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Continuous Cohomologies of Lie Algebras
of Formal G-Invariant Vector Fields and

Obstructions to Lifting Foliations

By

Atsumi HAMASAKI*

§ 0, Introduction

In [1], I. N. Bernshtein and B. I. Rozenfeld introduced a new
language which expresses differential geometric problems in terms
of infinite-dimensional Lie algebras and their homogeneous spaces.
In particular, their method is naturally applied to the formulation of
characteristic classes of foliations. Let ctn be the Lie algebra of all
formal vector fields on Rn. Then their results show that each
element of the (continuous) cohomologies of closed transitive infinite
Lie subalgebras of an can be regarded as an invariant of foliations
with respect to the corresponding structures such as the complex
structure.

Many partial results, concerning the cohomologies of the subal-
gebras of an such as the Lie algebra of (formal) Hamiltonian vector
fields, have appeared since I. M. Gel'fand and D. B. Fuks calculated
the cohomology of &„ by the epoch-making method. But it seems
that the difficulty in calculating such cohomologies hinders discovering
new invariants in this approach.

In this paper, although we do not obtain any new invariants, we
reveal a new relation between the classical characteristic classes
(e. g. Chern classes) and the secondary classes of foliations (e. g. the
Godbillon-Vey class), by using the information we obtained about
the cohomologies of the Lie algebras of formal G-invariant vector
fields an 8. Here G is a finite dimensional Lie group with its Lie
algebra Q, and the Lie algebra of formal G-invariant vector fields on
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RnxG, denoted by an g, means that of the Taylor series at zero of

all G-invariant vector fields on RnxG with the naturally induced
bracket.

In the first half of this paper, i. e. from §1 to §5, we shall study

the cohomology of ctn,& with the method developed by I. M. Gel'fand

and D. B. Fuks in [5] (cf. [13]).

Let 0Cn denote the Lie algebra of general linear group GLn —

GLn(f2). We shall formulate the following theorem in §2 and prove
it in §3 and §4:

Theorem 2. 3e For any finite dimensional Lie group G, there

exists a GLn X G-homomorphism (/) of the truncated Weil algebra

Wn(GLnxG) of GLnxG to the continuous cochain algebra of a}ltS with

trivial coefficients in R which induces an isomorphism of cohomology

<?>*:H*(Wn(GLnxG»

Using Proposition 3. 2 which plays an important role in proving
the theorem, we obtain similar results concerning the relative coho-
mology with respect to subgroups of GLnxG such as H* (Ctn i8, O(n)\
JZ)SHMWUGL.xG)000_ba8 ic). In §5, we give a basis of H* (Wn(GLn

xG)) explicitly, which is similar to the "Vey basis".
The second half of this paper, i. e. from §6 to §8, is devoted to

the study of one of geometric applications of the first half.
In order to use the method introduced by Bernshtein-Rozenfeld

[1] and Bott-Haefliger [3], we need setting up a suitable geometric
situation. Let P be a smooth principal G-bundle and F be a
codimension q foliation on the base space M of P. We mean by the
lifted foliation of F on P a G-invariant foliation on P where each
leaf is a covering space of a leaf of F. Assume that there exists a
lifted foliation. In this situation we construct in §8 a homomorphism
f of H*(aq,e,0(q)xG)=H*(Wq(GL,xG)0^G^sic~) to H*(M; R) by
their method.

Let ^>F:H*(WOq') - >H*(M;R) be the secondary characteristic

homomorphism, and ap: I(G) - >H*(M;R) the Chern-Weil homo-

morphism for P where /(G) is the algebra of polynomials on 9

invariant under conjugation by G. Then H* ( Wq(GLqx G)0(?)XG-basic)
contains the algebras, H* (WO,) = H* ( W,(GL,)0(g)_basic) and /(G).

From the naturality of the construction which is remarked in §7, we
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shall obtain the following commutative diagram:

KG)-

1*"
( Wq (GLq x G)0(2)xG_basic) -~H* (M;

Considering the relation between KG) and H* ( WOq) in H* (Wq(GL9

xG)0(? )xG), we shall obtain the following theorem (the statement and
examples are given in §6) :

Theorem 6. 2. Let G be a Lie group with a finite number of
connected components, and F be a codimension q foliation on M, and
P on a smooth principal G-bundle over M. If there exists a lifted
foliation of F on P, then for any characteristic class ap(a>) (<wE:KG))
of P and any secondary characteristic class <f>*(h]Cj) of F such that

the product

in H* (M', JR). In particular, when q = l, the product of the Godbillon-
Vey class and any characteristic class ap(a)) vanishes.

This result contains a Molino's result ([12, Proposition 1]) which
says that, if the conditions of the above theorem are satisfied, then any
characteristic class of P whose degree is greater than 2q is zero.

Other applications, for example, the relation between the coho-
mology of CtWiS and the transversal foliation preserving free G-action,
will appear elsewhere.

The author would like to express his gratitude to Professors N.
Shimada and M. Adachi for their encouragement and helpful sugges-
tion.

§ 1. Preliminaries

In this section we shall recall definitions of the continuous coho-
mology of a topological Lie algebra and of a Lie group action on a
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cochain algebra and of the Weil algebra.
First we define the continuous cohomology of a topological Lie

algebra a. Let M be a topological Ct-module; i.e. M is a topological
vector space over R and the map a x M - > M is continuous. Let
Cq(ct ; M) denote the vector space of all alternating multi-g-linear
continuous maps on a with values in M (if q = Q, C°(Ct ; M)=M).
The algebra a acts on the g-cochain vector space Cq(a ; M) : for
X(=a and w^Cq(a ; M), X-a)=0(X)a) is the cochain (X19 • • • , Xtf)
. - > X . ( a i ( X l 9 . . . , X^-Sf-iaCX!,. .- , [X, X,.] , . - . , Xff), and the
interior product i(X)w for g>0 is the cochain (X1? • • • , Xg_1)i - >
o>(X, X l s . . - , X^)-

The continuous cochain space on a with values in M is the direct
sum C*(a ; M) = 2^0CHa ; M) with the coboundary defined by

, X19 - - - , ,,- - - , XjV . . , X,+1)

for a>eC*(a ; M). The cohomology group H*(a; M) =S^oH€(Ct; M)
of this cochain group is called the continuous cohomology group of
a with values in M.

When M is a topological Ct-algebra over /Z, we can define on
C*(Ct; M) the differential graded algebra structure by the usual shuffle
product.

Remark 1. 1. With respect to operations d, z(X) and 0(X)
the following relations hold (see [7, III]) :

( i) 0(X)=i(X)d+di(X)
(i i) 0([X, Y])-0(X)0(Y)-0(Y)0(X), (Tea)
(iii)

Definition 1. 2. To say that a Lie group G ac£s on a (topological)
cochain algebra A means that

( i ) G acts smoothly on A by automorphisms, in the obvious
sense, and

(ii) for each X in the Lie algebra g of G, there is given an
antiderivation i(X):A - >A of degree -1 such that di(X)+i(X}d
— 0(X), where 0(X) is the derivation of degree 0 obtained by differ-
entiating the G-action along the tangent vector X at the identity,
and
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(iii) i(g*X) =g*i(X) *g~\ where g'X denotes the adjoint action

of g(=G on

We call then A a G-cochain algebra. A G-homomorphism of G-

cochain algebras is an algebra homomorphisni which commutes with

the derivation i(X) for all Xeg, as well as with the elements of G.

Let A be a G-cochain algebra. Then its horizontal subalgebra

As-horiz (also denoted by Ahoriz) consists of the elements annihilated by

i(X) for all Xeg, and its basic subalgebra Ac-basic (also denoted by

^basic) is the subalgebra of Ahoriz consisting of G-invariant cochains.

Abasic is also a cochain subalgebra of A by Definition 1. 2.

We also use the modified notion "g-cochain algebra" which can

be defined without any global action. We say that a (topological)

cochain algebra A is a Q-codiain algebra when for each .Xeg, there

are given an antiderivation i ( X ) :A - >A of degree —1 and a

derivation 0(X) of degree 0 satisfying two relations : (i) 0(X)=i(X)d

+ di(X), and (ii) i([X, Y]-)=0(X)i(Y)-i(Y)0(X) (Teg). For

example, C*(ct; JR) is an a-cochain algebra. Then every G-cochain

algebra is a g-cochain algebra. Replacing the G-action by the g-

action, we have similar concepts with respect to g-cochain algebras:

e.g. A8_basic = [ax=A; i(X)a) = Q, and 6(X)co = 0 for any

Definition 1. 3. The Weil algebra W(G) of G is A*8*(8)5*8* as

algebra, where the exterior algebra A*g* is generated by 1- forms

a eg*, and the symmetric algebra S*Q* by 2-forms Qa for a eg*.

Its differential is defined by da = dla + Qa, where dia^/\2Q* is the

differential of a in the cochain algebra C*(g; 12). Its G-action is

defined by making i(X) (for Xeg) act on A*g* in the same way

as C*(g: 12), and trivially on S*g*.

Definition 1. 4» An algebraic connection for a G-cochain algebra

A is a linear map %: g* - > A1 satisfying the conditions

/CX)x(a)=«(X) , aeg*, Xefi,
and

In [7, III], the following proposition is shown:

Proposition 1. 5. If a G-cochain algebra A has an algebraic
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connection %, then % determines the G-homomorphism

§ 2. The Cohomology Algebra of an a with Values In R

In this section we give the definition of the Lie algebra ttn >3 of

G-invariant vector fields and examine the structure of the cochain

algebra C*(aB i ( J ; jB) and state the main theorem concerning the
cohomology H* (an>s; R).

Let V be the vector space Rn with a basis {d/dxl, •• -, d/9.rn}, V*

its dual space with the dual basis [x\ • • • , .r"}, i.e. d/dxl(xj) = d{j

(Kronecker's delta), and «[[>]] =/2[|>1, • • - , ^ra]] = n^0^(F*) the
algebra of formal power series where Sp denotes the p-symmetric pro-

duct on V*. Each vector v of V operates on I2[[^]] as a derivation.
We denote by ctw>8, the tensor product /Z[|>]](8KF©8) where

8 is a Lie algebra of a Lie group G with a basis [H\ • • •, Hm}, w =

dinifi 9 (from now on this basis is fixed); an>a is identified with the

product Il^a^, where ct»=Sp+l(V*)®V®Sp(V*)®Q (5-1(F*)=0).
In particular a(~1} and a(0) are isomorphic to V and gln X 8, respectively.

Let us write §n for gIB x 9.
We can naturally define on an a the structure of Lie algebra by

where X, = SLi/K^) 3/3*1, Hi^ZT^gK^H* O'=l, 2), and
] and

Here Cu
st is the structure constant of 9 with respect to the fixed basis

[H\ • ° - , Hw}. ang is called the Lie algebra of (right) G-invariant

formal vector fields on RnxG.

We can identify the Lie algebra 9ra with the subalgebra a(0) of

Ctn ijr by the algebra homomorphism

where (a^Oi.j^fl^n and He9. Z= — ̂ ^d/dx1 is an element of Ct(0)

and called the radial vector field. The subspace ctcw of ccw a is then
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the eigenspace of the adjoint map X\ - >[Z, X] (XeaWiS) for the

eigenvalue —p.

We define on 12 the discrete topology and on CtH 3 the topology

associated to the filtration [ap = Ur^p a(r)}p=_1 tl §. . . . Then aH s has a

topological Lie algebra structure over R.

Now we consider cochain groups of ctn >3. Let M be a topological

ccw 8-module with the discrete topology. The vector space C*(ctW i a ; M)

is the set of multi-g-linear alternating maps o) of an i8 X • • • X an g (g

times) to M. For each a), from the definition of topology of &n >3,

there is an integer w such that ty(X1? • • • , J*Q =0 if one of X, is

contained in a component aw of the filtration above (see [155 Proposi-

tion 3. 1]). Particularly, for the trivial an>g-algebra 12, we have

C1(a l l.8;JB)=E^-ia (, ), where atf) = (a<»)* = S^1(V) <8)V*®S*(V) (x)g* ;

and C*(a n > a ; 12) = A'C1 (oBi(J ; 12) is the direct sum ©,_1+VH> l t- .=9

Let 0J, and fa be the elements of Cl(dn^\ 12) where t = l, 2, • • • , n,

u = l, 2, • • • 5 m and a= (al5 • • • , orn) eZo (Z0: the monoid of all non-

negative integers) defined by

where A= 3/3^ and D*=D*1»-D*». Then {^, rS}f.«.a^ forms a
multiplicative basis of C*(ctn f l ; 12). In particular {#£, ^ ; | Q : | — 1= |/5|

—p] is a basis of Ct(w where |a | =a1 + a2+ • • • + » „ •

With respect to this basis, the boundary operation is expressed as

follows :

v.w^m^fij ^vwf0/ \ra-p

where a^fi if and only if a^ft (/=!, 2, • • •, n), 0=(0, • • - , 0),
k / \ / \ / \

(*) = (0, • • •, 1, • • •, 0) and ( £ ) = ( o1 ) • • • ( on ). In particular,
\P/ \Pl / \Pn/

(2. 1) ^'y) = -SLi <?'»)A**cn + Si-i

By the way, the canonical continuous projection rei (0)
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is a left inverse to the inclusion map Qn - > ctn g when we identify the

Lie algebra 8« with the subalgebra a(0).

We define the natural GLra-actions on V and F* by A (3/9*0 =

E^i^jd/dx1, AUO =E,-=i<2'X (A =(a t 'J-) l-.J-=i> ...,„), and the G-action
on 8 by X*g=Ad(g~1) (X) where Ad(g~l) (X) is the adjoint action

of g^G on Xeg. These two actions are commutative with each

other and uniquely extended to the action on an i8, which preserve

each Ct(p\ By calculations, the isomorphism gn^Ct(0) is a GLn x G-module

homomorphism. -Hence TT induces an algebraic connection 8* - >

CHa«,8» jR), which can be extended to the unique GLnx G- homo-
morphism k(n) : W=W(GLnxG) - > C*(an>8: R) by Proposition 1. 5.

Define r1',- e glB* by rfX(O«.i;) =^ for (a"y)M ) Ue8^ and let
Rtj^S^l* be the corresponding element in the Weil algebra W (i.e.

dr*j= -Ek r't A r*j + #'',-)• Take the dual basis {sM^8* ; u= 1, . . . , m}
of {/?"}„ and each corresponding element SU^S1(Q*) in the Weil

algebra. Then from the definition and formulae (2. 1), k ( x ) can be

expressed as follows:

(2. 2) *00 (r^O ̂  -0Jy» *(^) C^'y) = L?

where ^ = *J. So *OOGW) is in
Since the dimension of a(_1} is equal to n, the kernel of k(ii)

contains an ideal J of W generated by ^P>nS
pQ*. This ideal is a

cochain subalgebra of W. We denote by Wn=Wn(GLnxG) the

quotient cochain algebra W/J. Then Wn is isomorphic to the tensor

product /\*Q;®S6; where ^8,* is a quotient space S(8B*)/(E#>.S*8*),
and &(TT) induces a GLn x G-homomorphism ^: Wn - > C * ( a n g ; /J).

The following is one of our main results. Proof will be given in the

next section.

Theorem 2. 3. For any finite dimensional Lie group G, the

GLnxG- homomorphism <f> induces an isomorphism of cohomology

Since O(ri) is a subgroup of GLn, $ may be also regarded as a

O(n) -homomorphism. Let 0basic be the restriction of $ to the O(n)-

basic cochain subalgebra. The image of ^basic is contained in the
O(»-basic cochain subalgebra C* (ctBifl, O(ri)\R}.
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Denote by £P(ctng, O(n)\K) its cohomology algebra.

Theorem 2- 4. For any finite dimensional Lie group G, ^basic

induces an isomorphism of cohomology

G)00>).basic)^H*(ahiB, O(n) ; B).

Remark 2. 5. We need not assume that g is finite dimensional.

We shall use the fact that C* - Aflln* ®C*8Vhoriz where C* - C* (oB.8 ; R) ,

and each C9
grj_horiz is the sum of isotypical pieces corresponding to

finite dimensional irreducible glw-module. So the theorems are still

true when g is an infinite dimensional Lie algebra such as awl, where

(j> is regarded as a gln X g-homomorphism.

Remark 2. 6. Let G be a compact connected Lie group and

P - > M a smooth principal G-bundle over a compact smooth n-

dimensional manifold M. From Theorem 2. 3, we can obtain a Bott

conjecture type theorem (see [4]) about the continuous cohomology

of Lie algebras Lp of formal (right) G-invariant vector fields on P',

that is, the continuous cochain algebra of Lp with respect to C°°-

topology has a homotopy type (over the complex numbers C) of a

space of sections of some fiber bundle E over M. We shall construct

E as follows: Using Sullivan's theory [16], we can construct a simply

connected space B' whose cohomology with coefficients in C is isomor-

phic to the truncated polynomial algebra $g*(X)(7, a Q-localization

/ : B(U(n) xG) - >B(U(n) xG)Q of the classifying space for t/00

xG and a continuous map /' : B' - > B(U(n) X G) Q which induces

the quotient map

/'*: #*(B(I /OOxG)Q ; C}=S^®C - > S&®C = H*(B7; C).

Let B be a homotopical fiber product of /' and / ; i. e.

xG)

Using /, we have a principal U(n) X G-bundle Y over B. Then it is
easy to see that the truncated Weil algebra Wn(GLn x G)(x)C7 is a
model of Y; i.e. H* (W n (GL n x G) ; C)=H*(Y; C). Let E7 be the
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fiber product O(M)xMP over M where O(M) is the orthonormal
frame bundle over M. Let E be the bundle associated with E ', whose
fiber is the O(n) X G-space Y. Then using the method developed in
[4], we can see that E is a desired space. The details of the proof
will appear elsewhere (cf. A. Hamasaki, Continuous cohomologies of
Lie algebras of right G-invariant vecter fields on principal G-bundles,
Master Thesis, Kyoto University, 1980).

§ 3. Proof of Theorem 2. 3

First we recall the decomposition of C* = C*(Ctn i B ; JR), i.e. C* =

A * 8(0) (8K(8Wo A *<*(«))• Since g* = a (Q>» C* is decomposed into A* fit*
(X)JB* where B* = A*8*®(<8WoA*a(«))- From the definition it is easy
to see that B* = C*8C?rhoriz and ((gJ^oA*^)) =C*8|i.horiz. Using these

decomposition we have a descending filtration {C/f j^o.i.- of C* = C*
where each C* is the cochain subalgebra S?^A*g^*(X)C9

atM_horiz. It is

essentially shown in [9, Theorem 1] that the associated graded differ-
ential algebra Z/^o^o'* is isomorphic to C*(gIB; Cp

arw_horiz) , the cochain

algebra of gtn with values in Cp
ar?rhori7. Thus we have a spectral

sequence

£f-*=//*(grM; c%ln_horio^ #*(**..: 12).
On the other hand the Weil algebra Wn has a natural tensor

product decomposition A*8**®(A*8*(8$(8*))- Take a filtration
{Sfl«A*8f*<8)(Zj+2»=,AJ'8*<8^*(fl.*))}p«o.i..... Then we have a similar
spectral sequence

and the homomorphism 0 induces a map from the second to the first.
For a Lie algebra a and a cc-module M, we denote by Ma the

a-in variant submodule of M; i.e. Ma=[m^M', X*m=Q, X^a}.
In order to prove that ^ induces an isomorphism between the E^-
terms, we need the following two propositions:

Proposition 3. 1. For a reductive Lie algebra a and a finite
dimensional semisimple a-module M, the inclusion map Ma • - > M
induces an isomorphism

H*(a\ M).



CONTINUOUS COHOMOLOGIES OF LIE ALGEBRAS 411

Proposition 3.2. The GLnxG-homomorphism <j) induces an iso-
morphism

where ra =

Remark 3. 3. It is well-known that S(§lnf
n = 7(GLn). Hence

*)8* is equal to the GLn-invariant subalgebra 5(0*) *.

The proof of Proposition 3. 1 can be found in [9, pp. 599-600]
and the proof of Proposition 3. 2 will be given in the next section.

We return to the proof of Theorem 2. 3. Since gtw is reductive
(see [7]) and A*8* *s a trivial glra-module, '£*•* is isomorphic to

H*($ln; K)(x)Ag*(x)S(g??)8t*. On the other hand we will see in the
next section that C*8tw_horiz is a sum of finite dimensional semisimple

gtn-modules. By Proposition 3. 1 and the decomposition of C*at _horiz?
£*•* is isomorphic to JJ*(gV, R)®/\$*®(C\n__^izf

n similarly. From

Proposition 3. 2 the homomorphism <p induces an isomorphism 'E^
E,. Hence H* ( WJ = H* (an>s ; 12) .

The proof of Theorem 2. 4 can be done similarly (cf. [6]).

§ 4. Proof of Proposition 3. 2

First we shall show that C*a?rhoriz has a direct sum decomposition of

finite dimensional semisimple gtra-modules. Recall that each subspace
Ct(/0 of &n iB is an eigenspace of the adjoint map of the radial vector
field Z for the eigenvalue —p. Then the dual space a(/0 is an eigen°
space of the Lie derivation d(Z) for the eigenvalue p. Put for -each
integer

U,= 0 AMa(-i>(x)A

As dim ct(-D is equal to n, C*^^iz = @r^-nUr. Since each Ct(W is a

finite dimensional vector space, especially dima(^1) = w, L7r is contained
in the finite dimensional vector space.

On the other hand Ur is an eigenspace of 0(Z) for the eigen-
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value r, because 6(Z) is a derivation. Since Z is a generator of the
center of gtw, and from Remark 1.1 ( i i ) , Ur is a 3tn-module where
&ln is the Lie algebra of the special linear group. %ln is simple and
the direct summand of gln (i.e. gIB=^t«0 (center)). Hence Ur is a
finite dimensional semisimple gln-module. From this fact we obtain
the required decomposition of C*8ra_horiz.

Since $ can be regarded as a gln-homomorphism, Proposition 3. 2
is a direct consequence of the following lemma:

Lemma 4. 1. ( i ) 0 ($ (£ ) 8'") D ( C\.horiz) •'-,

(ii) £/*£ restriction map <f>\$(t*)*l
n' o(g*)8" - > C* z,s injective.

Proof of ( i ) . From the above consideration the invariant sub-
space of C* with respect to 0(Z) is UQ. Let T®r=T® - - - (g)T the
tensor product taken r times. Since a(W=S*+^V)(g)Vr*0S>(V)(g)g*C

we have

( rtv^y 9 I •

Let r=/>_1+(/>i-^i) + (p2-^)H ---- and *=$1+52+ • • • . Then U0ClT=
Sr,s^o^®r(x)F*®r(x)g*®s. F can be regarded as a right g^-module by
the operation A-v= — Av for Aegtn and veF=-R*. Then the dual
space of F* and their tensor product F®r(x)F*®r are automatically
regarded as a right gl«-module (cf. [13, Appendix]). By the easy
calculation, we may consider U0 as a glw-submodule of T.

Here we apply the Weyl's invariant theory of g!M (see [17]).

Theorem 4. 1. Let {t;J be a basis of V and {v{} be the dual
basis for V*. Then the subspace of ^-invariants in V®r§§V*®r is
spanned by

*—J ' I i " i ' „ — A I-I V^_X \C_X

jbr £acA permutation, a, of 1, • • •, r.

By the canonical projections from tensor product spaces to (anti)-
symmetric product spaces, the invariant basis of V®r®V*®r(x)Q*®s

generates the invariant subspace UQ n which is exactly equal to

(Q -horiz)8 n- In each direct summand
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(p-i=p1 + 2p2 + • • • ) > the invariant generators are as follows: For each

permutation a and Q^Si^pi and l^jk^m (l^k^Si+s2+ • - - ),

A A ftGp- A / a p - i + 1 A\ • • • /\& A^Mi,) A • • (l- 2 1 ) + ( i )i i i i

J2(h_Si) + 1) A ' ' '

Ar'Sl+1 A7 X ' ( z 2 > - s + 3 - s + l ) + ( z 2 ' - s + 3 - s ) + 2 ) / X

We note that p-i=Pi + 2p2 + • • • ̂ A+^2+ • • • • If P-i>Pi+P2 + "°,
then there is an integer £>1 satisfying that pt3=Q, and integers l^^i,

*2^-i such that for some />^_15 Z • • • A^a- f. o +.»+( ,•„ o + -A • • • ,
"V.«1^ O\Kn)

or for some j, 2 • • • Ar'-+o-ff(fei)) + -+a0(fe2))+-A • • • by the pigeon-hole

principle. Consider the first case. Put a~ig^^ b = ia(k^ and c = z"0(Z).

Then

w+... A • • •

+... A • • •

Hence G>ff./).s = 0. We can do similarly in the second case. These

fact shows that each non-trivial generator has a form

where p=pi, l^s^P, l^uk^m (k = 1, 2, • • • , 5) and r is a permuta-

tion of 1, 2, • • • , p—s. From formulae 2. 2, all non-trivial generators

of (Choriz)8" are contained in the image of ^. Then (i) follows

immediately.

Proof of ( i i ) . By the definition of the gln action on gn,

It is well-known that S* (§l*)s n has a multiplicative basis {CJ, • • • , C^}

where CleS*^*)"1" (* = 1, 2, • • • , n) defined by Ci = Tr JJ* =

S^.-.^AA * ' * A (^ = (^)u-i,.,.)« Then each ^(fl;)
8r-(# =

1, 2, • • - , n) has an additive basis (Cf1 - • • C^GS1)"1 • • °(Sm}Um; q1 + 2q2



414 ATSUMI HAMASAKI

+ • • • +nqn + ul+ - • • +um=p}. The image of these elements by 0
are linearly independent in Cp. Indeed, if w is a linear combination
of these generators; i.e.

and o> = 0, then

^ O) [ «8>
fr^

where j(r, 0=^i + 2g2+"- + (r-1) qr^+ (i-l) r, k ( t } =
+ nqn+u1+ - • • +ut-i. Hence we obtain that aql-qn,u1-um = 0- From

this ( i i ) follows immediately.

Remark 4. 2. These dual elements were given in [5, 48 5].
Especially

=k*2k.

§5. The "Vey Basis" of J?*(an,a;!2)

In this section we shall show the Vey basis of the cohomology of
an B for reductive Lie algebras g. We say that a Lie algebra g is
reductive when its adjoint representation is semisimple. So all simple
Lie algebras and all Lie algebras of compact Lie groups are reductive.

Considering Theorem 2. 3, we calculate the cohomology of the
truncated Weil algebra Wn(GLnxG). To do that, the following
Koszul type complexes are useful: Let n and N be positive integers
and Vn=Vn(N)=@p^QVp be a DGA (i.e. differential graded algebra)
over R with the structure that

(i) as an algebra, V=/\(ul, — -9 uN)(g)Rn [ % • • • , %] where
AC^i, • • • , UN} is an exterior algebra generated by homogeneous
elements ui9 which is ordered by increasing degree, i.e. !^!^ \uk\
for i^k whose degrees are odd; / ?„ [%•• • , %] (on homogeneous
elements ui of degree | w f | + l ) by the ideal of all elements of degree
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greater than 2n, and
(ii) the differential d is defined by dui = ui for l^i^N, extended

as an antiderivation.

Let K be a subset of {1, 2, • • • , N}. We set

Vn.K= A,-ex(w,0<8>R.[fll, - - - , %].

Then Fn>x has a natural sub-DGA structure of Vn. Note that if

X={1, 2, • • • , AT}, then V^V,.
We use the following conventions: uI — uiif\-"/\uis for a subset

, and h<C^2<C • * ' <C^' Uj — u^ - • • w^ for a sequence
and l^Ji^/2^ • • • ^*Jt^N', Zo = minfoe/}, and JQ —

(min 0 = oo), |J| = |fl,J+ - • - + |flyj-

Then we have the following result almost verbatim as J. Vey has

done (cf. [6, Theorem 2] and [11, Theorem 5. 110]).

Theorem 5. 1. A basis of the cohomology H*(VHiK} is given by

the classes of the monomial cocycles uIuJ satisfying the conditions:

fi) |J|^2n; ( i i ) ̂ /0; (iii) if I*fr \u i

Let «[C l > . . . , cB]

Example 59 2. Codsider Wn(GLnxG). Let G be reductive and

R[_c{, • • - , c'r']=S(Q')G where ?' = rank G. Then

(5.3) S(GLnxGfLnXG=(R[Cl,--., cJ(g)B[cI,..., ^]) /degree>2n.

Since all Weil algebras are acyclic, we can find h{ (resp. h\) in

Wn(GLnxG) such that dhi = c{ (resp. dh'j = c'j) i=l, 2, * • • , n (resp.

j=l, 2, • • • , r). Using this and by the identification 12w[ul5 • • • , un+r~\

= S(GLHxG) n we can construct a cochain map

which induces an isomorphism in cohomology (cf. [6], [7]).

Example 59 3. Let us consider W«(GLn)000_basic. When n = N and

K= {1, 3, • • • , 2k + 1} where 2& + 1 is the largest odd integer smaller

than ;?, VWt/f Is usually denoted by WOn. In this case we usually

write hi for u{ and ct- for ut. It is known that, for each z=0, 1, • • • ,
*, there exists h2l+l<= Wn($ln)OM .basic such that dh2i+l = c2i+i, and by the

identification J2[cl5 • • • , cvJ^SCgl*) n, we obtain a cochain map
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1: W0n - > WK(gtJow.bas!c

inducing an isomorphism in cohomology (see [6], [11]).

Other examples can be found in [11].

§ 6. A Geometric Application

From now on we consider only smooth manifolds without boundary
and smooth maps.

From our definition, we note that /(G) =*S(g*) G and I(GLn) =

By Formula (5. 3) and Proposition 3. 2, we have

(6. 1) (J(G) (x)I(GLn) ) /deg>2rc = CGLfjXG.basic.

/(G) is usually regarded as the characteristic ring of the universal
principal G-bundle. On the other hand, let ctB = aBt{0} where 0 is a
null Lie algebra. Note that C* = C* (crn i 8 ; R) contains C*(<V, Jg)
which is used in the formulation of the secondary characteristic classes
of codimension ^foliations. Note that /(GLn)/deg^>2?2 is contained in
C*(awg;12) and regarded as the ring of the Pontrjagin classes of
normal bundles of codimension n foliations. Formula (6. 1) suggests a
relation between them, i. e. the vanishing of their product in the
higher degrees. From these studies and [12], [1], we consider a
geometric significance of C*(CtB i ( J ; 72) in this section.

Let x: P - > M be a principal G-bundle. We consider the lifting
of a codimension q foliation F on the base space M to the total space
P. Here we mean by the lifted foliation a G-invariant foliation F on
P, each leaf of which is a covering space of a leaf of F (cf. [12]).

Let aP:I(G) - >H*(M;R) be the Chern-Weil homomorphism
for the principal G-bundle P (cf. [7], II, p. 265). Let CharGP denote
the image of ap.

Let 6F\ H*(WOq} - >H*(M;R) be the map which defines the
secondary classes of F ([1], [3]).

Theorem 6. 2. Let G be a Lie group with a finite number of
connected components and P be a principal G-bundle over a manifold
M which has a codimension q foliation. If there exists a lifted folia-
tion of F to P, then for any homogeneous element w of CharGP and
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any hIcJ^H*(WOg) such that cleg oj-fdeg c7>2g, we have

Q>m<f>F(hiCj) — 0

in H* (M; 12). In particular, when q= 1, the product of the Godbillon-

Vey class and any characteristic class w vanishes.

We regard h^c^ as a unit of H* (WOq) and degC0 = 0, then we

have the following corollary easily:

Corollary 6. 3 (cf. [12, Proposition 1]). In the same situation as

above

(CharGP)" =

where (CharGP)r = (ojeCharGP;

After we recall the characteristic homomorphism of /^-foliation

in Section 7, Theorem 6. 2 will be proved in Section 8. Here we
show two examples which do not satisfy the conclusion of Theorem

6. 2 ; i. e. no lifted foliation exists in both cases.

Example 6e 4. Let F be a foliation on a three dimensional manifold

M whose Godbillon- Vey invariant is non- trivial (see [2]). Let

TT : 53 - > S2 be the Hopf bundle and pr{ (i—\, 2) be projections of

the product manifold S2 x M to the z'-th factor. We define on S2xM

the induced foliation pr*F by prz and the principal ^-bundle induced

by pr,L. Then the product of the first Chern class of P and the
Godbillon- Vey invariant h^c^ of pr*F is non-trivial.

Example 6. 5, In [10], it is shown that there exists a compact

oriented manifold M of dimension n without boundary having a

codimension q (4 :g q<^(n — 3) /2) foliation F such that the rigid

secondary class h2cq is non-zero in H^+2q(M', 12). We can assume
that n is odd because we may consider the product space MxS1 and

the foliation induced by the projection of MxS1 to M. By the

Poincare duality theorem, there exists an element x of Hn~(3+2q} (M ',

HO such that x^F(h2Cq) =£0. On the other hand, in view of the

Chern character isomorphism from the ^-theory with real coefficients

to the ordinary real cohomology of even dimensions

ch: X°(Af)(8)JZ- - >Heven(M; 12),
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we can find a finite number of complex vector bundles E{ and E'i

over M such that £,- r, chfe (£,- - £/) = S,- ̂  (ch* (£{) -ch* (£/)) = *
where each rf is a real number and chk is the k-th Chern character

(2k = n — (3 + 2g)). From this fact we obtain a complex vector bundle

over M such that ch*(£) •fc(h&q) =£0. Let P be a principal U(ri)-

bundle associated with £. Then the product of the corresponding

homogeneous polynomial of the Chern classes and ^F(h2Cq) is non-

zero.

§ 70 The Characteristic Homomorphisms of JVFoliations

In this section we recall the characteristic homomorphisms of F-
foliations (see [3]).

Consider a pseudogroup T whose elements are difTeomorphisms
of open sets in a manifold N. A F-foliation on a smooth manifold
M is by definition a maximal family F of submersions fn'. U > N
of open sets in M, such that for every x^UnV there exists an
element yuv£=.F with fu = Tuv°fv in some vicinity of x. In this ter-
minology the usual codimension n foliation is the /^-foliation where
Fn is the pseudogroup consisting of all local diffeomorphisms on Rn.

The submersions fv are called local projections of the foliation F.
The fiber of fv is a codimension n( = dimN) submanifold of U. By
YDV, these fibers are smoothly patched and define the family of con-
nected submanifolds of M. Each submanifold is called the leaf of
/"-foliation. If all local projections are also immersions, we especially
say that F is a F-structure.

Given two F-foliations, F on M and F' on M', a morphism from
F to F' is by definition a smooth map / : M > M' such that for
every local projection fu^F' the composition fu°f'- f~lU > N is in
F.

With this concept of morphism the .T-foliations form a category
C(F) and we define a characteristic class of F-foliations with values
in JR, as a natural transformation

a: C(F) >H*( ; R}.

In this paper we treat the characteristic classes in terms of Gel'fand-
Fuks cohomology. Suppose now that F is a transitive Lie-pseudogroup
acting on a manifold N (see [8]). Let Ct(F) denote the Lie algebra
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of formal F vector fields associated to F. Here a vector field defined
on [/CjV is called a F vector field if the local one-parameter group
which it generates is in F, and ci(F) is defined as the inverse limit
ctCO=lima*(r) of the k jets at oeM of F vector fields. Here o is

an arbitrary point of M, which will be fixed and called the origin
of M from now on. CC(/7) is also a topological Lie algebra with the
topology induced by the natural filtration a (F) =F-la~DFQomFla~D •••
where Fka is the kernel of the projection Ct(F) - > a k ( F ) .

Let T\ be the set of the fe-jets of elements of F keeping o fixed.
Then Fk

0 form an inverse system of Lie groups. It is known that
there exists a subgroup Kd lim FJ, whose projection on every Fk

0 is
a maximal compact subgroup for k^>0.

Let F be a foliation of M. Let Pk(F) be the differentiate bundle
over M whose fiber over x^M is the space of k jets at x of local
projections fn such that fu(x}=o. The Lie group Fk

0 acts on Pfe(F)
by Jk

xf*Jk
0h=Jk

x(h-lof) where J*/eP*(F) and Jk
0h^Fk

0.

In [1] and [3], a natural injective K-homomorphism (also FJ-
homomorphism)

(7.1) ^: C*(a(r)) - >fi*(P(F))

is constructed, where C*(a(jT)) is a continuous jST-cochain algebra of
Ct(F) with values in R and 12*(P(F)) is the direct limit of the de
Rham complex Q * ( P k ( F ) } .

Let F and F' be F-foliations on manifolds M and Mx respectively,
and / : M' - > M be a morphism between them. Then / induces
a smooth bundle map Pfe(/) : P*(F) - >Pk(F) and P k ( f ) * : Q*(Pk(F»

) is a ^-homomorphism.

Proposition 7. 2. TAe following diagram is commutative:

Since the K-basic cochain subalgebra of fi*(P*(F)) is isomorphic
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to the de Rham complex of Pk(F)/K which is a bundle over M with

contractible fiber Fk
0/K, H* (Q* (P*(^) ) x-basic) is isomorphic to H*(M',

K). Using this identification, the following characteristic homomor-

phism is constructed in [1] and [3].

Theorem 7* 3. Let F be a F- foliation on M, There is an algebra

ho mo mo rp h is m

, K) - >

which is a natural transformation on the category of F- foliations.

We need another fact about the naturality of $F\ i.e. the naturality

of <f>F with respect to pseudogroup homomorphisms. Let p: N - >N'

be a submersion between smooth manifolds such that p(o) —o for

the origin o (resp. o') of N (resp. N'). Let FN and FN, be transitive

Lie pseudogroups acting on N and N' respectively. We say that p

induces a pseudogroup homomorphism p*: FN - *FN, when, for each

local diffeomorphism / in FN defined on the open set U in N, p* (/)

is a local diffeomorphism in FN/, defined on p(U) such that pof=

P * ( f ) ° P (cf- [14]). Since p can be expressed locally as a projection

Rn = Rn'xRn~n' - > Rn' (n = dimN, n' = dimN')9 each /in FN can

be expressed as f(x, y} — (fi(x\ f 2 ( x , > f)) for x^Rn/, y^Rn~n\ and

i°* ( /)—/i locally. Hence p induces a Lie group homomorphism

Pr'^N^o - >(^,)J/ defined by pr(Jkog) =Jbp* (g) for Jk
0g^(FNyo, and

a topological Lie algebra homomorphism p%: d(FN) - > a(FN/) defined

by Pt(Ji^\t=ogt(x))=J*-jj-\t=Qp*(gt)(x)- Since pr is continuous,

;0r~iniage of a maximal compact subgroup K of (FN)k
0(k^l) is con-

tained in some maximal compact subgroup of (FN,}k
0,. We write it

by K',

Let F be a /V-foliation on M. We mean by pF the induced

foliation { p o f - , f ^ F } on M. Then p induces a smooth map P k ( p ) :

Pk(F) - >P*(pF) defined by Pk(p) (Jk
xf) = J k

x ( p * f ) .

By the restriction map of pr to K, C*(a(FN^ and Q*(P(pF)}

are regarded as ^-cochain algebras.

Proposition 1. 4. The following diagram is commutative:
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and p% and P ( p ) * are K-homomorphisms.

Proposition 7. 2 is proved in [1] and Proposition 7. 4 can be

naturally obtained from the construction.

§ 8. Proof of Theorem 6. 2

In this section we return to the special case considered in this

paper. Let G be a group acting on a set S on the right. We say

that a map / of a subset U to S is locally G-equivariant when

f(xg)=f(x)g for any x^U and g^G such that xg^U. Let IT x G

be a trivial principal G-bundle over Rq. Denote by FqtG the

pseudogroup on Rq X G consisting of all locally G-equivariant local

diffeomorphisms. Let pz'. R
m~q X (Rq X G*) >RqxG be a projection

to the second factor. Rm~qxRqxG is also regarded as a trivial

principal G-bundle over Rm~q X Rq. Let Fr
m>(?iG denote the pseudogroup

on Rm~q xRqxG consisting of all local diffeomorphisms / for each of

which there exists fE=.FqiG such that f°p2=p2°f on the domain of /

In this paper we need rather a subpseudogroup PG
m>q>G consisting of

all locally G-equivariant elements of /\?iG. Note that r^tmiG = rmiMiG

= Fm>G, and r^i9tG is a subpseudogroup of FmiG. It is easily seen that

these pseudogroups are transitive Lie pseudogroups (cf. [8], §5).

Let Lg be a left translation of RmxG defined by Lg(x, h} = (x,

gh} for g^G and (x, h)^RmxG. Then by the correspondence

g > Lg, G is mapped in a one-to-one fashion into FG
miq_G. G acts

freely on F^iqiG by L* (/) =f°Le for g^G and /er£i?iG, and also acts on

C*(tt(r£.f l.G)) on the right by (fi» (J^X) = (J*^- t=o(is°exp fXoL^)})

where a>eC*(aCrS.SiG)) and X is a vector field on a neighborhood

of the origin o=(Q, e} in Rn X G (e: the unit of G) and exp tX is

a local one-parameter group generated by X.

Let GLm<q denote the subgroup of the general linear group GLm

consisting of matrices of the form n JQ where At=GLm_q and
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Since any G-equivariant mapping of G to itself preserving

unit is the identity map, we can easily see that (/"^.^i is the product
space of GLmiq and HomR(Rq, g) which is a vector space of all R-

linear maps of Rq to a Lie algebra of G. Hence the maximal compact

subgroup of (^.?lG)J (&>0) is isomorphic to O(m—q)xO(q).

Let k be the dimension of G and {Hi, • • • , Hk} a fixed basis of

a Lie algebra g of G. From the definition, it is easy to see that

X=Z*-l*g'(y9 x} d/dyj + ^\=l f(x} d / dx\ H =

(y, x) e«[|y, • • • , y-*, x\ • • • , **]], /'(^), A'C*) e
jR[[V, • • • , .£9]]}. Hence a(F^iG) is a Lie subalgebra of aWiB , especially

a(Fm G) =CtOTig. In an analogous way to the case of CtOTia, the map

X+H\ - > —H induces a G-cochain homomorphism

(8.1) fm,q,G' W(G} - >C*(a(r£. f f .G)).

Recall that TT: P - > M is the smooth G-bundle over the manifold
with the codimension q foliation and m = dimM.

Let p1 : (Rm~q X Rq) X G - >Rm'q X lg9 be a trivial principal G-bundle,

and p2: R
m'qx (RqxG) - » J S 3 x G a n d pr2:R

m~qxRq - > R« be the

projections to the second factor.

Proposition 88 2* // there is a lifted foliation F of F on P, then

for any point x of M, there exists a neighborhood U of x in M and

a principal G-bundle isomorphism

such that ^>2°/ is a local projection of F and pr2°f is a local projec-
tion of F.

Corollary 8. 3. In £/ze 5aw^ situation as above, P has a /^I?|G~

structure.

Proof. Let ^ = dim G. Then F is a codimension q + k foliation, and
for each x^P, there is a neighborhood W of x and a diffeomorphism
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/^: w - >Rm~qxRq+k such that hx(x) —o (origin) and the composition

p2°hx, where p'2 is a projection from Rm~qxRq+k to the second factor

Rq+k, is a local projection of F. By the assumption we can say that

for each .reP, the G-orbit space G°x through x and h~l(Rm~~q X Rq

X {0}) intersect at x transversally. Then there is a neighborhood V

of o in Rm~qxRq such that the map kx of VxG to the restricted

bundle P\v (C7=7r( / i - 1 (V))) denned by *x(z, g") =A,"1W '^ for zeF
and g^G, is G-equivariant diffeomorphism. For y^Rq, let V^T^n
(Rm~qX {>•}). By the definition of hM h ~ l ( V y ) is an intersection of

P\u and a leaf of F. Because F is G-invariant, h~l(Vy) *g is also an

intersection of P v and another leaf (strictly speaking, we must take

the connected components of V and of this intersection, respectively,
because there is a foliation with a dense leaf). Hence the composition

pz°k~l: P\u - > VxG - » Rm~q X Rq X G - > RqxG is a G-equivariant

submersion such that for each z e Image (p2°t1)3 kx°p2l(z) is an
intersection of P [y and a leaf of F, From these facts and the definition
of the lift F the proposition follows easily.

Let us denote by $ the F^iG-structure on P. Note that P\S)

= P and let r~s : P(S) - >PQ(S) be a projection. Then from (7. 1) we
have a sequence of cochain maps

(8. 4) C* Ca(.rS.,.G) ) — > £* (P(5) ) <~- -<?* (P) .

Note that <f>g is a GLOTig-homomorphism.
Let p7\ be the projection RmxG - > Rm. Locally P can be

regarded as the trivial bundle Rm X G. From definition and Proposition
8. 2, each locally G-equivariant local diffeomorphism / of an open set

L rC JB
mxG(cP) into RmxG can be written as (/i(;y), f2(y}h) where

(>•, A) e [/, fi^rm and /2 is a smooth map of V=pr1(U) to G. So
/ can be uniquely extended to a G-equivariant map / of VxG to

RmxG. We define a free G action on Pk(S) by (J*/) «g=Jk
xg(L _^f)

where x^U and g^G. This definition is well-defined, because

V°/^ A) = (/iCy), g~l/2(yW for fy, A)eC7, and Jh
y(g'lf2(y)g) is

independent of the choice of JJ/2. Hence we have a natural G

action on Q*(P(S}}.

Let 0: Pfe(5) - *P f e(S)/G be the quotient map. We write g(J*/)

— [^/]- Concerning the G-action on P*(5), we note that (i) r|
is a G-homomorphism, and ( i i ) the quotient map P*(5) - »Pk(S)/G
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is a local trivial bundle. The local trivialization of this bundle is given

by the correspondence JO,.A)/I - ^[^oa)^0/)], A).

Next we consider the following pseudogroups and their homomor-

phisms

F , * re *2*> r ***> rL m,G ' L m,q,G L q,G L q

where i is an inclusion map, and /?2* is constructed naturally from the

definition, and p(# is a homomorphism induced by the projection

p[: EqxG - > Rq.

Since all homomorphisms are induced by submersions, we can

construct naturally on P, ,FmiG-structure 5", /\G-foliation F and Fq-

foliation F*. From Proposition 8. 2 the projection induces a foliation

morphism F* - > F. Then using the construction given in Section 7,

we have a commutative diagram (8.5). From the definitions of G-

actions on F^iG and P(S), z,*, pL P(0* and P(£2)* are G-homo-

morphisms. As we have seen in Section 2, C* (ct(F^ ig iG)) is generated

multiplicatively by forms whose values are determined by the finite

jet of formal vector fields. Hence i* is surjective. It is given in

[1, §11] that <f>s* is a g-homomorphism, and by diagram chase, <f)$ is

a g-homomorphism. <f>p is also a g-homomorphism because of the

following fact: p2 has a right inverse map defined by s ( f } =idRm-qX f

for /GE/\ fG , which induces a continuous homomorphism s : ct(jT f f iG) - >

a(rS.tfiG) and a smooth map P*(5) : P*(^) - >P*(^) : sf (resp. #(5)*)

is a left inverse map of p^ (resp. P(/>2)*)- Therefore ^2*# and P(p2}

are injective. By diagram chase, 0£ is a g-homomorphism.
*

(8.5)

C*(acrf));

'Q*(P(F))«-
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On the other hand, from (8. 1) and Section 2, we obtain a

commutative diagram:

.W(Gy
(8.6) k/ |

W(GL,x G) —> Wq(GLqx G) ^C* (a(F,,G))

}/ | Z (A) j /tf

WXGL€) —>W9(GLJ >C*(a(r,))

where W(GLq) = W(GLq X {1}), and ^ and £2 are truncating homo-

morphisms given in Section 2, and k (resp, /) is an inclusion map

defined by W(G) = 1®W(G) >Wr(GL?)(x) W(G) = W(GLq x G) (resp.

W(GLq) = W(GLq)®l >W(GLqxG)). By the definition of the
truncations, GL9-homomorphism / is naturally defined and the square

(A) is commutative.

Let us consider the basic cochain subalgebras in the diagrams

(8. 5) and (8. 6) with respect to the products of each maximal com-
pact subgroup and G. Before doing that we note some facts. From

the definition, the composition map p'tf>pn\ ^(F^>q<G) > a(Fq) maps

right G-invariant vector fields on G to the zero vector fields, and

d(Fq) is regarded canonically as a Lie subalgebra (of a( /^9 G))

which is invariant with respect to the adjoint action of G. Hence

the image of p*t°Pi% is contained in G basic cochain subalgebra.

The image of P(pz)*°P(p'i)* is also contained in G-basic cochain

subalgebra, because the G-action on P(F) preserves each fiber of

P(p'l). Hence the image of P(p2)*°P(p'i)*°P(n)* is contained in the

G-basic cochain subalgebra.

First we consider the case that G is connected. In this case any

g-basic cochain subalgebra is equal to G-basic one. Note that, if a

Lie group L acts on a manifold X and the projection X > X/L is

a principal L-bundle, then Q(X)L_b^ic=Q(X/L). Since the maximal

compact subgroup O(m—q) xO(q) acts on G trivially and G acts on

Rm trivially, the actions of G and O(m—q)xO(q) on C* (a(F£>?iG))

and Q*(P(S}} etc. are commutative with each other. Then taking
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(maximal compact subgroup) X G-basic cochain subalgebras in the

diagrams (8.5) and (8.6), we obtain a commutative diagram:

Q*(P/G)

where ^-^o^|^(G)Gbas.c and ^%(GVoc*>-basic- Since the projection

Pk(S')/O(m) >P is not only a homotopy equivalence but also a
principal G-bundle map, the projection Pk(S')/(O(m) X G) >P/G

= M is a homotopy equivalence. By the same reason other two pro-

jections are also homotopy equivalences.

As regards the route through the summit in the diagram (8. 7),
the following fact is known: Considering the corresponding route in

the union of the diagrams (8.5), (8.6), we take GLm x G-basic cochain

subalgebras. Then we have the following commutative diagram:

'Q*(P(S')/(GLmxG»,

I(GY

where j : P(S")/(O(m) X G) > P(S') / (GLm x G) is the natural

projection. Since (/\,iG)J/GLm is contractible, the projection P(S') /

(GLmx G) >P/G = M induces an isomorphism of cohomology. Hence
we have the commutative diagram:

KG)

H*(P(S')/(GLmxG);R).

H*(P(S')/(O(m-)xGy,

; JZ)
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Let %: 7(G) - >H*(M\K) denote the homomorphism defined by

this diagram.

Theorem 8.8 ([1, Theorem 11.2]). Let G be a connected Lie
group, and ap be the Chern-Weil characteristic homomorphism for a
smooth principal G-bundle P - > M. Then we have

In (8. 7) we consider their cohomology algebras. From Example
5. 3, Theorem 7. 3 and Theorem 8. 8, we have a commutative dia-
gram :

KG)'

(8. 9)

Since *'*(7(G)) U (/'°J) *(« , [>! , • • - , cj) C^((glg xg )* ) , for each
homogeneous element o)^I(G) and each representative cochain /ijCj
of the Vey basis of H*(WO,)5 the product *'* (o) - (I'oX) * (A/c/) is
equal to zero if deg w + deg c;>2g. Hence using the commutativity
of (8. 9), we have

ofp(o)) •(j>F(hIcj) =0

if deg w + deg c7>2g.
In order to complete the proof, we must consider the case that

G is not connected but has a finite number of connected components.
Let GO be the connected component of the unit. Then G0 is a
normal subgroup of G and the quotient space P/G0 is the total space
of the principal G/G0-bundle it : P/G0 - >M. Since G/G0 is discrete,
the foliation F on M can be lifted on P/G0. Let F" be the lifted
foliation. Then TC is a morphism of foliation from F" to F. From
Theorem 7. 3, we have a commutative diagram:

(8.10) H*(WOJ
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On the other hand P/GQ is also a base space of the principal

Go-bundle P - > P/G0. By the naturality of the Chern-Weil homo-

morphism ([7, II, §6. 26]), we also have a commutative diagram:

(8.11)
«P.G

where i is an inclusion map. Take a homogeneous element o> of
I(G) and any hjCj^H* (W0q) such that deg w + deg c7>2g. From
(8. 10) and (8. 11), if there exists a lift of F on P, then

K*(aPtG(w) *<l>F(hjCJ)) =aPiGQoi(a)) -^(A/c/) =0,

because the theorem is true when the structure group is connected.
Since TC' is also a finite covering map, it'* is injective. Hence aPiG(a)) °
0F(AjC7)=0. This completes the proof of Theorem 6. 2.
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