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The Riemann-Hilbert Problem
for Holonomic Systems

By

Masaki KASHIWARA*

Introduction

The purpose of this paper is to give a proof to the equivalence
of the derived category of holonomic systems and that of constructible
sheaves.

Let X be a paracompact complex manifold and let 2x and Oy
be the sheaf of differential operators and holomorphic functions,
respectively.

We denote by Mod(Z2x) the abelian category of left 2 x-Modules
and by D(Zy) its derived category. Let D2%(2,) denote the full
sub-category of D(Zx) consisting of bounded complexes whose
cohomology groups are regular holonomic ([KK]).

By replacing 9y with 2%, the sheaf of differential operators of
infinite order, and ‘“regular holonomic” with “holonomic,” we similarly
define Mod(23%), D(2%) and DY (2%).

Let us denote by Mod(X) the category of sheaves of C-vector
spaces on X and by D(X) its derived category. We denote by
D2(X) the full sub-category of D(X) consisting of bounded complexes
whose cohomology groups are constructible.

Let us define

Jx: Dx(Zx) — Di(2%)
DR3 : Di(2x) — D2(X)
DRy=DR%oJx: D% (D x)— D(X)
by
Jx=23%&
Dx
DR°§:.//z’+—>R9fomg§(0X, M)
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DRy : MR Homg (0 x, M).

The purpose of this paper is to prove the following theorem.

Theorem. By Jy, DRy, DR3, D%(2%), D2(2%) and DE(X) are
equivalent.

This result was announced in [K]. Mebkout [Me] gave another
proof to this theorem.

0. 2. In [KK], we have already shown that Jx gives an equivalence
and that DRy is fully faithful; i. e. for any ', #4'€D5%(Dx), we
have

Hompp, @, (A, M)
:')HomDE(X)(DRX(-/ﬂ.), DRx(A7)).

0. 3. We define = : D% (2 x) »D%(2x) ° by .//'HR%’omgx(JZ', Dx)
®9% ' [dim X], and *:DY(X)—>Di(X)° by F'—R#ome (F, Cx).
Dx
Here o denotes the opposite category and 25 denotes the sheaf of
differential forms with the highest degree. Then we have DRyox=
*oDRy and **=id.

0.4 Now for £ D% (2%), we put F =DRx(#)*. Then in
[KK] we have proved

JxM =R Home (F, Ox).
By taking the flabby resolution of @4

] ]
0— GX——),@%]'D————) e > ZLM 0

of @04 we have therefore
(0.4.1) Iyl = Home (F', BK7).
Here # denotes the sheaf of hyperfunctions.

0. 5. Keeping this in mind, we shall construct the inverse functor
Uy:DY(X) >D5%(2x) as follows. The idea is to replace %y in
(0.4.1) with 94y, the sheaf of distributions. However, since F—

Hom (F, D4x) is not an exact functor, Hom(F', D4$7) is not well-
defined. Therefore, we have to modify Hom(x, D4).

0.6. Let M be a real analytic manifold and 24, the sheaf of
distributions on M. A sheaf F of C-vector spaces on M is called
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R-constructible, if there exists a sub-analytic (see [H1], [H2])
stratification M= U M, such that F| M, is locally constant.

We define, for an R-constructible sheaf F, the sub-sheaf TH(F)
of Jf’omcM(F, D4y) as follows. For any open subset £ of M and
el (2, Homc(F, D4y)), ¢ belongs to I'(2, TH(F)) if, for any
relatively compact open sub-analytic subset U of 2 and sI'(U, F)
there exists ul (M, Déy) such that u|y;=¢(s).

Then it turns out that F—>TH(F) is an exact functor in F.

0.7. Let X be a complex manifold. We shall define ¥x:D2(X)°
—D%(2y), which will be an inverse of DRyo*, as follows. For F'&
D2(X), we shall take a bounded complex G', quasi-isomorphic to F',
such that G’ is R-constructible for any ;. We define ¥x(F) as the
Dolbeaut complex with TH(G') as coeflicients

TH(G")©0 L TH(G) oy 0 ...,

Since TH(*) is an exact functor, ¥y is well-defined. Once we
introduced ¥y, it is not difficult to show that ¥y and DRyo* are an
inverse to each other. The main idea is to reduce the problem to
a simple case by using Hironaka’s desingularization theorem.

0. 8. The plan of this article is as follows. §1 is the preparation to
§2, where we shall study the properties of R-constructible sheaves.
In §3 we define the functor TH. Its properties are studied in §4.
In §5, we review the theory of regular holonomic systems. In §6 we
announce the statement of our main theorem and §7 is devoted to
its proof. In §8 we shall give some applications.

§1. Constructible Sheaves on a Semi~Simplicial Complex

1. 0. In the later section, we treat constructible sheaves on a com-
plex manifold. However, constructible sheaves are not easy objects to
manipulate. To avoid this difficulty, we study R-constructible sheaves
(Def. 2.6) on its underlying real analytic manifold. This section is
the preliminary to study R-constructible sheaves.

1.1. In this paper, a simplicial complex &= (S, 4) means the
following: & consists of two data, a set S and a set 4 of subsets of S,
which satisfy the following axioms:
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(1.1.1) Any o of 4 is a non-empty finite subset of S.

(1.1.2) If 7z is a non-empty subset of an element ¢ of 4, then 7
belongs to 4.

(1.1.3) For any p&S, {p} belongs to 4.
(1.1.4) (locally finitude) For any pe&sS,
{ee4d; pso} is a finite set.

An element of S is called a vertex and an element of 4 is called
a simplex. Let RS denote the set of maps from S into R, equipped
with the product topology. For any ¢4, we define the subset [o] of
R’ by
(1.1.5) |o|={zxeRS; z(p) =0 for pe&s, z(p) >0 for p=o and

;Ux(p) =1}.

We denote by || the union of |o6| (¢=4) endowed with the
induced topology from the product topology of R Then |o]|’s are
disjoint to each other. For any o4, we set

(1.1.6) U(e)= U |z

43tD0
and for any z€ 1% |, we set
(.17 Ulx) =U(a(x)),

where o(x) is the unique simplex such that l¢| contains x. Hence
we have

(1.1.8) Ulx)={ye|Z|; y(p) >0 for any pS such that z(p) >0},

and

(1.1.9) Ul)={ze|ZL]|; z(p) >0 for psa}.
Hence, U(s) and U(x) are open subsets of |&|. Define S(¢) by
(1.1.10) S(o)=1{peS; {p} Uoe4}.

Then S(o) is a finite subset of S by (1.1.4), and U(s) is contained
in R°®. Hence U(o) is homeomorphic to a locally closed subset of
R' with [=%#S(s). As we have

(1.1.11) lo|={zeU(o); z(p) =0 for pea},

jo] is a closed subset of U(c), and hence |o| is locally closed in | &].
We can also verify

(1.1.12) [o|={x€R"; x(p) =0 for any pS, z(p) =0
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for any p&og and ) x(p) =1}
P

Also, we have, for any g, tE4,

U(eUr) if eUre4
[4} if oUred

(1.1.14) U(o) CU(r) if and only if ¢D7.

The axiom (1.1.4) implies together with (1.1.13) that {U(0)},ey
is a locally finite open covering of |#|. Therefore, |#| is a para-

(1. 1. 13) U@ NU®K) =

compact topological space.

1.2, Let £=(S, 4) be a simplicial complex. We denote by
Mod (&) the abelian category of sheaves of C-vector spaces on | |.

Definition 1. 1. A sheaf F of C-vector spaces on |& | is called
S-constructible if F| ., is a constant sheaf for any o4

We denote by S-Const (&) the full subcategory of Mod (&)
consisting of all the S-constructible sheaves on |&].
One can show easily the following lemma.

Lemma 1. 2. (i) If f: F>F' is a homomorphism of S-constructi-
ble sheaves, then the kernel, the image and the cokernel of f are also

S-constructible.
(i) If 0—>F —>F—>F'—0 is an exact sequence of sheaves on ||
and if F' and F" are S-constructible, then F is also S-constructible.

Proposition 1.3. Let F be an S-constructible sheaf on |&|.
Then, for any ¢4 and x< ||, we have

(1.2. 1) H"(U(o); F)=H"(lo|; F) =0 for n#0
and

(1.2.2) H(U(o); F)xH(|o|; F) 3 F..

Proof. For 0<e<1l, we set I,.={teR; e<t=<1}, and define the
map =, from I, X U(c¢) into U(s) by; for any tl, and yeU(o)

(1.2.3) (4, ¥) (p) =ty(p) + (1 =) z(p) for pES.

Then it is easy to see that =, is a continuous map from I, x U(o)
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onto U(o) and =#.(1, ¥) =y. Moreover we have = (¢, y) €|z| for 7
such that ye |r|. Thus, if we denote by % the projection from
I, xU(o) onto U(e), n;'F is a constant sheaf over any fiber of A.
Hence we have
H"({e} xU(o); a;'F) =H*(I,x U(o) ; n.'F) x H* ({1} X U(0) ; n;'F).
On the other hand, z, is a homeomorphism from {1} X U(s) onto
U(e) and hence
H*({1} xU(o); n;*F) = H*(U(0); F).
Similarly, we have
H*({e} x U(0); o' F) =H"(m.({} x U(0)) ; F).
By taking the inductive limit with respect to ¢, we obtain

(1.2.4) H"(U(o); F)E@H”(na({e} xU(a)); F).

Remark that #.({e} X U(s)) forms a neighborhood system of =z.
Therefore, the right hand side of (1.2.4) equals F, for =0 and
vanishes for n#0. Thus we obtain

. | F. for n=0
H(U(9): F) _t 0 for n+0.
If we apply the same argument to the simplicial complex ¢ and F|,,,

we obtain
F, for n=0,
H(IUI’F)—[O for n=0.
Q. E. D.

This proposition particularly implies the following

Proposition 1. 4. (i) For any o, F—I'(U(e); F) is an exact
functor in FES-Const(&). (ii) For any FeOb(S-Const(&)), if
F(U(o)) =0 for any g4, then F=0"

1. 3.

Definition 1. 5. A sheaf F on |&| is called S-acyclic if

H*(U(o); F)=0 for k#0 and o4
Then, Proposition 1.3 says that an S-constructible sheaf is S-

acyclic. Flabby sheaves are also S-acyclic.
For any sheaf F on | &, let a(F) denote the sheaf @ F(U(0))yy)-
o4

* For a locally closed set Z of a topological space X and a vector space V, V; denotes
the sheaf on X such that V:|x.,=0 and that V.|, is the constant sheaf on Z with
fiber V.
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Then we have the canonical homomorphism ¢(F): a(F)—F which is
functorial in F. Let G be the kernel of ¢(F) and let B(F) denote

the cokernel of the composition a(G)iQe G—a(F). Then we have

a homomorphism s(F): B(F)—F functorial in F. It is clear that
a(F) and B(F) are S-constructible sheaves.

Lemma 1. 6. For any sheaf F and o< 4
I'(U(o); s(F)): I'(Ua); B(F)))—I'(Uo); F)

is an isomorphism.

Proof. Lect us consider the diagram

a(G)(U(e))— a(F) (U(e)) — B(F) (U(o))— 0

| Il |

0— G(U(0)) — a(F) (U(o))— F(U(0))

Since I'(U(o); *) is an exact functor on S-Const(%), the top row is
exact. Since the homomorphism a(F) (U(e)) —>F(U(g)) is surjective,
the bottom row is also exact. Then the surjectivity of

a(G) (U(9))>G(U(0))
implies the desired result. Q. E. D.

> 0.

Lemma 1.7. If F is S-constructible, then s(F): B(F)—F is an
isomorphism.

Proof. Both F and B(F) are S-constructible and hence it is
sufficient to show that for any o4, I'(U(o); s(F)) is an isomorphism
(Proposition 1.4). This is a consequence of the preceding lemma.

Q E D.

Lemma 1. 6. implies immediately the following

Proposition 1. 8. (i) f is a left exact functor from Mod (%)
into S-Const(&).
(ii) I'(U(e):(R*3) (F)) =H*(U(0); F) where R'B is the k-th right
derived functor of B.
(ili) R*B(F)=0 for k+#0 if and only if F is S-acyclic.
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Proof. (i) Let 0-»F —-F—F'—0 be an exact sequence in
Mod(&). In order to see that 0—B(F)—>B(F)—>pB(F") is exact,
it is sufficient to show the exactness of its transform by I'(U(o); *)
because they are S-constructible sheaves. This transform is, by the
preceding lemma, nothing but 0—F'(U(s))—=F(U(s)) »F"(U(0)),
which is evidently exact.

(ii) Let F° be an injective resolution of F. Then, R*8(F)=x#"
(B(F)). Hence, we have

I'(Ule); R(F)) =I'(U(a); #*(B(F)))
=H*I'(U(e); B(F)))=H*I'(U(a); F7))
=H*(U(o); F).

(iii) This is an immediate consequence of (ii). Q. E. D.

Proposition 1. 9. Let F be a complex of S-acyclic sheaves satisfying
F*=0 for nL0. If all the cohomology groups of F are S-con-
structible, then B(F)—F is a quasi-isomorphism.

Proof. Set Z*(F) =Ker(dp.: F*—>F*") and B"(F") =Im(dst: F!
—F"). We shall show by the induction on =
(1.3.1) Z"(F) and B"(F") are S-acyclic.
Assume that Z* 1(F") and B"}(F') are S-acyclicc We have the exact

sequence

(1.3.2) 0—>Z"YF)—>F"1-B"(F)—0
and
(1.3.3) 0—-B"(F)—>Z"(F)—>H"(F)—0.

The exact sequence (1.3.2) gives the exact sequence
Rkﬁ(};‘n—l)_)Rk‘B<Bn(F'>)_)Rk+1ﬁ(Zn—l(F'))_
Since F*! and Z"!(F’) are S-acyclic, this shows R*8(B"(F")) =0 for
k+#0, which means that B"(F’) is S-acyclic. In the same way, the
exact sequence (1.3.3) implies the S-acyclicity of Z"(F') because
B*(F) and H"(F') are S-acyclic. Thus, the induction proceeds and
the property (1.3.1) holds for any =.

Now the sequence

0—>B(Z"(F)) >B(F") >B(F")
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is exact because f is left exact. Hence we obtain
(1.3.4) B(ZM(F))=Z"(B(F)).
The exact sequence (l.3.2) derives the exact sequence
0—>B(Z"H(F)) > B(F"™) >B(B"(F)) — (R'B) (Z*7H(F)),
in which the last term vanishes because of the S-acyclicity of Z" 1 (F")
(see (iii) of Proposition 1.8). Thus (l.3.4) implies
(1.3.5) B(B"(F))=B"(B(F)).
Finally the exact sequence (l.3.3) gives the exact sequence
0—>B(B*(F)) —B(Z"(F)) —>B(H"(F))—0
because (R!B) (B*(F")) =0.
Since H"(F") is S-constructible, we have B(H"(F")) =H"(F) by
Lemma 1. 7. This implies the desired result: H*(F) = H"(B(F")).
Q. E. D.
Let us denote by D(S-Const(%)) the derived category of S-Const
(&) and by D*(S-Const(&)) the full subcategory of D (S-Const(%))
consisting of F'eOb(D(S-Const(#)) such that F*=0 for n<0. Let
Dé_const (&) be the full subcategory of the derived category D (Mod
(&)) consisting of F" such that F*=0 for n<0 and that all H"(F")

are S-constructible. Then the following theorem is an immediate
consequence of the preceding proposition.

Theorem 1. 10. D' (S-Const (%)) and D¢ cona(F) are equivalent
by the canonical functor

D* (S-Const (#)) =>Dé_const (&) given by F'r—F
and RB: D cous (F)——D* (S-Const (F)).

Remark. The category S-Const(¥) is equivalent to the category
& of covariant functors from 4 into the category of vector spaces.
Here 4 is regarded as the category as follows: Hom(s, 7)=¢ if 67
and Hom (o, 7) consists of the single element if ¢Cz. The functor
from S-Const(¥)—&f is given by Fr—{o—F(U(s))}. The converse
functor «/—>S-Const(&) is constructed as follows: for an object F(o)
of «Z, we define two homomorphisms f and g from @F(O‘)U(t) into

@F () yw by F(0)yey=—F (0)yy and by F(o) vo=>F (D) v respectively.
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Then, we assign Coker(f~g) to the functor F(o).
1. 4.

Proposition 1. 11. For any S-constructible sheaf F, o4 and a
vector space V, we have

Hom (F, Vi) =Home (F(U(0)), V).

Here, |o| means the closure of |a|.

Proof. By Proposition 1. 3, we have I'(U(o); Vi) =I'(lo|; Vi) =V.
Hence we obtain the canonical homomorphism
(1.4. 1) Hom (F, Vi) — Hom¢(F(U(0)), V).

We shall show that this is an isomorphism for any F. If F has
the form Wy, for a vector space W and r&4, then we have

Hom (F, Vi) =Hom(W, I'(U(z); Vis))
=Hom(W, I'(U(@) N |a]; Vi)

Now, it is easy to see that the following four conditions are equiv-
alent: U@ Nlo|#¢, U()Dle|, |r|cC|e]| and rCoe. Thus, we
obtain

— |4 if tCo
FUE A lels Vi) :[ 0 otherwise.
On the other hand, we have

Homc(F(U(0)), V) =Homc¢(['(U(e); Wyw), V).
Therefore we have by Proposition 1.3

w if rCo
FU©@); Wue) :{ 0 otherwise.
They imply that (1.4.1) is an isomorphism for any F of the form
Wye- Hence for any sheaf F, (1.3.1) is an isomorphism for a(F).
Since there exists an exact sequence, (See Lemma 1.7.)
a(G)—»a(F)—>F-0

and the both sides of (1.4.1) is left exact in F, we obtain the
desired result. Q. E. D.

Now, for any S-constructible sheaf F we define 7(F) by
@ F(U(0))w. Then by the preceding proposition one can define
t(ile canonical homomorphism

F—y(F)
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which is injective.

1.5, If =(S, 4) and &' =(S5, 4") are two simplicial complex,
then a morphism g from & to &’ is by definition a map from S into
S" such that g(¢) €4 for any s=4. For a morphism g from & to &,
one can define a continuous map |g| from |&| into |&’| as follows:
for any z= | &, |gl () (@)= 2 z(p) for g8 It is easy to see

reg @

that |g| (lo])=1Ig(e) | and |g|(|s|) = g(s)|- Moreover, any fiber

of |¢|—|g(a) | is contractible.

§2. R-Constructible Sheaves on a Real Analytic Manifold

2. 1. Let M be a real analytic manifold. In this paper, all real
analytic manifolds are assumed paracompact. We shall recall the
notion of subanalytic sets due to Hironaka.

Definition 2. 1. A subset Z of M is called subanalytic at a point
pof M if there exist a neighborhood W of p, an integer r, real
analytic manifolds N and proper real analytic maps f¥ from NP
into Wv=1,2; j=1, 2+, such that Z 0 W= U (f® (N®) —

i=1

fP(NP)). A subset is called subanalytic if it is subanalytic at any
point of M.

For the properties of subanalytic sets we refer to [H1] and [H2].
For instance, the following results are known.

Proposition 2. 2. (i) The union and the intersection of a locally
finite family of subanalytic subsets are subanalytic.
(i1) The complement of a subanalytic subsets is subanalytic.
(iii) The closure, the boundary and the interior of a subanalytic set
are subanalytic.

Proposition 2. 3. A closed subanalytic set is the image of a real

analytic manifold by a proper real analytic map.

Proposition 2. 4. A relatively compact subanalytic subsets has only
a finite number of connected components and they are subanalytic.
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Proposition 2. 5. Let {Z};c; be a locally finite family of sub-
analytic subsets of a real analytic manifold M such that M=UZ,
Then, there exist a simplicial complex ¥ = (S, 4) and a homeomor-
phism ¢: | & |3 M satisfying the following conditions:

(i) Forany o4, ¢(|al) isa submanifold of M which is subanalytic.
(ii) PFor any o4, there exists j&J such that ¢(|o|) CZ;

2. 2.

Definition 2. 6. Let F be a sheaf of C-vector spaces on a real
analytic manifold M. We say that F is weakly R-constructible if there
exists a locally finite family {M;};c; of subanalytic subsets of M such
that FIMJ, is a locally constant sheaf on M; for any jEJ and that

M= UMJ.

Definition 2. 7. For a weakly R-constructible sheaf F, we say that
F is R-constructible if dim F,<{oo for any z M.

Let us denote by Mod(M) the abelian category of sheaves of
C-vector spaces on M, and by R-Const(M) the full subcategory of
Mod (M) consisting of R-constructible sheaves on M. We shall denote
by D(M) the derived category of Mod(M) and denote by Dj_.(M)
the full subcategory of D (M) consisting of F' such that #/(F") are
R-constructible for any j and that F/=0 except for a finite many j.

Theorem 2. 8. The canonical functor
D®(R-Const(M)) —»D%_. (M)

is an equivalence.

Proof. In order to prove this, we have to show the following two
statements.
(a) For any F'eOb(D%-.(M)), there exists G €D"(R-Const(M)),
such that G is isomorphic to F' (as an object in D%_.(M)).
(b) Hompbw-constany (F G')SHOmD}’E_C(M)(F; G)
for any F', G’ €O0b(D"(R-Const(M)).
First we shall prove the statement (a).
Let F' be an object of D%_.(M). We may assume from the
beginning that F”"=0 for n<0 and that all F* are flabby. Since all
H#"(F") are R-constructible and #"(F") =0 except for a finite many
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n, there exists a locally finite family {M};c; of subanalytic subsets of
M such that M=U M, and that #"(F") IM,- are locally constant for
any n and any j&J. Hence there exist a simplicial complex & = (S, 4)
and a homeomorphism ¢: | | M satisfying the following conditions:

(2.2.1) ¢(lal) is subanalytic for any &4,

(2.2.2) For any o4, there exists j&J such that ¢( |o|) C M,
Therefore we have

(2.2.3) i (F7) is S-constructible for any .

Since ¢ 'F* are flabby, Proposition 1. 9 implies that G =g(cF")
is quasi-isomorphic to ¢'F. Since G  is a complex of S-constructible
sheaves, ¢,G" is a complex of R-constructible sheaves by (2.2.1).
Hence ¢, (G) is an object of DP(R-Const(M)) which is quasi-
isomorphic to F. Thus we obtain (a).

Now, we shall prove (b).

For F', G'€Ob(D*(R-Const(M))), there exist a simplicial complex
9 =(S, 4) and a homeomorphism ¢:|& |z M satisfying (2.2.1) and
the following condition (2.2.4).

(2.2.4) YF", 'G" are S-constructible for any n.
Then we have the diagram:

(2. 2.5) Homps-consten (le'; I Gl)-”—)HonlD(R—CunQi(M))(F‘a G)

Homp g, (¢7'F, 'G) —~Hompan (F, G)

Theorem 1. 10 implies that « is an isomorphism. Hence w is surjective.

Now, we shall prove that w is injective. Let ¢ be an element
of Hom (F', G) such that w(¢p)=0. Hence there exist a
quasi-isomorphism G'—G’" and a homomorphism ¢': F*->G" of com-
plexes, which give ¢. Hence by replacing G with G”, we may
assume from the beginning that ¢ is given by a homomorphism of
complexes from F" into G', which we shall denote by the same letter
¢. Then, in the diagram (2.2.5), ¢=v(c'(¢)) and hence w(p)=
u(c*¢) =0. This implies ¢*(¢) =0 by Theorem 1.10 and finally we
obtain ¢=v(:(p)) =0.

DP(R—Const (M)
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§3. Tempered Distributions

3. 0. In this section, we shall study the properties of the tempered
homomorphisms from R-constructible sheaves into the sheaf of distri-
butions (in the sense of L. Schwartz).

This notion is a generalization of tempered distributions studied
by Martineau [Ma], Lojasiewicz [L],--- . An original notion of a
tempered distribution is a distribution # on R” which satisfies the

condition:
‘Su(x)go(x)dx < |Z|]< sup | Die(x)| for any ¢eCr(RY).

Here, C7(R") denotes the space of C”-functions on R* with compact
support. If we compactify R” to S” by adding one point, then this
notion is equivalent to saying that # is continued to a distribution
defined on S™

As a generalization of this, we arrive to the definition of tempered
homomorphisms (Def. 3. 13).

3. 1. Let M be a real analytic paracompact manifold, ./, the sheaf
of real analytic functions and 2, the sheaf of differential operators
of finite order with &7 as coefficients. Let us denote by 924, the
sheaf of distributions on M.

Definition 3. 1. A distribution u defined on an open subset U of
M is called tempered at a point p of M if there exist a neighborhood
W of p and a distribution v defined on W such that uiwny=2v !y
If u is tempered at any point, then we say that u is tempered.

Then one can easily prove the following lemma.

Lemma 3. 2. Let u be a distribution defined on an open subset
U of M. Then the following conditions are equivalent.
(1) wu is tempered.
(ii) u is tempered at any point of 0U=U—"U.
(iii) There exists a distribution w defined on M such that u=w |y
We have also the following lemma. For a subset A of R" and a
point x of R", we denote

(3.1.1) d(z, A) =inf{|ly—z|; yeA).
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Lemma 3. 3. Let u(x) be a distribution defined on a relatively
compact open subset U of R Then the following conditions are
equivalent:

(1) wu is tempered (at any point of R").
(ii) There exist a positive C and a positive integer m such that
(3.1.2) ([e@e@dz|=C 5 sup 1D

for any o=C7(U).
(i)  There exist a positive C and positive integers m and r such that
(3.1.3) Su(x)go(x)dx <C 3 sup(d(z, 9U) ™D (x) |

for any o=Cy(U).

Proof. (1)=(i1)=>(iil) is trivial
(ii)=> (1) is an immediate consequence of Hahn-Banach’s exten-
sion theorem.

We shall prove (iii)=>(ii). Let ¢=Cy(U) and = a point of U.
Then there exists ye U such that supp ¢?y, |r—y|<d(z, dU) and
x+t(y—x) €U for 0Z¢t=<1. On the other hand, we have

_ (=D (o dY _
o) =0 L e( Y earety—a)ar
for v=1.

Hence there exists a constant C, which does depend only on =
and v such that

lo(x) =G, Iy—xl”lalZsusup | D% |
<Cd(x, amﬁlé sup |D%]|.

Applying this to D¢ instead of ¢, we obtain
d(z U)*IDie(2) 1=C, % sup D¢

<v+|a

for xeU and ¢=C7 (U).
Therefore (3.1.3) implies (3. 1.2). Q.E.D.

3. 2. Lojasiewicz ([L] p. 98, Prop. 5) shows the following theorem.

Theorem 3. 4. Let M=R" and let U,, U, be two relatively compact
open subsets of M. Suppose that there exist an open neighborhood W
of d(U,UU,), a positive constant C and a positive integer m such that
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(3.2.1) d(z, 0U) +d(z, aUy) =C(d(z, (U, UUy)))™
for xeW.
Then a distribution u defined on U,U U, is tempered if and only if

u iUl and u IU2 are tempered.
On the other hand, Hironaka proved the following theorem.

Theorem 3.5 ([H2]). Let A and B be two closed subanalytic
subsets of R". Then, for any compact set K there exist a positive
integer m and a positive constant C such that

(3.2.2) d(z, A)+d(x, By =C(d(x, ANB))™ for z€K.

Hence these two theorems imply the following

Theorem 3. 6. Let U be a subanalytic subset of a real analytic
manifold M and {U}};c; a finite open covering of U by open subanalytic
subsets U;, Then a distribution u defined on U is tempered if and
only if uly, is tempered for any jEJ.

By this theorem, we can localize the notion of tempered distribution.

3. 3. Lojasiewicz also proved the following

Lemma 3. 7. (Lojasiewicz’s inequality [L]). Let f(x) be a real
analytic function defined on an open subset U of R, and let Z denote
fH0). Then, for any compact subset K of U, there exist a positive
constant C and a positive integer m such that

(3.3.1) I f(x) |=C(d(x, Z))™ for zeK.

This lemma together with Lemma 3. 3 immediately implies the
following lemma.

Lemma 3. 8. Let u be a distribution defined on an open subset
U of a real analytic manifold M and let g(x) be a real analytic
function defined on M which does not wvanish at any point of U.
Then u is tempered if and only if gu is tempered. Assume moreover
g is positive-valued on U. Then for any 2€C, g'u is tempered if
and only if so is u.

Now we shall prove the following
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Proposition 3. 9. Let f: M—N be a real analytic map from a
real analytic manifold M into a real analytic manifold N. Let U be
an open subset of M such that f induces a submersion from U into
N. Then for any distribution u defined on N, (f*u) |y is a tempered
distribution.

Proof. The question being local we may assume that M is an
open subset of R™ and N is an open subset of R". We can assume
also m=n. Set Z= {z&M; rank(df) (z)<n}. Then we can assume
U=M-—Z. Let us take a point p of M and consider all the problems
on a neighborhood of p. Then there exist a finite number of real
analytic maps g;: M—R™™" such that U=U U, where U,={z€U;
rank df;(z) =m}, and fi=(g, f): M—>R" "X N. If we denote by p
the projection from R™ ™" XN onto N, and if we set v=(f*u) |5, then
we have v!Ui =f¥(p*u) |Ui' Since all U; are subanalytic, v is tempered
if f¥(p*u) lui is tempered for any i. Hence, by replacing N, f, u
and U with R"™"XN, f, p*u and U, respectively, we may assume
from the beginning m=n and U=M—Z. Let g(x) be the Jacobian
oy/ox of f(x). Then gi;=0 and g(x)#0 for x&M—Z. Therefore
there exists an integer / such that

(3.3.2) lg(x) |=const. (d(x, Z))! for x&=M.

Let us denote by x=(xy, ..., z,) (resp. y=p .+« ¥,)) points of M
(resp. N). Then there exists real analytic functions 4;;(z) (1=i,
J=n) such that

(3.3.3) g<x>~jy—,=]§§l his(@) 0 (IZin)
by y=f(x).

Hence g*%Dj is a linear combination of D? (|B!<|a|) with real
analytic functions in y as coefficients. Note that u(y) satisfies

3.3 |[eoewa
by shrinking N if necessary.

=Const. }; sup |D%p| for ¢eCr(N)
lai=m

For ¢(z) €Cy(U),

|, 0 @g@de={ 4090 gD dy

where g(x) is the Jacobian y=f(z). Hence we have
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RISTIOr
< const 3 sup D5 06N |

< constlé sup g(z) 72 [ D3 (¢ (x) g(z) ™) |
=< const ), sup g(x) 1D (x) |.

lajsm

Hence we obtain

S(f*u) ()¢ (x)dx §constI IZS: sup d(z, Z)~®=+d Do (z) |
for any ¢=Cy(U). )

Hence it follows from Lemma 3. 3 that (f*u)|y is tempered.

Q. E.D.

Proposition 3.10. Let f: M—N be a proper real analytic map.
Let U be an open subset of N such that f~1(U)—U is an isomorphism.
Then a distribution u defined on U 1is tempered if and only if
(f*u) 'f—l(m is tempered.

Proof. The question being local in N, we may assume that N is
an open subset of R* If u is tempered then there exists a distri-
bution @ defined on N such that #@|y=u. Hence, (f*u) | -1 0=

(f*a)lf_l(u) is a tempered distribution by the preceding lemma. Con-
versely assume that f*u ‘f"lU is tempered. Let us fix nowhere

vanishing real analytic densities yy and gy on M and N, respectively.
Set g=f*uy/py. Then g is a real analytic function which does not
vanish on f'U. Therefore, g1 (f*u) ,f"lU is also tempered by Lemma

3.8. Let w be a distribution defined on M which extends
g"l(f*ulf_lU). We define the distribution @’ on N by

SNw'go/,tN: SMw(gaof) ty for eCy(N).

Then it is easy to see that w' |[y=u. Q. E. D.

Remark 3. 11. In L. Schwartz [S], a distribution u(z) defined
on R" is called tempered if

Su(x)ga(x)dx

=C } sup |D*@| for any ¢=C7(R").
lal=m

This condition is equivalent to saying that there is a distribution %
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defined on P"(R) such that @la=u;ie uis tempered in P*(R).

Remark 3. 12. This notion of tempered distributions have been
studied by several mathematicians. See [Ma], [L].

3.4, Let M be a paracompact real analytic manifold.

Definition 3. 13. For an R-constructible sheaf F defined on M,
T-Hom (F, Déy) is the subsheaf of Homc(F, Déy) defined as follows:
Jor any open subset U of M

I(U; T-Hom(F, Déy)) = oI (U; Home(F, Déy));
¢ satisfies the following condition (3.4.1)}

(3.4.1) For any relatively compact open subanalytic subset V of U
and s€F(V), ¢(s) is a tempered distribution.

Similarly, for any locally free /y-Module 7" of finite rank, we
can define T-Hom(F, Dé,, Q ?") and we have
 y

T-Hom (F, Dby R V) =T-Hom(F, Db)R V.
o A

M
Note that T-Hom(F, D4y) is a sheaf of Zy-modules. Hereafter,
for the sake of simplicity, we write TH(F) for T-sfom(F, Déy). 1f
we want to emphasize the manifold M, we write THy (F) for it
Since THy(F) is a sheaf of modules over the ring of C*-functions,
we have

Proposition 3. 14. For any R-constructible sheaf F, TH(F) is a
soft sheaf.

Lemma 3. 15. Let U be a subanalytic cpen subset of M and u a
tempered distribution defined on U. Then the homomorphism ¢
from Cy to D4y defined by ly—u belongs to I'(M; TH(Cy)). Here
1y signifies the element of I'(U; Cy) which corresponds to the constant
Junction with value 1.

Proof. Let V be a relatively compact subanalytic open subset of
M and let s be a section of €y over V. We have to prove that ¢(s)
is a tempered distribution. As mentioned in Proposition 2. 4, V has
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finitely many connected components Vi, ..., V;. Then sis a constant
function on each V; because Cy;CCyx Since Supp ch,s[V].:O if

V;zU. Hence ¢(s) IV]_ is a tempered distribution if V;c U. If
V;cU, o(s) !Vj is a constant multiple of u IVJ, and hence tempered.
In both cases, ¢(s) |v]. is tempered and hence ¢(s) is tempered by
Theorem 3. 6. Q. E. D.

This lemma implies the following corollary.

Corollary 3. 16. For any open subanalytic subset U and an open
subset 2 of M, we have

I'(Q; THCY))={uel'(UNKY; D4y); u is tempered at
any point of £2}.

Coroilary 3. 17. For any closed subanalytic subset Z of M, we have
TH(C,) =T'7(24).

If Mod (%) denotes the category of Zy~Modules, then TH(+) is a
contravariant functor from R-Const(M) into Mod(%y,). This functor
enjoys the following remarkable property.

Theorem 3. 18. TH(*) is an exact functor from R-Const(M)
into Mod (2 y).

Proof. This theorem follows from the following two lemmas.

Lemma 3.19. Let ¢: F>G be a surjective homomorphism of
R-constructible sheaves F and G and let ¢ be a section of Hom(G,
Déy). If ¢op belongs to TH(F), then ¢ belongs to TH(G).

Lemma 3. 20. Let ¢: F>G be an injective homomorphism of
R-constructible sheaves F and G. Then TH(G)—>TH(F) is surjective.

In order to prove Lemma 3. 19 we prepare the following lemma.

Lemma 3. 21. Let ¢: F>G be as in Lemma 3. 19. Then, for any
relatively compact open subanalytic set V and any s in G(V), there
exist a finite open covering {V;};c; of V by subanalytic sets V; and
elements t; of F(V;) such that ¢(;) =s|y,
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Proof. By Proposition 2. 5, there exist a simplicial complex & =
(S, 4) and a homeomorphism ¢: | & | M satisfying

(3.4.2) «¢(|o}) is subanalytic for any c=4.
(3.4.3) ¢'F and ¢!G are S-constructible.
(3.4.4) TFor any o4, we have either ¢(|o|)CV or ¢(la]) N V=4¢.

Then 4'={oc€4d; |6 C 'V} is a finite set and ¢'V=U U(s). Then
o4’
the lemma follows from the surjectivity of the homomorphisms

I'(Uo); ' F)—>I'(U(o); 1G). Q. E. D.

Now, we shall prove Lemma 3.19. Let ¢ be a section of
Hom (F, D4y) over an open subset U of M such that ¢go¢ belongs to
TH(F). Let V be a relatively compact, open, subanalytic subset of
U and let s be a section of G over V. Then, the preceding lemma
assures the existence of a finite open covering {V;} of V by subanalytic
sets V; and t;€F(V;) such that s|Vj=go(t,~). Since ¢op belongs to
TH(F), ¢(s) IVj:gb(go(z‘,-)) is tempered for any ;. Hence ¢(s) is
tempered by Theorem 3. 6. Thus Lemma 3. 19 is proved.

Next we shall prove Lemma 3. 20. In order to prove this lemma,
it is sufficient to show the surjectivity of the map ¢*: ['(M; TH(G))
—I'(M; TH(F)). Let ¢ be an element of I'(M; TH(F)). Let us
take a simplicial complex & =(S, 4) and a homeomorphism ¢: | & |-
M satisfying (3.4.2) and (3.4.3). Let & be the set of (F, ¢'),
where F’ is a subsheaf of G such that ¢'F’ is S-constructible and ¢’
is an element of I'(M; TH(F)). We introduce the order on & as
follows: (F', ¢")<(F’, ¢") if and only if F"DF" and ¢'=¢" |p.

We shall prove first that &/ is inductively ordered. Let &/ =
{(Fy ¢)} be a linearly ordered subset of &. Set F'=UZF, Then,
it is clear that ¢'F" is an S-constructible sheaf, and there exists a
unique element ¢'I'(M; Hom(F', D4y)) such that ¢'|r,=¢, In
order to prove that ¢ is in TH(F'), let s be a section over a
relatively compact, open, subanalytic subset V of M. Then for any
ced={oed; lo|NcV#@), ol Ne !V has only finite many connected
components. Moreover, F;|,u,, is a constant sheaf. Therefore we
have I'(c(je D NV; F') = LAJF(Z( le D) NV; F). Since 4" is a finite set,
there exists 2 such that s|,nvEl (¢(lo])NV; F,) for any oc&4.
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This implies that sl (V; F;) for such a 4 Therefore ¢'(s) =¢;(s)
is a tempered distribution. This shows that ¢’ belongs to TH(F").

This (F', ¢') is clearly a supremum of &’ and hence & is
inductively ordered. Therefore by Zorn’s lemma there exists a maximal
element (F', ¢') of & such that (F', ¢") >(F, ¢).

In order to prove Lemma 3. 20, it is sufficient to show G=F".
For this purpose, we shall prove F'(¢(U(0))) =G((U(0))) for any
o. Let s be an element of G(¢(U(0))).

Let 5 be the section of G/F’ over ¢(U(s)) which corresponds to
s and let Z be the support of 5. Then we have the exact sequence

o ’
0 CL(U(U))—Z F @Ct(U(o)) G

where C,gw)-z—F" is given by s|.ww-z and C.ww)-z—>C.ww) is the
canonical injection. Then the distribution u%=¢ (s|,we)-2z) Is a
tempered distribution, and hence there exists a tempered distribution
# defined on ¢(U(0)) such that i#|,ye)-z= —%. Then ¢: CynDl—a
belongs to TH(Cy(,) by Corollary 3. 16. Let § be the homomorphism
(¢, ¢) from F'PCyy into Déy. Then & belongs to I'(M; TH(F'®
Cuw)) and satisfies éoa=0. Let F’ be the cokernel of @. Then §
gives the homomorphism ¢" from F” into Z4,. Lemma 3. 19 implies
that ¢” belongs to TH(F”), and hence (F’, ¢) is an element of &/
such that (F", ¢")>(F’, ¢'). The maximality of (F’, ¢') implies
F'=F". This shows that Z=¢, which implies s€F'(¢(U(s))). Thus
we have proved F'(¢(U(g))) =G(¢(U(0))) for any c4. Then G=F’
follows from Proposition 1. 4. This completes the proof of Lemma
3. 20, and also the proof of Theorem 3. 18.

Proposition 3. 22. IfZis a closed subanalytic subset of M, and if
F is an R-constructible sheaf on M, then we have

I'2(TH(F)) =TH(Fy).

Proof. Let us consider the exact sequence
0->Fy_,—»>F—->F,—0.
Thus we obtain an exact sequence
0—»TH(F;)>TH(F)—>TH(Fx_;).

By taking the functor I'; this gives the exact sequence
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0—>TH(F;)—>T;(TH(F))—>I;(TH(Fx_3)).
On the other hand, we have
I';)(TH(Fx_z)) Cl'y Hom(Fx_z; Dby) =Hom((Fx_z)z; Dby) =0.
Thus we have the desired result. Q.E. D.

Proposition 3. 23. Let f be a real analytic function on M and F
an R-constructible sheaf on M. Set U=M—f"1(0). Then,

TH(F) ,—TH(Fy)

is an isomorphism. Here =; means the localization by f.

Proof. The multiplication map by f on TH(Fy) is evidently
bijective and hence the homomorphism TH(F)—TH(Fy) decomposes

TH(F)—>TH(F);—»TH(IYy).
Since TH(F)—TH(Fy) is surjective, TH(F),—TH(Fy) is surjective.
Now, we shall prove that TH(F);—TH(Fy) is bijective. Since
TH is an exact functor, we may assume without loss of generality,
that F has the form C; for a closed subanalytic set Z. In this case,
the proposition follows from the fact that for any distribution u
supported on f7'(0) is annihilated by a power of f. Q. E. D.

3. 5. We shall denote by D(2y,) the derived category of the cate-
gory Mod (92 y) of @y-Modules. Since TH (%) is an exact contravariant
functor from R-Const(M) into Mod(9y), this gives a contravariant
functor

RTH : D*(R-Const(M)) —>D(2,).
By Theorem 2. 8, D*(R-Const(M)) is equivalent to D%_.(M). Thus
we obtain the functor
RTH : D} .(M)—->D(2y).

By this construction, for any F'€Ob(Dk_.(M)), RTH(F)=TH(G"),
where G is a bounded complex of R-constructible sheaves which is
quasi-isomorphic to F".

When we want to emphasize the manifold M, we shall write
RTH (%) for RTH(x).
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§4. Functorial Properties for TH(x)

4.0. In this section, we shall investigate the relation between THy
(%) and THy(x) for a real analytic map f: N—>M.

4. 1. We shall denote by wy the sheaf of orientation on M. Hence,
for a connected, orientable open subset U of M, we have I'(U; wy)
=Z. This isomorphism depends on the choice of orientation and
changes its sign if we change the orientation of U. We shall denote
by % the sheaf of p-forms with real analytic coefficients and put
VR =Ry Set V=75 =Q"M@wM. The sheaf 77y is called the

z
sheaf of densities with real analytic coefficients. If we denote by
% 5 the sheaf of C*-functions on M, then %;}S@VM is the sheaf of
M

densities with C”-coefficients.

By this notation, a distribution is a continuous functional on
I'.(M; %M®VM) and a section of .@JM@VM is a continuous functional
on I'.(M; (KM) with the appropriate topology

4. 2. Let f: M—>N be a real analytic map. For any sheaf & o
M, we shall denote by f,(¥) the direct image with proper support;
i. e. for any open subset U of N,

4.2.1) I'(U; A(F))={sel'(f*(U); #); supp s is proper over U}.
Now, we shall define the integration map

(4.2.9) S L DU @V ) = Dby @V
f Ay E2Y

by <Sfu > W gof) for 9=C:(U) and wET'(Us fi(94u® ¥)).

Note that supp # N supp ¢of is a compact subset in f~ 1U This
homomorphism is &/y-linear. By tensoring 7'§7%, we obtain

(4.2.3) Sﬁ F( Dl @ V sam) Dy
M

Where VM/N:VM ® V%(—D-
Note that the composition

J
f(94M® (. D)“ﬁf (94214@ 'VM)—]:—> Dén Q V'
vanishes. In fact, for sEF(U,ﬁ(@JM@)"Vﬁ,,U)) and ¢=C7(U), we
%

have <Sfds, go>=<ds, pof>= —<s, d(goof)ﬂ;[=0.
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4. 3. Let f: M—-N be a real analytic map, and let @, and Dy
denote the sheaf of differential operators of finite order with real
analytic coeflicients on M and N, respectively. Then, we define

(4.3.1) Dyusw=Ay Q f'Dy
Ty
and
(4.3.2) Dyen=f"Py @ Yumw
ey

Where VM/N:VM ® f_l(Vl‘%_l)‘

-1
Tty

Then one can define the canonical homomorphisms

(4.3.3) Dun @ [fly—>Ay
oy

and

(4.3.4) 7y & Dyeu—>"u
oy

Moreover, we can endow the structure of (D, f19Dy)-bi-Module
on Dy.y and that of (f'Dy Dy)-bi-Module on Dy, so that
(4.8.3) and (4.3.4) are Dy-linear (See [K2]).

With these notations, one can state the main theorem of this section.

Theorem 4. 1. Let f: M—>N be a real analytic map and F &
D% (M). Assume the following conditions.

(4.3.5)  H(F) is of finite rank for any j.
(4.3.6)  The closure of the support of #(F) is proper over N for
any j.

Then we have a canonical isomorphism in D(Dy) :

Rfs(Dyn gé RTHy (F)) =~ RTHy (Rf.F).
M

L

Here K denotes the left derived functor of Q.
Dy Iu
The proof of this theorem will be given in §4.5-§4.11 in three
steps. In §4.5, we treat the case when f is an embedding and in
§4.6-84.10 the case when f is of maximal rank. Finally we shall
complete the proof of Theorem 4.1 in §4.11.

4. 4, Before entering into the proof of the theorem, we shall remark
the following thing. If we denote by # the sheaf of hyperfunctions
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and replace the functor TH(*) with Homc(*, #) in the statement
of the theorem, then one obtains the following statement.

L

(4.4.1) Rf*<9NeMg§R,9fomc(F', Bu))
M

:R.%"omc(Rf*(F), QN)

It turns out that this is also true by Poincaré duality provided

L
that f is smooth. In fact, one can prove that Dy QR Bu=f"'BxyQ
9 Z

M
woyn[1] where I=dim M —dim N and oy/y=0,Qw§ . Since Hy is a

flabby sheaf (and hence an injective object in Mod(M)), we obtain
L
9N<—-M9® R Womc (F, '%M) =R fomc (F, f—l'@MQZ()wM/N[l]) .
M

Then (4.4.1) follows from Poincaré duality (Verdier [V]).

Therefore, the difficulty to prove the theorem lies on the fact
that 24 is not a flabby sheaf.

4.5. We shall prove Theorem 4.1 when f is a closed embedding.
In this case, Dy y is a free Z,~Module, and hence it is sufficient
to prove

(4.5. 1) f*(gNeMg)THM(F));THN(f*F)
M
for an R-constructible sheaf F of finite rank on M.

Lemma 4. 2. If M is a closed submanifold of N then I'y(Déy) =
Dyeu® Dby
Dy

Proof. Take a local coordinate system (&, ¥) =(Zpeeesr Tyy Vi oo ey
ym) of N such that M is given by £x=0. Then Dy, is a free D~
Module generated by Di® |dz [®7! (a=(ay ..., a,) EZ").

On the other hand, it is well-known that any distribution «(x, y)
supported on M can be uniquely written in the form

u(z, y) =2, DI (x)ua(y).
Hence X2 (D:Q |ldz ™) Qu,(y) < X D (x)u,(y) gives the isomorphism
between 9N<—M§94M and I'y(D4y). Q. E. D.
%

Now, we shall prove (4.5.1) when f is a closed embedding.
We have a series of homomorphisms
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f*(gN«M9®THM(F))%f*(-@N«MQ®f0mC(F7 Déw))
M M
—>f* Home (F, 9N<—-Mg§ Dyr) ’—"»f* Homg (F, f_IFM(QJN))
1%
—Home(fo F, Dby).

It is obvious that the image of this composition is contained in
THy(f+F) and hence we obtain the canonical homomorphism

(4.5.2) f*(QN«M9® THy (F)) = THy (f+F).
M

Note that the both hand sides are exact in F.
The following lemma is almost obvious by the triangulation theorem
and we omit the proof.

Lemma 4. 3. For any R-constructible sheaf F of finite rank, there
exists a filtration F=F,DF,D ---of F by R-constructible sheaves {F;}
satisfying the following condition.

(4.5.3) For any point x of M, there exist a neighborhood U of «x
and j such that F;|;=0.

(4.5.4)  For any j, there exists a locally closed subanalytic subsei
Z; such that F,-/F,-+1§CZJ_.

By this lemma, it is sufficient to show that (4.5.2) is an isomor-
phism for F=C, with a subanalytic, locally closed subset Z. By
the exact sequence 0—C;—>C;—C5;—0, we may assume f{urther that
Z is a closed subanalytic subset of M. In this case, we have
THyu(Cz) =1'2(D4y) and THy(foF) =114 Ddy) =1 ;5 (['y(Déy)) =
Ff(m(f*(.@N(_M%@éM)). They imply immediately that (4.5.2) is an

isomorphism.
4. 6. Next, we shall investigate the case where f is a smooth map

(i.e. df: T,M—T,N is surjective for any x&M). In this case, Dy y
is a right coherent Z,-Module and Zy.y has a locally free resolution

M/N®9M<_O

d

(4.6.1) O« QNeMe“VM/N@-@M‘_—VM ®9M<~"'

Here 7" {h= M,N®cuM/N and [/ is the fiber dimension of f The
differential d is given by d(0QP) = dw®P+de a)®

oe?iH and P92, Here we take a local coordmate system
(Zy,oves ) of M and we identify 7= (Q2/27712%) @ wyyx-
z
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Hence, for F &D®(R-Const (M)), QN@Mg@RTHM(F') is quasi-
M

isomorphic to the simple complex associated with the double complex
’VM/N®THM(F) Since W&f&'@THM(F]) are soft Sheaves, Rf*(QN«M

<y

@RTHM(F)) is isomorphic to f* (VM/N®THm(F))

4. 7. For any R-constructible sheaf F such that
4.7.1) supp F is proper over N,

we can define

(4.7.2) Sf: S apn @ TH(F)) > Hom (fiF, D4)
M

by (ngo)(s) =ngo(s) for sel'(U; fiF) and
el (U; f, (VM/N§THM(F)))-
M

It is easy to see that the image is contained in THy(f,F) and hence
we obtain the homomorphism

4.7.3) gf: £+ P un@THi(F)) > THy ().
M

By the integration by parts, it is easy to see that the composition

fe (V&/%®THM(F))—>f* ('VM/N®THM(F))'£’THN(][F)

vanishes (see §4. 2), and one obtains the homomorphism
(4.7.4) fs (VM/N®THM(F))—+THN(J’IF)-

If FF'eD®(R-Const(M)) satisﬁes the condition

(4.7.2) Supp F7 is proper over N for any j,

then one has the canonical homomorphism

(4.7.3) |, e @ THUU) > TH ().

4. 8. Now, we shall admit the following lemma, whose proof will
be given in §4. 13.

Lemma 4. 4. For any F D°(R-Const(M)), satisfying (4.7.2),
there exist an object G of D(R-Const(M)) and a quasi-isomorphism

F' -G such that
(4.8.1)  Supp G is proper over N for any j.
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(4.8.2) For any j, there exists a locally finite family 4; of closed
subanalytic subsets of M such that

(m;j(2) €Z.).

4.8.2.1) G= @ cy?

ZEAJ-
(4.8.2.2) For any Z&4d;, any fiber of Z—f(Z) is contractible.
In particular, we have
(4.8.3) R, (G) =0 for any k#0 and any j.

If we take such a G' and a quasi-isomorphism F'—G’, then we have
Rf.(F)3Rf.(G)=f«G. Thus we obtain the homomorphism

L

4.8.4) | : RA(9un@ORTH () > RTHy (RS, (I7)
M

as the composition of

L
9N<—M®THM (F) = 'VJI(/I)/N® THM (F) —>V1§/1)/N® THM (G)
Dy Ay Ay
and gf:ﬁ(W,Ng@THM(G'))aTHN<f!G‘>.
M

It is a routine to show that thus obtained homomorphism (4. 8. 4)
does not depend on the choice of G' and a quasi-isomorphism F'—>G’,
and we omit the proof.

4.9, We shall prove that (4.8.4) is a quasi~isomorphism. In order
to see this, we shall reduce the problem to a special case. For this
purpose we remark the following things.

(a) The question is local in N.

(b) The question is local in M in the following sense. Any F'&

D®(R-Const(M)), has a filtration such that the support of the gradua-

tion is as small as we want.

(¢) 1If fis a composition of two smooth map g:M—L and A:L—N,

then S = S . S . More precisely, S : Rf. (Q@N«MéTHM (F)) —
s B Je s Dy

RTHy(Rf.F’) is the composition of
L L L
Rh( 221 )i Rhu( P00 Rga (2,040 THy (F))
QL g @L QM
L
_>R]1*(9N<—Lg<) RTHL(Rg*F.))
L

and

L
S, t Rhy(D501 0 RTH, (RguF')) >R THy (Rh.Rg.F).
4 L
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L
Note that g‘IQNeLg@ Dieu=Dycy ([K2] Lemma 4.7). We omit the
L

proof of this.
By these three remarks we can reduce the problem when M=
R XN and fis the projection.

4. 10. Now, we shall prove that (4.8.4) is an isomorphism when
M=RXN and f is the projection. By Lemma 4.4, we may assume
that F=C; for a closed subanalytic subset Z of M such that ZN f(x)
is contractible for any z&f(Z). Now, we may assume further
Zc{t; [t|S1} x NCM. Set

Z,={(t, z)eM; |t|<1 and there exists SER such that (s, ) €Z

and +t= +s}.

Then we have Z, NZ_=Z, and Z_,UZ_=[0, 1] X f(Z). Hence, in order
to show that (4. 8.4) is isomorphic for F=C, it is sufficient to prove
this for F=Cz+, C,; and Cz+uz_. Hence, we may assume further

that Z>D {0} X f(Z). Thus, the problem is reduce to the following
lemma.

Lemma 4.5. Let Z be a closed, subanalytic subset of M=R XN
satisfying
(4.10.1) ZNf(x) is contractible for any x=f(Z).
(4.10.2) Z> {0} xf(Z)
(4.10. 3) Zc[ -1, 11xf(2).
Then

a/0t Ja
Oﬂef*Fz(QﬁM)—“’)f*Fz(ng> -—>Ff<z>(941v) -0

is an exact sequence.

Proof. If uel (U; fil ;(D4y)) satisfies ou/0t=0, then u is con-
stant along the fiber. Hence supp #CZ implies u=0. If usl'(U;

f+l'2(D4y)) satisfies SudtzO, then we define v by the equation

%:(ti=u’ v [=—2=0.
Then v is constant in ¢ outside Z, and Sudt:v(t, z) for t>1. Hence,
v(t, ) =0 if [t|>1. This implies supp vCZ. Finally we have
Sw(x)ﬁ(t)dt:w(x) for wel;(Dhy). Q. E. D.
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Thus Theorem 4.1 is proved when f is smooth or a closed
embedding.

4. 11. Now, we shall prove Theorem 4. 1 in the general case. Sett-
ing L=NxM, f decomposes into sog where g: M—L is the closed
embedding of M onto the graph of f and % is the second projection
from L to M. Hence, we have

L
Rf*(QN«MQC? RTHy(F))
M

L L
=RARE (7' Dy @ D@ RTHy(F))

e 9, Dy

L L
;Rh*(.@N(_L®Rg*(@L<—M®RTHM(F)>
95 Dy
L
=Rh, (.@N@L9®RTHL(Rg*F.))
L

=RTHy(RhRg.F)=RTHy(Rf.F).
This completes the proof of Theorem 4. 1.

4.12. As an application of Theorem 4. 1, we shall prove the follow-
ing proposition.

Proposition 4. 6. For F'eD%_. (M), we have
Rfom_@M(.,Q{M, RTHy, (F)) =R Homc(F', Cy)-

First remark that if we replace BRTHy (F) with R #omc(F, B )
then the proposition is obvious, because R%’omgM(dM, By)=Cu by

Poincaré Lemma and 4%, is a flabby sheaf. Hence, it is sufficient
to prove that the homomorphism

(4.12.1) R Somg, (1, THy(F)) —R Homg (v, Hom(F, By))

is an isomorphism for any R-constructible sheaf F.
We may assume that M is oriented. Let us take a point z of
M, and we shall prove that

Rfyfom@M(ﬂl\h THM(F))x—eR %OMQM(&{Mﬁ %Om(F’ '@M))x

is a quasi-isomorphism. Let f be the map from M onto the manifold
pt consisting of the single point. Then, for a relatively compact open
subanalytic neighborhood U of x, we have

L
RI'(M; QPH—M9® THy (Fy)) =Homc¢(RI'(M, Fy); C)
M
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by Theorem 4.1. On the other hand
Dyt =R Homg, (A y, Du)[n] (n=dim M).
Hence we obtain
RI'(M; R #omg, (s/y, TH(Fy))=Home(RI'.(U; F), C)[n].

On the other hand, this is true for S#om(F, #), i e.

RI'(M; R.?fom@M(dM, Hom (Fy, By)) =Hom¢(RI.(U; F), C)[n].
Thus we obtain

RI'(M; R #omg, (o, TH(Fy)) = RI'(U; R #Homg, (A R Hom(F,

Bu)))-
For UDV>ux, we have

RI'(M; R Htomg, (A v, TH(F))—>RI'(U; R Homg, (A TH(F)))

—RI'(M; R%"OM_@M(&{M, TH(Fy))).

Hence
lim RI"(M; R #omg, (s, TH(Fy)))
—>
U
=lim RI'(U; RJfomgM(%M, TH(F))).
-
U
Thus we obtain the desired result. Q.E. D.

4. 13. Now, we shall prove Lemma 4. 4. This is a corollary of
§1.4, §1.5 and the following theorem (Hironaka [H]).

Theorem 4. 7. Let f: M—N be a real analytic map, K a compact
subset of M and {Z;}} a locally finite covering of M by a locally
closed subanalytic subsets Z, Then there exist simplicial complexes
I =(S, 4), =S, 4) and a morphism g:F—>F’, a homeomorphism
¢t from |&| onto a neighborhood of K and a homeomorphism ¢ from
| &' | onto an open subset of N salisfying the following conditions
(4.13. 1) foe=Co|g]|
(4.13.2) For any o4, ¢«(lo]|) is a subanalytic set contained in

some Z;.

§5. Regular Holonomic Systems

5. 1. In this section, we shall review the results on regular holono-
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mic systems obtained in [KK], [K].

Let X be a complex manifold and 0 x the sheaf of holomorphic
functions on X. Let Zx(m) denote the sheaf of linear differential
operators of order at most m with @y as coeflicients, and Dx=
U924 (m) the sheaf of linear differential operators. Then the
thangent bundle T*X of X coincides with Specan(gr Z), where
gr Dx=PDDx(m)/Dx(m—1).

For am 9 yx-Module #, an increasing sequence {.#;};cz of coherent
0 x-sub-Modules of /# 1is called a good filtration if it satisfies the
following conditions:

(5. 1.1 Dx(m) M;CT Moy, ;

(5.1.2) Dx(m)Mi=M,.; for ;>0 and m=0.
(5.1.3) M;=0 for ;<O

(5.1.4) M=UM;

For a coherent 2 x-Module #, we donote by Ch(.#) the support
of 0y @2) gr # where gr 4 denotes @A;/M;_, for a good filtration
Er 9y

of M. Since Ch.# does not depend on the choice of good filtration
and since a coherent 2 x-Module has locally a good filtration, Ch(.#)
is a well-defined closed homogeneous analytic subvariety of 7*X. We
call Ch(#) the characteristic variety of . Tt is shown that the
characteristic variety is always involutive (Theorem 5.3.2 [SKK]),

and in particular its dimension is equal to or larger than the dimension
of X.

Definition 5. 1. If the characteristic variety of a coherent D x-
Module M has the same dimension as X, M is called holonomic.

Definition 5. 2. Let /# be a holonomic 2 x-Module. If the
Jollowing condition is satisfied, M is called regular (in [KK], it is
called with R. S.)

(5.1.5) M has a good filtration {M;} such that f gr 4 =0 for any
fegr 9x vanishing on Ch(4).

Example 5. 1. 0@ yis a regular holonomic 2 x-Module and Ch( 0 )
coincides with the zero section of T*X.
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Example 5. 2. XCC and M=Dx/DxP for P00 Dy In this
case 4 is always holonomic, and 4 is regular if and only if Pu=0
has regular singularities in the sense used in the theory of linear
ordinary differential equations.

Example 5. 3. X=cC", A;eMy(C) (=1,...,n). Then, M=
2%y 9Y(z, ai —Aj> is a regular holonomic @x-Module. If Aj’s
j=1 j

commute to each other, we have

Ch(M) = {(x, &) €T*X; 2,5,=0 j=1,...,n}.

5.2. Now, we shall give several properties of regular holonomic
2-Modules.

Proposition 5. 3. (1) A coherent sub-Module and a coherent
quotient of a regular holonomic @-Module are also regular holonomic.
(2) If Mi—>My>M—>M—>Ms is an exact sequence of D-Modules
and if My, My Myand My are regular holonomic then so is My
(3) (Cor. 5.1.1.[KK]) The notion of regular holonomicity is local.
(4) (Theorem 5.4.1. [KK]) Let f be a holomorphic function and
M a regular holonomic @-Module. Then the localization My is also
a regular holonomic 2-Module.

5.3. Let f: X—Y be a holomorphic map from a complex manifold

X to a complex manifold Y. Set 2x.y,=0x Q f'Dy and Dy x=
oy
U9y g@ 2% 1 ® 2%, where £y and £ are the sheaves of the highest-
Y 1~
degree holomorphic forms on Y and X, respectively. Then Dx.y is
a (D% f'9y)-bi-Module and Dy x is a (f !9y, Dx)-bi-Module
(see [SKK]).

Proposition 5. 4. (Corollary 5.4.8 [KK]). If W is a regular
holonomic 2 y-Module, then fm, (D xoy, N) s a regular holonomic
‘QX MOdule.

Proposition 5. 5. (Theorem 6.2.1 [KK]). If 4 is a regular
holonomic 2 x~Module and if f is pr0]ectzve, then Rf*(gy(_x®-/%) is
a regular holonomic 2 y-Module. Here ® means the left derwed

functor of X) in the appropriate derived categorzes
Dy
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5. 4. A sheaf of vector spaces F on X is called constructible if there
exists a decreasing sequence of closed analytic subset X,=X> X D X,
D --- of X such that F]X]_,X]_+1 is locally constant of finite rank and
N X;=¢.

Proposition 5.6 ([K1]). For a holonomic D x-Module 4,
(fx[_%x<.ﬂ, 0x) is a constructible sheaf for any j.

5. 5. We denote by 2% the sheaf of linear differential operators of
infinite order (see [SKK]). Then 2% is faithfully fat over 24, 0
is a left 2%-Module and 2 is a right 2%-Module. A 2%-Module
M is called holonomic if there exists a holonomic 2 x-Module 4’
such that 4= 93QR.4".

Ix

Proposition 5. 7 (Theorem 5.2.1 [KK]). Let .4 be a holonomic
D%-Module and set M, ,={ucsH; Du is a regular holonomic Dx-
Module}. Then M., is a regular holonomic 9 x-Module and we have

M=D3 QR M oy
Dx

In particular for any holonomic 2 x-Module .# (not necessarily
regular), there exists a regular holonomic 2x-Module #° (unique
up to an isomorphism) such that 9}”9@% is isomorphic to @;g@ M.

X X

§6. Statement of the Main Theorem

6. 1. Let X be a paracompact complex manifold of dimension #,
Xg the underlying real analytic manifold and X the complex conjugate
of X. Thus, by the diagonal map Xp—XxX, XxX is regarded as
a complexification of Xg. The ring &/x, (resp. Px,) coincides with
the restriction of O x.x (resp. @x.x). By this, we regard Zx and
9% as a sub-Ring of Dx, Fora Py -Module 4, R Homg (0, M)
is quasi-isomorphic to the Dolbeaut complex with ./ as coefficients:

a

A= QP R~ Qs+ DR

Here Q%’k”) is the sheaf of (p, g)-forms, with real analytic function

as coefficients.
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6. 2. Let Mod(X) denote the category of sheaves of C'-vector spaces
on X. Let D(X) denote its derived category and let DJ(X) denote
the full sub-category of D(X) consisting of bounded complexes F*
such that s#7(F’) is constructible for any j.

Let Mod(Zx) denote the category of 2 x-Modules and D(Zx)
its derived category. We denote by D2 (Z2x) the full subcategory of
D(Zx) consisting of bounded complexes 4  such that #7/(4") is a
regular holonomic 2 x-Module for any j.

By replacing 2x with 2% and regular holonomic with holonomic
2%-Module, we similarly define Mod(2%), D(2%) and D}(2%).

6. 3. We shall define functors

Jx : D& (2x)— Di(23),
Dy : D2(Zx)— DUX)°,
?%: DY (23%) — DAX)°,
U,:DXX)° - D(Z2%), and
U3: DM(X)° - D(2%)

as follows
(6.3.1) Jx = 923
%
(6.3.2) =R Jfom@;(*, 0 %)
(6- 3. 3) @X - @;OJZR fomgX(*, 0 X)
(6. 3- 4‘) w; == R f}meCX (*, 1Y, X)‘

Here ° denotes the opposite category. Since 2% is faithfully flat
over 9y, Jx is well-defined. By Proposition 5. 6, @x and &% are
well-defined.

Now, we shall define the functor ¥y This is obtained as the
composition of D(X) ° Dk _.(Xg)° FTED"(Px,)and R #omg, (O, *) :
D*(2x,) —>D(Zx).

Here D(9x,) is the derived category of the abelian category of
P x,~Modules. Hence for F'cOb(DE(X)), U(F) is the Dolbeaut

complex
TH(G) 0o 8, TH(G) ov_9 .. LTH(G') om

where G is a complex of R-constructible sheaves on Xz, which is
quasi-isomorphic to F'. We sometimes denote by the same letter ¥y
the functor R #omg (0 3, RTH(%)) from D:_(Xg)° to D(2x).



THE RIEMANN-HILBERT PROBLEM 355

In the sequel, we omit the subscript X if there is no afraid of
confusion.

Main Theorem. (1) ¥ (DX(X)°)cCD%(2x) and ¥~ =J.¥.
(2) J,0, 0, ¥ and ¥ give the equivalence between the categories
DX(X)°, D%(Dx) and DL(2%). Moreover, ® and ¥ (resp. &= and
U=Yare inverse to each other.

In [KK], we proved the following

Lemma 6. 1. (1) (Proposition 1.4.8., Theorem 6.1.1 [KK])
J, @ and @~ are faithful.
(2) (Theorem 1.4.9 [KK]) ¥~c@®~=id.

Hence Main Theorem is a consequence of the following two
propositions.

Proposition 6. 2. ¥(D(X)°) CcD:%(2%).
Proposition 6. 3. 0¥ =id.

However, the latter follows easily from the first. In order to
show this, let F be an object of D2(X). We have

OV (F') =R Homg (¥ (F), 0x)
=R Homc, (R Homg, (0 x, V(F)), Cx).
Here we used Proposition 1.4.6. [KK] and the fact that ¥(F") <
Ob(D%(2%)). On the other hand, we have
R Homg, (0%, U(F)) =R Homg, (05, R Homg (0 5, RTH(F")))
:R.%”om_@XR(;z{XR, RTH(F)),

which equals R S#om(F', Cx) by Proposition 4. 6. Thus Proposition
6. 3 follows from Proposition 6. 2.

§7. Proof of Main Theorem

7. 1. We have already reduced Main Theorem to Proposition 6. 2.
We shall prove this by using Hironaka’s desingularization theorem. In
order to perform this, we have to know how the functor ¥ behaves
under integration.
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7.2 Let X and Y be two complex manifolds and f: X—Y a
holomorphic map.

Proposition 7. 1. Suppose that an object F' of Dy_.(Xg) of finite
rank satisfies the following condition:

(7.2.1)  The closure of Supp #'(F) is proper over Y for any j.
Then we have

(7.2.2) Rf*(9y9x®7fx(F)) [dim X]
~§’fy(Rf* (F))[dim Y].

Proof. By Theorem 4. 1, we have
Rfi (Dypex, ® RTH,, (F))
~ RTH,, (Rf.(F).
Hence we have

L
Uy (RE () =R Aomsy (O s, RE(Dryeng @ RTHs, ()

=Rf+(R %”Om.@r,(@y, Dypexp ® RTHXR(F)))
xR
Thus the proposition is a consequence of the following lemma.

Lemma 7.2. R Homg,(0y, Dyyex,)

L
=Dy x QR Homg (03, D) [dim X~dim Y].
X

L
Proof. We have R%amgy(@y, QYR(_XR) =897 —dim Y]§ Dypexp
7
We have also

QYE«XR =Dyxtexx2 Xp

and in general
L
guevg@ Dysw= Duxwevxw
v

These imply
R %Omgy( 0 7y QYR‘_XR)

L
= 9:::«-?9@ Dyxvexxz lx [ —dim Y]
v
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L L
:‘9”‘—79@ ‘@YXl7 ® QYXY/(—XXXl XR['—dlm Yj
Y

Dyxy

L
=Dyeyxt @ Dyxvexxx|x,[—dim Y]
Dyyy
=Dyexxz 'XR[—dim Y]-
On the other hand, we have

L
9;/,.;{9@1{%0771@)_(( @X, QXR)
X
L L
=Dyx Q (2x[ —dim X]® Dx,)
Dx 4
L
=Dyx g@ Dxexxx ixk[“dim X]
X
=Dyexxx|x,[ —dim X]. Q. E. D.
The following lemma follows immediately from Proposition 5. 3.
F”
Lemma 7.3. If / \+1 is a distinguished triangle in D2(X)
F—F”
and if two of Ux(F"), Ux(F) and Ux(F") belong to D%(Dy), then
so does the other.

7. 3. Now, we shall prove Proposition 6. 2. By the standard argu-
ment using Lemma 7. 3, it is enough to show Zx(F) €Ob(D%(2x))
for any constructible sheaf F. We shall prove this by the induction
of the dimension of the closure Z of the support of F.

Let Z, be a nowhere dense closed analytic subset of Z such that

(7.3. 1) Flz-2, is locally constant.

(7.3.2) Z—Z, is non-singular.

By the hypothesis of the induction, WX(FZO) belongs to D2 (925).
Hence by using Lemma 7. 3, we may assume on=0 without loss of

generality. Let f: X’>X be a projective map satisfying the following
conditions

(7.3.3) X' is non-singular and f(X") =Z.
(7.3.4)  Zy=f"'(Z, is a normally crossing hypersurface of X'
(7.8.5) X' —Zy—>Z—Z, is an isomorphism.

Such an f is obtained by a succession of blowing up’s by Hironaka’s
desingularization theorem [HI1].
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Set F'=f"1(F). Then we have

(7.8.6) F'|z =0,
(7.3.7 F’ lx'—z(’, is locally constant,
(7.3.8) Rf.F' =F.

As we shall prove later in Lemma 7.4, ¥y, (F’) belongs to Ob(D?,
(2x)). By Proposition 7. 1 and Proposition 5. 5 and (7. 3.8), ¥x(F)
belongs to D% (92x).

7.4. So far, we reduced Main Theorem to the following lemma.

Lemma 7.4. Let Y be a normally crossing hypersurface of a
complex manifold X, and F a constructible sheaf on X such that
F|y=0 and that F|x_y is locally constant of finite rank. Then ¥y (F)
belongs to D% (Dy).

We shall prove first the following special case.

Lemma 7.5. Being X and Y in the preceding lemma, ¥yx(Cx_-y)
is isomorphic to the sheaf #ix v1(Ox) of meromorphic functions on
X with possible poles in Y.

Proof. If Y=g, then ¥x(Cx) is nothing but the Dolbeaut com-
plex

[} ]

0——>D4OO—— 4P D4O»——0.

Therefore, ¥x(Cyx) is isomorphic to @x. The question being local,

we may assume
(7.4.1) X=¢" and Y=]Qlyj

where Y;={z=(2y, ..., 2,) €X; z;=0}.

Set f=a;----x;. Then, by Proposition 3.23 we have
(7.4.2) TH(Cx-y) =TH(Cx) ;= (Déx,) s
Here, *;, means the localization by f© On the other hand, we have
R Homg (O 2, Déx,)s
=(0x);=Hxr(0x). Q. E. D.
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Now, we shall prove Lemma 7. 4 The question being local, we
may assume (7.4.1) with /=1. Thus F is determined by the mono-
dromy around Y, Let exp 2xy —1A4; be the monodromy around Y
with an (N X N)-matrix A;, We may assume

[4;, A]=0 for 1=j, k=L

Then, by multiplying A =x[12,%. ..z, TH(F) is isomorphic to

TH(C%_y). This is not Dx-linear but Zz-linear, and 0 x-linear.
Hence as an @ y-Module, TH(F) is isomorphic to TH(CY_y) =
Hxr(Ox)". If we denote by f this isomorphism, the action of
0/0z; is given
f(0/0x; u) = (0/0x; —A;x;Y) f(u) for ueTH(F).

Here A;(j>!1) is understood to be zero. One can easily show that
Hxr1(0x)Y with this structure of Zx-Module is regular holonomic.
This shows Lemma 7. 4 and hence the proof of Main Theorem is
completed.

§8. Applications

8. 1. In [KK], we have proved that the integration of regular
holonomic Z-Module under projective morphism is regular holonomic.
This can be generalized to proper morphisms.

Theorem 8. 1. Let f: X—>Y be a morphism and let 4 be a
regular holonomic 9 x-Module whose support is proper over Y. Then

L
any cohomology of Sf.//i=Rf*(@y<_X g@.//l) is regular holonomic.
X

Proof. Set FF=¥y(4#). Then by Proposition 7.1,
S/zz Uy (RS, (F)) [dim Y-dim X].

Since Rf.«(F") belongs to D2(Y), Sf./// belongs to D3 (Zy).
Q.E.D.

8.2. Let M be a real analytic manifold and X a complexification
of M. Then we have, for any F'eD%_.(M),

(8.2.1) RTH(F)—>R #Homc(F'y, By).
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Theorem 8.2. For any M4 '€D%(Dx) and for any F €Dg_.(M)
of finite rank,
(8.2.2) R Homg (M, RTH(F))
—R Homg (M, R Home(F, Bu))
is an isomorphism.

In particular, if we set F'=Cy, we obtain

Corollary 8. 3. For any 4 €D%(Dx)
R %Omgx (./%, QJM) —->R fomgx(//, QM)
is an isomorphism.

Note that RJ/om@X(Jf/', R Home(F', %)) can be calculated as

follows.

Since #Zy=RI'}, (0 3)RQuy[dim M] (wy=#3(Cx)), we have
R%"omgX(Jﬂ", R Home(F', Bu))

:R%”omcM(F', R/fomgx(.//l', Bu))
:R.%”omcM(F', RFM(RJfom_@X(.//{', 0 x)) Qwy[dim M])
=R Home, (F, Ox(A')) @y [dim M]
:Ré‘foch(F'%DRX(.///'), Cx) Quy[dim M]
=R JfomcM(F'C@]; DRy (M) |y Ry (Cx)) Ruwy[dim M)
=R ‘%OmCM(F'%DRX("//') I Cip)-

Here DRy (M) =R,%”0mgx(@;;, M)Y=R ,%”omCX(@X(J/{'), Cy).-

Thus, we obtain

Corollary 8. 4. For any 4 €D (2x) and F €D%_.(M), we have
R Sfomg, (M, RTH(F))
ER meCM(F. @DR(.///.) IM’ CM).
M

Corollary 8. 5. For 4 €D%(D%)
R Homg (M, y) SR Homg (M, € i)

where %5 is the sheaf of C*-functions on M.

Proof. We may assume . is a single complex. Let
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1 Pr N

P
O—M—D%
be a free resolution of .#. Then for any relatively compact open
subanalytic set U
RI'(U; R Homg, (M, Ay)) =u(U)’

and
RI'(U; R Homg, (M, €))=Fu(U)"

On the otzler hand, since the cohomology groups of I'.(U, 941‘9)

=

P P
T (U, QAN") are finite dimensional, by the duality,

(8.2.3) Exth(U; M, €5)
=H7(U; R Homg (M*, Déy))*
and similarly
(8.2.4)  Exth(U; M, oy) =H:7(U; R Homg(M*, By))*.
Thus Corollary 8.3 implies
Extiy(U; M, y) 3Extly(U; M, €5). Q. E. D.

Corollary 8. 6. Let X be a complex manifold. Then for any
F D% . (Xg) of finite rank and M4 €D2(Dy) we have
R%”omgx(%', UL (FY))
=R fom_@x(./l', R%ach(F', 0%))
ZR%och(F', Dy (M)).

Proof. We have
R Homg (M, Ux(F))
=R Homg, (M Q Oz RTH(F)).

Since .//{® 0 x€D%(Dx,z), the corollary follows from Theorem 8. 1.

8. 3. We shall prove Theorem 8.2 first in the case where F=Cy,
by the induction on Supp .« =U Supp #’(#) and dim X.

Let Y be the union of the smj1pport of .4 and its complex con-
jugate. Then by the desingularization of Hironaka, there exist locally
a real analytic manifold M’, a complexification X' of M’, a holo-
morphic map f: X’—>X and a nowhere dense analytic subset Z of Y
satisfying the following conditions.
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(0) Zis an intersection of Y and a hypersurface of X.

(1) f:X'—X is proper.

(2) f(M)cM

(3) f:X —f(Z)>X—Z is an isomorphism.

(4) Y =fYY—-Z) is smooth.

(5) Ch(.///')CT;’}XUZ‘;?T*X.

(6) Z'=Y'NfYZ) is a normally crossing hypersurface of Y

(7) Z is stable under the complex conjugation.

(8) N=Y'NM is a real analytic manifold and Y’ is its complexifica-
tion.

Set A" =RI'x) z(Lf*4*)*. Here 4* denote R Homg, (M
L
2)® 29 [dim X1, and Lf* A *=Dyrox @ M.
Dx Dx

Lemma 8. 3. 1.
( 1 ) Rf*R %Om@XI (./ﬂ,', géM/) =R fom@x (RF[XIZ](‘/%'*)*’ QJM)

(2) Rf«R Homg, (M", Buw)=R Homg (R 1x57(M )", Bu)

Admitting this lemma for a while, we shall prove Theorem for
F=CM.

Now, £ is locally isomorphic to the direct product of

QX// jZl QX/(.rjaj —2j>mj+ >L_7:‘>l @X/aj_l_ Z QX/xj[——r]
= s ji=s

for a real coordinate (xy,..., x,) of X. In this case, one can easily
verify the theorem. Hence we obtain

R Homg ,, (M Déy) SR Homg,, (M Byr).

Thus by Lemma 8.3.1, we have
R =9?07’)’1.‘@}((&?., QJM) SR %Omgx(g., ‘@M)

for & =RI'x (M *)*. Since &  is isomorphic to £ on X-—Z
there exists a triangle

/ \+1

M — N
where Supp #/ CZ.
Since the theorem is true for ./ by the hypothesis of the
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induction, that is true also for .

8.4, Proof of Lemma 8. 3.1 ().
ASSume Z:Yn {SDZO}- Set ;/V":R %0771_@X(erx|z](-/”‘*>*, 9){) :-QX
9@ RF[X|Z](.///'*)[_dim X] and JV,.ZR fom_@X,(.///“ 9){/):

Then the rlght hand side of (1) is Rfi (N ® Déy.) and the left
hand side is 4 ® Déy-

On the other hand, we have
L
./Vz./{/‘.® (Qx>¢ and ./V./-:'/V.®(9X/>¢.
Zx 2%
Hence we obtain by Proposition 3.23
N ® QJM, N ® (Dx1), ®@4M,
=N %TH(CM,_f_l(Z))
and similarly
N ® Dhy=N" ® TH(Cuy-z)-

Thus, (1) follows from
Rf.(THy. (CM,‘_ED_I(O)) Y=THy (CM_ w_l(o)).

Proof of Lemma 8. 3.1 (2). By the argument preceding Corollary
8. 4,

R.}’fom_@x(.///, '%M)=R fomcM(DRx(-/”> IMs CM)
Hence (2) follows immediately from
DRX(RF[XM](-///*)*)=DRX(-///')X—2-

8. 5. Now, we shall prove Theorem 8. 2 for an arbitrary F. We
may assume that F'=C; for a compact subanalytic set Z. We shall
prove Theorem 8. 2 by the induction of dim Z. By the definition,
there exists a proper real analytic map f: N—M such that f(N)=Z
We may assume M and N are oriented. Letting Y a complexification
of N we extend f to a holomorphic map Y—X.

By Theorem 4. 1, we have

L
Rf* (9N<—M § 941\/) =RTHM(Rf* (CN))-
N
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Hence
R SHomg, (M, RTHy(Rf:(Cy))
L
=R Homg (M, 9")9@ RTHy (Rf.(Cy))
X

L L
=R,%”omgx(.//{', PDx) @ Rfx (Dyen Q Déy)
Dy Dy
L L
=Rf:(R Homg (M, D) Q) Dxev Q) Dén)-
Dx Dy

This holds also by replacing 24 with #. Hence Theorem 8.2 for
the constant sheaf impiles
R e%”om_@x (', RTHy(Rf«(Cy)))
=R JfOMQX (.///., R WOMCM(R][* (CN)y g??M))

Now there exists a nowhere dense closed subanalytic subset Z'CZ
such that

(1) Rf.(Cy) |z_z is constant.
(2) F'l,_, is constant.

By the hypothesis of induction, the theorem is true for Fy.. Rf,(Cy)z,
and hence it is true for Rf,(Cz)z_z. Since Rfi(C;)z_z is constant
the theorem is true for C;_; and hence for F;_;. Thus we obtain
the desired result.
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Added in proof:

The proof of Theorem 2.8 is not complete because we assumed dim F,<oo for an
R-constructible sheaf F but not for an S-constructible sheaf F. This difficulty can be
overcome by one of the following methods. The first method relies on the fact that
Theorem 2.8 is proven if we replace “R-constructible” with “weakly R-constructible” and
that the functor TH is a well-defined exact functor on the category of weakly R-construc-
tible sheaves. The second method is to prove Theorem 2.8 in the original form by using
the following lemma which can be easily shown.

Lemma. If F is a bounded complex of S-constructible sheaves on |& | such that dim #/(F"),
oo, then F' is quasi-isomorphic to a bounded complex F~ of S—constructible sheaves such that
dim F;/<oo,






