l= l J l*2 ' = 1 Z^ Z2

2

and *eJ, And we use the notations: E(D • = S^.^o, So : = S^o.^o,

S(3): = S»1<o.i.2^ E(4): = S»1.i>2<o and /i(«i, £2, 0 : = Sw^CO*!1*?- Then

we can apply Lemma 2. 2 to each /). For instance we take

f*(&i, z2, t):=f4(zi\ z2\ 0 which is holomorphic in (£15 £2) e C2.

By Lemma 2. 2 /* can be continued to C2xV for some Stein open

neighbourhood V of /in C*. Since /=/i+/2+/3+/4, we get the
proof of the lemma.

Let K,:C*/r^(z1,...,zH)+ri - >(*15 . . . , *,) +T* s=T9
c = C'/r* be

the C*n~"-principal bundle over Tq
c as in Proposition 1. 1. Since aij = 0

for l^y^n, q+l^i^n and 7^= 0 for q + l^i^n, l^j^q, from

(1. 3) it follows that tj=xj~Zl=i Sf^i^r.-^y and *„+,-= Si-ittrtf for
l^j^q- This relation induces an isomorphism (7 : T^B (^15 . . 0 , z?)

(exp 2^V"^I^i> • • • » exp2^V"— T^> exp 27rV^T ^+i> . . ., exp
?) e T2s, where T25 is a real 2^-dimensional torus. And we

have an isomorphism 0 : Cn/F^ (zl9 . . . , 2;rt) H-Fi - >(exp 2^^^-! (tq+i

+ ̂ ^+3,..., exp 2n^(tn + ̂ t2n); aonq(zl9...9 zH)

T2q with a commutative diagram:

x

where ^'(f, 17) =37 for £=(?!, . . . , f ra_?)eC* ra-? and 5yeT29. We take

the sheaf J^ of germs of real analytic functions which is holomorphic

in each fibre of TT' on C*n~q X T2q, that is

where «5/' is the sheaf of germs of real analytic functions on C*n~q X T2q.

l ^ J ^ w } onAnd we consider the sheaf Jf : = {/e^; - £ - = 0- -

as in Section 1. Then by (1. 5)

(2.1) ^

is an isomorphism for any open subset W of C*n~q X T2?. We put J: =
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and for y = (els . . ., e2q)<=J Uj'. = {(exp 2^^

. .., exp ZrcVM"^ exp 2^ ^T fn+1, . . . , exp 2^V:rT
£M+s^l/2, ^s^£g+s/4, £s^£s/4 for l^s^g}. Then we have open
coverings 11: = {C*n~qx C7y; /eJ} and S3 : = {^(C^x C7y) ; /eJ} of
C*»-« x T2(? and CyF, respectively.

Proposition 2.4. Le£ //*(33, ^f) ^ zAe />-*A Cech cohomology
group of the covering 33 of Cn/F. Then

^)=0 for p^l.

Proof. We have an isomorphism <f>*:Hp(U, J^") >HP(%$, 3?) by
(2.1). Then we may prove HP(U, ^") =0 for p^l. We regard
T2q as the closed real analytic submanifold {(w^ . . . , w2q) ', wi\=l,

l^i^2q} of C2q. Let C be any connected component of t/yon - -. fl t/y •
Then there exist a rectangular set IC.R2qdC2q- as in Lemma 2. 2
and an open neighbourhood V of I in C2q such that ^: FB (w1? . .., w2g)
i > (exp 27r^/^T wl5 .. ., exp 2rcV^T u2q) e C2? is biholomorphic and
(ff(f)=C. We take {cyo - ;-} eZ*(U, J^). In virtue of such mapping
^ and by Lemma 2. 3 there exist a Stein and connected open
neighbourhood U*Q.j of t/yon •-. D [//• in C2s and a unique holo-
morphic function c/o. jp in C*"~? X UfQ. jp such that c/Q. Jp\C*n'9 X C/^
fl ... CiUj —CjQ _j . Since each Uj admits a Stein neighbourhood basis
in C2?, we can choose a Stein neighbourhood Uf of Uj in C2- so that
[77~on ... fl Uj C C7* y. We take £ (0<£<1) satisfying Ae= {1 —£< wt \
< l+£, 1 ^ ^ 2^} C U ye/ C7;. Then we have ({cfo. ^} ; [C*n~q X UjQ n . ..
n l/T n4}) eZ^({C*""?x (C/7n4)}, ^ P ) . Since C*"~9x4 is a Stein
open set, there exists [d?Q .Jp_^ Cp~l( [C*n~q X ( Uj n 4)}, 0) such that
g {J/o ^_J = {c;Q . jp | C*"~? X (UJ Q n ... n L/^ n 4)} • This completes the
proof.

Let f^H°(Cn/r, jf)=Z°(SJ, Jf). From (1.8) we have /(*) =

— V— 2-jn+q

for (f, ^) eC*"-?x T2*. Observing the proof of Proposition 2. 4 and
by Lemma 2. 3, we have the following

Proposition 2. 5» There exists £>0 s«cA £/ia£ the Laurent series
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expansion:

V rm£m<l+l £mn vf)™1 7e<ml7e)mn^1 7f/"n+*2-1 n+
 C Si • • * qn-q

Wl • • • Wq Wq+l . a . W2q

m^Z

which induced by (2 .2) converges for all (f, w) eC*"~9 X 4> w

§ 3. A Special Resolution of the Structure Sheaf (9 of Cn/F

Let [7 be an open subset of C\ stf~ be the sheaf of germs of

real analytic functions on C*kxU. We consider the sheaf &: =

^y'^£}, where (*, w)eC* f ex[7 and S7°-*: =

; / . . . ^ } for O^p^L Here
^ . ^

any form treated in the rest of this paper is written skew-symmetrically

in all indices.

Let f££HQ(C*kxU, &) and w°=(w;;, . . . , w?) e C7. By Lemma

2. 3 there exists an open neighbourhood C7° of w° in 17 such that /

has the following expansion:

(3. 1) /(*, W) - Sfe Sa ,>0 6y,a.^(te;-W
0)«(W-z£;r

yeZf t az'^i-

which converges for all O, w) eC*fe X [7°, where ( w — w°) a = ( ̂  — wl) KI

1 and (w-w°y= (w^w1 . . .

Lemma 3. 1. Let f= I /pi % f{ { dw{ A . . . M^i ^H°(C*kx
i^«i ..... ip*i l' p l p

U, &°'p) with df=Q (#^1). For any w°(=U choose an open neigh-

bourhood U° of w° so that any f{ f can be expanded in C*kX U° as

in (3. 1). Then there exists g°^H°(C*k X U°, ^°'^1) such that 3g°^f.

Proof. Let m be the least integer such that the explicit repre-

sentation of / in coordinate form involves only the conjugate differen-

tials dw-b . . . , dwm. The proof will be by induction on m. First we

consider m—p. Then f = fi2..pdwl/\.../\dwp and we have an

expansion /12.. p=^avapZv(w-w^tt(w-w*Y in C* f exf/° as in (3.1).

Since 5/=0, f u . p must be holomorphic in wp+l, . . . , te/'j. Putting

p-wj) and £ : =^ . p,^^

A • • • /\dwp-n gu .p-i is also holomorphic in wp+l, . . . wt and 3g=f.

Using the standard argument for the Dolbeault lemma (for instance
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see [6, the proof of Theorem 3, p. 27]), we can complete the proof.

Observing the proof of Proposition 2. 4, we have the following
lemma.

Lemma 3. 2. Let {U{} be a locally finite open covering of UdC1

and each [/,- is a rectangular open subset {aj°<^Re Wj<^bjl\ cj°<^Im Wj
<rfj°; l^j^l] for some af\ b?\ c^ and d&^R. Take the open
covering U: = {C**x E7J of C*kxU. Then Hp(tt, &°'s)=0 for p^l,

By Lemmata 3. 1 and 3. 2 we have the following lemma.

Lemma 3. 3. Let U be a Stein open subset of Cl and f<=H°(C*k

xU, 9°-*) with 3/=0. Then there exists g£^H0(C*kxU, ^°-^1)
such that 5g=f.

Proof. By Lemma 3. 1 we have a Stein covering {£7J and

gi^H°(C^kxU^ ^°-?-1) with dgi=f. We put h^'^g^-g^. Then

3^ = 0. Further by Lemma 3. 1 we get g^IP(C*kxUw 9 *'*-*)
with 3^ = ^} ,̂ where we use the notation UiQ. . . £f : = UiQ n . .. 0 Uig.
We set {h%^ :=3{g%J. Then 3A$V2=0. Inductively we find
sequences {g%m.ig} ^CS(U, #°-*— i) for l^s^p and {A^..f.f} eC'CM,

»°-*-f) for 1^5^, U: = {C**xt7J so that 3A$..f.f = 0, {*§!..,-,} =

*fel;:VJ and 3<)..*I =
 A.?.-v Since (h%..ip}eZ>(U, 0} and II is a

Stein covering of the Stein open set C*k X U, then there exists
such that {A£..,p} =5{/^J. Then [g^^
0). By Lemma 3. 2 we get {/£-%_,} e C'-'(«,

so that {<:^_1-/^_1}=5{/^_2}. We have Sfe^^

t^vj = { -̂'U = 5 <-2->-2J •
 Then

(U, ^O'1). Repeating the above argument,

finally we find {/f } &B°(U, ^«-2) so that h ̂  =^ -gt<> = 3f% - 3/[«.

We put g:=gi-5ff\ Then g<=H°(C*kxU, SP0-*-1) and 3g=/.

Now we need the sheaf ^ = {/ej/;- =0 t? + l^;^n} on C"/-T

defining in Section 1. Further we consider the sheaf
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of germs of ffl -forms of type (0, p) which involves only the differen-
tials d£l9 . 8 0 , d^q.

Proposition 3. 4. The sequence

0 _ > (Q _ > 3^o.Q g > a^o.i 5 > . . . 5 > 3^0. g _ A
W L/ cXfc eXfr cxt W

is exact. And Hp(Cn/F, (9) is isomorphic to the quotient space {/ ;
jf°-0, df=Q}/{dg;gs=H°(C*/r9 ^Q'p~1}} for p^l.

Proof. We can regard (C1? . . e , C«) as a local coordinate system
of Cn/F. Let /be a germ belonging to a stalk //0 at C°<=Cn/r. f

has an expansion

/=£«., aa,(C.». ... , Q (d-C?)"1- • -(Q-O^CCT1®"1- • -(C^C")'9

which is similar to (3. 1) and converges in a small neighbourhood
[7° of C° in C"/F, where aajS is holomorphic in Q+i, - « a , C»- Applying
the method of the proof of Lemma 3. 1 to this expansion of /e^f 0,

we can prove the exactness of the sequence of the proposition. We
put Ker 3k: =Kti{3:^°'k - >jfM+1} and Im 3k:=lm{3:^°'k - >jf°-fe+1}.
Then we have Im 3jfe = Ker 5k+l and the short exact sequences

(3. 2) 0 - >Ker 3k - >jfM - >lm 3k - >0 for 0^&^g8

Let %>= {0~l(C*n-qx Uj)} be the same locally finite covering of Cn/F
as in Proposition 2. 4. Since <f>-l(C*n~q X [/,-) is biholomorphic to C*n~q

X [//, it follows from Lemma 3. 3 that

is an epimorphism. Then we have an exact sequence

0 - >C'(SS, Ker9s) - >C»(9S, Jf°-J) - >C"(SS, Im 3») - »0.

From (3. 2) there exists a long exact sequence 0 - »H0C3$, Ker dk)
- >H°C$, Jf°-s) - >H°(t\ Im3») - "JPCB, Ker 3,) - »fZ1(5S, jf°'s)
- > • • • . Using this exact sequence and the result of Proposition 2. 4,
we have Hs(%, jf°'s) =0 for ^ 1, Hf(Cn/r, <9)=HPC%, 0)=H^(SS,

Ker30)=H»-1ca3, Im 30) and H»->(», Ker 3,) =H*-4-1(93, Im 3,) for
^^> — 1. Then we obtain

}^Hl(K, Ker 3^) s

, Im3,-1)/Im{3:H0(SS, ^°'^1) - »H°(», Im^-j)}.

This coincides with the quotient space asserten in this proposition.
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Remark. By Proposition 3. 4 we obtain Hp(Cn/F, 0} =0 for

£^<?+l- This comes from the result of [7] directly, since we showed

in [7] that Cn/F is strongly (q + 1) -complete in the sense of Andreotti

and Grauert.

§4. d Cohomology Groups of (H, C) -Groups

Let f^HQ(Cn/T, jf). By (1. 8) we have the Fourier expansion:

/= E +„ cm exp( — 2^S?=«+i^»+i)exp 2^^ <ra, *'>• For m= (ml9 . . . ,
m^Zn + q

mn+q) (EZ""9 we put m : = (ml9 . . . , mq, mn+1, . . . , mn+q), m : = (mq+l,

. . . , ran), ||ra'!|: = max{ \m{ , mn+£ ; l^i^q} and Urn"!'! : = max{ |m;- 1 ;

^j^n}. Then we have the following

Lemma 4. 1. TA^ following conditions on a sequence

mEiZn+q] are equivalent.

(a) The Fourier expansion 2 cm exp( — 2^Si=«+i^»^»
meZM+?

<m, ^x> converges to a function in H°(Cn/F, jf).

(b) There exists e>0 5^cA iAai for all a>0
"+9} <oo.

Proof. We first prove (a) ==* (b) . Put f(t}:=

C"/r, jf), (Wl, .

= (exp 27rf^rT fi» • • • > exP 2?rV^T f«> exp 2^V^T *»+!> • • • > exP 2^^
and f i : =

l^i^n—q. Then by Proposition 2. 5 we have <5 >0 so that

/*(£, w;) :=i ; ^f'V"' is holomorphic in ($, w) eC*n~3 X {1 -5<
«eZ^ + 9

! wy l< 1 +«} , where f w// : - f ̂ +1 • • • C%, ™m> : = ^ • • • w^wC-fr1 ' ' ' w^+9.
Put e: = l/2min{-log (1-3), log (1 + 3)}. Then for any a>0

Zw+s, exp( — a) ^ | f f - ^expa, exp( — s) ^ ]wz- 1 ^exp s} <°o. Conversely

assume (b) holds. Then 2] cm^m"wm' converges uniformly on every
meZn + q

compact subset of C*"~?X {exp( — s)< | Wj |<exp s}. This implies (a).

For m^Zn+q we use the notation: ||w*||: =max{ j m t - 1 , l^i^n}.

Lemma 4. 2. The following conditions (0) and (1) are equivalent.
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(0) For any s>0 there exists a positive number a—a(z) such that

sup exp(-£llm /]]-a]|m' /H)/^m<oo.
m^O

(1) There exists a^>0 such that
sup exp(-a\\m*\\)/Km<oom

Proo/. Since Kw = max V (2j=1 Re t^-m,- - mnJ.,-)2 + (S?=1 Im 7^-m,-)2

and the g X g-matrix [Im ^; 1 ^ z, J^^] is non-singular, we can find

Ci, C2>0 so that 5 : = { m ; w ^ 0 , £",n ̂ 1} C {m ; w^O, ||m'H^C1 +

QIN'll}- We shall show that the statement (1) is equivalent to the

following

(*) There exists a>0 such that sup exp( —a\\mff\\)/Km<oo.
m=£0

Since |]m / /||^||7?z*||, the implication (*)=>(!) is trivial. Assume (1)

holds. We have \\m*\\^\\mf\\ + \\mff\\^Cl+ (C2+l)\\m" \ for m^S. We

pu t6 : = (C2+l)a>0. Then sup exp( -b\\m"\\)/K^zxp^CJ(C2+l)}
OTES

sup exp(— a||m*||)/Km<°o. This implies (*) holds. We prove (0)
meS

=>(*). Assume (0) holds. We get a>0 such that sup e x p ( — \\m\\

-a\\m"\\)/K)n<oo. We have exp ( - (Q + C2\\m" \ m-a\\m"\\)/Km ^

exp( — l|m'|| — a\\m"\\)/Km for m^S. This implies the statement (*)

holds. The implication (*)=»(0) is trivial.

Rema?~k. The condition (0) depends on our assumption that

det [Im Vij', l:g z, j^q\ 9^0. But the condition (1) is independent

on that.

Let p=l/p\ S ftx ip^A - •• /\d£ip^HQ(Cn/r, jf°ip). We ex-

pand each 0; , as in (1. 8) : pt ih— £ &£ ,- exp ( — 27r£j=fl+1m^II+i)i • P i • /> mez»+? i P
exp 2^-1 <m, ^>. We put ^ «p: =&" ^ exp(-^

exp 27rV^I<772, O, /o1":=!//>! <S ^ ^ ,^ exp(-!

exp 27rJ —1 <?7z, ^x)> ^Ci A • • • A^C- • Then /?= T] pm. Suppose p isJ. » -^ \ / -st-^i sip i i_j n_j_^ I 0. J. I

5-exact. Namely there exists a (0, £ —1) -form ^=Z

^f°'p~l) such that p=3%. Then we have pm = 3Xm for any

We write ^ = 1/^-1) ! S ^ ,-. /C-/\ . . . AC., and ^../^
l

_

— ^ . » _x exp( — 2^2i=g+i mttn+i) exp 2^^ —1 <^> ^>. The equation

pm=dX" implies



312 HIDEAKI KAZAMA

(4.D

Combining (4. 1) with (1. 7), we have for any

(4. 2) bfv..ip= SLi ( -
Now suppose 0= S <f>m^H°(Cn/r, jC0-*) is 3-closed. From 50 =

m<=Zn+q

and (4. 2) it follows that

(4.3) TT siii (-i)*+iJf..iicr1..i;.i,+1=o,
where we denote ^w = 1 //> ! 2 cf- exp ( - 27r2J=af f+17w f.^+>.

! *

exp 2*^ <m, O CXA - •

We put

t (m) : =min{/ ;

and the indices (i(m), zls . . . , zp) in the place of (zl5 . . . , ip+l) of the

formula (4. 3), then we have

(4.4) ^,.K^r1...^-^ELi(-i)^+1^.f/r(.)il..v.y
Since Km^>0 for m^O by (1. 2), we can put

(4.5) 0«:=lMp-l)! S crc,)...,- JKmti(m,
-

for m^O. Observing (4. 2), it follows from (4.4) and (4.5) that

(4.6) (j)m = d<pm for any

Remark. For any 3-closed (0, ^?)-form ^=2^m we have always

a formal solution Sm*o^M for the 3-equation 32m^o ^ lfl= Sm^o ^m by

(4. 6).

Here we need to topologize HQ(Cn/T, jf). Let ^(J?) be the

vector space of real analytic functions on R. We regard R as a

closed real analytic submanifold of C under the natural inclusion.

We take a compact subset K of R and an open and connected

neighbourhood Uj of K in C, 1^J^°° satisfying Uj^GUj and

r\jUj = K. Let 30 (K) be the vector space of real analytic functions

in a neighbourhood of K in .R. We denote by ^(Uj) the space of

bounded holomorphic functions on L7}, J^ l . Put j|/|| : =sup { \ f ( z ) |;

j-). This norm makes Jf(Uy) into a Banach space.
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By the inductive limit: <s/(K)=md lim Jf (I7y) we regard J*(K) as a
(A F, S)-space. The restriction mapping <%?(KJ - >J/(X"2)5 ^C^
induces the projective limit : stf ( R) = pro j lim^(K). It is known
that the above locally convex topology on &f(R) is complete and
semi-Montel. Similarly to the topology of <&(R) we can make the
vector space H°(Cn/F, <$/) into a locally convex space. Then
HQ(Cn/T, jf) is regarded as a closed subspace of H°(Cn/F, st) and
itself a locally convex space. And we have the locally convex topology
of H°(Cn/F, 3f°'p) induced by H°(Cn/F, jf). Further by Proposition
3. 4 we have the locally convex topology of Hp(Cn/F, 0}, using the
quotient topology.

The following theorem gives a characterization of an (H9 C)-
group C"/r whose cohomology groups Hp(Cn/F, 0} (p^l) are finite-
dimensional.

Theorem 4. 3. Let Cn/F be an (H, C) -group, where F is gene-

rated by {*!,..., eM vl9m..9vq}9 KmJ: =^l
l]=lvijmj ~mn+i (l^i^q)

and Km:=max{\ Km>i |; l^i^q] for mtEZn+q. Then the following
statements (1), (2), (3) and (4) are equivalent.

(1) There exists a^>0 such that
sup exp(-al|w*||)/^m<oo,
m^O

where \\m*\\ =max{ \m{ \ ; l^

(2)
0 f/ p>q.

(3) dimH^O/r, ^)<oo for any p^l.

(4) d(H\Cn/F, ^f0-^1)) w a cfoW subspace of H°(Cn/F,
for any p^l.

Proof. Assume (1) holds. Then by Lemma 4. 2 we may suppose
that the statement (0) of Lemma 4. 2 holds. We take a 3-closed form

^°-0, where

T <w' ^>- % Lemma 4. 1

there exists £0>0 such that for any a>0 C(a) : = sup { | c?lmmmi \

expCeol lm 'H+al lm 'H) ; meZ"+?}<oo ( l ^ f l s . . . , i^^f). By the state-
ment (0) of Lemma 4. 2 we find a0>0 such that
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sup exp( -£0/2\\m'\\-a0\\m"\\)/Km =
m*Q

Then for any a>0, m=£0 and I^i l 9 ..., z^g |c£. ,Jexp(£0/2||m /il +

. .p

This means that Zm*o0 ra given by (4.5) converges to a (0, p — 1)-
form 0 in H\Cn/F, jf0-^1)- And by (4.6) we have 0-30=0°+

S»*oC01" -30") - S < , dL A . . . ACft- This shows (2) holds.
is»V ..-^ff 1 * 1 *

It is obvious that (2) =* (3) => (4) . Finally we prove (4) ==>(!).
By Lemma 4. 2 we may prove that (4) implies the statement (0)
of Lemma 4. 2 instead of (4) =»(!). Suppose that {^m;meZ^?}
doesn't satisfy the statement (0) of Lemma 4. 2. Then there exists

such that we can choose {mv ; y^ 1} cZ"+?— {0} satisfying
^v for any v^l. We put

if m = mu for some u^'.
0 otherwise

and 0m:=dm exp( -27r2?=9+1 m^n+I-) exp 2^-1 <m, ̂ > for any
Since 30m = 2f=1 nKmvj Gxp(-s1\\m

/
1J\\--^ \\ml\\) Gxp ( -2n^n

i=q+l m^ ^ /

Km^ exp 2^V"—T <^5 ^> ^C;5 if m = mu for some y^l and IK^/jK^J

^1, then Em50m converges to a form 0eE#°(CyF, ^f0-1). By the
choice of the sequence {mv}, Sm0m cannot converge to any function
in H\Cn/T, jf°-°). Suppose 0-3^ for some *=Zm Zm^H°(C"/r, ^f°'°),

then lm = (l>m for ra^O. It is a contradiction. Then 0 = lim 5(Eiimii<^0m)

belongs not to d(HQ(Cn/T, jf°-°))5 but to the closure* of 3(HQ(Cn/r,
Jf°'°)) in H°(Cn/r, jf°'°). This contradicts the statement (4).

By the above proof of the implication (4) =»(!), if {Km; m
eZra+9} doesn't satisfy the statement (1) of Theorem 4. 3, then
Hl(Cn/r, 6) is a non-Hausdorff locally convex space and then
infinite-dimensional. Further in the above situation we shall prove
that Hp(Cn/F, (9) are also non-Hausdorff spaces for all p satisfying

Theorem 4. 4. Every (H, C) -group Cn/F satisfies either of the
following statements (a) and (&).

(a) Hp(Cn/F, (!)) is finite-dimensional for any p.

(b) Hp(Cn/F, 0) is a non-Hausdorff locally convex space for any

p satisfying l^p^q.
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Further the statement (b) is equivalent to the following

(c) sup exp(— fl||m*||)/JClfl = oo for any a>0,
m=£0

where ||m*|| = max{ |ra£ | ; l ^ z ^

Proof. By Lemma 4. 2 and Theorem 4. 3, we must prove (b)

holds on the assumtion that [Km] doesn't satisfy the statement (0) of

Lemma 4. 2. We choose e^O, the sequence [mv] and om as in the

proof of (4) ==*(!) in Theorem 4. 3. We can find iQ so that l^iQ^q

and sup{v; \Km^ \ — Km^ =00. We may assume iQ = q without loss of

generality. We take a (0, p — l)-form

<f>":=3n expC-27rS^+1mA+;) exp 2^^T <*», O <*CiA • • • A^-i-

Then Sm^ m cannot converge to any (0, />-l)-form in HQ(Cn/T,

^Q'p~1}. On the other hand Y,m^m converges to a (0, />)-form ^ =

S» S)^ *£«.^m exp(-27rS:=2+1m^+£) exp 2^=i <m, O^
... A^Cp-i^O. Suppose ^-3^ for some ^= 2^ *m^H°(Cn/r,

Then d(pm = dlm. We write

Comparing the term of d(pm with that of 3lm involving only the

exterior differential ^A^CiA • • - A^O-i °f type (0, />), we have

TrK^X?. .-i+ SU( -D^^.,.6^.? ^nK^jT* . Then 3^=6^. ,-i

+ LU(-l)I'C^-i^,'/^^ for ^L Since S UP^ ; ^^1=^1
= 00, we can choose a subsequence {m^} of {my} so that |KO T~ i £ /

Km~tq ^1 for any l ^x ' ^g and that

This contradicts that lim S"1^ = oo. Hence 0 belongs not to d(H°(Cn/r,

Jf0-^1)) but to the closure of 5(H°(Cn/r, jf0'^1)).

Remark. When the author was making the preprint for this paper,

he got the following information which was given by S. Takeuchi.

Independently C. Vogt [15] showed in his Dissertation that the

statements (a) and (b) are equivalent.

(a) There exist C>0 and a>0 such that Km^C exp (-a\\m*\\).

(b) dimHKCVr, 0)<oo.
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By Theorem 4. 3 and 4. 4 we have the following

Corollary 4. 5. The statements (1), (2), (3) and (4) in Theorem
4. 3 are equivalent to each of the following statements (5) and (6).

(5) For some p (l^p^q) dim Hp(Cn/F, 0)<oo.
(6) For some p (l^p^q) 5(HQ(Cn/r, Jf0-^1)) is a closed subspace

of H°(C*/r,

Remark. We constructed an example of an (H, C) -group Cn/F
so that Hl(Cn/T, 0) is not Hausdorff ([7]). By Corollary 4. 5 we
can show Hp(Cn/T, (9) are not Hausdorff for this (fi, C) -group Cn/T
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