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Biquadratic Spline Approximations
By

Manabu SAKAI* and Riaz A. USMANI**

Abstract

We shall consider two kinds of spline approximations over a uniform mesh. The first
of them is mid-point spline interpolation and the second is histospline approximation. Our
methods don’t need any knowledge of derivative values, that is, end conditions are homo-
geneous ones dealing with function values. The linear systems for computing approximations
may be conveniently and rapidly solved using the simple algorithm. Some numerical re-
sults are given which closely correspond with the prediction of the theory.

§1. Introduction

This paper is concerned with biquadratic spline approximations
of certain smooth functions f(x, ») in 2=[0, 1]x[0, 1]. Let =n
and 7 be integers such that n>r>0(z>0). By making use of B-

3
spline Q4(x) =%Z(—l)i<§>(x—i)i, we take the following spline
i=0
function s(x, ) of the form
n—1
(L.1) s(x, ) =2 zozi,jQ3(x/h—i)Q3())//z—j), nh=1
i, j=—
with (n4+2)? undetermined coeflicients «;;, i, j=—2(1)rn—1. It is
known that
(i) in each region [x;, x;, 1 X[y, »ir] (x;=ih, y;=jh, i, j=0(1)
n—1) s coincides with an algebraic polynomial of degree 2 or less
with respect to x and y, respectively,
(ii) seCHQ).
First we consider the mid-point interpolation problem :

(1-2) Sivti+d—Jitdi+tds i, J=0(1)'l—1
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where
_ _ 1 o1
Sit4.j+1 =S (xi+i-3 _yj+'l") - 'S<<Z + T)h’(] +?)h>.

With the help of the consistency relation (Lemma 2.2), the values
$;;=8(x; 95), 1, j=0(1)n may be determined by interpolation con-
dition (1.2) and 4n appropriate additional conditions. Here we take
these conditions to be boundary ones of the form :

A7(50, 41+ 650,54 50,5-1) =V1(85 541468, j+5,,5-1) =0,

j=1(n-1
(1.3) A5(8;41,0+ 6550+ 5i-1.0) =V5(8:41,,+65; 5+ 5:21..) =0,
i =1(1)n—1,

(4145)7s0.0= (V145)7$00= (4\V2)"S0,0= (V1V3)"52,,=0

where r=3, 4 and 4,, 4,(F,, V,) are forward (backward) difference
operators with respect to x, , respectively. In practical computation,
on using Lemmas 2.2—2.4 we have a system of linear equations
with s;; whose coefficient matrix is block tridiagonal. This system
may be conveniently and rapidly solved using the sweep out method.
The restriction *=3, 4 is not incisive. Because the constant terms
of the obtained system contain very large numbers in magnitude
for r>5. Since s depends upon (n+2)? parameters and conditions
(1.2) —(1.3) give us n’+4n equations toward the determination of
s, four additional conditions are required. On referring Figure 1, let us
impose only one condition on each linear segment of the boundary :

(1.4) Bisy o= 435, 3 =ViSn3.a=V3500-5=0.

Je

*

(i) e :given data

] ° ° (ii) O : determined by (1.2) and (1.3)
J
” 5 » & (iii) [0 : determined by (@) and (1.4)
(iv) X :determined by (iii) and (1.2)
Jo
1) X1 X2

Figure 1
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Since s(0, ) is a quadratic spline, by means of a consistency rela-
tion at mesh and mid points we have

(1.5) —é—(So,i+++So'i_+>=(l/8) (SO.i+1+680.i+sO.i—l)3 l=1(1)n—‘1.

Hence values sp;,4, i=0(1)n—1 (which are unknown ones on the
boundary) are successively determined by coupling the above con-
sistency relation and additional end conditions (1.4) :

(1.6) —é—(so,n%-i-so,i—-}) = (1/8) (80,414 650,i +50,:-1), i=1(1)n—1
VESQV,,_.&.::O.
Values s, ;.4, Sit3.0 and s;.5, on the boundary are similarly deter-
mined by the consistency relation and end conditions (1.4). Values
Sijias 1=1(1n—1, j=0(1)n—1 (which are unknown ones denoted
by symbol * in Figure 1) are determined by
(1/8) (sivnjrs +65i550+5im1504)
A7) | = Gungeatsinss), i=1 (-1
So.j++ and s, ;.3 (which have been already determined).

Similarly values s,.4; t=0(1)n—1, j=1(1)n—1 are determined by

(1/8) (Sis,jr1+68i1 4, Sivsio1)
1 .
(1.8) :"2_(yi+%-.i+++si+1‘r.i—i‘)s J=1n—1
S;+4,0 and s;. 4, (which have been already determined).

Hence we may have the following nine quantities in [x;, x;,,] X[y,
yi+1]9 L _]=0(1)7’l—-1 :
Sigy Sijrds Sij+1iSivds Sickgrds Sivdir1rSiengy SitLitds Sitlj+l

In terms of these values s may be easily represented at any points
in [x;, %] X [), Y511 (see (4.15)).

Next we shall consider the so-called biquadratic histospline ap-
proximation determined by the conditions :
(1.9) Symgxiﬂ LsCx, ») =S (%, »)1dxdy=0

Vi-1%i-1
i, j=1(Mn—-1

with appropriate additional conditions. In this case we take the
following 4n conditions together with (1.9) :
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47 (50, 741+ 450,57+ 0,5-1)

=V (sp i1+ 4ni+50-1) =0, j=1(1n—1,
A5(Sis1,0+ 455,04 Si-1,0)

=V5(siirat4Siatsionn) =0, 1=1(1)n—1,
(4,145)7s0,0= (V145)7s,0= (4 2)"s0.,= (V) 'Sy,

=0.

(1.10)

Here we notice that the coefficient “4” in the above conditions is
related to “4” in Lemma 3.1 which is the main tool in analyzing
the histospline approximation. On using Lemmas 3.1 —3.3, from (1.9)
—(1.10) we have the block tridiagonal system of linear equations
with s;;, i, j=0(1)n. Since s depends upon (n42)? parameters, we
have to add four additional conditions to (1.10) toward the unique
determination of s. Then we impose only one condition on each
linear segment of the boundary, that is,

(1.11) A{S.i,_():AE.S'”'.;.:VIS,,__!.‘,,=V£SO’"_.}=0.

(i) ® :determined by (1.9) and (1.10)
(i1) O :determined by (i) and (1.11)

(iili) [ : determined by (ii) and Lemma 3.6
(if/) X : determined by (i), (i), (iii) and

Lemma 3.5

Figure 2

On referring Figure 2, similarly as in mid-point interpolation, s
may be uniquely determined.

§2. Some Lemmas for Mid-Point Interpolation

The following consistency relation is well known.

Lemma 2.1 ([21). Let 5(x) =3 aQs(/h—i), then we have
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2.1) (1/8) (Siuart 675121 =-S5 +51-8)

i=1(Dn—1
On using this Lemma we have the following consistency relation for
the biquadratic spline.

Lemma 2.2. Let s(x, ») =nfa,~,j Q:(x/h—1)Qs(y/h—)), then we have
ij=-2

(2.2) (1/64) {siy1.j41 i i1 FSicn i +Sioni
+6(si 701481 o174 Sivni+8io1) +365: 5
1
:‘4—(5:'+~1-.i+«}+5i+«l—.i——k+5i—é—.j+-1-+si—~}.i~i-)
i, j=1(n—-1.

In order to transform the coefficient matrix of the system of
linear equations with unknown s;; into the block tridiagonal one, we
shall require the following Lemmas 2.3 and 2.4. Let us denote the
right hand side of equation (2.2) be d;; ¢, j=1(1)n—1, then we
have

Lemma 2.3. The boundary condition 45(se0-+650,4502) =0 may be
rewritten as follows :

(2.3) So.0+ 650,140,240, (51,04 651,14+ 51.2)
r—1
:i§l ‘Bgdi'l

where we give some numerical values for the quantities o, and B; for r=
3, 4:

Table 1
r o, l 81 8% B85
3 7| —8
6 ‘ 65 —10 1

Lemma 2.4. The boundary condition (4,4;)7s5,=0 may be rewritten
as follows :
r—1
(2.4) 0.0+, (So.1+51.0) +”551.1=. Zlﬁ?.jdi.ia

i,j=

where we also give the numerical values for the quantities B%;, i, j=1(1)
r—1 for r=3, 4:
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Table 2.1
Values of B2 ;

1 81 -9
2 -9 1
Table 2.2

Values of 64 BE;

T— 2 3

1 | 4995 ~650 65
2 —650 100 ~10
3 65 ~10 1

In order to prove the nonsingularity of the coefficient matrix
obtained by using the above Lemmas and the boundedness of its in-
verse, we shall require the following

Lemma 2.5([6]). If a3+2V2, the tridiagonal mXm matrix J,(o)
is nonsingular and ||J7'(0)|| is bounded for sufficiently large m, where ||-||
stands for the maximum norm and
l o 7
1 6 1

Jile) =

Let I be the mXm unit matrix, the m?xm? coefficient matrix of
the linear system with s;; may be represented as follows :

r Jito) o /(o)
Ji(e) 6J.(a) Ji(o)

Jile) =

Ji(a) 6J,(a) Ji(a)
- 0']1(0') ]1(0') -
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r Ji(o) 1V (1 of
J1(a) I 6I I

Ji(o) I6I1
L Ji(e) 4 L ol I-
(6=0,, m=n+1).

Hence on using the above auxiliary Lemma 2.5 we have the key
lemma on the coefficient matrix of the system of linear equations with
respect to s;;, i, j=0(1)n.

Lemma 2.6. If o6x3+2y2, the above block tridiagonal matrix J,(o)
is nonsingular and || J7*(0)|| is bounded for sufficiently large m.

§3. Some Lemmas for Histospline Approximation

For histospline approximation we use the following consistency
relation whose proof will be done by substituting products of 1, x,
xzs (x_xz)i and la Js )’2, (}’—}’:)i-

Lemma 3.1. Let s(x, ») =§la,-lj-Q3(x/h—i)Q3(y/h —7), then we have
i,j=-2

3.0 (1/36) {Sis1je1FSisrjm1Sictjert+Sicnia
+4(SivrjFSicr i+ Si g+ +16s; 5}

=%h‘zgif:+igﬁf+is(x, Ddxdy, i, j=1(1)n—1.
i-1JXi—

Let the right hand side of the above equation be d;j, then we have

Lemma 3.2. The boundary condition 47(soo+4so1+502) =0 may be

rewritten as follows :
(3.2) So.0 45014502+ 6, (s1,0+ 451,14 51.2)
r—1 _ _
:z§1 ﬂ:dtl

where we give some numerical values for the quantities &, and [ :
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Table 3
o e B B B
3 ' 5 42 —6
’ 4 37 8 1

Lemma 3.3. The boundary condition (4,4,)7s,,=0 may be rewritten
as follows :

. r=1 _
(8.3) 500+, (so.1+51.0) +5351,1:_ 2 B ds

ij=1

where values for the quantities f:; are as follows :

Table 4.1
Values of B2,;

49 -7
2 -7 1
Table 4.2

Values of 365,

N 1 2 3

1369 —296 37
2 —296 64 -8
3 37 —8 1

Let us define an m Xm tridiagonal matrix J,(¢) by
( l ¢
1 4 1

Joto) = R ,

then the m?Xxm? coefficient matrix of the system of linear equations
with s;; is given by
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[ J2(0) o ]3(0)
J2(a) 4]2(0') Ja(0)

jz(o') =

JZ(O') 4]2(0') ]2(0')
0'.]2(0) Ja(o) J

(6=6,, m=n+1).

In this case we have

Lemma 3.4. If 06243, the above block tridiagonal matrix J—Z(a)
is nonsingular and | J7*(a)|| is bounded for sufficiently large m.

In order to determine values s;,4 j, $:jr3 and ;5 14, the following
consistency relations are required.

Lemma 3.5. On each subinterval [x: xi1] X[, 9511, we have

Yit1(%i+1
(3.4) g S s(x, p)dxdy= (h?/36) {s;;+5ij1+Sir1i+Sisnin

}’j x;

+4(SiertSiewintSicaitSiies) T 165401}

Proof. Since s is an algebraic polynomial of degree 2 or less
with respect to x and y in subregion [x;, x;..] X [; »;1.], the above
relation is easily proved.

On combining Lemmas 2.1 and 3.5, we have

Lemma 3.6. On the interval [xi, xi,] X [¥j-1, ¥j1l, we have
(3.5) Siva it ¥Sivy i+ Siig i

=(9/2) h‘zgyjﬂgxiﬂs (x, p)dxdy

Yi-17%i
—'% {(Sirr i1 +4Sisnj+Sicnj-1)
+ (i jert4si 4501
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§4. Main Results for Mid-Point Interpolation

In what follows, for any finite dimensional row vector (¢;), let
us denote the transposed one (i.e., column vector) by (¢)’.
On combining Lemmas 2.2 —-2.4 we have

(4.1) (1/64) J1(0,) (Soy Siye « oy $) = (doy diye ooy d)’
where
(4.2) S;i= (50.1', S50 0o Sn.i)'

di=(doj, dijy < dyj)'.

By use of interpolation condition (1.2), the numbers d;;, i, j=1(1)
n—1 are given by
(4.3) di,j=%(fi+i—.j+i~+ﬁ+-},i—-k+ft'—-1—.i+«l—

+ficri-1).
The remaining terms dy;, d,;, di, and d;,, i, j=0(1)n may be re-
presented in terms of the above d;; :
do ;= (1/64>g,3¥di.ja dy = (1/64)21‘3?(17;4.:'
b= (/B0 D s, dow=(1/68) S fidss
do.o= (1/64)211[3?,1'6{&;'

(4.4) o
dO.n = (1/64') Z=1‘8’1:,jdi,n—-j

r—1

dyo= (1/64) 3, B sd-s.;
i,j=
r—1

dn.n: (1/64) Zlﬁg.idn-i,"—j'
ij=

On using Lemma 2.6, the system of linear equations with s;;, i, j=
0(1)n may be solved for sufficiently large n. Before we proceed with
analysis, we notice that it is very easy to solve the system (4.1).
By multiplying the block diagonal matrix whose diagonal elements
are Ji!(o,) on the both side of (4.1), we have
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(I ol 11 % 1 [ 4 )
6I I 51 d
(4.5) A e
I 6I I S d,_,
L 0',] I J L Sn dn

where let us denote Ji!(o,)d; by the same symbol d;, i=0(1)n. From
(4.5), we have

(4’.6) (Silo, Si,l, .o ey si,n)’z.]l_l(ar) (di,()’ di,l’ LICIET di,n),
i=0(1)n.

That is, s;;, i, j=0(1)n may be calculated by solving 2(n+1) systems
of linear equations which are different only in constant terms. For
any given vector k= (ko k..., k,), we only have to solve the matrix

problem
r 1 gr ) Zo ) kD )
1 6 1 2 k,
(4.7) R T
1 6 1 P Koy
0‘, 1 J zn kn

This problem can be directly solved by the following simple algo-
rithm :

wy=0,, w;=1/6—w;_,), i=1(1)n—1

& =koy gi=CFk, —w;_)/(6—w,;_)), i=1(Dn

Zn =&uy Zi= & —Wikiy1, 2:0(1)71—1

Since w,(=0,) =6 for r=4, it is impossible to calculate ;. But
in this case, from the first and second equations of (4.7) we have

20+62,=k
Zo+651+52:k1
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from which follows
zz=k1—/€0.

Hence we have a system of linear equations which is directly solved
by the above algorithm :

]. 0 ] ( Zz ) ,kl—ko
1 6 1 23 ksy
1 6 1 Zne1 kuy
6 1 Lz, L k)

21=ky—62,—23, 20=ky—62:.

Let £ and p be integers such that 0<k<p and 4<p. Then, for
feC (), let us denote

o* o*
S (%, 9) :aT{’ S® (%, 3) = aj:
g(x, ) =1 (x, ) +f*(x, »)
e(x, y)=f(x, y) —s(x, ¥).

By the means of Taylor series expansion, we have

(1/64) {eirjorteinjrteirjnteisja
+6(ei jp1teij1tei ey ;) +36e 5}
(4.8) = (h'/128)g; ;+0 (A%, i, j=1(1)n—1,
4 (eq 541466 j+e0;-1) =017, - -
(4,4))7s0o=0(h7), ++-.

Hence, on using Lemmas 2.3, 2.4 and 2.6, we have

Theorem 1. If f(x, y) €C*(2), we have

( i ) f,-,]-—s,-,,-= (h4/128)gi,j+o(hmin(r,ﬁ))’ h‘->0
(4.9) i j=0()n ;
(ii) fi,j—si.jz (h4/128)g,,]+0(h6), h_>0

for any mesh points (x;, »;) bounded away from the boundary.

Proof of (ii). From (4.1), we have
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(4'1()) jl(o-r) (603 61, ey 3:1),: (dﬂy dla LILIKT) dn>,

where

e; = (€045 €1y vv Cnj)

di=(dpjy dijy ooy dui)s

Since d; ;= (8%1*/128) g;;-++++, i, j=1(1)n—1, on using the well known
technique in (Kershaw [3]) we have

(4.11)

(4.12) “the i-th component of the vector Ji'(s,)d;”

— (Bh4/128)g: ;+ -+ -
for any mesh points (x;, »;) bounded away from the boundary. In
a manner similar to the derivation of (4.7), we have

(4.13)  (eigy i1y v vy Cin)’

=J1'e,) ((JT(e,)dy):, (JT'(0)d)s ..., (J(0)d,);),
where for any vector ¢= (¢, ¢, ..., ¢,)’, let us denote its i-th com-
ponent ¢; by (o, €1y «vvy Co)ie

On using again Kershaw’s technique we have the desired result.

Next we shall consider the global error estimation. By using
Theorem 1, (1.7) and (1.8), we have

e jey= (R/128) fEP 4 4+
ey ;= (RY/128) f itov-

for any points (x;, y;.4) and (x4, ¥;) bounded away from the bound-
ary. Since s is a quadratic polynomial with respect to x and y,

(4.15) s(x, ) =siip{(x—x:) /by (9—p;)/h}
+Simp (e —x)/hy (Pjsa—=2)/h} 4+
+5i05q {x—x) /hy (9 —23) /Y +---
FSivg s 1 =% 3) /by (Y —2i14) /h)

(4.14)

where
px, ) =4<x—%>(x—l)<y—%>(y— D)

=t Do o)
r(x, »)=1—4x*—4p*4+16x%~

Hence we have

Theorem 2. For any points bounded away jfrom the boundary, we have
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417)  f(x, p) —s(x, y)=—(h3/6)[{%-—<x—%>2} X

(x —%) st {}L— —<}’ "%)2} <J) —%>f§333},i++]

+O(h4), }l_>0, <A< Xigyy, Vi) <Djs1

§ 5. Histospline Approximation

On using Lemmas 3.1 —3.3 we have a system of linear equations
with s;; whose coefficient matrix is block tridiagonal. From Lemma
3.4, s:j, ¢ j=0(1)n are uniquely determined for sufficiently large n.
Next we shall consider the asymptotic error estimation :

Theorem 3. If f(x, y) €C*(2), we have

(1) fij—si;j=(h*/180) g ;+O(h™""®), h—0
(5.1) i, j=0(Dn;
(1)  fij—si;=(h*/180)g; ;+0(h%, h—0

for any mesh points (x;, y;) bounded away from the boundary.

Proof. From Lemma 3.1, on expanding f about (x;, »;) we have

(1/36) {eisrjmateisnj1teirjnteiria

+4 (i ju1teij1 e +eiy;) +16e 5}

(5.2) = (h*/180)g; ; +O (h™ire-8),

4 (eo jir+4egj+e0-1) =0(R), + =+

(dyd5)7eq ;=0 ("), « .
Application of Lemmas 3.2—-3.4 to (5.2) yields asymptotic expansion
(i). The proof of (ii) is similar to that of (ii) in Theorem 1.
By use of Theorem 3 and Lemma 3.6, we also have
(5.3) Jirgirr —Sizzjre=— (130*/5760) giy 4 i1 s

+0(h%, h—0

for any mid-points (%;.3, »;+4+) bounded away from the boundary.
§6. Numerical Illustration

In this section we shall consider the application of the above
stated methods by taking f(x, y) =exp(x+y). Here we have given
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the numerical results only for r=4. The approximate rate of de-
crease of the errors, O(h*), where « is computed from the observed
decrease in the error from 2=1/16 to 1/32, is given in parentheses.
An comparison with Theorems 1 and 3 shows excellent agreement
with the asymptotic rates.

Table 5
Observed errors of biquadratic spline interpolation at mid-points.
— ;
o — 1/8 1/16 1/32
(0, 0) 0. 337-3% 0.186-4 0.109-5 . 1)
(o, é) 0.281-3 0. 155-4 0.913-6 (4.1)
0, 1) 0.738-3 0.451-4 0.280-5 (4.0)
11
(7, -2-) 0. 116-4 0. 648-6 0. 405-7 (3.9)
(% 1) 0.471-3 0.331-4 0.220-5 (3.9)
(1, 1) 0.152-2 0.107-3 0.714-5 (3.9)

* We denote 0.337x1073 by 0. 337-3.

Table 6
Observed errors of biquadratic histospline approximation.

h
(”)\‘ 1/8 1/16 1/32

(0, 0) 0.244-3 0. 136-4 0. 796-6 @1
(o, %) 0.205-3 0.113-4 0. 665-6 “.1
0, 1) 0.535-3 0. 3284 0.204-5 (4.0)
11
(?, ?) 0. 128-4 0. 462-6 0.288-7 4.0)
(% 1) 0. 346-3 0.241-4 0. 160-5 4.0)
(1, 1) 0.111-2 0. 738-4 0.520-5 (3.9)
The observed errors ey and ey at (%, %) associated with mid-

point interpolation and histospline are 0.648-6, 0.405-7 and 0.462-6,
0.288-7, respectively, for 7=1/16 and 1/32. Hence we have

ey/enr=1.403.-., 1.406.-. for A=1/16 and 1/32. On the other
hand, the theoretical value for ey/ey is 180/128=1.406---.

From Tables 5 and 6 we also have at <—(1)—, %)

(1/52) (180ey, —128¢y) = —3.5x 107 for h=1/32.
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This result is predicted by the following relation (which is easily
obtained from Theorems 1 and 3) :

for

L1]
[21
[3]
[4]
[5]
L61]

(1/52) (180ey —128ey) =0 (£°)

any mid-points (x;.1s ¥j:12) bounded away from the boundary.
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