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Theory of Multiple Polynomial
Remainder Sequence10
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Tateaki SASAKI* and Akio FURUKAWA**

Abstract

Given a set of polynomials {P£,D(#), • • • > Pom)U)}j with coefficients in an integral domain
I, we can generate a sequence of sets of remainders {P^(x)9 ..., Pfw)U)}, x=l ,2 v ..,
through /^Pffi^'P^-a^h', deg(Pffi)<deg (?<*•>), 0=1,.. . , *,-!, * + !,..., ra,
y,e {!,..., TO}, with ap°, #*>e=7. We call the sequence of sets {PJ U C«) , . . . , P,Cm)(*)},
f=l , 2, . . . , multiple polynomial remainder sequence (multi-PRS). This paper proves that,
for each polynomial Pj">, there exists a matrix M%\ Q^j<i, such that Pj^^lM^I, each
nonzero element of the first column of MO? is x'P^ with / a nonnegative integer and &e
{!,..., m}, and each of the other nonzero elements is a coefficient of P$w. Furthermore,
three algorithms for calculating multi-PRS over I are given.

§ 1. Introduction

Let F(x), G(x\ and H(x) be polynomials of degrees /, m, n,
respectively, over an integral domain I such as the ring of integers or
multivariate polynomials:

(1.1) F(x) =/,*' +fi-lx
l~l + . . . + / Q , /-el,

(1.2) GW -^•m^+^w_1^-1+..

(1.3) //W = hnx
n + hn^xn-1 + ..

Using F and G with l^m, we can generate a polynomial remainder
sequence, or P^?5 in short, (Pl5 P2, . . . , Pfe^0, Pfe+1 = 0), by successively
calculating remainders through the following formulas:

(1.4) P,(x)=F(x^ P2(x)=G(x),

hPi+i = «iPi-i-QiPi, deg(P,+1)<deg(P,), f = 2, 3 , . . . ,* ,

where af, /3jEE/, and deg denotes the degree w. r. t. j:.
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For many years, mathematicians know that each polynomial in

the PRS {P15 P2, . . . , Pk] can be represented in a determinant form,

i.e., P f~|M z- l , where the matrix M{ is composed of F, G, and their

coefficients, and "~" denotes similarity, that is A^B if aA=bB

for some nonzero a, b^I. Since the PRS plays an important role

in computer algebra, Collins,1'25 Brown and Traub,3) and Brown4)

investigated the matrix M{ in details, and developed the so-called

subresultant theory. According to their theory, M{ is given by

(1.5)

fj fi-i fi

. . gm-lgm

gj . gm-

X 1 j 1 G g2j+2-l . . . . . . gm-l g m

eg(P,-) or y^degCP^x) —1.

The determinants of M£, *" = 3, 4S . . . , & , are called sub resultants.

This name originates from that the determinant of (1.5) with j = Q is

Sylvester's determinant representing -the resultant. Based on the

subresultant theory, the above authors constructed efficient algorithms
for calculating PRS over I.

In a previous paper,5) the present authors introduced a concept

of secondary-PRS and extended the subresultant theory. Using the

PRS {Pi, P2, o . . , Pk} and H, we can generate a polynomial remainder

sequence {P1? P2, . . .} through formulas

(1.6) P1 = H,
/3,P£ -a,Pf_x -&P,, deg(Pf) <deg(P,),

t=2, 3, ..., k if deg(Pfe) >0, i = 2, 3, ..., k -1 if deg(P4) =0,

where az-, /Sz-el. In deriving the sequence {P1? P2, , . . } , the PRS

{Pl3 P2, . . .} is used as a set of divisor polynomials and it is called

main-PRS. On the other hand, the sequence [P19 P2, ...} is obtained

as a by-product of the main-PRS. Hence, the sequence was named

secondary-PRS. For each polynomial P,- in the secondary-PRS, there

exists a matrix M£ satisfying P^ |M"Z-1. In fact, for l^zn, such an M^t-



is given by

(1.7)

MULTIPLE POLYNOMIAL REMAINDER SEQUENCE 369

x°F f, . . . . /,_, ^

JF fi-i /«-

xm 3 p J2j + l-m fl-l fl

X*G gj . gm-lgm

X Lr gj—l • • gm—lgm

^ g 2 j + I — 1 • • • • • • gm-l g m

x°H hj . . /?„_! hH

with y=deg(P£).
This paper generalizes the concepts of PRS and secondary-PRS

to multi-PRS and extends the subresultant theory further. Suppose
we have a set of m polynomials

M R} lP(V(r} P(V(r} P^f-r^l w>9\L. oj \JTQ { j , j 9 j:Q {Ju), 9 . . , ro \^) ], ni^.^

with coefficients in 7. Treating these polynomials as starting polyno-
mials, we can generate a sequence of sets of remainders

through the following formulas:

^•€E (1, 2, . o., m},
Q(fi)p(ft) — „,(ft) p(0) /I (/«) p^yz) Af*rr( P^Ji x £ + 1 — u£ x £ ^i x i 5 U.CgVJ- j + 1

for (JL such that deg(P^) ^deg(Pf f ))5

(1.10) \

for /^ such that deg(P^)

That is, the (f + l)st set of remainders {PP^l5 P>?1? ..., Pft\] is generated

by choosing the divisor polynomial Px-
 { arbitrarily. It is easy to see

that the conventional PRS can be formulated as a special case
of multi-PRS with starting polynomials {F, G}. Furthermore, the
secondary-PRS is also a special case of three-PRS with v^{l, 2}.

As a generalization of matrices Mt- and M{, we prove the existence
of matrices Mjf), /*=!, 2, ..., m, j = 0, ! , „ „ . , i — 1, such that



370 TATEAKI SASAKI AND AKIO FURUKAWA

(1.11) P^ — I Af|f } or Pp> - J$ | Af $ 1 ,

where M-f) is composed of P f } ( x ) , k = l, 2, «, . . , m, and their coeffi-
cients, just as Mi and M{ are composed of F, G, H, and their
coefficients. Furthermore, we derive several algorithms for calculating
multi-PRS over I.

§ 2. PRS-Matrix

In this section, we define terminology, introduce notations, and
specify main properties of the matrix M$ which we call a PRS-
matrix.

The coefficient of the highest degree term of a polynomial P(x)
is called leading coefficient and abbreviated to lc(P). For example,
lc(jP) =ft. The sets of starting polynomials and i th remainders in
multi-PRS are denoted by (P^(x), Pf (*), ..., P^ (*}} and (PV(x),
P£2) (#) , . . . , P\m}(x)}, respectively, as in §1. The degree and the
leading coefficient of the i th remainder Pp} are denoted by n\& and
clM\ respectively:

(2.1) n^

(2.2) cW

The divisor polynomial in the calculation of the (*"+!) st remainders is

denoted by Pff), as in §1. The sequence (P^}, P^}, . . . , P^J is

normal if

(2.3) n^-n^-l for i = 0, 1, . . . , w-1,

otherwise the sequence is abnormal. The degree difference between

Pp} and P?'0 is denoted by d&:

(2. 4) ^-deg(P^) -deg(P^).

When the polynomial remainder is calculated by the conventional
division, the remainder is in general not in I[x} but in (I/I) [.£]• In
order to make the remainder be in I\_x]-> we perform the pseudo-
division instead of the division. (The pseudo-division of F and G is
the division of lc(G)deg(F)-deg(G)+1-F and G.) The resulting remainder
is called pseudo- remainder and abbreviated to prem. The coefficient
of the term of degree k in PI(X} is denoted by Piik'
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We introduce notation "[ ]" to describe equations in (1. 10) concisely:

(2.5) [Pj">, P=a^P^-Q^P^ /£=!, 2 , . . . , w,

(if nW<n?* then Q{*°=0).

Thus, if a-lc(G)deg(F)-deg(G)+1 then [F, G]=premCF, G). The coeffi-
cient of the term of degree k in [F, G] is denoted by [F, G]k.

Now, let us specify the PRS-matrix M$ by defining terminology
for the PRS-matrices.

Property 1. Each row of M$ is composed of one of the polyno-
mials Pf\ k = l, 2, . . . , m, and its coefficients.

Type of a row: A row composed of Pf} and its coefficients is
called of type Pf \ or of type k in short.

Property 2. The leftmost element of a row of type Pf in
is either 0 or xlPf with / a nonnegative integer. Each of the other
elements of the row is either 0 or a coefficient of Pf\

Property 3. All rows of the same type are arranged sequentially.

We can visually understand the above properties by observing
matrix Mf or ~M{ given in § 1. In discussing PRS-matrices in general,
we are necessary to introduce a concept of block.

C-block : Except for the leftmost column, all other columns of
M($ are divided into nonoverlapping blocks called C-blocks. Each
C-block is composed of a set of sequential columns (see Fig. 1).

R-block : All rows of M\^} are divided into nonoverlapping blocks
called R-blocks. Each R-block is composed of a set of sequential
rows of the same type (see Fig. 1).

Block: The largest submatrix contained in both a C-block and
an R-block is called a block (see Fig. 1).

Type of a block/ R-block : A block or R-block composed of rows
of type k is called of type k.

According to the above definitions, all the elements that are in the
second to the last columns of M$ are divided into nonoverlapping
blocks. We specify the blocks further.
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R-block

t t
first column C-block

Fig. 1. Blocking of a matrix.
The dotted area shows a block.

Predecessor block: Among blocks in each R-block, the nonnull
leftmost block is called a predecessor block (see Fig. 3).

Successor block: In each R-block, blocks which are at the right
of the predecessor block are called successor blocks (see Fig. 3).

Property 4. An element in the leftmost column is nonzero only
if the element is in an R-block which contains a predecessor block
in the first C-block.

Property 5. Each block is either a null matrix or a matrix of the
form illustrated by Fig. 2. Any predecessor block contains only
nonnull rows.

Note that the nonzero rightmost element in any row is the leading
coefficient.

Index of a nonnull row in a block: Let the leftmost element of
the row be the coefficient of a term of degree k. (If there is no such
term, we virtually assume the existence of the term.) Then, the row
is called of index k. (For example, the rows in Fig. 2 are of indices
I, 7-1,..., 1}

Normal rows, abnormal rows: There are two kinds of rows,
normal and abnormal. In each block containing both normal and
abnormal rows, the index of any abnormal row is greater than those
of normal rows. (Abnormal rows can appear only when some PRSs
are abnormal.) Detailed definitions of these terms are given in §3.
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Index of a nonnull block'. Among the normal rows in the block,

let the nonnull topmost row be of index k. If the block contains no

normal row, then let the nonnull bottommost abnormal row be of

f i /f+i • • / , 0 - 0 ^

fi-i fi • • • fi 0 - 0

/ r /z+1 • • • • • • / / 0 • 0

0 o • • • • • • • 0 • 0

0 0 • • 0 - 0

or

0 0

fi 0

fi • • /, 0 • 0
0 - • • 0 • 0

0 • • • 0 - 0/1

Fig. 2. Structure of a nonnull block.
A row composed of only 0 elements is called null. A block composed of only null
rows is called null. The bottommost null rows and rightmost null columns may be
vacuous. The topmost row is null only when the index of the row exceeds the degree
(i. e. I in this figure). Any predecessor block does not contain null row.

m gn • gm

O HI * • • •

^fa+l • • • gm

Sm Sm

So.

gm

g0 • • • gm

g{S gm

t' first column

Fig. 3. Structure of R-blocks of the same type.
Three R-blocks are shown which contain three predecessor blocks (diagonal blocks)
and two successor blocks (off-diagonal blocks). Note that, in each C-block, the in-
dices of rows decrease continuously from the successor block to the predecessor bock.
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index k + l. Then the block is called of index k.

Property 6. In each C-block, all predecessor blocks are of the
same index while their types are different from each other.

Property 7. In each C-block, the index of the nonnull bottommost
row in any successor block is the same as that in other successor
block, and the index is one larger than the index of predecessor
blocks in the C-block. (That is, combining a successor block and a
predecessor block of the same type in a C-block, we obtain a larger
block of the form illustrated by Fig. 3.)

Figure 3 illustrates the structure of R-blocks of the same type.

We define quantities specifying the
L(fjt-> z, j) '• The number of C-blocks in M-f). In §5, L(/A z'+l,

j + 1) and L(/JI, i+l9 j) are represented simply as L and Z/, respectively.
^I^L-fK^) : The number of normal rows in the predecessor block

of type k in the /th C-block in M$.
A\l'\(ip}(k) : The number of abnormal rows in the predecessor

block of type k in the /th C-block in M%}.
N$ : The order of matrix M$.

By definition of predecessor blocks and property 6, we have
m L ( f i , i , j }

(2.6)

§ 3. Inverse-Reduction of PRS- Matrix

The inverse-reduction is an inverse operation of the well-known
procedure of reducing determinants, and it is crucial for analyzing
multi-PRS. This section explains the inverse-reduction of PRS-matrix
by examples and define the procedure.

We first explain the reduction of PRS-matrix by considering the
matrix Mf given in (1.5). Suppose that polynomials defined by
(1.1), (1.2) and (1.3) satisfy the relation H=F-QG, deg(H)<
deg(G) ^deg(F). Then, applying a procedure described in ref. 3 or
5, we can rewrite (1.5) as
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(3.1) xQH

XQG gj + l . . . gm-lgm

g j . . . . ^fm-1 S m

xl~j~~lG g •

When j<^n, we can reduce the above matrix as
(3.10

xlH hj /?„_! hn

\Mi\=gl-> 1H h2j+2,m ..... /zw_! hn

gj gm-lgm

Xn j 1G

Denoting the matrix in (3. T) by Mfil, we see that Mitl is a PRS-
matrix satisfying Pi~~\Mi\'^'\Mitl\. Compared with Mz-, the order of
Miti is reduced by / — n. Hence, we call the above procedure the
reduction of a PRS-matrix. Note that the reduction is nothing but a
successive application of Gaussian elimination.

In the above reduction, the number of rows of type G is reduced.
Conversely, if we add suitable rows of type G to Mj i l3 we can transform
the matrix Mitl to M£, i. e., to another PRS-matrix of higher order.
We call this procedure the inverse-reduction of PRS-matrix. We use
this term not only for a PRS-matrix but also for a row in a PRS-
matrix. Considering the reduction procedure, we may specify the
inverse-reduction by the following rules:

Rule 1. The inverse-reduction of a PRS-matrix M;?}+1 to M^}

adds only rows of type Pjj to M-fy+1, and it does not change the
numbers of rows of other types.
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Rule 2. The inverse-reduction does not change the indices of all

rows contained in

Rule 3. Let F, G, H be polynomials defined by (1.1)—(1.3),

with l^.m^>n, and let H=[F, G]. Then, inverse-reduction of (h^

..., AB, 0, ..., 0), a row of length 57+1, to (f^ ..., fn, ..., /^+3?, ...,/,)

requires / —(772 + 37) rows of type G and of indices m—57 —1, m— 57— 2,

..., ffi-l+m. (See Fig. 4.)

It should be noted that, in Fig. 4, only rows of type G and of indices

m, m — 1, « , . . , m—l + m are necessary to reduce the row of type F to

that of type H. The other rows of type G, i. e., rows of indices

772—37 — !, m— 37— 2, ..., 7^ + 1 are used to reduce the number of zero

elements in the reduced row of type H. Thus, we have two kinds

of rows which we call normal and abnormal:

Normal rows and abnormal rows. The PRS-matrices M,-^,-,

// = !, 2 , . . . , 772, z=0, 1, ..., z'max~l> contain only normal rows. The

rows which are necessary to reduce only the size of PRS-matrix

without elimination of its element or to inverse-reduce only abnormal

rows are abnormal.

InFig. 4, rows of type G and of indices m—rj — 1, 772 —57 —2, .. . , 772 + 1

are abnormal. The abnormal rows do not appear frequently in the

PRS-matrices; they can appear only when more than one sequence

of multi-PRS is abnormal (see §4).

(hfn . . hn 0 . . 0)

Jm " Jn • • Jm + T) . . . . Jm-l Jm • Jl

( p r _ ^ ^ g . J 2 r _ i j 2 r

S m + l . . . . . . . . £m—\£m

f y m • • • • • • • . . . . f y m — 1 f y w

& m — l + m . . . . . . . . . . . g m — i g

Fig. 4. Illustration of the inverse-reduction.
The row (h& .. htt 0 .. 0) of horizontal size ^ + 1 is inverse-reduced to (f
• • • / / ) by adding rows of type G, where H=[F, G]. It should be noted that the
upper m — m — 7] — l rows of type G are used to reduce the number of 0 elements of
the row of type H and they are not used to eliminate elements of the row of type F.
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Matrices Mi9 M,-tl, or M{ are composed of only predecessor C-
blocks and they contain no successor block. In order to show the
necessity of successor blocks, we present an example of multi-PRS,
where we set [A, B]=prem(A -B) and

(3.2) [P$>

Choosing G0 as the first divisor, we have

fn /,

(3.3) Fl=prem(F0, G0) = G ft

(3.5) H1sprem(H0, GB) = , deg(fli)=n-l.

xG ft_i g,

(3.4) G! = GO, deg(G!)=n,

H h.
/-^

Choosing FI as the second divisor, we obtain

(3.6) F2=F19 deg(F2)=n-l,

fn-l fn

.T.F

(3.7)

XG gn-2 £„_! gn

X2G ^_3 gn-2 g^ gn

£ Jn-l Jn Jn + l

G gn—l gn

H AB_! hn

Choosing H2 as the next divisor, we can calculate G3 easily as

^ Jn-2 Jn-l Jn Jn+l

%F Jn-3 Jn-2 Jn-l Jn Jn+l

G gn_2 £„_! gn

XG gn_z gn_2 gn^ gn

X2G g-n_4 ^n_3 £n_2 gn_! gn

H hn_2 hn_, hn

In order to represent F3 by a PRS-matrix, we are necessary to
introduce successor blocks as

(3.8) H2 = prem(H,, F,

(3.9) G3=prem(G2,H2)/lc(F1) =
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(3.10) F3=prem(F2, H2)/lc(F])

£ fn-2 fn-l fn fn+l fn fn-

X£ Jn-3 fn-2 fn-l Jn Jn + l

G gn-2 gn-l gn gn

X Gr gn—4 gn—3 gn—2 gn—l gn

0 gn-l gn

H hn_2 &„_! hn hn

xH hn_3 hn_2 &„_! hn

This matrix contains three successor blocks. The rows of type G are
divided into two R-blocks, each of them contains a predecessor block.
We can check that all Properties 1—7 presented in §2 are satisfied
by th,e above matrix.

The matrix in (3. 10) is quite complicated. However, such a
complicated PRS-matrix can be derived rather easily by the inverse-
reduction. In the inverse-reduction, F& for example, is represented

first by a PRS-matrix composed of F2 and H2. Next, the matrix is
transformed so that its elements are represented in terms of F1 and
HI. Finally, we derive a PRS-matrix composed of FQ, G0, and HQ.
We trace this procedure explicitly.

Since the degrees of F2 and H2 are n-~ 1 and n— 2, respectively,
jF3=premCF2, H2) can be written as

F2 F2in_2 F2.n-i
/O 1 1 \ 77 TT TT
(6. LL) .TS— ^2 <tl2.n-2

fj- TT TTJun2 xi2>n_3 n2>n_2

Using (3.6) and (3.8), we can rewrite (3.11) as

(3.12)

Since deg(Hi) =deg(F1) —n — 1, we add one row of type F to the
above matrix:

(3.13) ^3
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F l iW_3

FJ [H15 FJ,,^ [H15 FJ,,-,

This form of matrix is ready to inverse-reduce to give

FI F1>n_2 F\,n-l

xF, Flin_3 FLn_2 F .̂!

X

We continue the inverse-reduction. Using (3.3) and (3.5), we can
rewrite (3. 14) as

(3.15) F3={\c(FJ/lc(GQy}
[F0, Go] [F0, G0]n_2 [F0, GO],^

^[F0, GO] [F0, G0]n-3 [F0, G0]n_2 [F0, G0]?z-

[/Jo? GO] [Ho, G0]n_2 [Ho, G0]w_!

:r[H0, GO] [H0, G0]w_3 [H0, G0]n_2 [H0, G0]n_

Since deg(F0) :=n + l and deg(G0) =deg(H0) =n, we must add the
following three rows of type G0 to the above matrix:

O G0it t_2 G0 i W_i G0>n G0,ra

0 G0ira_3 G0ira_2 G0 i W_i G0>?z /(G0,n)3.

O G0 i W_4 G0,n_3 G0ire_2 G0in_! G0itt

Note that the first row of this matrix contains two G0,n elements.
The reason is as follows: The order of the matrix in (3. 15) is 4,
and three rows are added. Hence, the order of resulting matrix is 7
and each row to be added must contain G0fM in one of the 5th to 7th
columns. With the addition of three rows of type G0, (3. 15) can be
transformed to

(3.16)

Jn-l fn Jn + l Jn& Jn-2

~T? J.' £ £ S f
X^ Jn-3 Jn-2 J n-l Jn Jn + l

G gn-2 gn-l gn gn

xG gn-3 gn-2 gn^ gn

3?G gn^ ^_3 gn_2 gn^ gn

H hn_2 hn-\ hn hn

xH hn_3 hn_2 AB_! hn
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with

/
/ Jn Jn+l ,
n = /gn-

£? i S"o n—i o n

The matrix in (3. 16) is not a PRS-matrix because it contains an
element which is not linear in the coefficients of F and G. Linearizing
the above matrix by introducing a row which has nonzero elements
only in the second C-block, and dividing (3. 16) by the factor IcC^),
we obtain (3. 10).

Eqs. (3. 7) — (3o 10) show that calculation of multi-PRS by pseudo-
division introduces extraneous factors to the remainder polynomials.
The extraneous factors are leading coefficients of divisor polynomials,
and by eliminating them, we can calculate multi-PRS efficiently.
Analysis of the extraneous factors is one of the main purposes of this
paper.

In the following, we describe an outline of the inverse-reduction
procedure algorithmically. The details of the algorithm as well as the
proof of existence of PRS-matrices satisfying Properties 1—7 are given
in the next section.

Procedure INVERSE-REDUCTION (outline)

Input : A set of polynomials [P^(x), ..., P(
0
m\x)} ;

Output : PRS-matrices {M$, . 0 „, MJ#}, z = l, 2, ..., zmax;

For zV-0 to z'max — 1 do [iteration on z'^0]
For ^<—1 to m with /^^ do begin

Step 1: Represent P^^^P^ = \_P^\ P^}] in the determi-
nant form as (3. 11) and let the determinant be |M^}

M | ;
Step 2: [Iteration on j^O]

For j*~i — 1 to 0 step —1 do begin
Step 2« 1: [Here, P\r

+l is represented by M$u+1.']
For every k^Vj and r —0, 1, 2, . „., replace Pj+\ and
Pa) in MW "hv FP(fe) P(l)j°l anH rP(*> P(V"1rj+i.r m ^i+i,y+i °y !>/ 5 ^j' J ana |_/j- » -'y J?-?
respectively;

Step 2. 2: Add normal rows of type P/J to the matrix
obtained in Step 2. 1 so that all the normal rows may
be inverse-reduced; [New C-blocks and R-blocks may
be created.]
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Step 2. 3: Add abnormal rows of type P/' to the matrix

obtained in Step 2.2, similarly; [New R-blocks may

be created.]
Step 2. 4: Represent the matrix in terms of Pf and Pj*>;

[The elements \_Pf\ P?'0] and [Pf, P*'\ in the

matrix are replaced by Pf^ and Pj*>, respectively.]

Step 2.5: If the matrix obtained in Step 2.4 contains

elements which are nonlinear in the coefficients of

Pf\ linearize the matrix by adding rows of type Py; ;

[Here, we have M^.r]
end;

Step 3: P&t-Pgi/PP',
end;

§ 4. Existence of PRS-Matrix

Although we have stated much about the matrix M[f}, we have

not proved even the existence of M,-fj yet. This section gives a con-

structive proof of the following theorem:

Theorem 1. For any multi-PRS [P?\ . . . , P{m)}, i = 1, 2, ..., zmax,

there exist PRS-matrices M(f} satisfying (1. 11) and Properties 1—7.

Proof. The proof goes parallelly with a detailed analysis of each

step of the inverse-reduction procedure presented in §3.

Step L We recall the well-known determinant representation for

the pseudo-remainder:

x»F fm fm+l . . .

^°G gm

( xlG gm^ gm

(4.1) prem(F, G) = '

xl mG g2m-j . . . gm-^g

where F and G are defined by (1.1) and (1.2), respectively, with
l^>m. Using (4. 1), we can easily perform the Step 1. As the first
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step of iteration on z, let the matrix representing prem(PoA°, PQ° ) be

(4.3)

Note that, if n(
0^<^n0

Q, M['% is a matrix of order 1, i.e.,

(P^)- When n(
Q^^>no°, the M$ contains only one C-block

and two R-blocks, and all blocks contained in M$ are predecessor
blocks. The M(% satisfies Properties 1—7 obviously, and

(4.2) L(/A 1, 0) = 1,

(\\ \ en \
{ij\ ^0 i 1 * C Z, J (.u) ^5> 0

72g 71$ ~Y~ 1 11 K — VQ anQ 71$ ^^ 72g ,

0 otherwise,

(4.4) -A[1]$(*)=(), jfe = l, 2, ..., m.

As the assumption for iteration on z'^2, assume that we have
determined P^} and M£V, //=!, 2, ..., m, f = i' — l, i'—2, ..., 0, i" =
1, 2 , . . . , /, which satisfy Properties 1—7. Then, we have the values

L(fa i', /)• Upon this assumption, we will construct M^}
u, j=i,

i — 1, o , . , 0, successively.

We first represent P^i = [Pp}, P/'] by a determinant using (4. 1).

Let the matrix representing prem(P^}, P/2:) be M^lit-. Then, M^.,-
is a PRS-matrix. Similarly to MjfJ, the M[^lti is specified as

(4.5) L(ft i + l, 0-1,
1 if 4 = ^,
np) _n^. i _|_ j jf k = v{ and n^^riil,

0 otherwise,

Step 2. As the assumption for iteration on j, assume that we
have determined M\^lijf (J,= \, 2 , . . . , m, f = i, / — I , . . . , j+l, which
satisfy Properties 1—7. Then, we have the values of L(fi, z + 1, /),

Step 2. 1. The M^u+1 is composed of P/515 k=l, 2 , . . . , w, and
their coefficients. By the assumption for iteration on i, we have Py+i,

Pj», Pfy) and $» such that

(4.8)

(4.9)

(4.6)

Hence, it is trivial to replace Pf+i and Pj+\ in the matrix M,-5?lti7-+1 by
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(4.8) and (4.9), respectively.
Step 2. 2. We first consider the inverse-reduction of all nonnull

blocks in the first C-block. These nonnull blocks are predecessor
blocks, and M.^u+i contains N[lYAjj+l(k) normal rows of type k in
the first C-block. Since only rows of type Vj are added by the
inverse-reduction from M^\I;-+I to M$u, we have

(4. 10) N[l]#u(*) =N[l]tfu+i(*), k*vj.

Addition of normal rows to the first C-block is necessary only when

the M$u+i contains rows of type k such that nf^n^. According
to Property 6, the predecessor blocks in the first C-block are of the
same index, say n. If A^lli+u+iC^O =£0, we add rows of type i>j to
the existing predecessor block in such a way that Property 5 is satisfied.
If -ZV[l] t-+i,j+i(^) — 0, we create a new predecessor block of type Vj
and of index n in the first C-block. Anyway, according to Rule 3
in §2 (see also Fig. 5), inverse-reduction of the normal rows of type

k in the first C-block requires 2V[1]^)
1>;-+1(&) +nf} — n/J" normal rows

of type Vj and of indices n, n — 1, . . . . Hence,

(4. 11)

As a result, every column in the first C-block contains at least one

efficient of P/; ,
&Vy is given by

coefficient of P/; , and the horizontal size of the first C-block in

For such k that Nll^1J+1(k) ^0 and nf<n-j\ we have nf^ =
and

^ (horizontal size of the first C-block in
^ (horizontal size of the first C-block in

Therefore, we can delete the condition nf^^n^ in (4. 11). Fur-
thermore, since JV[l]Su(^0 ^^[lli+i.j+iC^Oj we may delete the con-
dition £=£y/ in (4.11). Thus, we can rewrite (4.11) as

(4. IT)
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Eqs. (4.10) and (4.11') are recurrence formulas for
m.

Corresponding to the addition of rows, we add xkPj 3 , k =

-+u(^) -1> to the first column of the matrix

so that Property 4 may be satisfied.

om

+n

gm

gm

rows of original matrix

gn

—q+m—n+l gm gm
rows 1 6m —T)+m—n+1 &m &m

) *

gm—ij+m—n gm
l-n

gm — l gn,

«- *** -» t **

* rows added by inverse-reduction
** each column constitutes a new C-block

*** horizontal size of C-block is increased by /—n

Fig. 5. Addition of normal rows.
In order to inverse-reduce t] rows of type H to those of type F, we are necessary
to add fj — ̂ +l—m rows of type G (rows marked with *). Among these, l — n rows
are used to increase the horizontal size of the C-block (columns marked with ***).
Hence, if 7]—£ — m+l^>l—n} the other ^ — £ — m + n rows create new C-blocks (columns
marked with **).

We consider the addition of normal rows in details by referring
to Fig. 5. The increase of horizontal size of the first C-block by the
inverse-reduction from M$u+1 to M$u is given by

(4. 12)
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(A \cl'\ T v r r i T f / r t f \ i -(vfiVT-. iz ; :

if Mt-5°lpJ-+1 contains rows of type vy^.

On the other hand, the number of normal rows to be added by the
inverse-reduction of the first C-block is

(4. 13) ATlL^u^) -N[l]tfu+1(v,).

If (4. 13) is greater than (4. 12), we must create new C-blocks as
illustrated by Fig. 5. The number of C-blocks to be created by the
inverse-reduction of the first C-block is given by

(4. 14) 3L[1] (ft, z'+ 1, y) = (4. 13) - (4. 12)

(4. 14')
if Ml^u+i contains rows of type vy^,

where we have used the relation n"j — n^.

Suppose we have added necessary normal rows to the 1st, 2nd,
. .., (I — l)th C-blocks, and next consider the inverse-reduction of
the normal rows in the Zth C-block. Similarly to (4. 10), we have

(4. 15) Nm&.i (*) = tfmfcW*), *^r
Note that all the predecessor blocks in the Zth C-block are of the
same index, say n, and these blocks are irrelevant to the inverse-
reduction of the 1st, . . . , (/ — l)th C-blocks. Hence, similarly to
(4. 11), the number of normal rows in the predecessor block of type
vy in M'ft.y is given by

Note the condition on k in this formula. Even if the /th C-block of

M$u+i contains no predecessor block, i.e., if N[_t]$lii+l(k) =0 for

every &, we must create a predecessor block of type Vj in Mffu if

M$u+i contains rows of type k such that df} — nf> — n?j >0. This is

to inverse-reduce the rows in successor blocks. That is, the index k

in (4.16) runs over all values such that N{_\~\^ltj+l(k) =£0.

Eqs. (4.15) and (4.16) are recurrence formulas for N{r\\^\,j(vj}-
We see that (4.10) and (4. IT) are included in (4.15) and (4.16),
respectively.
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The rows added above are of indices n, n — 1, . .0, and these rows
are not enough to inverse-reduce all successor blocks in the Ith C-
block. According to Properties 6 and 7, the nonnull bottommost rows
in these successor blocks are of the same index n + l. Hence, the
inverse-reduction of all the successor blocks in the Ith C-block
requires normal rows of indices n + l, n + 2, **<>•) as well. Thus, if
successor blocks of type Vj are null, we add normal rows of indices
n + l, n + 2, *,, to the successor blocks in such a way that Property 7
is satisfied (cf. Fig. 6).

Similarly to (4.14), we define dL[_l](fjt, i+l, j) as follows:

(4.17) 3L [/](/<, i+l,f)

(4. 17')
if M$ij+i contains rows of type v/+1.

If 5L [/](//, z'+l, j) >0, new C-blocks are created by the inverse-
reduction of normal rows of the Ith C-block in M$U+I.

Step 2. 3. We have seen above that, if &L[/](# z + l,/)>0, we
must create new C-blocks. On the other hand, if dL[T\([i, z + 1, f)
<^0, we must add abnormal rows as illustrated by Fig. 4. Let us first
investigate the condition

(4.18)

Since n/J =wy+i, (4. 17) tells us that the above inequality never
holds if ^V[l]z-+i,j+i(^) =£0. That is, abnormal rows can appear only
when Mi^u+i does not contain rows of type y;-. Suppose M$u+i
contains no row of type v3; i.e., N\_l}$u+1(Vj) =0, then (4.18) can
be written as

(4. 19) r
^ max, {«}»! |^[1].^U+1C*) ^0} + 1.

Therefore, abnormal rows can appear only when all PRSs contained
in Mffu+i are abnormal.

By definition, M-^ contains no abnormal rows. Suppose that
Af. •+!.*» k = i, ...,/ + !, do not contain abnormal row while Mj^i.j/ does
in the Ith C-block. Then, the abnormal rows in M$U, are of type
Vj, and
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Sm+% o • £m

abnormal

§m Sm

• • • • £ «i
S normal

ga+l - gm (

£m g/3+l • Sm

predecessor block successor blocks

Fig. 6. Addition of abnormal rows.
Abnormal rows are added to the predecessor block of type G satisfying Property 5.
Note that, when successor blocks are inverse-reduced as illustrated by Fig. 7, abnormal
rows may appear in successor blocks.

' i 1 *'N ' f 7
_|_ I <i \ \\ K V'

(4.20) A[/]j£.,,(A) =j --—r-> - . jy ^.
0 otherwise.

As we have seen above, M-^)
liy/+1 does not contain rows of type vjf.

Hence, we can add abnormal rows to the newly created predecessor

block satisfying Property 5. Figure 6 illustrates the addition of

abnormal rows.

Next, consider the case of j<j", where Mffu+i contains abnormal

rows in the /th C-block. In order to inverse-reduce A{l~\^ij+^(k}

abnormal rows of type k, we need the same number of abnormal

rows and nf} — rijj normal rows of type v,. The normal rows are

already added in Step 2. 2. Hence, in order to inverse-reduce all

abnormal rows in the Ith C-block, we need

(4.21) A[/]^u(^)=max4t-aL[r|C^ * + l, ./), A[/],%./+i(*)}

abnormal rows of type Vj. We have added — &L [/](//, z'+l, j) term

to (4.21) so that (4.21) includes (4.20) as a special case. On the

other hand, the numbers of abnormal rows of types k=£i>j are

unchanged:

(4.22)

Eqs. (4.21) and (4.22) are recurrence formulas for

Step 2. 4. Now, we are ready to rewrite the matrix in terms of

Pj*} and P$. For the blocks which are contained in M$IJ+1, the

rewriting is easy : Figure 7 illustrates the rewriting. The rewriting is,
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however, complicated in the C-blocks which were newly created in
Step 2. 2. We explain the rewriting by taking up rows of type H in
Fig. 5. We define the following quantities:

fi-i fi„ _
Ji-i —

om — l &n

f,-,=
fl-2 fl-l fl

cfm —1 Sm I§m>

Sm-2 Sm-l Sm

9

(4.23) (

fm Jm+I fl

om — I £> m

fm =

g2m-l Sm

.(I-m)/g

Note that gmf',^, gif'i-* . . . , S^f'm are the leading coefficients of
polynomials which are obtained by eliminating, successively,
(I — l)th, ..., (m + l)st degree terms of F and G. For example,

Furthermore, we define

(4.23') f,=fh fM=fM=...=Q.

0 /„« . . /,
0 /„„ . . . /,

hn /„ .....

h a . . k , , f i , ' - f n f l

0 . . 0 0 . 0 0 . . 0 0 0 . 0

Fig. 7. Inverse-reduction of a successor block.
Rows of type H in a successor block are inverse-reduced to those of type F. (Some
null block may become nonnull by the inverse-reduction.) The predecessor blocks of
types other than vs are inverse-reduced similarly.
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l-m

rows

fm + 2

fl fm + l

f f fJm—£-\ /H n— 2m • • • ° JI J m 8 °

• J m-\ I

Jm-y + l—m + l * Jl Jm

Jm—r) \-l-m . . Jl

Jm-r} hi . . //

<— l—m —>

Fig. 8. Illustration of Step 2.4.
The rows of type H in Fig. 5 are replaced by rows of type F, where H=\_F, G~\.
Note that nonlinear elements may appear in newly created C-blocks.

The rewriting of rows of type H in Fig. 5 is performed by adding

elements f'm, f'm\\-> • • • 5 fi to the newly created C-blocks as shown by

Fig. 8.

Step 2. 5o If l=m, the rightmost column, for example, of Fig. 8

contains only f \ — f i - If l^>m, however, columns in Fig. 8 contains

nonlinear elements and we have to linearize them. The linearization

is performed by adding R-blocks of type G as shown by Fig. 9. Note

that successor blocks of type F in Fig. 9 satisfy Property 5. After the

linearization, the /th C-block, L(//, z'+l, /+l)</^£(^, z'+l, j), in

Mffu is characterized by

(4. 24)

(4.25)

Eqs. (4. 24) and (4. 25) define the numbers of rows in the predecessor
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blocks contained in the newly created C-blocks.
Now, in order to prove Theorem 1, we have only to show that

the matrix M^u obtained by the inverse-reduction procedure is
a PRS-matrix, i.e., it satisfies the Properties 1—7. Properties 1—4
are obviously satisfied by M-^j. Remembering the addition of normal
rows to both predecessor blocks (see Fig. 5) and successor blocks
(cf. Figs. 6 and 7), the addition of abnormal rows (see Fig. 6), and
the process of linearization (see Fig. 9), we see that M&^y satisfies

/ „ . . . / /

Jm + l • •

Jm-Z+l+n-2m J l Jm . . .

• • fm + 1

fm-ri + l-m-rl // 0 . 0 fm

i I I

/ „ . . . / «

Jm + l " Jl * '

n-£ + l-rn-2m Jl Jm Jm + l • Jl • '

• • fm + l • fl

-n-, + l-m + l // 0 . 0 /,/„!.//

nr _ p"

Sm

o m—l & m

Fig. 9. Illustration of linearization.
The nonlinear elements of type F in Fig. 8 are linearized by adding predecessor
blocks of type G. Note that each block satisfies Property 5. Note further that blocks
of type G satisfy Property 7.
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Property 5. In the inverse-reduction procedure, Steps 2. 2, 2. 3 and
2. 5 may create new predecessor blocks. Steps 2. 2 and 2. 3 can
create a predecessor block in the Ith C-block of M$lij+l only when
the C-block contains no predecessor blocks of type Vj. Step 2. 5
creats predecessor blocks in newly created C-blocks which contains
only successor blocks. As we have explained, rows in these predecessor
blocks are added so that Properties 6 and 7 are satisfied. Furthermore,
successor blocks are inverse-reduced without in contradiction to
Properties 6 and 7. Therefore, M^ltj is a PRS-matrix.//

§5c Multi-PRS Algorithms

This section calculates the factor /^f0 defined in (1. 11) and derives
several algorithms for calculating multi-PRS over L Calculation of
the factor Affi is performed easily by tracing the inverse-reduction
procedure given in §3. We first calculate the factor which is introduced
into /i4?i,o by the inverse-reduction from M^u+i to M-"\ j.

Step L Considering the definition of notation [A, 5] and the
relation (4.1), we obtain*}

(5. 1) py>Ptfi = {«PV(c t W + D)}

for such ft that n^^n"* and

(5. 2) pWPft^aWpW^aW. IMS,; |

for such fji that nW<n°l\

Step 2. L Since Pf^= [Pf, P-^]/^ for every k*vj9 and since
Af#u+1 contains N[r\tfu+1(k) +A[/]^U+1(A) rows of type k in the
Zth C-block, this step introduces the factor

(5. 3) n(l//3f ) t Sf-i{#[a^u+i(*) +^Mft?u+1(*)},

with L = L(/jt, z + 1, j + 1),

into the r. h. s. of (5.1) or (5.2). Note that we have included the

factor of k=Vj to the product in (5.3) because £/y =1.

Step 282. In this step, Nffl&jW -^W^u+iC^) rows of type
V; are added to the Zth C-block of M^)

1>J-+1. By adding a row of

type Up we must multiply the factor l /Cj ; . Hence, this step introduces
the factor

*' For convenience of typography, we write a | b instead of ab in the following formulas.
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(5. 4) ( l / C ' ) t £f

Step 2. 3. Similarly to Step 2. 2, this step introduces the factor

(5. 5) (i/^°) f Zf-i
Step 2. 4. By replacing [Pf, P?'°] in a row by Pf, we must

multiply the factor ajk) to the matrix. Hence, this step introduces
the factor

(5.6) n«) t E^i{Nir}^u+1(k^+A\:i]^u+1(k)}9k=i
where we have included the factor of k = »j to (5.6) because a/y =1.

Step 2. 5. The linearization step adds A/r[/]^)
liJ-(^-) rows of type

\>5 to the Ith C-block for />L(^, z'+l, j + 1). Hence, this step intro-
duces the factor

(5.7) ( l / c y ) t Sf^+iN[a%yfa), with L' = L(j£, z + 1, /).

Summarizing the above results, the j+l-^j iteration step introduces
the factor

(5. 8)

into the r. h. s. of (5.1) or (5.2), where

(5. 9)

(5. 10)

Note that, for such / that L</^L', MO^i.y+il^) =0 and

The above results give the following theorem.

Theorem 2. Let n^-n\^+l and n^^n^ for i'^i, i.e., P^\^
. . . ~~P$>+i't'P$>. Then, when the PRS-matrix M$u is constructed by
the way described in §4, the ^u, i^l, is given as

(5. 11) #?u=ff. { II («

x l v

«/̂ ») t

where a is the sign factor, i.e.,
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(5. 12) <7 = 1 or -1.

Proof. Representing Pi+l in terms of M^ilit-/ by using (5. 1) and

(5.2), and multiplying (5.8) with z=z" and j = i' — l, i' — 2, . . . , / — 1

to the result, we obtain (5.11) immediately. (Note that, even if

nW<^rijj for some /<z", we must multiply (5. 8).)//

It should be commented that the number of PRS-matrices which are

similar to Pp° is more than one in general. Such a case happens, for

example, in an abnormal PRS (see (1.5)).

Let us consider (5. 11) in the simplest case that

(5.13) HO^HO®, Vy = 2 and i^ = l, j = 0, 1, 2, . . .

Then, the sequence (P^, Pf , PP, Pf , Pf , Pf , . . . ) constitutes a

PRS and (Pfr\ Pp\ . . . ), with ^^3, is a secondary-PRS. In this case,

we can easily calculate NDl^uC*) from (4.6), (4.10) and (4. 11').

Let vfe = 3 — vfe, £=0, 1, 9 e e , that is, £ft = l if ^ f t=2 and ^^ = 2 if v f c=l.

Then Wlll^uC*), J^f- l , is given as

(5. ,4,
= // and /^^l, 2,

0, otherwise,

where we have assumed that n^^nf^. (Note that rffj° = 0.) For

example, when z is an even integer, or Vi = 2 and v£+1 = l, we have

, *=i,

0, otherwise,

0, otherwise,

k=\,
+l, *=2,

0, otherwise.

From (5. 14), we readily obtain (see (4. 17') and note that d"' =0)

(5.15) 3L[1](^, t + 1, j)=0, ju = l, 2 , . . . , m.
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That is, the number of C-blocks in M|fL/ is one and we have neither
successor block nor abnormal row in this case. Furthermore (5. 9)
gives us

(5.16)

Thus, remembering the relation a"j = ̂ "j =1 (see (1. 10)), we can
rewrite (5.11) with z'^1 and ^ — \ii — \ or 2 as

(5. 17) «=*-(tfV-«?'V((cri>) t (

This formula is the same as one of the fundamental formulas on PRS
(see Eq. (29) in Ref. 3), which produces the reduced-PRS and the
subresultant-PRS algorithms.

Similarly, for JJL such that /*^3 and n^^n^ , we obtain

(5. 1 8) #?$ = a
0

x nj=«-i

When the secondary-PRS (P^, P?\ . . . ) is normal, wp} = n, - 1
hence w/-7' —nfli1 +d*f* + \=nj3 —n^. Therefore, (5. 18) is the same
as a formula which the present authors obtained in Ref. 5 (Eq. (4. 3)).
However, in the case of abnormal secondary-PRS, (5. 18) is different
from Eq. (4. 3) in Ref. 5. That is, the PRS-matrix obtained by the
procedure described in §4 is different in general from the PRS-
matrix for secondary-PRS presented in Ref. 5.

Now, let us return to (5. 11) and rewrite it with i' = i by assuming

(5.19) $» = !, * = 1, 2 , . . . , OT.

This assumption is reasonable because the first remainder P[tt is not
proportional to lc(PoV) in general. Eqs. (4.15) and (4.16), (4.21)
and (4.22), (4.24) and (4.25), (5.9) and (5.10) yield (note that

n n («f)
=»-2 fe=l

= n n(o
j=i-l k=l

= n n
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0 (y- )

Furthermore, (4. 5) —(4. 7) yield
m ry \

Hence, extending (5.9) and (5.10) to the case of j = i and defining

as

(5. 20)

(5.21)

we can rewrite (5.11) with z" = z, j=0, and //=£v f as

0

x n

X
J = J — 1 f t=l

At the first glance, this formula seems to suggest the choice

(5. 23) *{<" =A%= Ccf*0) t (^ + 1),

as a multi-PRS algorithm. This choice is the simplest generalization

of Collins' reduced-PRS algorithm and it makes the formula (5. 22)
very simple. This choice, however, does not guarantee that ^?li0£E/,

because

or

We convince ourselves of this by the example we have presented in

3: we set a{G) = (lc (FJ ) 2 in the calculation of G2, while prem(G2,

=IC(F!) »G3 or ^G) =af)/lc(F1). In the following, we present three
algorithms for calculating multi-PRS over I.

Algorithm 1. We choose a\^ and ftf* as

(c^} t (dW + 1 ) . a^\ if nW ̂  n?*\
(5.24) «p*> =

( 1, otherwise,

(^ 9 RA /PC") — /vC") -»"> 1i, j. z,jj PI — W j _ i , 2^1,

f R 9^^ /»(A) — 0(/a) — 1 ..— 10 „„
\ *J, z,Uy CtQ — PQ — -I, ^W — I, A, a o o , //t,

where a^ e: J z*5 determined as small as possible.
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Suppose we have determined aj^\ j= 1, . . , , i — 1, /*= 1, ..., m, in the
calculation of P#\. Then, formulas (4. 5) —(4. 7), (4. 15) — (4, 17),
(4.21) and (4.22), (4.24) and (4.25) allow us to calculate L(fjt, i

+ 1, /), N[/]f5?u(A) and A[J]#u(*), * = !,..., ro, /=!, . . . , L(/i, x
+ 1, /), / /=!,. . . , w, 7 = 0 , . . . , z. Therefore, we can calculate the
product factors in A$itQ. The product factors in (5.22) can be
written as

(5. 27) _ n

x 0
0

= 11 \Cj ) ' , #(/A z ~ r l , j) is an integer.

Hence, we determine a\^ as

which makes ^1,0 to be
0 (i»o

(.3. 2,3} l^ i + 1 ,0 I ~ = •*--*- (^ j ) . ( « . . _

After calculating P^i by the formulas (1.10) and (5. 24) — ( 5. 28),
we divide Pjft. by (5.29) to get polynomial identical to |M^li0| up
to the sign factor. Note that, in this algorithm, we need not calculate
the product factors in (5. 22) explicitly. We have only to calculate
e(ft, z + 1, 7), 7=0, ..., / — I, and ap°. Elimination of the factor
(5.29) from P& is done by removing each factor (^^"{o.^.i+i.j)}

in (5. 29) successively.

Algorithm 2. We choose a^ as

(G(VI^ t (dW + \} if n^>n(Vi)

^ ' J ' ^ ^ + U' ^ *' =*• '(5.30)
1, otherwise,

^ is determined so that P(£i=o |M$1|0| ,

(5.31) ^-1, /!=!,..., m.

Suppose we have determined /3} ,̂ 7 = !,..., z — 1, /*=!, . . . , m, in the
calculation of PJ&. Then, formulas (4.5) — (4. 7), (4. 15) — (4. 17),
(4.20) — (4. 22), (4.24) and (4.25) allow us to calculate L(# £+1, 7),
Nmttu(k) and A[/]^U(A), 4 = 1,. . . , m , /=!, . . . , L ( # f + l , /),
//= 1, o . . , m, y = 0, . . o , z. That is, by representing (5. 22) as

(5.32)
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we can calculate e(fjt, i+1, j), j = 0, . . . , i — 1, / /=!, . . . , m. Therefore,

we determine B\^ as

(5.33)
j=i-i

This choice makes /^\ 0 a sign factor, or

(5.34)

Algorithm 3. In this algorithm, we are along with Hearn's trial
division algorithm for GCD.6) Algorithm for PRS, secondary-PRS,
and multi-PRS in general are to calculate [P-^i, P"* ] and then
divide it by a factor of the form TIlj~l(Cj3 ) J. Contrary to Algorithms
1 and 2, where the exponents e, in the divisor factor are calculated
by the iteration formulas on L(^ z'+l, j), N\_r\^ltj(k) and A[/]^U(A),
Algorithm 3 performs trial division to determine whether or not Cj 3

is a factor of P^\. We describe the algorithm explicitly.

Algorithm TRIAL-DIVISION MULTI-PRS.

Input: A set of polynomials {P ,̂ „ 0 8 , P^}

and a sequence {% ^ • . • > y»'max-i}-

Output: Multi-PRS {P?}
3 . . . , P^}, f = l , . . . , imax.

p(V^_ p(yo} .
M <~ ^o »

For //<— 1 to m with {Jt^Uo do

lT«-prem(P^, -P^) ;
For z'<— 2 to z'max do begin

For JJL<-\ to m with ^^^_i do

if n^^nfjf^ then P
else begin

For y<— z— 2 to 0 step —1 do

while cfj° divides P^ do

end;
end;
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§ 6B Concluding Remarks

Algorithms 1 and 2 are, respectively, generalizations of the reduced-
PRS and the subresultant-PRS algorithms. Algorithm 1 is simpler than
Algorithm 2 but the latter is more efficient than the former. We
have not tested the efficiency of Algorithm 3. If, however, high
efficiency of the trial-division algorithm in PRS calculation can be
extended to our multi-PRS, Algorithm 3 will be efficient practically.

Selection of divisor polynomials {P0
y°, PI !, . . .} is quite important

in actual computation. As the example of multi-PRS presented in
§3 shows, when the divisor polynomials are chosen arbitrarily, successor
blocks and abnormal rows appear in PRS-matrix quite commonly,
making the orders of PRS-matrices large. Generally speaking, the
larger the orders of PRS-matrices are, the more time the calculation
of the multi-PRS requires. Therefore, we had better calculate
multi-PRS as a set of secondary-PRSs. Then, we encounter neither
successor blocks nor abnormal rows in the PRS-matrices (see, below
Theorem 2 in §5).

So far we have defined multi-PRS by (1. 10). The formulas in
(1. 10) do not define the most general multi-PRS, because they suffer
from a restriction that the number of divisor polynomials in the
calculation of the (z + l)st remainders is one. By removing this
restriction, we can define the most general multi-PRS. That is, setting

Pt
 lk, k = 1, ..., ?2, as divisor polynomials, we generate the (z' + l)st

remainders {P-+i, ..., PI+\] through formulas

%€E{1, 2 , . . . , m],

.,*.

Let us divide the set of (z + l)st remainders into groups such that
each polynomial in the kth group is generated by the divisor polyno-

mial Piik, l^k^n. Furthermore, let the kth group contain P£+i.
Then, we can inverse-reduce the PRS-matrix by adding rows of

types Piil, . o., PI in successively, in such a way that the rows of

type P{
 ik are added only to inverse-reduce all the rows which are
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grouped into the kth set. Then, the procedure of inverse-reduction
presented in §3 and analyzed in §4 is applicable also to the generalized
multi-PRS. Therefore, Theorem 1 stated in §4 is still valid for the
generalized multi-PRS.
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