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On the /(G)-adic Topology of
the Burnside Ring of Compact Lie Groups

By

Norihiko MlNAMI*

Introduction

Let G be a compact Lie group and let A(G) denote torn Dieck's
Burnside ring [2], [3, 5.5]. As a set, A(G) consists of equivalence

classes of compact G-ENR's, and as a module, A(G) is a free abelian

group with basis [G/H], where H runs over 0(G) : the set of con-

jugacy classes (//) such that NH/H is finite. Here (H) denotes the

conjugacy class of H in G and NH the normalizer of H.

In [3, 5.12] torn Dieck defined homomorphisms between A(G) and

A(H);

ResG
H\ A(G} > A ( H )

IndG
H : A(H) » A(G)

where Res% is rf and IndG
R is eG

R in torn Dieck's notation. Now let e

be the trivial subgroup of G. Then

ResG : A(G) >A(e)=Z (-the ring of integers)

defines the augmentation ideal /(G) as its kernel.

In this paper we shall study the /(G)-adic topology of A(G). For

this purpose we make use of the particular subgroups of G. Let T

be a maximal torus of G. Since the Weyl group NT/T is finite,

we choose a /)-Sylow subgroup Fp of NT/T for each prime p dividing

the order of NT/T. We set Np=7t-l(Fp} where n : NT-+NT/T

denotes the canonical projection.

In Section 1 we show that the /(W^-adic topology is the same as
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its p-adic topology. In Section 2 we show that

is continuous. In Section 3 we explicitly determine the structure of
A(G)A : the /(G)-adic completion of A(G).

Recently G. Carlsson solved the Segal conjecture for a finite
group whose weak form asserts that A (G) A is canonically isomorphic
to 7r°(5G+) : the 0-th stable cohomotopy of the classifying space of
G [1]. Therefore one naturally wonders if the Segal conjecture could
be generalized to the case of compact Lie groups. We show however
in Corollary 3.6 that if the action of the Weyl group on the maximal
torus is non-trivial then the generalization of the Segal conjecture
does not hold. Therefore the /(G)-adic topology is not appropriate
when one considers such a problem.

Quite recently, G. Nishida developed a good device to handle
n*(BG+) [7], Along his line one may solve the Segal conjecture
affirmatively, in the case of a central extention of a finite group by
a torus (this is exactly the case when the action of the Weyl group
on the maximal torus is trivial!). Note that this is the same as
saying that A(G) is Noetherian [2, Proposition 10] [3, 5.10.8].

The author wishes to express his gratitude to Professor Nobuo
Shimada for his heartful encouragement and he also thanks to Pro-
fessors Goro Nishida and Akira Kono for many valuable and heartful
suggestions.

§ I- /(^)-adic Topology of

The purpose of this section is to prove the following

Proposition 1.1. If G is an extension of a finite p-group by a torus ,
then the I(G}-adic topology of /(G) is the same as its p-adic topology.

First we recall some results of torn Dieck. With a suitable
topology $(G) becomes a countable, totally disconnected, compact
Hausdorff space [3, 5.6.1]. Let C«P(G), Z) denote the ring of
continuous functions of $(G) to Z. For the conjugacy class (//) of
a closed subgroup H of G there is a ring homomorphism
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which assigns an integer %(XH} to a compact G-ENR X where XH

denotes the //-stationary subspace of X and % the Euler number.
Then we have the well defined ring homomorphism

such that

torn Dieck [3, 5.8.5] characterized this correspondence, generalizing
the result of A. Dress [5, 1.3] as follows.

Theorem A. The ring homomorphism

0 :A(G) - >C(0(G) , Z)

is an embedding and £€EC(0(G), Z) is contained in <j>A(G) if and only
if for all ( / /)GE0(G)

Sew n(H9 K)z(K) =0 mod |7V/////|

where the summation is taken over the NH-conjugacy classes (K) such
that Kl>H and K/H is cyclic, and n(H, /O are the integers defined in
[3, 5.8.4].

Moreover torn Dieck provides us the finiteness property of the
Burnside ring [3, 5.9.9], though it is not Noetherian in general [2,
Proposition 10], [3, 5.10.8].

Theorem B. There exists an integer b such that for each closed
subgroup H of G the index \ (NH/H) : (NH/H)Q\ is less than b. Here
(NH/H)Q denotes the identity component of NH/H.

Lemma 1.2* Let G be as in Proposition 1.1. Then for any closed
subgroup H we have

as homomorphisms of A(G) to Z.

Proof. Let T be a maximal torus of G. For a compact G-ENR
X, we have

modp
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and

where the latter half follows from the fact that T/H fl ̂  and T are
tori.

Proposition 1.3. Let G be as in Proposition 1.1. TTze/z /or any
closed subgroup H of G the index \NH/H : (NH/H)Q\ is a power of p.

Proof. Let 1 - > T - > G - > F - > 1 be the exact sequence.
Then we find immediately that

\NH/H:

Since NHr\T/H n T= (T/Hn T)'w, it suffices to show that the index
| (T/HnT)*™ : ((T/H nD'^o! is a power of p.

Now recall the canonical isomorphism [8, 1.5.6]

Note that the left hand side cohomology is the Tate cohomology [8,
1.4.7]. Since ( Z o)T/H{\T\* connected and H°(*(H), T/H^T)

a<=it(H)

is \n(H) | -torsion [8, 3.1.6], we have

and consequently (T/H ft T}Z(H)/((T/H n TY(H^Q is a finite p-group
as desired.

Proof of Proposition 1.1. We have to show that for each natural
number m there are natural numbers nl9 n2 such that

(ii)

For the relation (i) we show ] NT/T\ •/(G)BC/(G)B- r l . Let x be
an element of /(G)B. Then we have

\NT/T\x=(\NT/T\-G/T)-x+G/T-x
= (i NT/T | -G/T) -x+IndG

T ResG
Tx
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We turn to the relation (ii). For any compact G-ENR X, we
have

= (<f>H- %) (X) =0 mod p

by Lemma 1.2. So we find

<ft / (G)c/>C«P(G), Z)nl /eC(0(G) , Z)|/(D=0}.

As ^ is a ring homomorphism,

<K/(G)")c/>"C(0(G), Z)n{/eC(0(G), Z)|/(D=0}.

On the other hand, by Theorem A, Theorem B and Proposition
1.3 there is a natural number s such that

PSC(0(G\ Z] n lfe=C(<P(G), Z) I/CT) =0}

Consequently we have

, Z) n {/e=C(0(G), Z) |

Since ^ is injective, we have proved the relation (ii).

§ 2. Continuity of Ind%

Let G be a compact Lie group and let H and K be arbitrary
closed subgroups of G. Consider G/HxG/K as a compact G-ENR.
Then we have the decomposition

G/H x G/K= U (G/H x G/K)

into the subspaces of an orbit type. Let (G/HxG/K} K^H§ & be the

inverse image in (G/HxG/K) g of a connected component of

(G/HxG/K) K^ g /G. So the index b distinguishes the components.

Then we have a decomposition

in A(G).
Now again torn Dieck provides us the double coset formula for

the Burnside ring [3, 5.12.13].

Theorem C. With the above flotations, we have
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where Cg is the conjugation by g.

We apply the double coset formula to the case of H=NP and
K=Nq where p and q are distinct.

Proposition 2.1. If the Nq-conjugacy class of Nq D Arf belongs to &(Nq) ,
then NqnNs

p = Tg = T.

Proof. First we show that Nq{\Ng
p is always abelian. Let T^:

Nq - >Fq and n2' N
8

P - >Fg
p denote the canonical projections. Then

from the exact sequences

>T - >Nq-

Ff

we get the following ones :

Since ( ^CA^n^PI , \x2(N
g
pf}Nq) ) = 1, we easily find that the fol-

lowing sequences are also exact.

i — >T n T* — >Nq n Nf--^-^ (Nq n N$ x ̂ 2 (Nq n # p — > i
. . . .CD

The extensions (ii) and (iii) are central because Nq fl T
s and

are abelian. Therefore the extension (i) is also central.
Let a be the element in

which corresponds to the central extension (i). Let ij ( j=l , 2)
denote the canonical inclusion

c/=i , 2)
and let pj ( j=l , 2) denote the canonical projection

A- : ̂ (N.nNf) x*2(NqnN$ - >7r,(^n^Vf) O'=l, 2).

Then we find immediately that

(if X i2*) a - (if X i?) (pfifa +/?2%*a)
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holds in

As

i fxi? :

is an isomorphism, we get

a =p*i*a+p2
fi2

fa.

Now p*i*a corresponds to the extension

and p*i*a corresponds to the extension

Therefore p*i*a and p*i*a correspond to the extensions which yield
abelian groups by the exact sequences (ii) and (iii) . Hence so does
a by the definition of the Baer multiplication [8, 5.1]. Therefore
NqriNg

p is abelian.
Now we proceed further. If 7i2(Nqr(Ng

p) is trivial, NqnN$ is
contained in Tg. Then the assertion follows immediately. Therefore
we suppose that x2(Nqr(Ngp) is non-trivial.

Since 7Vgn^V? is abelian, we can set

where C is a closed subgroup of Nq^Ng
p such that

(A | C : C 0 | ) = 1

and F'p is a non trivial finite ^-subgroup of NqriNg
p.

Then we find that Nq f| NP/C is a non-trivial /?-subgroup of
NNC/C. By Proposition 1.3 we have (C)£0(AQ. It follows that

(T/Cr\T)*l(N^ is infinite by an easy argument [4], [3, 5.10.6].
Now consider the following fiber bundle of which the projection

is TTi ( Nq fi Ng
p) — equivariant.

Since the fibre Nq f| N
g

p n T/C n T^ Fp is finite,

(r/^nJVfnr)*1

is infinite too. Therefore we get
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and this proves Proposition 2.1.

As a corollary of the double coset formula we have the following.

Corollary 2.2. Res% Ind% : I(NP}- - >I(Nq) is a zero map when p

and q are distinct.

Proposition 2.3. IndG
Np( \ Fp \*I(NP» c I(GyindG

NpI(Np}.

Proof. We shall prove by induction on n. The case n = 0 is
trivial. Suppose that the case n— I is proved. Let y be an element
of Ind%p(\Fp\nI(Np}). We can set y=\Fp\x where x belongs to

I(Gy-lInd%p(I(Np)} by the inductive step.

Since the G. C. D. of {| (NT/T)/Fq\] q*p is \ F P \ 9 there are integers
[nq}q*p such that

Hence it suffices to show that \(NT/T)/Fq\x (q^p) belongs to

Now we have the equality

(NT/T)/Fq x

= (l(G/Nq) -G/Nq}x+Ind%ResG
Nx.

Since Res% x = Q by Corollary 2.2, we get

| (NT/T)/Fq\x=(I(G/Nq) -G/Nq)x

as required.

Theorem 2.4. Ind% : A(NP}- - >A(G) is continuous. Hence it

induces I n d % p : A ( N p } * - >A(G)A.

Proof. This easily follows from Proposition 1.1 and Proposition
2.3.

Remark. ResG
H : A(G) - >A(H} is always continuous because ResG

H
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is a ring homomorphism which preserves the augmentations. There-

fore it induces ResG
H : ^4(G) A

§3. The Structure of A(G)A

Since the G. C. D. of { (NT/T}/FP\}P is 1, there are integers

[mp}p such that %mp\(NT/T)/Fp\ = l.
P

Now define the homomorphisms

Ind:

by

P
Res:

Ind(®xp) = ̂
P P

Res 00 = ®ResG
N y, y<=A (G)A.

P P

Lemma 3.1. (i) hd(l') =ZmpG/Np is a unit in ,4(G)A.

(ii)

Proof, (i) easily follows from

X(G/NP} =x(G/NT)x(NT/Np) = \ (NT/T) /Fp \.

We turn to the case (ii). It suffices to show that

ir,dG
Np(X-Res%py-) =IndG

Np(x) •}>,

Consider the commutative diagram

A(NP] xA(G} — °

A (Np}
A x A (G)A——>A (G)A

where iN and z'G are obvious homomorphisms ; while a and b are

defined as follows ;

a(s. t}=$(=IndG
N (s*Res% (0) — Ind% (s) •t)p P P

b(x, y)=lnd% (;

for every s^A(Np), t^A(G), x

Regard the modules of the above diagram as topological spaces of
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/(A^)-adic on A(NJ and ,4(A^A, and of /(G)-adic on A(G) and

^4(G)A . Then the above diagram is that of topological spaces and

continuous maps. Since (iN xzV) (A(N^) Xy l (G) ) is dense in

and ,4(G)A is Hausdorff, we have

= iGa(A(NJxA(G» = [Q} = {0}.

So the result follows.

As an immediate consequence, we have

Corollary 3.2. Ind Res is an endomorphism of A(G}A.

Remark. This fact essentially shows that one can reduce the

Segal conjecture to the case of an extension of a finite /?-group by

a torus (cf. [6]). Though such a result is not so essential as we

shall see later (Corollary 3.6.), our argument yields a very short
proof of Theorem A of [6] because we can use [5, 1.14] to prove

Theorem 2.4 if G is a finite group.

Lemma 3.3. Res%

and

RG.es"Np

are injective.

Proof. We first prove that Res% IndG
N I(N is inJective-

Note that Ind% I(NP) is a free abelian group with basis [G/H —

l(Np/H}G/Np] where H runs over the representatives of (//) e0(G)

such that one of its conjugates is a proper subgroup of Np. Therefore
for any non-zero element £ of Ind% I(NP) we can write it down as

where the summation is a finite sum such that one of nx is non

zero. Now choose a maximal subgroup HK such that n^ is non zero.
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Then we find

This implies that Resfi (z) is also non-zero.

We now turn to the case of Re 3% Since Res is in-

jective, we need only to show that Res% tnd% is a zero map when

p and q are distinct. But this is evident.

By the second part of Lemma 3.3, we have a topological module

isomorphism

I ( G ) ^ In

p
where the topology of Res% Ind% I (Np}

A is the subspace topology of

I(Np)* ; since the former is a direct summand of the latter, it is p-
adic topology. Similarly the topology of I n d % I ( N p } ^ is p-adic.

Now for any module M, we denote its p-adic completion by Mp.

Proposition 3.4. Ind^pI(Npr= (lnd%I(N^ )£.

Proof. Since Ind% I(Np) is a free abelian group and Ind% Res%

is an automorphism of Ind%I(Np}*, each sequence of the following

commutative diagram splits.

0 *Ker Ind% >I(Nt) >Ind% /(TV*) >0

0 >Ker Ind%

Applying the /?-adic completion functor to this, one gets the follow-
ing one.

0 > ( K e r / H ) >KN^ > ( I n d % I ( N } >0

0

Note that Ind%pRes%p : Ind%I(N^) >Ind%I(Np) is a multiplication

by G/Np which is an automorphism of (Ind% I ( N P ) } £ by Lemma

1.2. Therefore the above diagram is a map of exact sequences which



458 NORIHIKO MINAMI

commutes with the splittings (Res^- )£ and Res% . This implies that

Now we have arrived at our main theorem.

Theorem 3.5. As topological modules we have

And Ind%I(Np} is a free abelian group with basis [G/H - % ( NP/H) G/NP}p

where H runs over the representatives of (//) €E0(G) such that one of its
conjugates is a proper subgroup of Np. Moreover Ind% I(NP) is finitely

generated if and only if the action of Fp on T is trivial.

Proof. We have only to prove the last part. But this is exactly
the same as Proposition 5.10.8 of [3].

As an application of our main theorem, we shall show that the
augmentation ideal-adic topology is not adequate when one con-
siders the Segal conjecture for compact Lie groups.

Corollary 3.6. // the action of NT/T on T is non-trivial, then as
modules ^(G) A( = Z@/(G) A) and lim n°s(BGn

+} ( = Z© lim TT? (5Gn) ) are

different where Xn denotes the n- skeleton of a CW complex X.

Proof. If the action of NT/T on T is non-trivial, then for some
p the action of Fp on T is also non-trivial. In this situation, /(C)A/
/?/(G)A is an infinite countable dimensional Z/p-vector space by
Theorem 3.5. We show that

lim xQ
s(BGn)/ lim xs

cannot be such a Z//?-vector space.
Let ^denote r\Im(x°s(BGm) - >n°s(BGn)). Consider the following

m>n

exact sequence of inverse systems.
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0 > {Ker (AH-^->An}} > [AH] -^ [An] > [An/pAn] >0.

Since {A,} is an inverse system of finite groups, all the inverse
systems are those of finite groups. Therefore the sequence

•p *p
0 >lim Ker (An—-^A^ >lim An—^->lim An >limAn/pAn >0

n n n n

is exact.
As {An/pAn} is a surjective inverse system of finite dimensional

Z//?-vector spaces, we have two cases :
(i) There is a natural number N such that

lim dimz/pAn/pAn = N.
n

(ii) lim dimz/pAn/pAn = oo.
n

In the case of (i), lim An/pAn= (Z/p)N. In the case of (ii), lim An/pAn
oo n n

= II (Z//?) i which is a non countable dimensional Z//?-vector space.
i

In any case, it can not be an infinite countable dimensional Z/p-
vector space. Since we have

lim AJpAn = lim n°s(BGn)/p lim 7rs°(£G")?
n n n

the proof is now finished.

Remark, (i) Under the assumption of Corollary 3.6, we easily
see that A(G}^ and nQ

s(BG+} are also different to each other as topo-
logical spaces. In fact /(G)A is not compact and n°s(BG) is compact.

(ii) In many cases, the assumption of Corollary 3.6 is satisfied.
For example, every non abelian compact connected Lie group does.
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