$\overline{\partial}$ Cohomology of (H, C) -Groups

Dedicated to Professor Shigeo Nakano on his 60th birthday

By

Hideaki KAZAMA*

Introduction

In this paper we consider an n -dimensional connected complex Lie group G without nonconstant holomorphic functions (Such a Lie group is called an (H, C) -group). In the previous paper [8] we found a sufficient condition for $H^p(G, \mathcal{O}_G)$ to be finite-dimensional $(\phi \ge 1)$, using the resolution: $0 \longrightarrow {\mathcal{O}}_G \longrightarrow {\mathcal{A}}^{0,0} \longrightarrow {\mathcal{A}}^{0,1} \longrightarrow \cdots$ $\mathscr{A}^{0,n}$ of \mathscr{O}_G , where $\mathscr{A}^{p,q}$ denotes the sheaf of germs of real analytic (p, q) -forms on G. It was not possible to find a necessary and suffi<mark>c</mark>ient condition for $H^{\flat}(G, \mathcal{O}_G)$ to be finite-dimensional by the method of the paper [8]. Roughly speaking the cause of the above unsuccess is that the resolution by the sheaves of germs of real analytic forms is not good enough to calculate the $\bar{\partial}$ cohomology groups of G.

The purpose of this paper is to establish the cohomology groups $H^{\rho}(G, \mathcal{O}_G)$ of an (H, C) -group G ($\rho \ge 1$), using some number theoretical property of G. It is known that every (H, C) -group G has a structure of $C^{*\ell}$ -principal bundle $\pi: G \longrightarrow T^q_C$ over a q-dimensional complex torus $T_c^q(p+q=n)$ ([14]). We take the subsheaf $\mathscr H$ of $\mathscr A^{0,0}$ so that $\mathscr{H} := \{f \in \mathscr{A}^{0,0} : f \text{ is holomorphic along each fiber of } \pi\}.$ First we shall prove a cohomology vanishing theorem for the sheaf $\mathcal X$ on G in Section 2. Using the sheaf \mathcal{H} , we shall get the resolution:

 $0 \longrightarrow \mathcal{O}_G \longrightarrow \mathcal{H}^{0,0} \longrightarrow \cdots \longrightarrow \mathcal{H}^{0,q} \longrightarrow 0$

Communicated by S. Nakano, March 4, 1983.

^{*} Department of Mathematics, College of General Education, Kyushu University, Ropponmatsu, Fukuoka, 810 Japan.

of \mathcal{O}_G in Section 3 to calculate the $\bar{\partial}$ cohomology groups $H^p(G,$ $(p \ge 1)$. In Section 4 we shall find a necessary and sufficient condition for $H^{\rho}(G, \mathcal{O}_G)$ to be finite-dimensional and calculate the dimension of $H^p(G, \mathcal{O}_G)$ (Theorem 4.3). We can regard an (H, C) -group G as a quotient group *Cⁿ /F* by a discrete subgroup *F.* The above necessary and sufficient condition is expressed by a Diophantine inequality with respect to the subgroup Γ of $Cⁿ$. Unless the condition is fulfilled for *F*, then by Theorem 4. 3, there exists j ($1 \leq j \leq q$) such that $H^j(G, \mathcal{O}_G)$ is infinite-dimensional. Further we shall prove that $H^p(G, \mathcal{O}_G)$ is not Hausdorff for all $p (1 \leq p \leq q)$ (Theorem 4. 4). By the theorems in Section 4 the cohomology groups $H^{\rho}(G, \mathcal{O}_G)$ of an (H, C) -group G are completely determined by some number theoretical property of *G* and we have a classification of all *(H,* C) groups as follows. Let C^n/Γ be an *n*-dimensional (H, C) -group. If *F* is generated by *R*-linearly independent vectors v_1, \ldots, v_{n+q} , then C^{α}/Γ is called an (H, C) -group of rank $n+q$ ([11]). Let $\mathscr{T}^{\pi,q}$ be the set of all *n*-dimensional (H, C) -groups of rank $n + q$. Then

$$
\mathcal{F}^{n,q} = \{C^n/\Gamma \in \mathcal{F}^{n,q} \; ; \; \text{dim } H^p(C^n/\Gamma, \; \mathcal{O}) \langle \infty, \; p \ge 1 \}
$$
\n
$$
\cup \; \{C^n/\Gamma \in \mathcal{F}^{n,q} \; ; \; H^p(C^n/\Gamma, \; \mathcal{O}) \; \text{ is not Hausdorff for any} \; p \; \text{satisfying} \; 1 \le p \le q \} \quad \text{(disjoint)}.
$$

The author is very grateful to Prof. S. Nakano who raised the question in 1975 whether the cohomology groups $H^{\rho}(G, \sigma_{G})$ for an *(H,* C)-group *G* are finite-dimensional.

§ 1. Preliminaries

In this paper we consider an n -dimensional connected complex Lie group *G* without nonconstant holomorphic functions. Such a Lie group *G* is said to be a toroid group or an *(H,* C)-group ([5], [9], [11]). We recall that *G* is abelian and then *G* is isomorphic onto C^{n}/Γ for some discrete subgroup Γ of C^{n} as a Lie group ([11]). We may assume that Γ is generated by R-linearly independent vectors ${v_1, \ldots, v_n, v_1=(v_{11}, \ldots, v_{1n}), \ldots, v_q=(v_{q1}, \ldots, v_{qn})}$ of $C^n (1 \leq q \leq n),$ where *6j* is the *j-th* unit vector of C". Since every holomorphic function on $G = C^n / \Gamma$ is constant, $\{v_1, \ldots, v_q\}$ must satisfy the condition:

$$
(1.1) \quad \max \left\{ \left| \sum_{j=1}^{n} v_{ij} m_j - m_{n+i} \right| \; ; \; 1 \leq i \leq q \right\} > 0
$$

for all $m = (m_1, \ldots, m_n, m_{n+1}, \ldots, m_{n+q}) \in \mathbb{Z}^{n+q} - \{0\}$ ([9], [11]). Since $\text{Im } v_1 := (\text{Im } v_{11}, \ldots, \text{Im } v_{1n}), \ldots, \text{Im } v_q := (\text{Im } v_{q1}, \ldots, \text{Im } v_{qn})$ are *R*-linearly independent, we may assume det [Im v_{ij} ; $1 \leq i$, $j \leq q$] $\neq 0$ without loss of generality. Throughout this paper we assume that $G = C^n / \Gamma$ and Γ denotes the discrete subgroup satisfying the above assumption and (1.1). Further we use the notations:

$$
K_{m,i} := \sum_{j=1}^{n} v_{ij} m_j - m_{n+i} \text{ and } K_m := \max\{|K_{m,i}|; 1 \le i \le q\}
$$

for $m \in \mathbb{Z}^{n+q}$. Then from $(1,1)$ we have

(1.2) $K_m > 0$ for all $m \in \mathbb{Z}^{n+q} - \{0\}$.

We denote the projection $C^*\ni(z_1,\ldots,z_n)\longmapsto (z_1,\ldots,z_q)\in C^q$ by $\pi_q: C^n \longrightarrow C^q$. Let $e_i^*: = \pi_q(e_i), v_i^*: = \pi_q(v_i)$ for $1 \leq i \leq q$ and $\Gamma^*: = \pi_q(\Gamma)$. Since e_i^* , v_i^* are *R*-linearly independent, we have a q-dimensional complex torus $T_c^q = C^q / \Gamma^*$.

We recall the following proposition due to [14].

Proposition 1.1. The projection π_q : $C^n \longrightarrow C^q$ induces the $C^{*^{n-q}}$ *principal bundle* π_q : $C^*/T \ni z + T \longmapsto \pi_q(z) + T^* \in T^q_c$ over T^q_c .

We put

$$
\alpha_{ij} := \begin{cases}\n\text{Re } v_{ij} & (1 \leq i \leq q, 1 \leq j \leq n) \\
0 & (q+1 \leq i \leq n, 1 \leq j \leq n) \\
\beta_{ij} := \begin{cases}\n\text{Im } v_{ij} & (1 \leq i \leq q, 1 \leq j \leq n) \\
\delta_{ij} & (q+1 \leq i \leq n, 1 \leq j \leq n)\n\end{cases}
$$

 $[\gamma_{ij}; 1 \le i, j \le n]$: $= [\beta_{ij}; 1 \le i, j \le n]^{-1}$ and v_i : $= \sqrt{-1} e_i$ for $q+1 \le i$ Since $\{e_1, \ldots, e_n, v_1, \ldots, v_n\}$ are R-linearly independent, we have an isomorphism

$$
\phi: C^n \ni (z_1, \ldots, z_n) \longmapsto (t_1, \ldots, t_{2n}) \in R^{2n}
$$

as a real Lie group, where $(z_1, \ldots, z_n) = \sum_{i=1}^n (t_i e_i + t_{n+i} v_i)$. Then we obtain the relations

$$
(1, 3) \t t_j = x_j - \sum_{i,k=1}^n y_k \gamma_{k} \alpha_{ij} \text{ and } t_{n+j} = \sum_{i=1}^n y_i \gamma_{ij}
$$

for $1 \leq j \leq n$, where $z_i=x_i + \sqrt{-1} y_i$ ($1 \leq i \leq n$). ϕ induces the isomorphism $\phi^{\sim}: C^n/\Gamma \cong T^{n+q} \times R^{n-q}$ as a real Lie group, where T^{n+q} is a $n+q$ -dimensional real torus. Henceforth we identify C^*/T with the real Lie group $T^{n+q} \times R^{n-q}$ and use the real coordinate system $(t_1, \ldots,$ t_{2n} according to the need. We make the following change of coordinates :

$$
\zeta_i:=\sum_{j=1}^nz_j\gamma_{ji} \ \ (1\leq i\leq n) \ \ \text{in} \ \ C^n.
$$

Then we can regard $(\zeta_1, \ldots, \zeta_n)$ as a local coordinate system of C^n/Γ and we have global vector fields

$$
\frac{\partial}{\partial \bar{\zeta}_i} = \sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial \bar{z}_j}
$$

and $(0, 1)$ -forms

$$
d\bar{\zeta}_i = \sum_{j=1}^n \gamma_{ji} d\bar{z}_j \quad (1 \leq i \leq n)
$$

on C^n/Γ . It follows from (1.3) that

$$
(1,4) \qquad \frac{\partial}{\partial \zeta_i} = \frac{1}{2} \left(\sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial t_j} - \sqrt{-1} \sum_{j=1}^n \alpha_{ij} \frac{\partial}{\partial t_j} + \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right).
$$

Then for $q+1 \leq i \leq n$ we have

(1.5)
$$
\frac{\partial}{\partial \xi_i} = \frac{1}{2} \left(\frac{\partial}{\partial t_i} + \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right).
$$

Let $\mathscr A$ be the sheaf of germs of (complex valued) real analytic functions on *C'/F* and

$$
\mathscr{H} := \Big\{ f \in \mathscr{A} \mid \frac{\partial f}{\partial \overline{\xi_i}} = 0 \quad q+1 \leq i \leq n \Big\}.
$$

Let $f{\in}H^0(\mathbb C^n/\varGamma,\mathscr A).$ Then we have the following Fourier expansion $\sum_{i=1}^{n}$ of f :

$$
(1.6) \t f(t_1,\ldots,t_{2n})=\sum_{m\in\mathbb{Z}^{n+q}}c^m(t'')\exp 2\pi\sqrt{-1}\langle m, t'\rangle,
$$

where $t' := (t_1, \ldots, t_{n+q}) \in T^{n+q}, t' := (t_{n+q+1}, \ldots, t_{2n}) \in R^{n-q}, m = (m_1,$..., $m_{n+q} \equiv Z^{n+q}$, $\langle m, t' \rangle = \sum_{i=1}^{n+q} m_i t_i$ and $c^m(t'')$ is real analytic in $t^{\prime\prime}\!\in\! R^{n-q}$ for any $m\!\in\!\mathbb{Z}^{n+q}$. We put

$$
f^{m}(t):=c^{m}(t^{n}) \exp 2\pi \sqrt{-1} \langle m, t \rangle.
$$

It follows from $(1, 4)$, $(1, 5)$ and $(1, 6)$ that

$$
(1.7) \qquad \frac{\partial f^m}{\partial \zeta_i} = \begin{cases} \pi \left(\sum_{j=1}^n v_{ij} m_j - m_{n+i} \right) f^m = \pi K_{m,i} f^m, & 1 \le i \le q \\ \frac{\sqrt{-1}}{2} \left(\frac{\partial c^m(t')}{\partial t_{n+i}} + 2\pi m_i c^m(t'') \right) \exp 2\pi \sqrt{-1} \langle m, t' \rangle, \\ q+1 \le i \le n. \end{cases}
$$

Furthermore suppose $f \in H^0(C^n / \Gamma, \mathcal{H})$. Since $\frac{\partial f}{\partial \mathcal{F}} = 0$ we have, by (1.6) and (1.7),

(1.8)
$$
f(t) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle,
$$

where c^m is complex constant for any $m \in \mathbb{Z}^{n+q}$.

§ 2. Cohomology Groups with Coefficients in the Sheaf \mathcal{H}

Let *M* be a paracompact real analytic manifold and \mathscr{A}_{M} be the sheaf of germs of real analytic functions on *M.* By the result of [4] we can regard M as a closed real analytic submanifold of a complex manifold N and M has a Stein neighbourhood basis $\{U_i:i\in I\}$ in N. Since ind. $\lim \{H^{\rho}(U_j, \sigma_N) : U_j \supset M\} = 0$, we have $H^{\rho}(M, \mathscr{A}_M) = 0$ for $p \ge 1$ ([10]).

In this section we treat cohomology groups as the following type. Let \mathscr{F} the sheaf $\left\{f(z, t) \in \mathscr{A}_{C\times R}; \frac{\partial f}{\partial \bar{z}} = 0\right\}$ on $C \times R$. We wish to consider whether $H^p(C \times R, \mathscr{F})$ vanishes for $p \geq 1$. Using a power series expansion of a function $f \in \mathscr{A}_{C \times R}$, we can prove that a homomorphism $\frac{\partial}{\partial \tilde{z}} : \mathscr{A}_{C \times R} \longrightarrow \mathscr{A}_{C \times R}$ is surjective. Then we have an exact
sequence 0 → *F* → $\mathscr{A}_{C \times R}$ → $\mathscr{A}_{C \times R}$ → 0. From this exact sequence and the lemma of [6, Lemma 2, p. 25], we can regard $H^{\flat}(C \times R, \mathscr{F})$ as $H^p(C, \mathcal{O}^E)$, where \mathcal{O}^E is the sheaf of germs of holomorphic functions with values in the locally convex space $E:=H^0(R, \mathscr{A}_R)$. Since *E* admits no structures of Frechet spaces, then we cannot apply the result of [1] and [2] to $H^p(C \times R, \mathcal{F})$. And since $C \times R$ has no Stein neighbourhood bases in $C \times C$, then we cannot prove the vanishing of $H^p(C \times R, \mathcal{F})$ by the same method of the proof of the \mathbf{a} theorem: $H^p(M, \mathcal{A}_M) = 0$. To get our purpose in this section, we must investigate a property of Stein open neighbourhood of C^k \times R^i in $C^k \times C^l$.

We will use the following notations in the rest of this paper. For an m -tuple $\xi = (\xi_1, ..., \xi_m)$, $||\xi|| := \max\{|\xi_i|; 1 \le i \le m\}$. And the notation (equalities and inequalities involving functions *h^* . . . , *hm}* denotes the set of all points in the intersection of the domains of definition of *kly* . . . , *hm* satisfying the given equalities and inequalities.

Lemma 2. 1. Let $\pi: S \longrightarrow C^k \times C^l$ be a (unramified Riemann) *domain of holomorphy over* $C^k \times C^l$ (k, $l \ge 1$), $A_r := \{(w_1, \ldots, w_l) \in C^l\}$; $|w_j - a_j| \leq r_j$, $1 \leq j \leq l$, where $r = (r_1, \ldots, r_l)$, $r_j > 0$ and (a_1, \ldots, a_l) $\epsilon \in C^{\iota}$ and let $\epsilon = (\epsilon_1, \ldots, \epsilon_{\iota})$ for $\epsilon_j \geq 0$ ($1 \leq j \leq l$). Further assume there *exist an open subset* V_1 *of* S *and* δ >0 *such that* $\pi|_{V_1}$ *is biholomorphic into* $C^k \times C^l$ and $\pi(V_1) \supset (C^k \times \mathcal{A}_r) \cup \{||z|| \leq \delta\} \times \mathcal{A}_{r+\epsilon}$, where $\mathcal{A}_{r+\epsilon}$: =

 ${\{|w_i - a_i| \lt r_j + \varepsilon_i, 1 \leq j \leq l\}}$. Then there exists an open subset V_2 of S *with* $V_1 \subset V_2$ such that $\pi|_{V_2}$ is biholomorphic into $C^k \times C^l$ and $\pi(V_2)$ $\supset C^k \times \mathcal{A}_{r+\varepsilon}$

Proof. We may assume $a_1 = \cdots = a_l = 0$. Let $f \in H^0(S, \mathcal{O}_S)$. Then f can be expanded in the power series $:f|_{(\pi |V_1)^{-1}}(C^k \times \mathcal{A}_r)(x) =$ $\sum_{\nu,\mu}a_{\nu\mu}(z\circ\pi(x))^{\nu}(w\circ\pi(x))^{\mu}$, where $(z\circ\pi(x))^{\nu}=(z_1\circ\pi(x))^{\nu_1}\cdots(z_k\circ\pi(x))^{\nu_k}$ and $(w \circ \pi(x))^{\mu} = (w_1 \circ \pi(x))^{\mu_1} \cdots (w_l \circ \pi(x))^{\mu_l}$. Then the power series $F(z, w) := \sum_{\nu, \mu} a_{\nu} z^{\nu} w^{\mu}$ converges in $(C^k \times \mathcal{A}_r) \cup \{||z|| < \delta\} \times \mathcal{A}_{r+\epsilon}$. We put $D_a: = (\{|z||< d\} \times {\{|w_j|< r_j, 1 \leq j \leq l\}}) \cup (\{|z||< \delta\} \times {\{|w_j|< r_j + \varepsilon_j,$ $1 \leq j \leq l$) for $d > \delta$. The envelope of holomorphy of D_d is the smallest logarithmically convex complete Reinhardt domain \hat{D}_d : = { $||z|| < d$, $|w_j| < r_j + \varepsilon_j$, $\log |w_j| - \log r_j < \frac{\log d - \log ||z||}{\log d - \log \delta} (\log (r_j + \varepsilon_j) - \log r_j) \}$ which contains D_d (for instance see [13]). Since *F* converges in D_d for all $d > \delta$, then F can be continued holomorphically in \hat{D}_d for any $d > \delta$. We take any point $(z, w) \in C^k \times \mathcal{A}_{r+\epsilon}$. Then we can find a sufficiently large positive number d_0 such that $\log |w_j| - \log r_j$ $\frac{\log d_0 - \log ||z||}{\log d_0 - \log \delta}$ (log($r_j + \varepsilon_j$) $- \log r_j$). Then $(z, w) \in \hat{D}_{d_0}$. This implies that F converges in $C^k \times \mathcal{A}_{r+\varepsilon}$. Since $\pi : S \longrightarrow C^k \times C^l$ is a domain of holomorphy, we find an open subset V_2 of S satisfying the statements of the lemma (for instance see $[6,$ Theorem 18, p. 55]).

The following lemma asserts that $C\times R$ admits no Stein open neighbourhood bases in $C \times C$. For instance we take an open neighbourhood $V := \{(z, w) \in C^2; |\text{Im } w| \leq (1 + |z|)^{-1}\}$ of $C \times R$ in $C \times C$. Then we cannot find a Stein open subset V^* so that $C \times R \subset V^* \subset V$.

Lemma 2.2. Let I_j : = { $w_j \in C$; Im $w_j = 0$, $a_j \leq Re w_j \leq b_j$ }, where $-\infty \leqq a_j \lt b_j \leqq \infty$ ($1 \leqq j \leqq l$), $I := I_1 \times \cdots \times I_l \subset R^l \subset C^l$ and f a holomorphic function in a neighbourhood of $C^k \times I$ in $C^k \times C^l$. Then there *exists a Stein open neighbourhood V of I in C^l such that f can be continued holomorphically to C^k xV.*

Proof. First we assume $l=1$. Then $I = \{w \in C$; Im $w=0, a \leq 0\}$ Re $w****$, where $-\infty \le a < b \le \infty$. We have an open and connected neighbourhood D of $C^k \times I$ in $C^k \times C$ so that f is holomorphic in D. Let $\pi:\hat{D}\longrightarrow C^*\times C$ be the envelope of holomorphy of D which is given

by a Riemann domain over $C^k \times C$. Then there exists a holomorphic injection $j: D \longrightarrow \hat{D}$ such that $\pi \circ j =$ identity and the mapping $H^0(\hat{D}, \mathcal{O}_D) \ni g \longmapsto g \circ j \in H^0(D, \mathcal{O}_D)$ is an isomorphism. Put $U := j(D),$ for $\varepsilon = \pm 1$ \hat{D}^{ε}_1 :=the connected component of $\pi^{-1}(C^k\times\{a\mathbb{<}\mathrm{Re}\,\,w\mathbb{<}b,$ $\epsilon \text{ Im } w \mathord{<} 0 \}$) satisfying $\hat{D}_1^{\epsilon} \cap U \mathord{\neq} \phi$ and $D^{\epsilon} \mathord{:} = \{(z, \; w) \mathbin{\in} D : a \mathord{<} \mathrm{Re } \; w \mathord{<} b\}$ $\bigcup C^k \times \{w \in \mathbb{C} : a \leq R$ e $w \leq b$, ϵ Im $w > 0\}$. Then $\pi : \hat{D}_1^{\epsilon} \longrightarrow C^k \times C$ is a domain of holomorphy. We identify $(z, \, w)\! \in\! D^{\varepsilon}$ and $x\! \in\! \hat{D}_{\rm b}^{\varepsilon}$ if $(z, \, w)$ \in D and $j(z, w) = x$. We write this identification by $(z, w) \sim x$. Then for $\varepsilon = \pm 1$ we get Riemann domains

$$
\pi_{\varepsilon}: G^{\varepsilon}: \hat{D}_{1}^{\varepsilon} \cup D^{\varepsilon}/\!\!\sim\!\cdots\!\!\rightarrow C^{k} \!\times\! C,
$$

where $\pi_{\varepsilon}(x) := \pi(x)$ if $x \in \hat{D}_{1}^{\varepsilon}$ and $\pi_{\varepsilon}(z, w) := (z, w)$ if $(z, w) \in D^{\varepsilon}$. Now we consider the case $\varepsilon = 1$. We put

$$
G^1_i:=G^1\cap \pi_1^{-1}(C^k\times \{a+t\mathopen{<} \{{\rm Re}\ w\mathopen{<} b-t\})\ \ \text{for}\ \ 0\mathopen{<} t\mathopen{<}(b-a)/2.
$$

Since G_t^1 is p_4 -convex in the sense of [3], $G^1 = \bigcup_{0 \le t \le (b-a)/2} G_t^1$ is a domain of holomorphy. We take $x_0 \in U$ with $\pi_1(x_0) = (x^0, w^0)$ for some $w^0 \in I$. We put

$$
\tau_0 := 1/2 \min \{ w^0 - a, \ b - w^0 \} > 0
$$

$$
P_{\tau_0} := C^k \times \{ |w - w^0 - \sqrt{-1} \ \tau_0 | < \tau_0 \}.
$$

Then we have $P_{\tau_0} \subset D^1 \subset G^1$. And there exist $\delta_1 > 0$ and an open subset U_1 of G^1 with $x_0 \in U_1$ such that $\pi_1|_{U_1}$ is biholomorphic into $C^k \times C$ and $\pi_1(U_1) \supset |||z|| \leq \delta_1 \} \times {\| w-w^0 - \sqrt{-1} \tau_0 \| \leq \tau_0 + \delta_1 \}.$ By Lemma 2. 1 we have an open subset U_2 of G^1 with $x_0 \in U_2$ so that $\pi_1|_{U_2}$ is biholomorphic into C^k \times C and

$$
\pi_1(U_2) \supset C^k \times \{ |w-w^0-\sqrt{-1} \tau_0|<\tau_0+\delta_1 \}.
$$

Then $\pi(\hat{D}_1^1 \cap U_2) \supset C^k \times {\{ \vert w-w^0 \vert < \delta_1, \text{ Im } w \leq 0 \}}$. Applying the above method to the case $\varepsilon = -1$, we get $\delta_2 > 0$ and an open subset U_3 of G^{-1} with $x_0 \in U_3$ so that $\pi_{-1} | U_3$ is biholomorphic and $\pi(\hat{D}_1^{-1} \cap U_3) \supset C^k$ \times { $|w-w^0|<\delta_2$, Im $w\geq 0$ }. Then there exists an open neighbourhood U_4 of x_0 in \hat{D} such that $\pi|_{U_4}$ is biholomorphic into $C^k \times C$ and $\pi(U_4)$ $\supset C^k \times \{ |w - w^0| \leq \min \{\delta_1, \ \delta_2\} \}.$ This means that f can be continued holomorphically to $C^k\times V^*$ for some open neighbourhood V^* of I in C. Then we complete the proof in the case $l=1$. We can prove the assertion of the lemma for $l \geq 3$ similarly to the case $l = 2$. Then we shall only prove the lemma in the case $l=2$. Let $I := I_1 \times I_2 =$

 $\{(w_1, w_2) : \text{Im } w_i = 0, a_i \le \text{Re } w_i \le b_i, i = 1, 2\} \subset R^2 \subset C^2$, *f* a holomorphic function in a neighbourhood E of $C^* \times I$ in $C^* \times C^2$ and \hat{E} the envelope of holomorphy of *E.* In general *E* is given by a Riemann domain over $C^k \times C^2$. Using the same technique of the proof in the case $l=1$, we may treat \hat{E} as a univalent domain of holomorphy in $C^k \times C^2$ which contains E without loss of generality. We take $(t_1^0, t_2^0) \in I_1 \times I_2$ and δ >0 satisfying δ < min { $t_i^0 - a_i$, $b_i - t_i^0$; $i = 1, 2$ } and { $||z|| < \delta$ } × { $|w_i - t_i^0|$ } $\langle \delta, i=1, 2 \rangle \subset E$. Let $I_i^0 := R \cap \{w_i \in C; |w_i - t_i^0| \leq \delta\}$ $(i=1, 2), I_i' :=$ $=$ *I*₁⁰ \cap { $|w_1-t_1^0|<$ δ /3} and $\hat{E}(t_2):$ = { $(z, w_1) \in C^k \times C$; $(z, w_1, t_2) \in \hat{E}$, Re $w_1 \in I_1^0$ for $t_2 \in I_2^0$. And we put

 $\hat{E}(t_2)^{\varepsilon}$: = $\hat{E}(t_2) \cup C^k \times \{w_1 : \varepsilon \text{ Im } w_1 \ge 0, \text{ Re } w_1 \in I_1^0\}$

for $\varepsilon = \pm 1$. Then $\hat{E}(t_2)^{\varepsilon}$ is a domain of holomorphy for $\varepsilon = \pm 1$ and $t_2 \in I_2^0$. We have $C^k \times {\{\vert w_1 - t_1 - \sqrt{-1}(\delta/3) \vert < \delta/3\}} \subset \hat{E}(t_2)^{-1}$ and ${\{\vert z \vert \vert \}}$ $\langle \delta \rangle \times \{ \vert \textstyle w_1 - t_1 - \sqrt{-1}\, (\delta/3) \vert \, \zeta(2\delta/3)\} \, \subset\! \hat{E}(t_2)^{+1} \;\; \text{ for}$ It follows from Lemma 2. 1 that

$$
C^k \times \{ |w_1 - t_1 - \sqrt{-1} (\delta/3) | \langle 2\delta/3 | C \hat{E}(t_2)^{-1} | \rangle \}
$$

for $t_2 \in I_2^0$ and $t_1 \in I_1'$. Similarly we have

 C^k \times { $|w_1-t_1+t\rangle$

for $t_2 \in I_2^0$ and $t_1 \in I_1'$. We put $V_1^0 := \{w_1; |\text{Im } w_1| < \delta/3, \text{Re } w_1 \in I_1'\}.$ Then we have $C^k \times V_1^0 \times I_2^0 \subset \hat{E}$. We set

> $\hat{E}_1:=\{(z, w_1, w_2)\in \hat{E}$; $w_1\in V_1^0$, Re $w_2\in I_2^0\}$, $\hat{E}_{1}^{\varepsilon}$: $=\hat{E}_{1} \cup C^{k} \times V_{1}^{0} \times \{w_{2}; \varepsilon \text{ Im } w_{2} \geq 0, \text{ Re }$

for $\varepsilon=\pm 1$. Since $C^k\times V_1^0\times \{w_2; |w_2-t_2^0-\sqrt{-1}(\varepsilon\delta/2) |<\delta/2\} \subset \hat{E}_1^{\varepsilon}$ and $\{|z| \leq \delta\} \times V_1^0 \times \{w_2; |w_2-t_2^0-\sqrt{1-(\epsilon\delta/2)} \leq \delta\} \subset \hat{E}_1^{\epsilon} \quad (\epsilon=\pm 1), \text{ it follows}$ from Lemma 2. 1 that

$$
C^k\times V^0_1\times\{|w_2-t_2^0|<\delta/2\}\subset\widehat{E}.
$$

Since (t_1^0, t_2^0) is an arbitrary point of I, we find an open subset V of I in C^2 so that f can be continued holomorphically to $C^k \times V$. I has a Stein neighbourhood basis in C² . Then we may regard *V* as a Stein open subset of *C²* ([4]).

Lemma 2. 3. Let I be as in Lemma 2. 2 and f a holomorphic *function in a neighbourhood of* $C^{*k} \times I$ *in* $C^{*k} \times C^l$. Then there exists *a Stein open neighbourhood V of I in C¹ such that f can be continued*

holomorphically to C^k xV.*

Proof. It is sufficient to prove the lemma in the case $k=2$. Let $i\pi\sqrt{-1}$ ² $\int_{|z_1|=1} \int_{|z_2|=1} \frac{f(z_1, z_2, t)}{z_1^{p_1+1} z_2^{p_2+1}} dz_1 dz_2$ for $\nu = (\nu_1, \nu_2)$ and $t \in I$. And we use the notations: $\sum_{(1)} \mathbb{I} = \sum_{\nu_1, \nu_2 \geq 0} \sum_{(2)} \mathbb{I} = \sum_{\nu_1 \geq 0, \nu_2 < 0}$ $\sum_{(3)}:=\sum_{\nu_1<0, \nu_2\geq 0^,} \sum_{(4)}:=\sum_{\nu_1,\nu_2<0} \text{ and } f_i(z_1, z_2, t):=\sum_{(i)} a_{\nu}(t) \, z_1^{\nu_1} z_2^{\nu_2}$. Then we can apply Lemma 2. 2 to each f_i . For instance we take $f_4^*(\hat{z}_1, \hat{z}_2, t) := f_4(\hat{z}_1^{-1}, \hat{z}_2^{-1}, t)$ which is holomorphic in $(\hat{z}_1, \hat{z}_2) \in C^2$. By Lemma 2. 2 f_4^* can be continued to $C^2 \times V$ for some Stein open neighbourhood *V* of *I* in *C*^{*l*}. Since $f=f_1+f_2+f_3+f_4$, we get the proof of the lemma.

Let $\pi_q: C^n/\Gamma \ni (z_1, \ldots, z_n) + \Gamma \longmapsto (z_1, \ldots, z_q) + \Gamma^* \in T^q_c = C^q/\Gamma^*$ be the C^{*n-q} -principal bundle over T_c^q as in Proposition 1. 1. Since $\alpha_{ij} = 0$ for $1 \leq j \leq n$, $q+1 \leq i \leq n$ and $\gamma_{ij} = 0$ for $q+1 \leq i \leq n$, $1 \leq j \leq q$, from (1. 3) it follows that $t_j = x_j - \sum_{s=1}^q \sum_{i=1}^q y_i \gamma_{is} \alpha_{sj}$ and $t_{n+j} = \sum_{i=1}^q y_i \gamma_{ij}$ for $1 \leq j \leq q$. This relation induces an isomorphism $\sigma : T^q_{\mathcal{C}} \ni (z_1, \ldots, z_q)$ $+ \Gamma^* \longmapsto$ (exp $2\pi \sqrt{-1} t_1, \ldots, \text{ exp } 2\pi \sqrt{-1} t_q, \text{ exp } 2\pi \sqrt{-1} t_{n+1}, \ldots, \text{ exp } 2\pi t$ $\mathcal{L}_q \equiv T^{2q},$ where T^{2q} is a real 2q-dimensional torus. And we have an isomorphism $\phi : C^n/\Gamma \ni (z_1, \ldots, z_n) + \Gamma \longmapsto (\exp 2\pi \sqrt{-1} (t_{q+1})$ $+ \sqrt{-1} t_{n+q+1}$,..., $\exp 2\pi \sqrt{-1} (t_n + \sqrt{-1} t_{2n})$; $\sigma \circ \pi_q(z_1, \ldots, z_n)$) $\in \mathbb{C}^{*n-q}$ *T 2q* with a commutative diagram:

where $\pi'(\xi, \eta) = \eta$ for $\xi = (\xi_1, \ldots, \xi_{n-q})\in C^{*n-q}$ and $\eta \in T^{2q}$. We take the sheaf $\mathcal F$ of germs of real analytic functions which is holomorphic in each fibre of π' on $C^{*n-q} \times T^{2q}$, that is

$$
\mathscr{F} := \{ f \in \mathscr{A}' \, ; \, \frac{\partial f}{\partial \bar{\xi}_i} = 0, \ 1 \leq i \leq n - q \},
$$

where \mathscr{A}' is the sheaf of germs of real analytic functions on $C^{*n-q}\times T^{2q}$. And we consider the sheaf $\mathcal{H} := \{f \in \mathcal{A} : \frac{\partial f}{\partial \mathcal{E}_i} = 0 \mid q+1 \leq i \leq n\}$ on C'/T as in Section 1. Then by (1.5)

$$
(2.1) \t\t \phi^*: H^0(W, \mathcal{F}) \ni f \longmapsto f \circ \phi \in H^0(\phi^{-1}(W), \mathcal{H})
$$

is an isomorphism for any open subset W of $C^{*n-q} \times T^{2q}$. We put $J:=$

and for $j = (\varepsilon_1, \ldots, \varepsilon_{2q}) {\in} J$ $U_j \colon = \{(\exp 2\pi\sqrt{-1}\})$..., $\exp\left(2\pi\sqrt{-1} \; t_q, \exp\left(2\pi\sqrt{-1} \; t_{n+1}, \ldots, \exp\left(2\pi\sqrt{-1} \; t_{n+q}\right)\right)\right) \in T^{2q}; -1/2 \leq t_s$ $t_{n+s}\leq 1/2$, $t_{n+s}\neq \varepsilon_{q+s}/4$, $t_s\neq \varepsilon_s/4$ for $1\leq s\leq q$. Then we have open coverings $\mathfrak{U} := \{C^{*n-q} \times U_j : j \in J\}$ and $\mathfrak{V} := \{\phi^{-1}(C^{*n-q} \times U_j) : j \in J\}$ of $C^{*n-q}\times T^{2q}$ and C^*/Γ , respectively.

Proposition 2.4. Let $H^{\rho}(\mathfrak{B}, \mathcal{H})$ be the p-th Cech cohomology *group of the covering* 33 *of Cⁿ /F. Then*

$$
H^p(\mathfrak{B}, \mathscr{H})=0 \quad \text{for } p\geq 1.
$$

Proof. We have an isomorphism $\phi^*: H^p(\mathfrak{U}, \mathcal{F}) \longrightarrow H^p(\mathfrak{V}, \mathcal{H})$ by (2.1). Then we may prove $H^p(\mathfrak{U}, \mathscr{F}) = 0$ for $p \ge 1$. We regard T^{2q} as the closed real analytic submanifold $\{(w_1, \ldots, w_{2q}) : |w_i|=1,$ $1\!\leq\! i\!\leq\! 2q\}$ of C^{2q} . Let C be any connected component of $U_{j_0}\!\cap\!\ldots\!\cap U_{j_j}$. Then there exist a rectangular set $I\!\subset\! R^{2q}\!\subset\!C^{2q}$ as in Lemma 2. 2 and an open neighbourhood V of I in C^{2q} such that $\phi\!:\!V\!\!\ni$ (u_1 , \ldots , $u_{2q})$ \longleftrightarrow (exp $2\pi\sqrt{-1} u_1, \ldots, \text{ exp } 2\pi\sqrt{-1} u_{2q}$) $\in C^{2q}$ is biholomorphic and $\phi(I) = C$. We take $\{c_{i_0} \}_{i_0} \in \mathbb{Z}^p(\mathfrak{U}, \mathcal{F})$. In virtue of such mapping ϕ and by Lemma 2. 3 there exist a Stein and connected open neighbourhood $U_{j_0...j_k}^*$ of $U_{j_0}\cap\ldots\cap U_{j_k}$ in C^{2q} and a unique holomorphic function $c_{j_0 \ldots j_p}^*$ in $C^{*n-q} \times U_{j_0 \ldots j_p}^*$ such that $c_{j_0 \ldots j_p}^* \vert C^{*n-q} \times U_j$ $\bigcap \ldots \bigcap U_{j_p} = c_{j_0 \ldots j_p}$. Since each U_j admits a Stein neighbourhood basis in C^{2q} , we can choose a Stein neighbourhood U_j^* of U_j in C^{2q} so that $U_{i_0}^* \cap \ldots \cap U_{i_k}^* \subset U_{j_0...j_k}^*$. We take ε (0 $\lt \varepsilon \lt 1$) satisfying $A_\varepsilon = \{1 - \varepsilon \lt |w_i|\}$ $\langle 1+\varepsilon, 1 \leq i \leq 2q \rangle \subset \bigcup_{j \in J} U_j^*$. Then we have $({c_{i_0, j_0}}; {C^{*n-q}} \times U_{i_0}^* \cap \dots)$ $\cap U_{j_{\mathfrak{a}}}^{\sim} \cap d_{\epsilon} \rangle) \! \in \! Z^{p}(\{C^{*n-q} \times (U_j^{\sim} \cap d_{\epsilon})\}, \; \; \mathcal{O}\,)$. Since $\mathcal{C}^{*n-q} \! \times \! d_{\epsilon}$ is a Stein open set, there exists $\{d_{j_0...j_{p-1}}^*\} C^{p-1}(\{C^{*n-q}\times (U_j^*\cap \mathcal{A}_\varepsilon)\}, \emptyset)$ such that $\delta \{d_{j_0 \; j_{p-1}}^* \} = {c_{j_0 \; j_p}^*} | C^{*n-q} \times (\tilde{U}_{j_0}^* \cap ... \cap \tilde{U}_{j_p}^* \cap \tilde{\mathcal{A}}_k)\}.$ This completes the proof.

Let $f \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}) = Z^0(\mathfrak{B}, \mathcal{H})$. From (1.8) we have $f(t) =$ $(2, 2)$ $f \circ \phi^{-1}(\xi, \eta) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \xi_1^{mq+1} \dots \xi_{n-q}^{m} \eta_1^{m_1} \dots \eta_q^{m_q} \eta_{q+1}^{m_{n+1}} \dots \eta_{2q}^{m_{n+q}}$ for $(\xi, \eta) \in C^{*n-q} \times T^{2q}$. Observing the proof of Proposition 2. 4 and by Lemma 2. 3, we have the following

Proposition 2.5. There exists $\varepsilon > 0$ such that the Laurent series

expansion:

$$
\textstyle \sum\limits_{m \in Z^{n+q}} c^m \xi_1^{m_{q+1}} \dots \xi_{n-q}^{m_n} w_1^{m_1} \dots w_q^{m_q} w_{q+1}^{m_{n+1}} \dots w_{2q}^{m_{n+q}}
$$

which induced by $(2, 2)$ *converges for all* $(\xi, w) \in C^{*n-q} \times \Delta_{\xi}$, w $\mathcal{A}_{\varepsilon} = \{1 - \varepsilon \mathcal{L} \mid w_i \mid \mathcal{L} \mathbf{1} + \varepsilon\}.$

§ 3. A Special Resolution of the Structure Sheaf *(9* **of** *Cⁿ /F*

Let U be an open subset of C^1 , \mathscr{A}^+ be the sheaf of germs of real analytic functions on $C^{*k} \times U$. We consider the sheaf $\mathscr{G} :=$ $\leq j \leq k$, where $(z, w) \in C^{*k} \times U$ and $\mathscr{G}^{0,k}:=$ $\sum_{1 \leq i_1, \ldots, i_p \leq l} f_{i_1 \ldots i_p} d\bar{w}_{i_1} \wedge \ldots \wedge d\bar{w}_{i_p}; f_{i_1 \ldots i_p} \in \mathscr{G} \}$ for $0 \leq p \leq l$. Here any form treated in the rest of this paper is written skew-symmetrically in all indices.

Let $f \in H^0(C^{*k} \times U, \mathcal{G})$ and $w^0 = (w_1^0, \ldots, w_l^0) \in U$. By Lemma 2. 3 there exists an open neighbourhood U^0 of w^0 in U such that f has the following expansion:

$$
(3,1) \t f(z, w) = \sum_{\nu \in Z^k} \sum_{\alpha_i, \beta_i \geq 0} b_{\nu, \alpha, \beta} z^{\nu} (w - w^0)^{\alpha} \overline{(w - w^0)^{\beta}}
$$

which converges for all $(z,\ w)\in C^{*k}\times U^0,$ where $(w-\overline{w}^0)^{\alpha}=(w_1-\overline{w}^0_1)^{\alpha_1}$ *^{<i>1}* and $\overline{(w-w^0)}^{\beta} = \overline{(w_1 - w_1^0)}^{\beta_1} \dots$ </sup>

Lemma 3. 1. Let $f = 1/p!$ $\sum_{i_1 \ldots i_p} d\bar{w}_{i_1} \wedge \ldots \wedge d\bar{w}_{i_p} \in H^0(C^{*k} \times$ $i_1 \leq i_1 \ldots, i_p \leq i^{j}i_1 \ldots i_p$ ^{*b*} ∞ $i_1 \land \ldots \land \dots \land \dots$ U, $\mathscr{G}^{0,p}$ with $\bar{\partial}f=0$ ($p\geqq 1$). For any $w^0\in U$ choose an open neigh*bourhood* U^0 *of* w^0 *so that any* $f_{i_1 \ldots i_p}$ *can be expanded in* $C^{*k} \times U^0$ *as in* (3. 1). Then there exists $g^0 \in H^0(C^{*k} \times U^0, \mathscr{G}^{0,p-1})$ such that $\bar{\partial}g^0 = f$.

Proof. Let *m* be the least integer such that the explicit representation of f in coordinate form involves only the conjugate differentials $d\bar{w}_1, \ldots, d\bar{w}_m$. The proof will be by induction on m. First we consider $m = p$. Then $f = f_{12} \cdot p d\bar{w}_1 \wedge \ldots \wedge d\bar{w}_p$ and we have an expansion $f_{12..b} = \sum a_{\nu\alpha\beta} z^{\nu} (w-w^0)^{\alpha} (w-w^0)^{\beta}$ in $C^{*k} \times U^0$ as in (3.1). Since $\bar{\partial}f=0$, f_{12} *p* must be holomorphic in w_{p+1} , ..., w_i . Putting g_{12} , $_{p-1}$: $= \sum a_{\nu\alpha\beta}/(\beta_p+1)z^{\nu}$ ($w-w^0$) $\alpha \overline{(w-w^0)}^{\beta}$ ($w_p-w_p^0$) and g : $=g_{12}$, $_{p-1}d\bar{w}_1$ $\bigwedge \ldots \bigwedge d\bar{w}_{p-1}$, g_{12} , $_{p-1}$ is also holomorphic in w_{p+1} , ... w_i and $\bar{\partial}g = f$. Using the standard argument for the Dolbeault lemma (for instance

see [6, the proof of Theorem 3, p. 27]), we can complete the proof.

Observing the proof of Proposition 2. 4, we have the following lemma.

Lemma 3. 2. Let $\{U_i\}$ be a locally finite open covering of $U \subset C^1$ and each U_i is a rectangular open subset $\{a_j^{(i)}$ $\!<$ $\mathrm{Re}\ w_j$ $\!<$ $\!b_j^{(i)}$, $c_j^{(i)}$ $\!<$ $\mathrm{Im}\ w_j$ $\langle d_i^{(i)}; 1 \leq j \leq l \rangle$ for some $a_i^{(i)}, b_i^{(i)}, c_i^{(i)}$ and $d_i^{(i)} \in R$. Take the open *covering* $\mathfrak{U} := \{ C^{*k} \times U_i \}$ of $C^{*k} \times U$. Then $H^p(\mathfrak{U}, \mathscr{G}^{0,s}) = 0$ for $p \geq 1$, $0 \leq s \leq l$.

By Lemmata 3. 1 and 3. 2 we have the following lemma.

Lemma 3. 3. Let U be a Stein open subset of C^l and $f \in H^0(C^{*k})$ $\times U$, $\mathscr{G}^{0,b}$ with $\bar{\partial}f = 0$. Then there exists $g \in H^0(C^{*k} \times U, \mathscr{G}^{0,b-1})$ *such that* $\bar{\partial}g = f$.

Proof. By Lemma 3. 1 we have a Stein covering $\{U_i\}$ and $g_i \in H^0(C^{*k} \times U_i, \mathscr{G}^{0, p-1})$ with $\bar{\partial} g_i = f$. We put $h^{(1)}_{i_0 i_1} := g_{i_1} - g_{i_0}$. Then $\partial h_{i_0 i_1}^{(1)} = 0$. Further by Lemma 3. 1 we get $g_{i_0 i_1}^{(1)} \in H^0(C^{*k} \times U_{i_0 i_1} \times \mathscr{G}^{0. p-2})$ with $\bar{\partial} g_{i_0 i_1}^{(1)} = h_{i_0 i_1}^{(1)}$, where we use the notation $U_{i_0 \ldots i_s} := U_{i_0} \cap \ldots \cap U_{i_s}$. We set $\{h_{i_0i_1i_2}^{(2)}\}$: $=\delta\{g_{i_0i_1}^{(1)}\}$. Then $\bar{\partial}h_{i_0i_1i_2}^{(2)}=0$. Inductively we find ${\rm sequence}_S \{g_{i_0...i_s}^{(s)}\} \in C^s(\overline{\mathfrak{U}}, \mathscr{G}^{0, p-s-1}) \text{ for } 1 \leq s \leq p \text{ and } \{h_{i_0...i_s}^{(s)}\} \in C^s(\mathfrak{U}, \mathcal{G}^{0, p-s-1})$ $\mathscr{G}^{\,0,\,b-s}) \quad \text{ for } \quad 1\!\leq\! s\!\leq\! p, \,\, \mathfrak{U}\!:=\!\{C^{*\,k}\!\times U_i\} \quad \text{ so } \quad \text{that } \quad \bar{\partial} h_{i_0\ldots i_s}^{(s)}\!=\!0, \quad \{h_{i_0\ldots i_s}^{(s)}\} =$ $\delta \{g_{i_0...i_{s-1}}^{(s-1)}\}$ and $\bar{\partial} g_{i_0...i_s}^{(s)} = h_{i_0...i_s}^{(s)}$. Since $\{h_{i_0...i_p}^{(p)}\} \in Z^p(\mathfrak{U}, \mathcal{O})$ and \mathfrak{U} is Stein covering of the Stein open set $C^{*k} \times U$, then there exists ${s_f^{(p-1)} \choose {i_0...i_{p-1}}} \in C^{p-1}(\mathfrak{A}, \mathfrak{O})$ such that ${h^{(p)} \choose {i_0...i_p}} = \delta {f^{(p-1)} \choose {i_0...i_{p-1}}}$. Then ${g^{(p-1)} \choose {i_0...i_{p-1}}}$ ⁰). By Lemma 3. 2 we get $\{f_{i_0...i_{n-2}}^{(p-2)}\}\in C^{p-2}(\mathfrak{A},$ so that $\{g_{i_0...i_{p-1}}^{(p-1)}-f_{i_0...i_{p-1}}^{(p-1)}\}=\delta\{f_{i_0...i_{p-2}}^{(p-2)}\}$. We have $\bar{\partial}\{g_{i_0...i_{p-1}}^{(p-1)}\}$ $\{\bar{\partial}g^{(p-1)}_{i_0\cdots i_{p-1}}\} = \{h^{(p-1)}_{i_0\cdots i_{p-1}}\} = \delta\{g^{(p-2)}_{i_0\cdots i_{p-2}}\}.$ Then $(1\mathfrak{l}, \mathscr{G}^{0,1})$. Repeating the above argument, finally we find $\{f_i^{(0)}\} \in B^0(\mathfrak{U}, \mathcal{G}^{0, p-2})$ so that $h_{i_0 i_1}^{(1)} = g_{i_1} - g_{i_0} = \bar{\partial} f_{i_1}^{(0)} - \bar{\partial} f_{i_0}^{(0)}$. We put $g: =g_i-\bar{\partial}f_i^{(0)}$. Then $g \in H^0(C^{*k} \times U, \mathscr{G}^{0,k-1})$ and $\bar{\partial}g = f$.

Now we need the sheaf $\mathcal{H} = \{f \in \mathcal{A} : \frac{\partial f}{\partial \zeta_i} = 0 \mid q + 1 \leq j \leq n\}$ on C^n/Γ defining in Section 1. Further we consider the sheaf

$$
\mathscr{H}^{0,\,p} := \{1/p \mid \sum_{1 \leq i_1 \ldots i_p \leq q} f_{i_1 \ldots i_p} d\xi_{i_1} \wedge \ldots \wedge d\xi_{i_p}; f_{i_1 \ldots i_p} \in \mathscr{H}\}
$$

of germs of \mathcal{H} -forms of type $(0, p)$ which involves only the differen t *ials* $d\bar{\zeta}_1$, ..., $d\bar{\zeta}_q$.

Proposition 3. 4. *The sequence*

 $0 \longrightarrow 0 \longrightarrow \mathscr{H}^{0,0} \stackrel{\delta}{\longrightarrow} \mathscr{H}^{0,1} \stackrel{\delta}{\longrightarrow} \cdots \stackrel{\delta}{\longrightarrow} \mathscr{H}^{0,q} \longrightarrow 0$

is exact. And $H^p(C^n/\Gamma, \mathcal{O})$ is isomorphic to the quotient space { f ; $\mathscr{H}^{0,\,p}$, $\bar{\partial}f=0$ / { $\bar{\partial}g$; $g \in H^0(C^*/\Gamma, \, \mathscr{H}^{0,\,p-1})$ } for $p \geq 1$.

Proof. We can regard $(\zeta_1, \ldots, \zeta_n)$ as a local coordinate system of C^n/Γ . Let f be a germ belonging to a stalk H_{r^0} at $\zeta^0 \in C^n/\Gamma$. j has an expansion

$$
f = \sum_{\alpha,\beta} a_{\alpha\beta} (\zeta_{q+1}, \ldots, \zeta_n) (\zeta_1 - \zeta_1)^{\alpha_1} \cdots (\zeta_q - \zeta_q^0)^{\alpha_q} (\overline{\zeta_1 - \zeta_1^0})^{\beta_1} \cdots (\overline{\zeta_q - \zeta_q^0})^{\beta_q}
$$

which is similar to (3. 1) and converges in a small neighbourhood U^0 of ζ^0 in C^n/Γ , where $a_{\alpha\beta}$ is holomorphic in $\zeta_{q+1}, \ldots, \zeta_n$. Applying the method of the proof of Lemma 3. 1 to this expansion of $f \in \mathcal{H}_{r^{(1)}}$ we can prove the exactness of the sequence of the proposition. We put Ker $\bar{\partial}_k$: = Ker { $\bar{\partial}: \mathcal{H}^{0,k} \longrightarrow \mathcal{H}^{0,k+1}$ } and Im $\bar{\partial}_k$: = Im { $\bar{\partial}: \mathcal{H}^{0,k} \longrightarrow \mathcal{H}^{0,k+1}$. Then we have $\text{Im } \bar{\partial}_k = \text{Ker } \bar{\partial}_{k+1}$ and the short exact sequences
(3.2) 0—> $\text{Ker } \bar{\partial}_k \longrightarrow \mathcal{H}^{0,k} \longrightarrow \text{Im } \bar{\partial}_k \longrightarrow 0$ for $0 \le k \le q$.

$$
(3,2) \qquad 0 \longrightarrow \text{Ker } \bar{\partial}_k \longrightarrow \mathscr{H}^{0,k} \longrightarrow \text{Im } \bar{\partial}_k \longrightarrow 0 \quad \text{for } 0 \leq k \leq q.
$$

Let $\mathfrak{B} = \{ \phi^{-1}(C^{*n-q} \times U_j) \}$ be the same locally finite covering of C^n/Γ as in Proposition 2. 4. Since $\phi^{-1}(C^{*n-q} \times U_j)$ is biholomorphic to C^{*n-q} $\times U_j$, it follows from Lemma 3. 3 that

$$
\bar{\partial}: C^p(\mathfrak{B}, \mathscr{H}^{0,k}) \longrightarrow C^p(\mathfrak{B}, \text{ Im }\bar{\partial}_k)
$$

is an epimorphism. Then we have an exact sequence
\n
$$
0 \longrightarrow C^p(\mathfrak{B}, \text{Ker } \bar{\partial}_k) \longrightarrow C^p(\mathfrak{B}, \mathcal{H}^{0,k}) \longrightarrow C^p(\mathfrak{B}, \text{Im } \bar{\partial}_k) \longrightarrow 0.
$$

From (3. 2) there exists a long exact sequence $0 \rightarrow H^0(\mathfrak{B}, \text{Ker } \bar{\partial}_k)$ $\begin{split} \text{From (3. 2) there exists a long exact sequence } &\quad 0 \longrightarrow H^0(\mathfrak{B}, \text{ Ker }\bar{\partial}_k) \longrightarrow H^0(\mathfrak{B}, \text{ }\mathscr{H}^{0,k}) \longrightarrow H^0(\mathfrak{B}, \text{ Im }\bar{\partial}_k) \longrightarrow H^1(\mathfrak{B}, \text{ }\text{ Ker }\bar{\partial}_k) \longrightarrow H^1(\mathfrak{B}, \text{ }\mathscr{H}^{0,k}) \end{split}$ $\longrightarrow \cdots$. Using this exact sequence and the result of Proposition 2. 4, we have $H^s(\mathfrak{B}, \mathscr{H}^{0,k}) = 0$ for $s \ge 1$, $H^p(C^n/\Gamma, \mathcal{O}) = H^p(\mathfrak{B}, \mathcal{O}) = H^p(\mathfrak{B},$ $\mathrm{Ker} \, \, \bar{\partial}_0)=H^{p-1}(\mathfrak{B},\ \ \mathrm{Im} \, \, \bar{\partial}_0) \quad \text{and} \quad H^{p-k}(\mathfrak{B},\ \ \mathrm{Ker} \, \, \bar{\partial}_k)=H^{p-k-1}(\mathfrak{B},\ \ \mathrm{Im} \, \, \bar{\partial}_k) \quad \text{for}$ $0 \le k \le p-1$. Then we obtain

$$
H^{\rho}(\mathcal{C}^*/\Gamma, \mathcal{O}) \cong H^1(\mathfrak{B}, \text{ Ker } \bar{\partial}_{p-1}) \cong
$$

$$
H^0(\mathfrak{B}, \text{ Im } \bar{\partial}_{p-1}) / \text{Im } {\{\bar{\partial} : H^0(\mathfrak{B}, \mathscr{H}^{0,p-1}) \longrightarrow} H^0(\mathfrak{B}, \text{ Im } \bar{\partial}_{p-1}) }.
$$

This coincides with the quotient space asserten in this proposition.

Remark. By Proposition 3. 4 we obtain $H^p(C^r/\Gamma, \mathcal{O}) = 0$ for $\hat{p} \geq q+1$. This comes from the result of [7] directly, since we showed in [7] that C^*/Γ is strongly $(q+1)$ -complete in the sense of Andreotti and Grauert.

§4. $\bar{\partial}$ Cohomology Groups of (H, C) -Groups

Let $f \in H^0(C^n / T, \mathcal{H})$. By (1. 8) we have the Fourier expansion: $f = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+1}) \exp(2\pi \sqrt{-1} \langle m, t' \rangle)$. For $m = (m_1, \ldots,$ m_{n+q}) $\in \mathbb{Z}^{n+q}$ we put $m' := (m_1, \ldots, m_q, m_{n+1}, \ldots, m_{n+q}), m'' := (m_{q+1}, \ldots, m_q)$..., m_n), $||m'||$: = max { $|m_i|$, $|m_{n+i}|$; $1 \leq i \leq q$ } and $||m''||$: = max { $|m_j|$; $q+1 \leq j \leq n$. Then we have the following

Lemma 4.1. The following conditions on a sequence $\{c^m \in \mathbb{C}\}$; $m \in \mathbb{Z}^{n+q}$ are equivalent.

- (a) The Fourier expansion $\sum_{m\in \mathbb{Z}^{n+q}}c^m\exp(-2\pi \sum_{i=q+1}^n m_it_n)$ $\langle m, t' \rangle$ converges to a function in $H^0(C^n/\Gamma, \mathcal{H})$.
- (b) There exists $\varepsilon > 0$ such that for all $a > 0$ $^{\frac{n+q}{}}<\infty$.

Proof. We first prove (a) \Longrightarrow (b). Put $f(t):=\sum_{m\in\mathbb{Z}^{n+q}}c^m$ $\exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp(2\pi \sqrt{-1} \langle m, t' \rangle \in H^0(C^n/\Gamma, \mathcal{H}), (w_1, \ldots, w_{2q})$: $=$ (exp 2 $\pi\sqrt{-1} t_1, \ldots,$ exp $2\pi\sqrt{-1} t_q$, exp $2\pi\sqrt{-1} t_{n+1}, \ldots,$ exp $2\pi\sqrt{-1} t_q$ and ξ_i :=ex $l \leq i \leq n-q$. Then by Proposition 2. 5 we have $\delta > 0$ so that $f^*(\xi, w) := \sum_{m \in \mathbb{Z}^{n+q}} c^m \xi^{m''} w^{m'}$ is holomorphic in $(\xi, w) \in C^{*n-q} \times \{1 - \delta \leq$ $|w_j|<\!\!1+\delta\}, \text{ where } \xi^{\textit{m}''}\!:=\!\xi_1^{\textit{m}_{q+1}}\!\cdot\!\cdot\!\cdot\xi_{\textit{n}-q}^{\textit{m}_{n}}, w^{\textit{m}'}\!:=\!w_1^{\textit{m}_1}\!\cdot\!\cdot\!\cdot w_q^{\textit{m}_{q}}w_{q+1}^{\textit{m}_{n+1}}\!\cdot\!\cdot\!\cdot w_{2q}^{\textit{m}_{n+q}}.$ Put $\varepsilon := 1/2 \min \{-\log (1-\delta), \log (1+\delta)\}.$ Then for any $a > 0$ $\sup\{|c^m| \, |\xi_1|^{m_{q+1}}\cdots |\xi_{n-q}|^{m_n} |w_1|^{m_1}\cdots |w_q|^{m_q} |w_{q+1}|^{m_{n+1}}\cdots |w_{2q}|^{m_{n+q}}; m\in$ $Z^{n+q}, \text{ exp } (-a) \leq |\xi_i| \leq \exp a, \text{ exp } (-\varepsilon) \leq |w_i| \leq \exp \varepsilon \} < \infty.$ Conversely assume (b) holds. Then $\sum_{m\in\mathbb{Z}^{n+q}} c^m \xi^{m''} w^{m'}$ converges uniformly on every compact subset of $C^{*n-q} \times \{ \exp(-\varepsilon) \leq |w_j| \leq \exp \varepsilon \}.$ This implies (a).

For $m \in \mathbb{Z}^{n+q}$ we use the notation: $||m^*|| := max\{ |m_i|, 1 \le i \le n \}.$

Lemma 4. 2. *The following conditions* (0) *and* (1) *are equivalent.*

- (0) For any $\epsilon > 0$ there exists a positive number $a = a(\epsilon)$ such that $\sup_{m\neq 0} \exp(-\varepsilon ||m'|| -a||m''||)/K_m<\infty.$
- (1) There exists $a > 0$ such that $\sup_{m\to 0} \exp(-a||m^*||)/K_m < \infty$.

Proof. Since $K_m = \max_{1 \le i \le n} \sqrt{(\sum_{j=1}^n \text{Re } v_{ij} m_j - m_{n+i})^2 + (\sum_{j=1}^n \text{Im } v_{ij} m_j)^2}$ and the $q \times q$ -matrix $\text{[Im } v_{ij}$; $1 \leq i, j \leq q\text{]}$ is non-singular, we can find $C_1, C_2 > 0$ so that $S := \{m : m \neq 0, |K_m| \leq 1\} \subset \{m : m \neq 0, ||m'|| \leq C_1 +$ $C_2||m'||$. We shall show that the statement (1) is equivalent to the following

(*) There exists $a>0$ such that $\sup_{m\neq 0} \exp(-a||m||)/K_m<\infty$. Since $||m'|| \leq ||m^*||$, the implication (*) = (1) is trivial. Assume (1) $\mathsf{holds.}$ We have $\|m^*\| \leq \! \|m'\| + \|m''\| \leq C_1 + (C_2 + 1)\|m''\|$ for $m \in \mathbb{S}$. We put $b := (C_2 + 1)a > 0$. Then $\sup_{m \in S} \exp(-b||m||)/K_m \leq \exp(bC_1/(C_2+1))$ $\sup_{m\in S}\ \exp\left(-a||m^*||\right)/K_m\!\!<\!\!\infty. \quad \text{This implies (*) holds. We prove (0)}$ \Longrightarrow ^{(*}). Assume (0) holds. We get $a>0$ such that sup exp(- $\vert\vert m'\vert\vert$ $-a\|m''\|)/K_m < \infty$. We have \exp ($-(C_1 + C_2\|m''\| - a\|m''\|)/K_m \le$ $\exp(-||m'|| - a||m''||)/K_m$ for $m \in S$. This implies the statement (*) holds. The implication $(*) \implies (0)$ is trivial.

Remark. The condition (0) depends on our assumption that det $[\text{Im } v_{ij}; 1 \leq i, j \leq q] \neq 0$. But the condition (1) is independent on that.

Let $\rho = 1/p! \sum_{i,j} \rho_{i,j} \partial_{i,j} d\xi_{i,j} \wedge \ldots \wedge d\xi_{i} d\xi_{i} \in H^0(C^n/\Gamma, \mathcal{H}^{0,\{p\}})$. We expand each $\rho_{i_1 \dots i_p}$ as in (1. 8): $\rho_{i_1 \dots i_p} = \sum_{m \in \mathbb{Z}^{n+q}} b_{i_1 \dots i_p}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i})$ exp $2\pi\sqrt{-1} \langle m, t' \rangle$. We put $\rho_{i_1}^m$ $\sum_{i_1}^{n} = b_{i_1}^m$ $\sum_{i_1}^{n} \exp(-2\pi \sum_{i=q+1}^{n} m_i t_{n+i})$ $\exp\left(2\pi\sqrt{-1}\langle m, t'\rangle, \rho^m\right) = 1/p! \sum_{\substack{\lambda,\mu \in \mathbb{Z}^n, \lambda \neq \emptyset}} b_{i_1 \ldots i_k}^m \exp\left(-\frac{\beta\|\mu\|}{\lambda}\right)$ $\exp 2\pi \sqrt{-1} \langle m, t' \rangle d\bar{\zeta}_{i_1} \wedge \ldots \wedge d\bar{\zeta}_{i_s}$. Then $\rho = \sum_{j=1}^s \rho^m$. Suppose ρ is $\overline{\partial}$ -exact. Namely there exists a $(0, p-1)$ -form $\lambda = \sum_{m \in \mathbb{Z}^{n+q}} \lambda^m \in H^0(C^n/\Gamma,$ $\mathscr{H}^{0, p-1}$ such that $\rho = \bar{\partial} \lambda$. Then we have $\rho^m = \bar{\partial} \lambda^m$ for any We write $\lambda^m = 1/(\hat{p}-1)$! $\sum_{1 \leq i_1, \dots, i_{p-1} \leq q} \lambda_{i_1}^m i_{p-1} d\bar{\zeta}_{i_1} \wedge \dots \wedge d\bar{\zeta}_{i_{p-1}}$ and $\lambda_{i_1}^m \dots i_{p-1} = d_{i_1}^m \dots i_{p-1}$ exp $(-2\pi \sum_{i=q+1}^n m_i t_{n+i})$ exp $2\pi \sqrt{-1} \langle m, t' \rangle$. The equation $\rho^m = \bar{\partial} \lambda^m$ implies

312 HIDEAKI KAZAMA

$$
(4.1) \t\t \t\t \rho_{i_1...i_p}^m = \sum_{k=1}^p (-1)^{k+1} \frac{\partial \lambda_{i_1...i_k...i_p}^m}{\partial \bar{\zeta}_{i_k}}.
$$

Combining (4.1) with (1.7), we have for any $m \in \mathbb{Z}^{n+q}$

$$
(4.2) \t b_{i_1...i_p}^m = \sum_{k=1}^p (-1)^{k+1} \pi K_{m,i_k} d_{i_1...i_k...i_p}^m
$$

Now suppose $\phi = \sum_{m \in \mathbb{Z}^{n+q}} \phi^m \in H^0(C^n/\varGamma, \ \mathscr{H}^{0,\,p})$ is $\bar{\partial} - \text{closed.}$ From $\bar{\partial} \phi =$ and (4. 2) it follows that

(4.3)
$$
\pi \sum_{k=1}^{p+1} (-1)^{k+1} K_{m,i_k} c_{i_1}^m, \hat{i}_k^i \cdot i_{p+1} = 0,
$$

where we denote $\phi^m = 1 / p! \sum_{1 \le i_1, \dots, i_p \le q} c_{i_1 \cdot \dots i_p}^m$ exp ($-2\pi \sum_{i=q+1}^n m_i t_{n+i}$) $\exp\ 2\pi\sqrt{-1}\ \left\langle m,\ t'\right\rangle \ d\bar{\zeta}_{i_1}\!\!\wedge\ldots$ We put

$$
i(m) := \min\{i : |K_{m,i}| = K_{m'} \quad 1 \leq i \leq q\}
$$

and the indices $(i(m), i_1, \ldots, i_p)$ in the place of (i_1, \ldots, i_{p+1}) of the formula (4. 3), then we have

(4.4)
$$
\pi K_{m,i(m)} c_{i_1...i_p}^m = \pi \sum_{k=1}^p (-1) K^{k+1} K_{m,i_k} c_{i(m)i_1...i_k...i_p}^m.
$$

Since $K_m > 0$ for $m \neq 0$ by (1. 2), we can put

(4.5)
$$
\psi^m := 1/\pi (p-1) \sum_{1 \le i_1 \cdots i_{p-1} \le q} c^m_{i(m)i_1 \cdots i_{p-1}} / K_{m,i(m)}
$$

$$
\exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle d\zeta_{i_1} \wedge \ldots \wedge d\zeta_{i_{p-1}}
$$

for $m\neq 0$. Observing (4. 2), it follows from (4.4) and (4.5) that (4.6) $\partial^a = \bar{\partial} \phi^m$ for any

Remark. For any $\bar{\partial}$ -closed (0, p)-form $\phi = \sum \phi^m$ we have always a formal solution $\sum_{m\neq 0}\phi^m$ for the $\bar\partial$ -equation $\bar\partial\sum_{m\neq 0}\phi^m=\sum_{m\neq 0}\phi^m$ by (4. 6).

Here we need to topologize $H^0(\mathbb{C}^*/\Gamma, \mathscr{H})$. Let $\mathscr{A}(R)$ be the vector space of real analytic functions on *R.* We regard *R* as a closed real analytic submanifold of *C* under the natural inclusion. We take a compact subset *K* of *R* and an open and connected neighbourhood U_j of K in C, $1 \leq j \leq \infty$ satisfying $U_{j+1} \subset U_j$ and $r_1 U_j = K$. Let $\mathscr{A}(K)$ be the vector space of real analytic functions in a neighbourhood of K in R. We denote by $\mathscr{H}(U_i)$ the space of bounded holomorphic functions on U_j , $j \ge 1$. Put $||f|| := \sup \{ |f(z)| \}$; $z \in U_j$, $f \in \mathcal{H}(U_j)$. This norm makes $\mathcal{H}(U_j)$ into a Banach space.

By the inductive limit: $\mathscr{A}(K)$ = ind lim $\mathscr{H}(U_i)$ we regard $\mathscr{A}(K)$ as a (D, F, S)-space. The restriction mapping $\mathscr{A}(K_1) \longrightarrow \mathscr{A}(K_2)$, $K_2 \subset K_1$ induces the projective limit: $\mathscr{A}(R) = \text{proj lim }\mathscr{A}(K)$. It is known that the above locally convex topology on $\mathscr{A}(R)$ is complete and semi-Montel. Similarly to the topology of $\mathscr{A}(R)$ we can make the vector space $H^0(\mathbb{C}^n/\Gamma, \mathcal{A})$ into a locally convex space. Then $H^0(C^n/\Gamma, \mathcal{H})$ is regarded as a closed subspace of $H^0(C^n/\Gamma, \mathcal{A})$ and itself a locally convex space. And we have the locally convex topology of $H^0(C^n/\Gamma, \mathcal{H}^{0, p})$ induced by $H^0(C^n/\Gamma, \mathcal{H})$. Further by Proposition 3. 4 we have the locally convex topology of $H^p(C^n/\Gamma, \mathcal{O})$, using the quotient topology.

The following theorem gives a characterization of an (H, C) group C^n/Γ whose cohomology groups $H^p(C^n/\Gamma, \mathcal{O})$ ($p \ge 1$) are finitedimensional.

Theorem 4. 3. Let C^n/Γ be an (H, C) -group, where Γ is generated by $\{e_1, \ldots, e_n, v_1, \ldots, v_q\}, K_{m,i} := \sum_{j=1}^n v_{ij} m_j - m_{n+i} \quad (1 \leq i \leq q)$ *and* K_m : =max{ $\mid K_{m,i}\mid$; $1 \leq i \leq q$ } for $m \in \mathbb{Z}^{n+q}$. Then the following *statements* (1), (2), (3) *and* (4) *are equivalent.*

- (1) There exists $a > 0$ such that $\sup_{m\to 0} \exp(-a||m^*||)/K_m<\infty,$ \int_{m+0}^{m+0} $\|m^*\| = \max\{|m_i|; 1 \leq$ (2) 0 if $p>q$.
- (3) dim $H^{\rho}(C^n/\Gamma, \mathcal{O}) \leq \infty$ for any $p \geq 1$.
- (4) $\bar{\partial}(H^0(C^n/\Gamma, \mathcal{H}^{0,p-1}))$ is a closed subspace of $H^0(C^n/\Gamma,$ *for any* $p \geq 1$.

Proof. Assume (1) holds. Then by Lemma 4. 2 we may suppose that the statement (0) of Lemma 4. 2 holds. We take a $\bar{\partial}$ -closed form $\phi=1/p!\sum_{m\in \mathbb{Z}^{n+q}}\textstyle\sum_{1\leq i_1,\ldots,i_p\leq q}\phi_{i_1\ldots i_p}^m d\zeta_{i_1}\wedge\ldots\wedge d\zeta_{i_p}\in H^0(C^{\imath}/\varGamma,\ \mathcal{H}^{0,\mathfrak{p}}),\ \ \text{where}$ $\overline{1} \langle m, t' \rangle$. By Lemma 4. 1 there exists $\epsilon_0 > 0$ such that for any $a > 0$ $C(a) := \sup \{ |c_{i_1...i_n}^m|$ $\exp(\epsilon_0||m'||+a||m''||)$; $m \in \mathbb{Z}^{n+q}$, ∞ $(1 \leq i_1, \ldots, i_p \leq q)$. By the statement (0) of Lemma 4. 2 we find $a_0 > 0$ such that

314 **HIDEAKI KAZAMA**

 $\sup_{m\neq 0} \exp(-\varepsilon_0/2||m'||-a_0||m''||)/K_m =$

Then for any $a > 0$, $m \neq 0$ and $1 \leq i_1, \ldots, i_p \leq q \ |c_{i_1 \cdots i_p}^m| \exp(\epsilon_0/2||m'|| +$ $a||m''||)/K_m \leq C_0 |c_{i_1 \cdots i_n}^m| \exp(\varepsilon_0||m'|| + (a+a_0)||m''||) \leq C_0 C(a+a_0) < \infty.$ This means that $\sum_{m\neq 0} \phi^m$ given by (4.5) converges to a (0, $p-1$)form ϕ in $H^0(C^n/\Gamma, \mathcal{H}^{0, \ell-1})$. And by (4.6) we have $\phi - \bar{\partial} \phi = \phi^0 +$ $\sum_{m\neq 0} (\phi^m - \bar{\partial} \phi^m) = \sum_{1 \leq i_1, \dots, i_p \leq q} c_{i_1 \dots i_p}^0 d \bar{\zeta}_{i_1} \wedge \dots \wedge d \bar{\zeta}_{i_p}$. This shows (2) holds. It is obvious that $(2) \rightarrow (3) \rightarrow (4)$. Finally we prove $(4) \rightarrow (1)$. By Lemma 4. 2 we may prove that (4) implies the statement (0) of Lemma 4. 2 instead of (4) \longrightarrow (1). Suppose that $\{K_m; m \in \mathbb{Z}^{n+q}\}$ doesn't satisfy the statement (0) of Lemma 4. 2. Then there exists $\varepsilon_1 > 0$ such that we can choose $\{m_\nu : \nu \geq 1\} \subset Z^{n+q} - \{0\}$ satisfying $\exp(-\epsilon_1||m'_\nu||-\nu||m''_\nu||)/K_{m_\nu}\geq \nu$ for any $\nu\geq 1$. We put

$$
\delta^m := \left\{ \begin{array}{ll} \exp(-\varepsilon_1 ||m'_\nu|| - \nu ||m''_\nu||) / K_{m_\nu} & \text{if } m = m_\nu \text{ for some } \nu \geq 1. \\ 0 & \text{otherwise} \end{array} \right.
$$

and ϕ^m : $=\delta^m\,\exp\left(-2\pi\sum_{i=q+1}^n m_it_{n+i}\right)$ $\exp 2\pi\sqrt{-1}$ $\langle m,\,t'\rangle$ for any $\text{Since } \partial \phi^m = \sum_{j=1}^q \pi K_{m_j,j} \exp(-\varepsilon_1 ||m'_\nu|| - \nu ||m''_\nu||) \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) / \sqrt{\varepsilon_1^2}$ K_{m} exp $2\pi\sqrt{-1}$ $\langle m, t' \rangle d\zeta_j$, if $m = m_{\nu}$ for some $\nu \ge 1$ and $|K_{m_{\nu},j}/K_{m_{\nu}}|$ \leqq 1, then $\sum_m\tilde{\partial}\phi^m$ converges to a form $\phi\!\in\! H^0(C^n/\varGamma, \,\mathscr{H}^{0,1})$. By the choice of the sequence $\{m_\nu\}$, $\sum_m\phi^m$ cannot converge to any function in $H^0(C^n/\Gamma, \mathcal{H}^{0,0})$. Suppose $\phi = \bar{\partial}\lambda$ for some $\lambda = \sum_m \lambda^m \in H^0(C^n/\Gamma, \mathcal{H}^{0,0}),$ then $\lambda^m = \phi^m$ for $m \neq 0$. It is a contradiction. Then $\phi = \lim \bar{\partial} (\sum_{\|m\| < N} \phi^m)$ belongs not to $\bar{\partial}(H^0(C^n/\Gamma, \mathscr{H}^{0,0}))$, but to the closure of $\bar{\partial}(H^0(C^n/\Gamma, \mathscr{H}^{0,0}))$ $\mathscr{H}^{0,0}$) in $H^0(C^n/\varGamma, \mathscr{H}^{0,0})$. This contradicts the statement (4).

By the above proof of the implication $(4) \longrightarrow (1)$, if ${K_m; m}$ $\in \mathbb{Z}^{n+q}$ doesn't satisfy the statement (1) of Theorem 4. 3, then $H^1(C^n/\Gamma, \mathcal{O})$ is a non-Hausdorff locally convex space and then infinite-dimensional. Further in the above situation we shall prove that $H^p(C^n/\Gamma, \mathcal{O})$ are also non-Hausdorff spaces for all p satisfying $2 \leq p \leq q$.

Theorem 4. **4.** *Every (H,* C) *-group Cⁿ /F satisfies either of the following statements (a) and (b).*

- (a) $H^p(C^n/\Gamma, \mathcal{O})$ is finite-dimensional for any p.
- *(b) H^p (Cⁿ /F, 0) is a non-Hausdorff locally convex space for any satisfying* $1 \leq p \leq q$ *.*

Further the statement (b) is equivalent to the following (c) $\sup_{m\neq 0} \exp(-a||m^*||)/K_m = \infty$ for any $a > 0$, *where* $||m^*|| = \max{ |m_i|; 1 \leq i \leq n}.$

Proof. By Lemma 4. 2 and Theorem 4. 3, we must prove (b) holds on the assumtion that *[Km]* doesn't satisfy the statement (0) of Lemma 4. 2. We choose ε_1 > 0, the sequence $\{m_\nu\}$ and δ^m as in the proof of (4) \Longrightarrow (1) in Theorem 4. 3. We can find i_0 so that $1 \leq i_0 \leq q$ and sup $\{v\}$; $\vert K_{m_v, i_0} \vert = K_{m_v}$ = ∞ . We may assume $i_0 = q$ without loss of generality. We take a $(0, p-1)$ -form

$$
\psi^m := \delta^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle d\zeta_1 \wedge \ldots \wedge d\zeta_{p-1}.
$$

Then $\sum_m \psi^m$ cannot converge to any $(0, p-1)$ -form in $H^0(C^n/\Gamma)$,
 $\mathcal{H}^{0,p-1})$. On the other hand $\sum_m \delta \psi^m$ converges to a $(0, p)$ -form $\phi =$
 $\sum_m \sum_{j=p}^q \pi K_{m,j} \delta^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle d\zeta_j \wedge d\zeta_1 \wedge$
... $\wedge d\zeta_{p-1} \neq 0$. Suppose $\phi = \delta\lambda$ for some $\lambda = \sum_m \lambda^m \in H^0(C^n/\Gamma, \mathcal{H}^{0,p-1})$.
Then $\delta \psi^m = \delta \lambda^m$. We write

$$
\lambda^m = 1/(\hat{p}-1) \cdot \sum b_{i_1 \ldots i_{p-1}}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle
$$

$$
d\bar{\zeta}_{i_1} \wedge \ldots \wedge d\bar{\zeta}_{i_{p-1}}.
$$

Comparing the term of $\bar{\partial}\psi^m$ with that of $\bar{\partial}\lambda^m$ involving only the exterior differential $d\bar{\zeta}_q \wedge d\bar{\zeta}_1 \wedge ... \wedge d\bar{\zeta}_{p-1}$ of type (0, p), we have $\pi K_{m_n,q} b_{12...p-1}^{m_p} + \sum_{i=1}^{p-1} (-1)^i \pi K_{m_n,i} b_{q1...i}^{m_p}$, $\sum_{p=1}^{p} \pi K_{m_n,q} \delta^{m_p}$. Then $\delta^{m_p} = b_{12...p-1}^{m_p}$ $+\sum_{i=1}^{p-1}(-1)^{i}b_{q_{1..i}i_{p-1}}^{m_{p_{i}}K_{m_{p},i}/K_{m_{p},q}}$ for $\nu \geq 1$. Since sup $\{\nu; |K_{m_{p},q}| = K_{m_{p}}\}$ $=\infty$, we can choose a subsequence ${m^*_\nu}$ of ${m_\nu}$ so that $|K_{m^*_\nu, i}/$ $K_{m_i^{\sim},q}$ \leq 1 for any $1 \leq i \leq q$ and that

$$
\lim_{\nu\rightarrow\infty}(b^{m_\nu^-}_{12\ldots p-1}+\textstyle{\sum_{i=1}^{p-1}(-1)^ib_{q1}^{m_\nu^-}};~_{p-1})\,K_{m_\nu^-,i}/K_{m_\nu^-,q}\!=\!0.
$$

This contradicts that $\lim_{\delta \to 0} \delta^m \tilde{\nu} = \infty$. Hence ϕ belongs not to $\bar{\partial}(H^0(C^n/\Gamma,$ $\mathscr{H}^{0, p-1}$) but to the closure of $\bar{\partial}(H^0(C^n/\Gamma, \mathscr{H}^{0, p-1}))$.

Remark. When the author was making the preprint for this paper, he got the following information which was given by S. Takeuchi. Independently C. Vogt [15] showed in his Dissertation that the statements (a) and (b) are equivalent.

- (a) There exist $C>0$ and $a>0$ such that $K_m \geq C$ exp $(-a||m^*||)$.
- (b) dim $H^1(C^n/\Gamma, \mathcal{O}) \leq \infty$.

By Theorem 4. 3 and 4. 4 we have the following

Corollary 4. 5. *The statements* (1), (2), (3) *and* (4) *in Theorem* 4. 3 *are equivalent to each of the following statements* (5) *and* (6).

- (5) For some $p \ (1 \leq p \leq q)$ dim $H^p(C^n/\Gamma, \ \theta) < \infty$.
- (6) For some $p \ (1 \leq p \leq q) \ \bar{\partial}(H^0(C^n/\Gamma, \mathcal{H}^{0, p-1}))$ is a closed subspace *of* $H^0(C^*/T, \mathcal{H}^{0, \nu}).$

Remark. We constructed an example of an *(H,* C) -group *Cⁿ /F* so that $H^1(\mathbb{C}^n/\Gamma, \mathcal{O})$ is not Hausdorff ([7]). By Corollary 4.5 we can show $H^p(C^n/\Gamma, \emptyset)$ are not Hausdorff for this (H, C) -group C^n/Γ $(2 \leq p \leq q)$.

References

- [1] Bishop, E., Analytic functions with values in a Frechet space, *Pacific J. Math.,* **12** (1962), 1177-1192.
- [2] Bungart, L., Holomorphic functions with values in locally convex spaces and applications to integral formulas, *Trans. Amer. Math. Soc.,* **110** (1964), 317-344.
- [3] Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, *Math. Ann.,* **140** (1960), 94-123.
- [4] Grauert, H., On Levi's Problem and the imbedding of real analytic manifold, *Ann. Math.,* 68 (1958), 460-472.
- [5] Grauert, H. and Remmert, R., *Theorie der Steinschen Raume,* Springer- Verlag, Berlin-Heideberg-New York, 1977.
- [6] Gunning, R. C. and Rossi, H., *Analytic functions of several complex variables,* Prentice Hall, Inc., Englewood Cliffs, N. *].,* 1965.
- [7] Kazama, H., On pseudoconvexity of complex abelian Lie groups, /. *Math. Soc. Japan,* 25 (1973), 329-333.
- [8] Kazama, H. and Umeno, T., Complex abelian Lie groups with finite-dimensional cohomology groups,/. *Math. Soc. Japan,* 36 (1984), 91-106.
- [9] Kopfermann, K., Maximale Untergruppen Abelischer komplexer Liescher Gruppen, *Schr. Math. Inst. Univ. Munster,* **29** (1964).
- [10] Malgrange, B., Faisceaux sur des vari6t6s analytiques r6elles, *Bui. Soc. math. France,* 85 (1957), 231-237.
- [11] Morimoto, A., Non-compact complex Lie groups without non-constant holomorphic functions, Springer- Verlag, *Proc.Conf. on Complex Analysis at Univ. of Minn.,* 1965.
- [12] On the classification of non-compact abelian Lie groups, Trans. Amer. *Math. Soc.,* **123** (1966), 200-228.
- [13] Siu, Y.-T., Every Stein subvariety admits a Stein neighborhood, Inventiones Math., 38 (1976), 89-100.
- [14] Takeuchi, S., On completeness of holomorphic principal bundles, *Nagoya Math. J.,* 57 (1974), 121-138.
- [15] Vogt, C., Geradenbiindel auf Toroiden Gruppen, *Dissertation Diisseldorf,* 1981.

Supplementary notes :

After this paper was submitted, the referee informed the author the following results.

By another method L. C. Piccinini showed implicitly that $C \times R$ admits no Stein neighbourhood bases in $C \times C$ in the article :

[16] Non surjectivity of $\partial^2/\partial x^2 + \partial^2/\partial y^2$ as an operator on the space of analytic functions on # 3 , *Lecture Notes of the Summer College on Global Analysis,* Trieste, August 1972,

and C. Vogt has published the paper:

[17] Two remarks concerning toroidal groups, *Manuscripta Math.,* 41 (1983), 217-232.

In [17] he showed independently that the statements (1) and (2) of Theorem 4. 3 of this paper are equivalent.