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Continuous Cohomologies of Lie Algebras
of Formal G-Invariant Vector Fields and
Obstructions to Lifting Foliations

By

Atsumi HAMASAKI*

§0. Introduction

In [1], L N. Bernshtein and B.I Rozenfeld introduced a new
language which expresses differential geometric problems in terms
of infinite-dimensional Lie algebras and their homogeneous spaces.
In particular, their method is naturally applied to the formulation of
characteristic classes of foliations. Let @, be the Lie algebra of all
formal vector fields on R" Then their results show that each
element of the (continuous) cohomologies of closed transitive infinite
Lie subalgebras of a, can be regarded as an invariant of foliations
with respect to the corresponding structures such as the complex
structure.

Many partial results, concerning the cohomologies of the subal-
gebras of a, such as the Lie algebra of (formal) Hamiltonian vector
fields, have appeared since I. M. Gel'fand and D. B. Fuks calculated
the cohomology of a, by the epoch-making method. But it seems
that the difficulty in calculating such cohomologies hinders discovering
new invariants in this approach.

In this paper, although we do not obtain any new invariants, we
reveal a new relation between the classical characteristic classes
(e. g. Chern classes) and the secondary classes of foliations (e. g. the
Godbillon-Vey class), by using the information we obtained about
the cohomologies of the Lie algebras of formal G-invariant vector
fields a,, Here G is a finite dimensional Lie group with its Lie
algebra g, and the Lie algebra of formal G-invariant vector fields on
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R*x G, denoted by a,, means that of the Taylor series at zero of
all G-invariant vector fields on R*X G with the naturally induced
bracket.

In the first half of this paper, i. e. from §l to §5, we shall study
the cohomology of a,, with the method developed by I. M. Gel'fand
and D. B. Fuks in [5] (cf. [18]).

Let gl, denote the Lie algebra of general linear group GL,=
GL,(R). We shall formulate the following theorem in §2 and prove
it in 8§83 and &§4:

Theorem 2. 3. For any finite dimensional Lie group G, there
exists a GL,xX G-homomorghism ¢ of the truncated Weil algebra
W,(GL, X G) of GL,XG to the continuous cochain algebra of a, with
trivial coefficients in R which induces an isomorphism of cohomology

¢*: H* (W, (GL,x G))— H*(a,,; R).

Using Proposition 3.2 which plays an important role in proving
the theorem, we obtain similar results concerning the relative coho-
mology with respect to subgroups of GL,XG such as H*(a,, O(n);
R)=H*(W,(GL, X G)gmbasic). In §5, we give a basis of H*(W,(GL,
X G)) explicitly, which is similar to the “Vey basis”.

The second half of this paper, i. e. from §6 to §8, is devoted to
the study of one of geometric applications of the first half.

In order to use the method introduced by Bernshtein-Rozenfeld
[1] and Bott-Haefliger [3], we need setting up a suitable geometric
situation. Let P be a smooth principal G-bundle and F be a
codimension ¢ foliation on the base space M of P. We mean by the
lifted foliation of F on P a G-invariant foliation on P where each
leaf is a covering space of a leaf of F. Assume that there exists a
lifted foliation. In this situation we construct in §8 a homomorphism
¢" of H* (00,5,0(q) X G) =H* (W (GLy X G) oy x6-basic) to H*(M; R) by
their method.

Let ¢y: H*(WO,)— H*(M; R) be the secondary characteristic
homomorphism, and ap: I(G) >H*(M; R) the Chern-Weil homo-
morphism for P where I(G) is the algebra of polynomials on g
invariant under conjugation by G. Then H*(W,(GL,X G) o xc-basic)
contains the algebras, H*(WO,) = H*(W,(GL) o(ybasic) and I(G).
From the naturality of the construction which is remarked in §7, we
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shall obtain the following commutative diagram:
I(G)

[

H; ( I/Vq (GLq X G)O(q)xG-basic) —=H* (M; R)-

T(l,ﬂ)\)*/}

H*(WO0,) [z

Considering the relation between I(G) and H*(WO,) in H*(W,(GL,
X G)owxc), we shall obtain the following theorem (the statement and

@y

examples are given in §6):

Theorem 6. 2. Let G be a Lie group with a finite number of
connected components, and F be a codimension q foliation on M, and
P on a smooth principal G-bundle over M. If there exists a lifted
foliation of F on P, then for any characteristic class ap(w) (0I(G))
of P and any secondary characteristic class ¢} (hyc;) of F such that

deg ap(w) +deg c;>2¢,
the product
ap(w) P (hlcj) =0

in H*(M; R). In particular, when q=1, the product of the Godbillon-
Vey class and any characteristic class ap(®) vanishes.

This result contains a Molino’s result ([12, Proposition 1]) which
says that, if the conditions of the above theorem are satisfied, then any
characteristic class of P whose degree is greater than 2q is zero.

Other applications, for example, the relation between the coho-
mology of a,, and the transversal foliation preserving free G-action,
will appear elsewhere.

The author would like to express his gratitude to Professors N.
Shimada and M. Adachi for their encouragement and helpful sugges-

tion.

§1. Preliminaries

In this section we shall recall definitions of the continuous coho-
mology of a topological Lie algebra and of a Lie group action on a
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cochain algebra and of the Weil algebra.

First we define the continuous cohomology of a topological Lie
algebra a. Let M be a topological a-module; i.e. M is a topological
vector space over R and the map aX M —— M is continuous. Let
Ci(a; M) denote the vector space of all alternating multi-g-linear
continuous maps on a with values in M (if ¢=0, Ca; M)=M).
The algebra a acts on the g-cochain vector space Ci(a; M): for
Xea and weCa; M), X-o=0(X)o is the cochain (X ---, X))
— X (0(X,, - -, Xq)) i e(X, -, [ X X, Xq)’ and the
interior product {(X)w for ¢g>0 is the cochain (X, .-, X,_))—
oX, Xy, X,

The continuous cochain space on a with values in M is the direct
sum C*(a; M)=72,50C%a; M) with the coboundary defined by
do( Xy -5 X)) =B (=D X (0(Xp o0 Rioos X))

+ TG (—DHo([X, X1, Kooy Koo, Xeon, X
for oeC?(a; M). The cohomology group H*(a; M) =) ,s0H*(a; M)
of this cochain group is called the continuous cohomology group of
a with values in M.

When M is a topological a-algebra over R, we can define on
C*(a; M) the differential graded algebra structure by the usual shuffie
product.

Remark 1. 1. With respect to operations d, i(X) and 0(X) (Xe€a),
the following relations hold (see [7, III]):

(1) 0(X)=i(X)d+di(X)

(i) 6([X, YD=0(X0(Y)—-0(Y)0(X), (Yea)

(i) ([X, Y =0(X)i(Y) —i(Y)I(X).

Definition 1. 2. To say that a Lie group G acts on a (topological)
cochain algebra A means that

(i) G acts smoothly on A by automorphisms, in the obvious
sense, and

(ii) for each X in the Lie algebra g of G, there is given an
antiderivation 7(X): A—— A of degree —1 such that di(X) +i(X)d
=0(X), where #(X) is the derivation of degree 0 obtained by differ-
entiating the G-action along the tangent vector X at the identity,
and
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(i) i(g-X)=g-i(X).g7% where g+X denotes the adjoint action
of g&G on Xe&g.

We call then A a G-cochain algebra. A G-homomorphism of G-
cochain algebras is an algebra homomorphism which commutes with
the derivation 7(X) for all Xeg, as well as with the elements of G.

Let A be a G-cochain algebra. Then its horizontal subalgebra
A, noriz (also denoted by Aiei,) consists of the elements annihilated by
i(X) for all Xe&g, and its basic subalgebra Ag ... (also denoted by
Apasic) 1s the subalgebra of Ay, consisting of G-invariant cochains.
Apasic 1s also a cochain subalgebra of A by Definition 1. 2.

We also use the modified notion “g-cochain algebra” which can
be defined without any global action. We say that a (topological)
cochain algebra A is a g-cochain algebra when for each Xe&g, there
are given an antiderivation i(X) : A—— A of degree —1 and a
derivation 6(X) of degree 0 satisfying two relations: (i) 0(X) =i(X)d
+di(X), and (i) ([X, Y])=0(X)i(Y) —i(Y)0(X) (Yeg). For
example, C*(a; R) is an a-cochain algebra. Then every G-cochain
algebra is a g-cochain algebra. Replacing the G-action by the g-
action, we have similar concepts with respect to g-cochain algebras:
€. g Apsic={wei; i(X)w=0, and 6(X)0=0 for any Xeg}.

Definition 1. 3. The Weil algebra W(G) of G is A*g*XS*g* as
algebra, where the exterior algebra /\*g* is generated by I-forms
acg*, and the symmetric algebra S*g* by 2-forms £, for asg*.

Its differential is defined by da=da+%2, where dia=s/\%¢* is the
differential of a in the cochain algebra C*(g; R). Its G-action is
defined by making i(X) (for Xeg) act on A*g* in the same way
as C*(g: R), and trivially on S*g*.

Definition 1. 4. An algebraic connection for a G-cochain algebra
A is a linear map yx: g¢*—— A’ satisfying the conditions

(X) (o) =a(X), acsg*, Xeg,
and
O(X) x=x-0(X), Xeg.

In [7, III], the following proposition is shown:

Proposition 1.5. If a G-cochain algebra A has an algebraic
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connection y, then y determines the G-homomorphism

Yw: W(G)— A.

§2. The Cohomology Algebra of a,, with Values in R

In this section we give the definition of the Lie algebra a,, of
G-invariant vector fields and examine the structure of the cochain
algebra C*(a,,; R) and state the main theorem concerning the
cohomology H*(q,,; R).

Let V be the vector space R" with a basis {d/dx',---, 9/dz"}, V*
its dual space with the dual basis {z%---, 2"}, ie. 9/0z(z) =d;;
(Kronecker’s delta), and R[[z]]1=R[[z' -, 2"]]=11,5,S(V*) the
algebra of formal power series where S’ denotes the p-symmetric pro-
duct on V*. Each vector v of V operates on R[[z]] as a derivation.

We denote by a,, the tensor product R[[z]]®(VE@Pg) where
g is a Lie algebra of a Lie group G with a basis {H,---, H"}, m=
dimg ¢ (from now on this basis is fixed); a,, is identified with the
product II,._,a®, where a®=8*1(V*)QVPS'(V*)Xg (S (V*)=0).
In particular a“? and a® are isomorphic to V and gl, x g, respectively.
Let us write g, for gl,xg.

We can naturally define on a,, the structure of Lie algebra by

[(Xh H), (X, Hp)]=([X, X1, X1H2*X2H1"[H1, H;])

where X;=2t, fi(x)9/0x°, H;=) 1 gi(x)H" (i=1, 2), and fi(x),
gi(x) €R[[x]] and

[ Xy Xo]=2t-1(fi(x) 0/02° (fi(x)) —fi(x) 0/0x*(fi(x))) d/ax',

[ Xy, Hp]=21 2 fi(x) 9/ 0z (g3 (x) ) HY,

[H, H,]= 2umt C"s,g{(x)gé(x) H*.

Here C%, is the structure constant of g with respect to the fixed basis
{H,---, H"}. a,,is called the Lie algebra of (right) G-invariant
formal vector fields on R*XG.

We can identify the Lie algebra g, with the subalgebra a® of
a,, by the algebra homomorphism

@)ij=t,nt H—> — (Z?J:laiixja/axi”f”H)
where (a;);;€8l, and Heg. Z=—".,2'0/0x" is an element of a®
and called the radial vector field. The subspace a® of a,, is then
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the eigenspace of the adjoint map X+——[Z, X] (Xea,,) for the
eigenvalue —p.

We define on R the discrete topology and on a,, the topology
associated to the filtration {a’=II,,,a®”},__,, .... Then a, has a
topological Lie algebra structure over R.

Now we consider cochain groups of a,,. Let M be a topological
a, ,-module with the discrete topology. The vector space C*(a,, ; M)
is the set of multi-g-linear alternating maps o of a,,X --- Xa,, (¢
times) to M. For each o, from the definition of topology of a,,
there is an integer m such that w(X,---, X;)=0 if one of X, is
contained in a component a” of the filtration above (see [15, Proposi-
tion 3.1]). Particularly, for the trivial a, -algebra R, we have
CH (@, R) = Yp=1 Oy where g =(a®)*=S"H(V)QV*DS (V) R®g*;
and Ci(a,,; B) =/\?C'(a,,; R) is the direct sum @I,_lﬂ,oﬂ,ﬁ
A ) BN (@0) AN (@) ® .

Let 6 and 7% be the elements of C'(a,,; B) where i=1,2,---, n,
u=1,2,---,m and a=(ay, -+, a,) 2% (Z,: the monoid of all non-
negative integers) defined by

0. ((Xiw f*(2) Dy, H)) =Df1(0),

(X, Xt gt () HY)) =Drg*(0),
where D,=3/02° and Df*=D*---D;. Then [6i 74 :.4s forms a
multiplicative basis of C*(a,,; R). In particular {6, 7%;|a|—1=|B]

©=q

=p} is a basis of ay where |a|=a,+a,+ - +a,
With respect to this basis, the boundary operation is expressed as
follows:
do;, = — Dlosfsa. 15ksn (g) 0é—ﬁ+(k)/\01f3
dre = — Diospsa, 1sksn <,C[;> Ta-g+ )/ \Oj
+ ZO§ﬂ§a. 1§v,w§m<‘g> C.’fwTE/\TZ—ﬂs
where a<p if and only if «;<8; (i=1, 2,---, n), 0=(0,---, 0),
k
(B)=(0,---, 1,-+-, 0) and <g>:<gl><g> In particular,
1 n
(2.1 A0y = — 2k 0w /NOG + 2 0 N\Oiy g

A= = g Tt Coul NP+ s O ATt

By the way, the canonical continuous projection =:Il,._,a®——a®
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is a left inverse to the inclusion map g,— a,, when we identify the
Lie algebra g, with the subalgebra a®.

We define the natural GL,-actions on V and V* by A(9/dz') =

» ,a;0/0x', A(z) =)', a';x’ (A=(a';); ;j_r...), and the G-action
on ¢ by X:.g=Ad(g™) (X) where Ad(g™) (X) is the adjoint action
of g&G on Xe&g. These two actions are commutative with each
other and uniquely extended to the action on a,, which preserve
each a®. By calculations, the isomorphism g,=a® is a GL, X G-module
homomorphism. -Hence w induces an algebraic connection gf——
CY(a,,; R), which can be extended to the unique GL,X G-homo-
morphism &(x): W=W(GL,xG)— C*(qa,,: R) by Proposition 1. 5.

Define 7;egl} by r;((a*).,) =a’; for (a%).,<gl, and let
Ri;&S'%gl¥ be the corresponding element in the Weil algebra W (i.e.
dri;=—3, rW/\r%;+ R%). Take the dual basis {s*eg*; u=1,..., m}
of {H*}, and each corresponding element S*=S'(g*) in the Weil
algebra. Then from the definition and formulae (2.1), k(7) can be
expressed as follows:

(2.2) k(z) (r'y) = =04, k(z) (RY) =521 08 /\biy s iy
k(m) (") = —71* k(7) (8*) = X3 0% /N1t

where 0 =60 So k(z) (S?g}F) is in Ala_,&®/N\?agy,.

Since the dimension of a._;; is equal to 7, the kernel of k(=)
contains an ideal J of W generated by J.,.,S5%¢F. This ideal is a
cochain subalgebra of W. We denote by W,=W,(GL,xG) the
quotient cochain algebra W/J. Then W, is isomorphic to the tensor
product A*8F®SgF where SgF is a quotient space S (8F) /(X ,sn SP8F),
and k(x) induces a GL,Xx G-homomorphism ¢: W,— C*(q,,; R).
The following is one of our main results. Proof will be given in the
next section.

Theorem 2. 3. For any finite dimensional Lie group G, the
GL,X G-homomorphism ¢ induces an isomorphism of cohomology

¢*: H*(W,(GL,x G)) = H*(a,,; R).

Since O(n) is a subgroup of GL, ¢ may be also regarded as a
O(n)-homomorphism. Let ¢y, be the restriction of ¢ to the O(n)-
basic cochain subalgebra. The image of ¢, is contained in the
O(n)-basic cochain subalgebra C*(a,, O(n); R).
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Denote by H*(a,, O(n); R) its cohomology algebra.

Theorem 2. 4. For any finite dimensional Lie group G, ¢yasic
induces an isomorphism of cohomology

Grasic” 2 H* (W, (GL, X G) o4y basic) = H* (a,, O(n); R).

Remark 2. 5. We need not assume that g is finite dimensional.
We shall use the fact that C* = Agl* &C* i voriz where C*=C*(a,,;R),
and each nglu-horiz is the sum of isotypical pieces corresponding to
finite dimensional irreducible gl,-module. So the theorems are still
true when ¢ is an infinite dimensional Lie algebra such as a,, where
$ is regarded as a gl, X g~homomorphism.

Remark 2. 6. Let G be a compact connected Lie group and
P—— M a smooth principal G-bundle over a compact smooth n-
dimensional manifold M. From Theorem 2. 3, we can obtain a Bott
conjecture type theorem (see [4]) about the continuous cohomology
of Lie algebras L§ of formal (right) G-invariant vector fields on P;
that is, the continuous cochain algebra of L§ with respect to C~-
topology has a homotopy type (over the complex numbers C) of a
space of sections of some fiber bundle E over M. We shall construct
E as follows: Using Sullivan’s theory [16], we can construct a simply
connected space B’ whose cohomology with coefficients in € is isomor-
phic to the truncated polynomial algebra Sgf®C, a @-localization
l: B(U(n) XxG)— B(U(n) XG)q of the classifying space for U(n)
X G and a continuous map f': B —— B(U(n) X G) e which induces
the quotient map

F*H*(B(U) xG)q; €)=SgrQC—> SarQC =H*(B'; C).
Let B be a homotopical fiber product of /" and [ ;i e.

B~ B(UM) xG)
l |
, T
B ——— B(U(n) X G)q.
Using f, we have a principal U(n) X G-bundle Y over B. Then it is

easy to see that the truncated Weil algebra W,(GL,XG)RC is a
model of Y; i.e. H*(W,(GL,xG); C)=H*(Y; C). Let E' be the
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fiber product O(M) X P over M where O(M) is the orthonormal
frame bundle over M. Let E be the bundle associated with E’, whose
fiber is the O(n) X G-space Y. Then using the method developed in
[4], we can see that E is a desired space. The details of the proof
will appear elsewhere (cf. A. Hamasaki, Continuous cohomologies of
Lie algebras of right G-invariant vecter fields on principal G-bundles,
Master Thesis, Kyoto University, 1980).

§3. Proof of Theorem 2. 3

First we recall the decomposition of C*=C*(a,,; R), i.e. C*=
A*00 R (Ryr0/\*ag). Since gFf=aq, C* is decomposed into /\*gl}
®B* where B*=/\*a*® (®,20/\*q). From the definition it is easy
to see that B*:C*grn_hmz and (@wo/\*a(@)zc*ﬂn,horiz. Using these
decomposition we have a descending filtration {Cj},_o,.. of C*=Cf
where each Cj is the cochain subalgebra 2,25/ \*gld Q@C% norirr It is
essentially shown in [9, Theorem 1] that the associated graded differ-
ential algebra ,20Ef* is isomorphic to C*(gl,; C% horie)» the cochain
algebra of gl, with values in C% oi. Thus we have a spectral
sequence

Er* = H* (gl; C*y o) > H* (0,5 R).

On the other hand the Weil algebra W, has a natural tensor
product decomposition /\*g[,f@(/\*g*@g(g;“)). Take a filtration
(X s A* R (T jem=a/Ng* ®S* (65) )} p=0.1...  Then we have a similar
spectral sequence

‘Err=H*(gl.; N\*g*®S(g!))=> H* (W,)
and the homomorphism ¢ induces a map from the second to the first.

For a Lie algebra a and a a-module M, we denote by M® the
a-invariant submodule of M; ie. M'={meM; X-m=0, X<a}.
In order to prove that ¢ induces an isomorphism between the E,-
terms, we need the following two propositions:

Proposition 3. 1. For a reductive Lie algebra o and a finite
dimensional semisimple a-module M, the inclusion map M*——> M
induces an isomorphism

H*(a; R) QM =H*(a; M).
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Proposition 3. 2. The GL,x G-homomorphism ¢ induces an iso-
morphism

S (Q:)ﬂ" = (an_horiz)urn
where g,=gl, xg.

Remark 3.3. Tt is well-known that S(gl)""=I(GL,)). Hence

GL,

S(g*)™ is equal to the GL,-invariant subalgebra S(g})

The proof of Proposition 3.1 can be found in [9, pp. 599-600]
and the proof of Proposition 3. 2 will be given in the next section.

We return to the proof of Theorem 2. 3. Since g, is reductive
(see [7]) and A*g* is a trivial gl,-module, 'Ef * is isomorphic to
H* (gl,: R)®Ag* ®S(g*)"™ On the other hand we will see in the
next section that C*exn_hori, is a sum of finite dimensional semisimple
gl,-modules. By Proposition 3. 1 and the decomposition of C*G[ﬂ_hgriz,
Er+* is isomorphic to H*(gl,; R) @/Ag*®(C*, sorir)™" similarly. From
Proposition 3. 2 the homomorphism ¢ induces an isomorphism "E;=
E. Hence H*(W,)=H*(a,,; R).

The proof of Theorem 2. 4 can be done similarly (cf. [6]).

§4. Proof of Proposition 3. 2

First we shall show that C*en_horiz has a direct sum decomposition of
finite dimensional semisimple gl,-modules. Recall that each subspace
a® of a,, is an eigenspace of the adjoint map of the radial vector
field Z for the eigenvalue —p. Then the dual space ag is an eigen-
space of the Lie derivation #(Z) for the eigenvalue p. Put for-each
integer

U,= @ /\Lla(—n®/\Pla(1)®/\P2a<z>® e ®/\Pka(k>® cre

—b_q+by 2yt byt =r

As dimac, is equal to n, C*ﬂn_horiz———@@_nUr. Since each ay is a
finite dimensional vector space, especially dim a_;,=#», U, is contained
in the finite dimensional vector space.

b » 13
FANRE TN VAN SN ORI o VAN P

—b_ byt tm b, =7

On the other hand U, is an eigenspace of #(Z) for the eigen-
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value 7, because #(Z) is a derivation. Since Z is a generator of the
center of gl,, and from Remark 1.1 (ii), U, is a 8[,-module where
8l, is the Lie algebra of the special linear group. 8[, is simple and
the direct summand of gf, (i.e. gl,=80,@P(center)). Hence U, is a
finite dimensional semisimple gl,-module. From this fact we obtain
the required decomposition of C*gn_hmz.

Since ¢ can be regarded as a gl,~homomorphism, Proposition 3. 2
is a direct consequence of the following lemma:

Lemma 4. 1. (i) ¢S(g)™ > (C*gn-horiz)grn5

(ii) the restriction map ¢]g(g:)er,,: S(g;{‘)s”———> C* is injective.

Proof of (1). From the above consideration the invariant sub-
space of C* with respect to 0(Z) is U, Let T®*=TQ---XT the
tensor product taken r times. Since au =S""1(V)QV*PS?(V)Rg*C
VEHRQV*PVERga*, we have

®(2p1—57) + (Bby—s9) + -+
UOC {V 17%1 2752
=b_q+by+2pytn=0 0=5;5p;

*@P_ 1+ (Dy—5) + (py—s,) +--- * ®sq+ 5yt
RV UATR TR T Ry g PR

Let r=p_1+ (p1—s1) + (p2—s2) + -+ - and s=s;+5,+ ---. Then Uy,CT=
220 VERQV*®Rg*®.  V can be regarded as a right gl,-module by
the operation A-v=—Av for A=gl, and v&V=R" Then the dual
space of V* and their tensor product V®@V*® are automatically
regarded as a right gl,-module (cf. [13, Appendix]). By the easy
calculation, we may consider U, as a gl,-submodule of T.

Here we apply the Weyl’s invariant theory of gl, (see [17]).

Theorem 4. 1. Let {v;} be a basis of V and {v'} be the dual
basis for V*. Then the subspace of gl,~invariants in VERV*® is
spanned by

) .,ir=1Vi1® - ®V,~r®Vi"“’® - ®Vio<r)
for each permutation, o, of 1,---, 1.

By the canonical projections from tensor product spaces to (anti)-

symmetric product spaces, the invariant basis of V®QV*®®g*e®*

. . 9 . .
generates the invariant subspace U, " which is exactly equal to
! . b b b
(an_horiz)“”. In each direct summand A a_, @A aqy®/N\ g & - - -
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(p-1=p1+2p,+ - -+ ), the invariant generators are as follows: For each
permutation ¢ and 0=<s5;<p; and 1= j,=m (1Zk=s;+5+ ),

io(p_) lo(p_1+1) io(p_ by~
Wg,p,s = Z 00(1)/\ -\ 1/\0(;1) (112) AN /\0(, -1

_ )+(1 —s))
wi,=1 2(p; -5 -1 2(p;—sp)

io(h_ 1Hb =8 +D
/\T(zw s)+l)/\ /\7’(21>1 1)/\002?

—sy DT Copy —s 42 F Ogp 5, 49
SI+I
126, 5,430y =5 +1F U2p) —5 13(py~5) +2

VAVS

We note that p_1:p1+2pz+ e 2?1""?2"‘ tt . pr_1>P1+P2+ -
then there is an integer £>1 satisfying that p,#0, and integers 1=k,

ky=p_, such that for some [>p_,, > - /\0ail)@,,(kl))+---+(i,(k2))+---/\ .
or for some j, >, --- /\r.’..+(,-a(k RYSE. ))+.../\ .-+ by the pigeon-hole
1 2
principle. Consider the first case. Put a=isq b=1i,4,y and c¢=i.
Then
*w, = Z Zab 10'1/\0 /\ﬂ(a)+(b)+ A

= Za,bab/\ﬁ /\0(a)+(b)+~- ARER

= - Z Z:il.e=10d/\02/\0€d)+(e)+--- VANRRR

= - (:i:wa.b.s)'
Hence ®,,,=0. We can do similarly in the second case. These

fact shows that each non-trivial generator has a form

n

Jp—
X Z 1/\ /\0 P®0(11)+(J-(1))/\ e /\H(gp..ss)+(jr(p—s))

iy ..._,'.P=1
]1’.“.]?_5:1 u u
@T(}P_sﬂ) AR /\T(:‘Sp),
where p=p, 1Zs<p, 1=u,<m (k=1,2,---,s) and 7 is a permuta-
tion of 1,2,---, p—s. From formulae 2. 2, all non-trivial generators

of (Choriz)“[” are contained in the image of ¢. Then (i) follows
immediately.

Proof of (ii). By the definition of the gl, action on g,
S( ) n_Zp+q<nSp(g[* ®Sq(g*)

It is well-known that S* (g[,’}‘)“r" has a multiplicative basis {C}, - - -, C,}
where C,eS*(gl¥)“* (k=1, 2, ---,n) defined by C,=Tr R*=
Tyt R, R o R (R=(R%)ij,..0). Then cach S*(gh)™(p=
1, 2,--+, n) has an additive basis {C;"--- C*(SH™ -+ - (S™)“"; ¢,+2¢,
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+ - +ng,+u+ -+ +u,=p}. The image of these elements by ¢
are linearly independent in C’. Indeed, if w is a linear combination
of these generators; i e.

o= 5 a L e (S) T (ST

ayog,
Q205+ bng bup b b, =p L It m
and w=0, then

¢ (@) [(®:L:(8/0x' R (x%)%0/0x"))
® ®¢=2®3r=1( (a/axﬂr.i>+1® (Zi0D+1)25 /i i+ D)
® (®Z=2<a/axi(r,i)+k® (xi(r. i)+k)28/axj(r.i)+k—l) )
® ®tm=l®’i‘t=1(a/axk(t)+i®xk(t)+th)]

=q g gl eug e w,1022.9728% Lyt g

Iy ¥y
where j(r, i) =q;+2¢,+ -+ +(r—1) ¢, + (=11, k() =q;+2¢,+- -+
+ng,+u,+ -+ +u,_;. Hence we obtain that aql...qn,ul...umzo. From

this (ii) follows immediately.

Remark 4.2. These dual elements were given in [5, 4. 5].
Especially

C(0/02' Q) (x1) 20/ 0x*R) 0/ 0x*R) (x2) 26/ 0x*R) - - -
X0/ 0x*Q (x*) 20/ 0x*Y) =k 2%

§5. The “Vey Basis” of H*(a,,; R)

In this section we shall show the Vey basis of the cohomology of
a,, for reductive Lie algebras g. We say that a Lie algebra g is
reductive when its adjoint representation is semisimple. So all simple
Lie algebras and all Lie algebras of compact Lie groups are reductive.

Considering Theorem 2.3, we calculate the cohomology of the
truncated Weil algebra W,(GL,xG). To do that, the following
Koszul type complexes are useful: Let n and N be positive integers
and V,=V,(N) =@;20V? be a DGA (i.e. differential graded algebra)
over R with the structure that

(i) as an algebra, V=A(uy, -+, uy) QR,[%, -+, %y] where
A(uy -+, uy) is an exterior algebra generated by homogeneous
elements u; which is ordered by increasing degree, ie. lu;|=< |u,]
for i<k whose degrees are odd; R,[#%, -+, @] (on homogeneous
elements @; of degree |«;|+1) by the ideal of all elements of degree
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greater than 2n, and

(ii) the differential d is defined by du;=%; for |=<{< N, extended
as an antiderivation.

Let K be a subset of {1, 2,---, N}. We set

Vax=/Niex(u;) QR [ 8y, - - -, Ay].
Then V,x has a natural sub-DGA structure of V,. Note that if
K={1, 2,---, N}, then V,x=V,.

We use the following conventions: u1=u,-1/\ cee /\u,-s for a subset
I={i, -+, i} CK, and << -+ <ig; Uy=18; -+ 4, for a sequence
J=0y Jurr+s j)s and 1S5S - ZHSN; =min{;; €1}, and jo=
min {j,€J; €K} (min g=o00), |J|= | |+ - + |a,|.

Then we have the following result almost verbatim as J. Vey has
done (cf. [6, Theorem 2] and [11, Theorem 5. 110]).

Theorem 5. 1. A basis of the cohomology H*(V,x) is given by
the classes of the monomial cocycles wi; satisfying the conditions:
(1) JI=2n; (i) 44Zjo; (i) if I#¢, |u; |+ [J]=2n.

Let R[Cp cee Cn] = S(g{:‘)GLﬂ_

Example 5. 2. Codsider W,(GL,xG). Let G be reductive and
Rlc;, -+, c.]=S(g)¢ where r=rank G. Then
(5.3) S(GL,xG)* " “*=(R[cy" "+, c,]QRIc} -+, c.1) /degree>2n.
Since all Weil algebras are acyclic, we can find A; (resp. ;) in
W.(GL, X G) such that dh,=c; (resp. dhj=c}) i=1, 2,-+-, n (resp.
j=1, 2,---, r). Using this and by the identification B,[uy, -+, Uns,]
=S (GL,LXG)GL” we can construct a cochain map

2 Vun+r) > W,(GL,x G)

which induces an isomorphism in cohomology (cf. [6], [7]).

Example 5. 3. Let us consider W,(GL,)ow-basic  When n=N and
K=1{1, 3,---, 2k+1} where 2k+1 is the largest odd integer smaller
than n, V, is usually denoted by WO, In this case we usually
write A; for u; and ¢; {for @,. It is known that, for each =0, 1,---,
k, there exists hy 1€ W,(gl,) 0w basic such that dhy1=cy,, and by the

identification R[cy, - - -, c,l]:S(gf,’f)GL", we obtain a cochain map
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)‘ : WOn I— Wn(grn)o(n)—basic
inducing an isomorphism in cohomology (see [6], [11]).

Other examples can be found in [11].

§6. A Geometric Application

From now on we consider only smooth manifolds without boundary
and smooth maps.
From our definition, we note that I(G)=S(g*)¢ and I(GL,) =

S (glr) .
By Formula (5.3) and Proposition 3.2, we have
6.1) I(G)RI(GL,)) /deg>2n = Cor xg-basic-

I(G) is usually regarded as the characteristic ring of the universal
principal G-bundle. On the other hand, let a,=a, , where 0 is a
null Lie algebra. Note that C*=C*(a,,; R) contains C*(a,; R)
which is used in the formulation of the secondary characteristic classes
of codimension 7 foliations. Note that I(GL,)/deg>>2n is contained in
C*(a,,; B) and regarded as the ring of the Pontrjagin classes of
normal bundles of codimension n foliations. Formula (6. 1) suggests a
relation between them, i e. the vanishing of their product in the
higher degrees. From these studies and [12], [1], we consider a
geometric significance of C*(a,,; R) in this section.

Let #: P—— M be a principal G-bundle. We consider the lifting
of a codimension ¢ foliation F' on the base space M to the total space
P. Here we mean by the lifted foliation a G-invariant foliation F on
P, each leaf of which is a covering space of a leaf of F (cf. [12]).

Let ap: I(G)—— H*(M; R) be the Chern-Weil homomorphism
for the principal G-bundle P (cf. [7], IL, p. 265). Let CharsP denote
the image of ap.

Let ¢r: H*(WO,) — H*(M; R) be the map which defines the
secondary classes of F ([1], [3]).

Theorem 6.2. Let G be a Lie group with a finite number of
connected components and P be a principal G-bundle over a manifold
M which has a codimension q jfoliation. If there exists a lifted folia-
tion of F to P, then for any homogeneous element @ of CharcP and
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any hic;e H*(WO,) such that deg w+degc;>2q, we have
CU‘¢F<hIC]) =0

in H* (M; R). In particular, when q=1, the product of the Godbillon-
Vey class and any characteristic class w vanishes.

We regard A4y as a unit of H*(WO,) and degcy,=0, then we
have the following corollary easily:

Corollary 6. 3 (cf. [12, Proposition 1]). In the same situation as
above

(ChargP)"=0 (r>2q)
where (ChargP)"= {[weCharsP; deg w=r}.

After we recall the characteristic homomorphism of /'-foliation
in Section 7, Theorem 6.2 will be proved in Section 8. Here we
show two examples which do not satisfy the conclusion of Theorem
6.2; i.e. no lifted foliation exists in both cases.

Example 6. 4. Let F be a foliation on a three dimensional manifold
M whose Godbillon-Vey invariant is non-trivial (see [2]). Let
r: S > 5% be the Hopf bundle and gr; (i=1, 2) be projections of
the product manifold S*xX M to the i-th factor. We define on S?’X M
the induced foliation prfF by pr, and the principal S'-bundle induced
by pr. Then the product of the first Chern class of P and the
Godbillon-Vey invariant A,c; of priF is non-trivial.

Example 6.5. In [10], it is shown that there exists a compact
oriented manifold M of dimension n without boundary having a
codimension g (4<¢<(n—3)/2) foliation F such that the rigid
secondary class /f,c, is non-zero in H***(M; R). We can assume
that z is odd because we may consider the product space M X S' and
the foliation induced by the projection of MxS' to M. By the
Poincare duality theorem, there exists an element x of H"®"2 (M;
R) such that z:¢p(hs,c,) #0. On the other hand, in view of the
Chern character isomorphism from the K-theory with real coefficients
to the ordinary real cohomology of even dimensions

ch: K°(M)®R > Ho(M; R),
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we can find a finite number of complex vector bundles E; and E;
over M such that 3,7, ch*(E,—E/) =7, r;(ch*(E;)) —ch*(E,)) ==z
where each r; is a real number and ch® is the k-th Chern character
(2k=n—(3+2¢)). From this fact we obtain a complex vector bundle
over M such that ch*(E)-¢z(hy,) #0. Let P be a principal U(n)-
bundle associated with E. Then the product of the corresponding
homogeneous polynomial of the Chern classes and ¢r(h,c,) is non-

Z€TO0.

§7. The Characteristic Homomorphisms of I'-Foliations

In this section we recall the characteristic homomorphisms of ['-
foliations (see [3]).

Consider a pseudogroup I' whose elements are diffeomorphisms
of open sets in a manifold N. A I'-foliation on a smooth manifold
M is by definition a maximal family F of submersions fy: U— N
of open sets in M, such that for every x€UNV there exists an
element yyy 0" with fy=7pvofy in some vicinity of z. In this ter-
minology the usual codimension 7 foliation is the /[ ',-foliation where
I', is the pseudogroup consisting of all local diffeomorphisms on R"

The submersions fy are called local projections of the foliation F.
The fiber of fy is a codimension n(=dim N) submanifold of U. By
7uv» these fibers are smoothly patched and define the family of con-
nected submanifolds of M. Each submanifold is called the leaf of
I'-foliation. If all local projections are also immersions, we especially
say that F is a I'-structure.

Given two ['-foliations, F on M and F’ on M’, a morphism from
F to F’ is by definition a smooth map f: M — M’ such that for
every local projection fy&F’ the composition fyof: f1U—— N is in
F.

With this concept of morphism the /'-foliations form a category
C(I") and we define a characteristic class of I'-foliations with values
in B, as a natural transformation

a: C(I) >H*( ; R).

In this paper we treat the characteristic classes in terms of Gel’fand-

Fuks cohomology. Suppose now that I" is a transitive Lie-pseudogroup
acting on a manifold N (see [8]). Let a(l') denote the Lie algebra
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of formal I' vector fields associated to I'. Here a vector field defined
on UCN is called a I" vector field if the local onc-parameter group
which it generates is in I', and a(I") is defined as the inverse limit
a(F):leirEak(F) of the £ jets at oM of I" vector fields. Here o is
an arbitrary point of M, which will be fixed and called the origin
of M from now on. a(l”) is also a topological Lie algebra with the
topology induced by the natural filtration a(") =F_jaDFaDF.a> ---
where F,a is the kernel of the projection a(/")—— a*(I").

Let I'! be the set of the k-jets of elements of I' keeping o fixed.
Then I% form an inverse system of Lie groups. It is known that
there exists a subgroup KC lim %, whose projection on every I% is
a maximal compact subgroup for £2>0.

Let F be a foliation of M. Let P*(F) be the differentiable bundle
over M whose fiber over &M is the space of % jets at x of local
projections fy such that f;(z)=o0. The Lie group I acts on P*(F)
by JifJth=J%h7lof) where JtfeP*(F) and Jthesl™

In [1] and [3], a natural injective K-homomorphism (also [}~
homomorphism)

(7.1 gp: C*(a(l))— Q* (P(F))

is constructed, where C*(a(I")) is a continuous K-cochain algebra of
a(l") with values in R and 2% (P(F)) is the direct limit of the de
Rham complex 2% (P*(F)).

Let F and F’ be ['-foliations on manifolds M and M’ respectively,
and f: M'—— M be a morphism between them. Then f induces
a smooth bundle map P*(f): P*(F')——P*(F) and P*(f)*: Q*(P*(F))
— Q*(P*(F’)) is a K-homomorphism.

Proposition 7. 2. The following diagram is commutative:

Q¥ (P(F))
¢
C*(a(I')) P(f)*
P
Q*(P(F")).

Since the K-basic cochain subalgebra of £*(P*(I")) is isomorphic
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to the de Rham complex of P*(F)/K which is a bundle over M with
contractible fiber [*/K, H* (£2* (P*(F)) gpasic) is isomorphic to H* (M;
R). Using this identification, the following characteristic homomor-

phism is constructed in [1] and [3].

Theorem 7. 3. Let F be a I'-foliation on M. There is an algebra
homomorphism

¢i: H*(a(I), K)— H*(M; R)
which is a natural transformation on the category of I'-foliations.

We need another fact about the naturality of ¢r; i.e. the naturality
of ¢r with respect to pseudogroup homomorphisms. Let po: N—— N’
be a submersion between smooth manifolds such that p(o) =0’ for
the origin o (resp. o) of N (resp. N'). Let I'y and 'y, be transitive
Lie pseudogroups acting on N and N’ respectively. We say that p
induces a pseudogroup homomorphism p.: I'y—— 'y, when, for each
local diffeomorphism f in Iy defined on the open set U in N, p.(f)
is a local diffeomorphism in Iy, defined on p(U) such that pof=
0+ (f)ep (cf. [14]). Since p can be expressed locally as a projection
R'=R"XR"™"™ — R" (n=dim N, n'=dim N’), each f in I’y can
be expressed as f(x, y)=(fi(x), falz, ) for zER”, yeR"™, and
o« (f) =f, locally., Hence p induces a Lie group homomorphism
or: (I'y)b—— 'y} defined by pr(Jig) =Jhpo.(g) for Jige (I'y)% and
a topological Lie algebra homomorphism g,: a({'y) — a(Iy,) defined
by pg(.f,?%[ho g (x)) :J,’,',g? li=0 o+ (g:) (). Since pr is continuous,

pr-image of a maximal compact subgroup K of (I'y)%i(k=1) is con-
tained in some maximal compact subgroup of (I'y.)%  We write it
by K.

Let F be a [I'y—foliation on M. We mean by pF the induced
foliation {pof;f&F} on M. Then p induces a smooth map P*(p):
PH(F)—— P*(oF) defined by P*(p) (Jif) =J(psf)-

By the restriction map of or to K, C*(a(l'y,)) and 2*(P(pF))
are regarded as K-cochain algebras.

Proposition 7. 4. The following diagram is commutative:
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CH(a(Ty)) ~25 s 0% (P(oF))
o P()*

C*(a(y)) —2*

Q*(P(F))

and pf and P(p)* are K-homomorphisms.

Proposition 7.2 is proved in [1] and Proposition 7.4 can be
naturally obtained from the construction.

§8. Proof of Theorem 6. 2

In this section we return to the special case considered in this
paper. Let G be a group acting on a set S on the right. We say
that a map f of a subset U to S is locally G-equivariant when
f(xg) =f(2)g for any x€U and gEG such that zg€U. Let R'XG
be a trivial principal G-bundle over R’ Denote by I, the
pseudogroup on R*X G consisting of all locally G-equivariant local
diffeomorphisms. Let p,: BR" X (R*XG)——> R*X G be a projection
to the second factor. R"“XR'XG is also regarded as a trivial
principal G-bundle over R"™*X R’. Let I, ,c denote the pseudogroup
on R™ ‘X R'XG consisting of all local diffeomorphisms f for each of
which there exists fEF,,,G such that fopzzpzof on the domain of £
In this paper we need rather a subpseudogroup [ ,; consisting of
all locally G-equivariant elements of I', ,¢ Note that IS, =1, .
=1, and I, . is a subpseudogroup of /', It is easily seen that
these pseudogroups are transitive Lie pseudogroups (cf. [8], §5).

Let L, be a left translation of R"XG defined by L,(x, h) = (z,
gh) for g€G and (x, h) ER"xG. Then by the correspondence

g—— L, G is mapped in a one-to-one fashion into I, .. G acts
freely on IS .c by Lf (f) =foL, for g€ G and ferfz.q.c, and also acts on
d
k

C* (@(I'%.4.0)) on the tight by (B,w) (JEX) = (J55 [io(Lyoexp tXoL_)})

where weC*(a(l'; ,¢)) and X is a vector field on a neighborhood
of the origin 0=(0, e) in R"XG (e: the unit of G) and exptX is
a local one-parameter group generated by X.

Let GL, , denote the subgroup of the general linear group GL

m

consisting of matrices of the form [61 }3] where AeGL,_, and
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BeGL, Since any G-equivariant mapping of G to itself preserving
unit is the identity map, we can easily see that (IS, ) is the product
space of GL,, and Homg(R% g) which is a vector space of all R-
linear maps of R? to a Lie algebra of G. Hence the maximal compact
subgroup of (I ,6)% (>0) is isomorphic to O(m—q) X O(q).

Let % be the dimension of G and {H,,---, H,} a fixed basis of
a Lie algebra g of G. From the definition, it is easy to see that
Q(IS,0) = (X+H; X=X (5 @) 9/0y + Nt fi(2) 0/ 02, H=

Lk (@) HY g7 (, 2) ERLIY, -+ -, 9™ 2 --, 2], fi(x), Al(x)e
R[[zY -+, 2]]}. Hence a(I'; ,¢) is a Lie subalgebra of a,, ,, especially
a(l's) =0, In an analogous way to the case of a,, the map
X+Hvr— —H induces a G-cochain homomorphism

(8.1) an.q,G: W(G)— C* (a(rrcn.q.6>)-

Recall that #: P—— M is the smooth G-bundle over the manifold
with the codimension g foliation and m=dim M.

Let p1: (R" X RY) X G—— R" "X R’ be a trivial principal G-bundle,
and gy R"IX (R'*XG)— R'XG and pr;: R" ‘X R!—> R" be the
projections to the second factor.

Proposition 8. 2. If there is a lifted foliation F of F on P, then
for any point x of M, there exists a neighborhood U of x in M and
a principal G-bundle isomorphism

/

Ply R™IXR'XG

‘7[! U lﬁl
v
U _f;_> R™ ‘X R?

such that p,of is a local projection of F and pryof is a local projec-
tion of F.

Corollary 8. 3. In the same situation as above, P has a IS,

structure.

Proof. Let k=dim G. Then F is a codimension g+% foliation, and
for each x &P, there is a neighborhood W of z and a diffeomorphism
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h,: W— R"“X R*"* such that h,(x) =o (origin) and the composition
pioh,, where p; is a projection from R™ ‘X R‘** to the second factor
R***, is a local projection of F. By the assumption we can say that
for each z€P, the G-orbit space G-z through z and A;'(R™?X R?
x {0}) intersect at z transversally. Then there is a neighborhood V
of 0 in R"?XR? such that the map &, of VXG to the restricted
bundle Py (U==zn(h;*(V))) defined by k.(2, g) =h;}(2)-g for z€V
and g€G, is G-equivariant diffeomorphism. For yeR? let V,=Vn
(R**x {y}). By the definition of A, A;'(V,) is an intersection of
P|y and a leaf of F. Because F is G-invariant, 2;1(V,)-g is also an
intersection of P |y and another leaf (strictly speaking, we must take
the connected components of V and of this intersection, respectively,
because there is a foliation with a dense leaf). Hence the composition
ppok;tt Ply—— VXG—— R"IXR'XG—— R*X G is a G-equivariant
submersion such that for each z &Image(p0k;?), k,oop;'(2) is an
intersection of P |y and a leaf of F. From these facts and the definition
of the lift F the proposition follows easily.

Let us denote by S the I'$,s-structure on P. Note that P°(S)
=P and let r5: P(S)——P°(S) be a projection. Then from (7.1) we
have a sequence of cochain maps

9

g

(8.4) CH (GG 40)) — > 0% (P(§)) < 0*(P).

Note that ¢s is a GL,, ,~homomorphism.

Let pr, be the projection R"XG—— R™ Locally P can be
regarded as the trivial bundle R”X G. From definition and Proposition
8.2, each locally G-equivariant local diffeomorphism j of an open set
UcCR"XG(CP) into R"X G can be written as (/(y), fz2(y)h) where
(y, h)eU, fiel', and f; is a smooth map of V=pr,(U) to G. So
f can be uniquely extended to a G-equivariant map f of VXG to
R"xG. We define a free G action on P*(S) by (J:f) =g=J§g(Lg_lof)
where z€U and g=G. This definition is well-defined, because
Loof( ) =), g7fa()h) for (y, k)€U, and Ji(g7f(y)g) is
independent of the choice of Jif,, Hence we have a natural G
action on 2*(P(S)).

Let g: P*(S)— P*($) /G be the quotient map. We write g(J:f)
=[Jtf]. Concerning the G-action on P*(S), we note that (i) r¥

is a G-homomorphism, and (ii) the quotient map P*(S)——P*(S) /G
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is a local trivial bundle. The local trivialization of this bundle is given
by the correspondence J% 4 f——([J% 1 (Liof)], h).

Next we consider the following pseudogroups and their homomor-
phisms

JANPPRI S Ny RN

where 7 is an inclusion map, and p,, is constructed naturally from the
definition, and pj, is a homomorphism induced by the projection
p1i RPXG— R

Since all homomorphisms are induced by submersions, we can
construct naturally on P, I', ¢-structure S’, I', ;~foliation F and I',-
foliation F*. From Proposition 8.2 the projection induces a foliation
morphism F*—— F. Then using the construction given in Section 7,
we have a commutative diagram (8.5). From the definitions of G-
actions on IG,c and P(S), i¥, p5, P(i)* and P(p,)* are G-homo-
morphisms. As we have seen in Section 2, C*(a(I'§,¢)) is generated
multiplicatively by forms whose values are determined by the finite
jet of formal vector fields. Hence #f is surjective. It is given in
[1, §11] that ¢s is a g~homomorphism, and by diagram chase, ¢z is
a g-homomorphism. ¢z is also a g-homomorphism because of the
following fact: p, has a right inverse map defined by s(f)=id X f
for f&l', s which induces a continuous homomorphism s: a(/l’, o) —
a(l'% ,¢) and a smooth map P*(s): P*(F) —P*(S) : sf (resp. p(s)*)
is a left inverse map of g% (resp. P(p,)*). Therefore g3 and P(p,)*
are injective. By diagram chase, ¢ is a g-homomorphism.

¢

C*(a(I§,0)) —————>2*(P(S"))
it P(i)*
C* (B 4.0)) — 2> 0% (P ()
#4 P(gy)* 2*(P)
(8.5  C*a(ly))—Z 0t ()
i P(p)* T*
C* (@) 0% (P(F*))
: P(x)*

e (P(F)<—2*(M).
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On the other hand, from (8. 1) and Section 2, we obtain a
commutative diagram:

C*(a(l'ne))
iy
W(G) C*(a(lS o)
(8.6) k P
W(GL X G) X~ W,(GL,x G) C(a(lye))
Tz I I & B
W(GL,) A W, (GL,) ———— C*(a(['}))

where W(GL)) =W(GL,x {1}), and ¢, and £, are truncating homo-
morphisms given in Section 2, and £ (resp. /) is an inclusion map
defined by W(G) =1QW(G)——W(GL)QW(G) =W(GL,xG) (resp.
W(GL,) =W(GL) Q1 — W(GL,xG)). By the definition of the
truncations, GL,~homomorphism [ is naturally defined and the square
(A) is commutative.

Let us consider the basic cochain subalgebras in the diagrams
(8.5) and (8.6) with respect to the products of each maximal com-
pact subgroup and G. Before doing that we note some facts. From
the definition, the composition map pieps: a(I's ;) — a(l’,) maps
right G-invariant vector fields on G to the zero vector fields, and
a(l') is regarded canonically as a Lie subalgebra (of a(l'$,s))
which is invariant with respect to the adjoint action of G. Hence
the image of pjhopl is contained in G basic cochain subalgebra.
The image of P(p,)*oP(p)* is also contained in G-basic cochain
subalgebra, because the G-action on P(F) preserves each fiber of
P(p}). Hence the image of P(p,)*oP(p1)*oP(n)* is contained in the
G-basic cochain subalgebra.

First we consider the case that G is connected. In this case any
g-basic cochain subalgebra is equal to G-basic one. Note that, if a
Lie group L acts on a manifold X and the projection X—— X/L is
a principal L-bundle, then 2(X);p.u.=#2(X/L). Since the maximal
compact subgroup O(m —q) X O(q) acts on G trivially and G acts on
R™ trivially, the actions of G and O(m—q) X O(q) on C*(a(l ,¢))
and 2*(P(S)) etc. are commutative with each other. Then taking
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(mazximal compact subgroup) X G-basic cochain subalgebras in the
diagrams (8.5) and (8.6), we obtain a commutative diagram:

(P(S)/(O(m) XG))
W(G) 6-basic <> 2% (P(S)/ (O(m —9) X0(9) X&))) 2*(P/G)
8.7
w, (GL X G) o xG-basic -Q*(P(F)/(O(q) xG))

ll
Wq(GLq)O(q)—basxc —_— (P(F) /O(q)) o (M),

where k' =t0k lwe,. basie 20 =1 Since the projection

W GLY0 (g)-basic”
P:(S)/O(m)—— P is not only a homotopy equivalence but also a
principal G-bundle map, the projection P*(S")/(O(m) xG)——P/G
=M is a homotopy equivalence. By the same reason other two pro-
jections are also homotopy equivalences.

As regards the route through the summit in the diagram (8.7),
the following fact is known: Considering the corresponding route in
the union of the diagrams (8. 5), (8.6), we take GL,, X G-basic cochain

subalgebras. Then we have the following commutative diagram:
2*(P(S)/(GL,xG))
I(G) J* 2*(P/G)
Q*(P(5)/(0(m) XG))
where j : P(S)/(0(m) XxG) — P(S’) /(GL, x G) is the natural

projection. Since (I',¢)%/GL, is contractible, the projection P(S")/
(GL,,x G)——P/G=M induces an isomorphism of cohomology. Hence

H*(P(S)/(O(m) X G); R>/

we have the commutative diagram:
H*(P(S)/(GL,XG); R)

I1(G) H*(M; R)
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Let x: I(G)—— H*(M; R) denote the homomorphism defined by
this diagram.

Theorem 8. 8 ([1, Theorem 11.2]). Let G be a connected Lie
group, and ap be the Chern-Weil characteristic homomorphism for a
smooth principal G-bundle P——> M. Then we have

y=ap: I(G) — H*(M; R).

In (8.7) we consider their cohomology algebras. From Example
5.3, Theorem 7.3 and Theorem 8.8, we have a commutative dia-

gram:
1(G)
ap
k'*
(8.9) H* (Wo(GLy X G) o101 H* (M; B).
I (Z'ol) */
H*(WO0,) or

Since &'* (I(G)) V) (l'o])* (Rq [Cla R Cq]) CS((g[q Xg)*)’ for each
homogeneous element @w&I(G) and each representative cochain hyc;
of the Vey basis of H*(WO,), the product &™*(w)-:(lI'od)*(hxc)) is
equal to zero if degw+degc;>2qg. Hence using the commutativity
of (8.9), we have
ap(w) *dp(hicy) =0

if deg w+deg c;>2¢.

In order to complete the proof, we must consider the case that
G is not connected but has a finite number of connected components.
Let G, be the connected component of the unit. Then G;is a
normal subgroup of G and the quotient space P/G, is the total space
of the principal G/Gy-bundle =’: P/Gy——M. Since G/G, is discrete,
the foliation F on M can be lifted on P/G, Let F’ be the lifted
foliation. Then z’ is a morphism of foliation from F” to F. From
Theorem 7.3, we have a commutative diagram:

H*(P/Gy; R)
G

(8.10) H*(WO0,) z'*

#r H*(M; R).



428 ATSUMI HAMASAKI

On the other hand P/G, is also a base space of the principal
Gy-bundle P—— P/G,. By the naturality of the Chern-Weil homo-
morphism ([7, II, §6.26]), we also have a commutative diagram:

Gy Ap.G,
I(Gy) =S(g) — H*(P/Go; R)
(8.11) 7 '*
1(G) =S(g)° X [*(M; R),

where 7 is an inclusion map. Take a homogeneous element o of
I(G) and any hi;eH*(WO,) such that degw+degc;>2g. From
(8.10) and (8.11), if there exists a lift of F on P, then

n'* (ap,c (@) r(hicy)) :a’P.GO°i(C¢)) *@¢re (hicy) =0,

because the theorem is true when the structure group is connected.

/%

Since 7’ is also a finite covering map, ='* is injective. Hence ap (o) -

¢r(hic;) =0. This completes the proof of Theorem 6. 2.
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