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On the Douady Space of a Compact Complex
Space in the Category ¥, II

By

Akira FUJIKI*

Introduction

This is a continuation of our previous paper [4]. Let f: X—>S§
be a proper morphism of complex spaces and & a coherent analytic
sheaf on X. Then we denote by Dy,s( &) the Douady space of flat
quotients of & over §; Dxs( &) represents the functor Dy,;s(&) :
(An/S)° —Sets defined by Dy,s( &) (T) : =the set of coherent quotients
F of & (the pull-back of & to X XT) such that & is flat over 7.

We say that f is a € -morphism (f belongs to ¥ /S in the ter-
minology of [4]) (resp. is Moishezon) if X,q is a meromorphic
image over S of a complex space X which is proper and locally
Kahler (resp. locally projective) over S (cf. [4, (2.1) (resp. (1.2))1]).
Then the purpose of the present paper is to prove the following
theorem which generalizes Theorem in [4]:

Theorem. Let f: X—S be a proper morphism of complex spaces
and & a coherent analytic sheaf on X. Let b: Dyx/s(&)ea>S be the
natural morphism. Suppose that f is a € -morphism (resp. is Moishezon).
Then for any relatively compact subdomain Q of S and for any irreducible
component A of b™*(Q) the induced morphism bl : A—Q is proper and
is a € -morphism (resp. is Moishezon).

Corollary. Let X be a compact complex space in €. Then any irre-
ducible component D, of the reduced Douady space Dy ..q is again compact
and belongs to €. If, further, X is Moishezon, D, is again Moishezon.
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As is mentioned above, Theorem was shown in [ 4] in the case
where & = 0y (so that Dy,s(&) reduces to the ordinary relative
Douady space Dy,s of X over §) and the universal subspace Zx,sC
X XsDyx,s restriced over AC Dy,s is reduced. On the other hand,
the properness of b|, in general was shown in [3, Theorem 5.2]
under the assumption that f is a Ké#hler morphism, and more
generally it was asserted in [3] with a sketch of proof in the case
where f is a % -morphism. (See however Remark 2 at the end of
this paper.) Indeed, Theorem above follows readily from the result
of [4] above if we re-examine the proof of Theorem 5.2 in [3]
(the part where the general case is reduced to the case where & =
0Ox and Zy,s is reduced over 4), except that the proof there contains
a gap in the formulation and proof of Lemma 5.8. The main point
of our proof is thus nothing but to fill that gap in a way suitable
for the proof of the above theorem.

In Section 1 we first construct the universal space of extensions
of a given coherent analytic sheaf by another coherent analytic
sheaf satisfying some additional conditions, and then construct the
natural compactification of it. Then in Section 2 using the results
obtained in Section 1 we prove a revised form of [3, Lemma 5.8]
(cf. Lemma 12 below) and then prove Theorem above, essentially
following the proof of [3, Theorem 5.2]. Also some other corrections
to [3] will be given (cf. a remark after Lemma 14 and Remark 2).

We follow mainly the notations and terminologies of [4]. Also
we recall the following notation from [3]. Let f: X—§ be a mor-
phism of complex spaces and & a coherent analytic sheaf on X.
Let v:7T—S be a morphism of complex spaces. Then the pull-
back of ¢ to X;:=Xx T will usually be denoted by & (with »
understood). Further (An/S) denotes the category of complex spaces
over S. A reduced and irreducible complex space is called a complex
variety. A Zariski open subset is in general assumed to be nonempty
unless otherwise is explicitly stated. The following result of Frisch
[2] will be used without reference throughout the paper ;for any f:
X—§ and & as above with § reduced and with f proper there exists
a dense Zariski open subset U of S over which & is f-flat.
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§1. Space of Completions of a Diagram

1.1. In this subsection we gather some preliminary results.

a) Let T be a complex space and % a coherent analytic sheaf
on 7. Let UCT be a Zariski open subset. Then a holomorphic
section se H(U, %) of & over U is said to be extended meromorphically
to T if there exists a coherent sheaf of ideals .# of @; such that
supp0;/FC A :=T—U and that for any open subset V of T and
any element b H(V, #), bys, extends to a holomorphic section of F#
over the whole V, where supp denotes the support and the subscript
0 denotes the restriction to UNV. By the Hibert Nullstellensatz
we get

Lemma 1. Suppose that there exists an effective Cartier divisor D on
T whose support coincides with A. Then s is extended meromorphically
to T if and only if for any relatively compact subdomain WET there
exist an integer n >0 and an element s* €H°(W, % (nD)) which is an
extension of §|yaw with respect to the natural isomorphism % (nD)=ZF
on U where F (nD)=FQ 0 ([D]") with [ D] the holomorphic line bundle
defined by D.

Let T be a complex space. Let UCST be a Zariski open subset.
Let &#, ¢ be coherent analytic sheaves on 7. Then we say that &
and ¥ are meromorphically equivalent and isomorphic on U if there exist
coherent analytic sheaves F ..., #, on 7 such that 1) %,=%,
F.,=% and 2) for each 1=<i=<m, there exists a homomorphism %,
—>%,; or F;—F;_; which is isomorphic over U.

Lemma 2. Suppose that F and 4 are meromorphically equivalent and
isomorphic on U. Let seH'(U, #). Let s <H (U, ) be the section
corresponding to s via the natural isomorphism F=% on U. Then s is
extended meromorphically to T if and only if so is s

Proof. We can reduce the proof immediately to the case where
there exists a homomorphism u : % —% which is isomorphic over U.
Then the assertion for s clearly implies that for 5. So suppose that s’
is extended meromorphically to 7. Let #  be the coherent sheaf of
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ideals of 7" as in the above definition of meromorphic extension for
(%, s"). Let € be the cokernel of u. Then the support of % is
contained in A. Hence if # is the ideal sheaf of annihilators of
%, then supp 0,/ FCA. We set S=.'¢. We then show that
for any open subset VST and any beH(V, #) by, extends to a
holomorphic section of &# over V. Since the problem is local we
may assume that V is Stein and b is of the form b=b, where b, &
H(V, #") and b,eH°(V, #). First, bys; extends to a holomorphic
section, say w, of ¢ over V. Then bweH"(V, Im u) where Im
denotes the image. Hence there exists an element (€H(V, %)
which is mapped to b;w. Then since u is isomorphic on U, t,=bs,.
g- e. d.

b) (cf. [6]). Let S be a complex space and & a coherent
analytic sheaf on §. Then the linear fiber space L( &) over S associated
to & is a complex space over § which represents the functor F':
(An/S)° —(Vector Spaces/C) defined by

F(T):=Homg, (v* &, O0p) =H(T, (v* &)%)

where v: T—S§ is any morphism and +* denotes taking the dual.
From the definition we get

(1) FL(EN=E*

where in general for a linear fiber space L over §, & (L) denotes
the sheaf of germs of holomorphic sections of L. When & is locally
free, we see that L(&*) is a vector bundle over § and it represents
the functor ¥V : (An/S)°—Sets defined by

V(T):=HYT, v* &)

with v as above. In this case we call L(&*) the vector bundle associated

to the locally free sheaf & (against the terminology of [6]).
Further recall that a projective fiber space P( &) over S associated

to & is the complex space over § which represents the functor P :

(An/S)° —Sets defined by

P(T):=the set of invertible quotients & of v* &.

Lemma 3. Let § be a complex space and & a coherent analytic sheaf
on S. Let @m: L=L(&)—>S be the natural projection and acH(L,
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(z* &)*) the universal section. Let #: P=P(& @ Os) —S be the projective
Jfiber space associated to & @ Os. Then there exists a natural Zariski open
inclusion LS P over S such that o« extends meromorphically to P (as a
section of (R* &)*).

Progf. Let B:#*(&@ 05 —>% be the universal quotient on P.
Let j : L->P be the S-morphism induced by the quotient homomor-
phism (a+id) :7* @O0 p(Zn* (D0 p))—>0p on L together with
the universality of P. On the other hand, let seH(P, &) be the
image by B of the constant section (0, 1)eH (P, z*6D0p) =
HY(P, z* 6@ 0s). Let D be the divisor of zero of s and W=P—D.
Then on W, s defines the canonical isomorphism ¢,: On=%
(=2 0p(D)). Then ¢;'(Blue) lw: &* & — Oy defines an S-morphism
¢ :W—L by the universality of L. It is then easy to see that j(L)CW
and that j and g are inverse to each other. Now let a:z* & - 0 p(D)
be the composite of B, and the isomorphism = @ (D). Then
ac Hom@P(ﬁ* &, @p(D))EHO?’H@P(T_C* &, Op) (D) 1is considered as a
holomorphic extension of a to F. Then the lemma follows from
Lemma 1. g. e. d.

c) Let f:X—S§ be a morphism of complex spaces. Let %, and
&, be coherent analytic sheaves on X. Let x be any point of X.
Consider an exact sequence

u

(%) 0% 09— 7, 0

defined in a neighborhood of x. Then applying me,( , F2) to
(#) we get a homomorphism

v FY—— FP,
Then we say that a pair (F,, F,) satisfies the condition (C) at x if
both Im » and Coker v are f-flat at x for some exact sequence (*)

as above. We say that (&, %,) satisfies (C) over an open subset U
of §if (#,, #,) satisfies (C) at any point of Xj.

Lemma 4. Suppose that F, is f-flat at x. Then the condition that
Imov and Cokerov are f-flat at x is independent of the exact sequence
(%) above.
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Proof. Let r, s be nonnegative integers with r<s. Let z7: 0% —
0% be the projection to the first r factors. Let u'=u@r and p'=pp,
where u and p are as in (*) and p,: 09""P— 0%’ is the projection.
Then the resulting exact sequence

4 ’
@%(sw)_b O Qr+» e > F >0

is called the (7, s)-modification of (#). Let o' : FPP>FPC+D be
the homomorphism defined by #’. Then it is immediate to see that
Ker v’=Ker v and Coker »'= Coker v PF . Hence under our
assumption the condition is independent of passing to any (r,s)-
modification of (*). Then the lemma follows from the fact that
any two exact sequences as () are isomorphic (over the identity
of #,) at x if we pass to a suitable (7,s)-modification of each
sequence (cf. the proof of Theorem in [7, p. 102]). q.e.d.

Using this lemma we shall show the following:

Lemma 5. Assume that f is proper. Then there exists a dense Zariski
open subset U of S such that (F,, F,) satisfies the condition (C) over U.

Uy

Proof. Take a locally finite open covering W= {W,} of X such
that on each W, we get an exact sequence (0;@{”“ @(;?p“ F, 0.
Let va:??%—»??q"‘ be the homomorphism associated to u, Let
T,={xesW,; Imy, and Coker v, are not jf-flat at x). Then by
Frisch T, is an analytic subset of W, such that f(7,) is ‘negligible’
in §(cf. [2, Prop. (IV, 14)]). Let U, be a Zariski open subset of §
over which %, is f-flat. Then by Lemma 4 T,=7, on W,NWsN
XU1' Hence 7, define a global analytic subset T°(U;) on XUr More-
over the closure 7 of 7(U) in X is clearly analytic. Let U,=
S—f(T). Since TS U,T, and W is locally finite, f(7) is negligible
in S. Let U=U,NU, Then it is clear that (&%, %, satisfies the
condition (C) over U, which is Zariski open in S§. g.e.d.

d) Let 6:X—Y be a morphism of complex spaces. Let & and
% be coherent analytic sheaves on Y. Then there exists a canonical
homomorphism (cf. [5, 0, (6.7.6)])

(2) b 2 6% Homo (Fy G) —— Homo ,(b*F, b*F).
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In particular when % = @ this reduces to

(3) b 1 B FF—— (b*F)*.

Lemma 6. Let f: X—>S be a morphism of complex spaces and
F1, F, coherent analytic sheaves on X. Let v: S =S be a morphism of
complex spaces and v : Xs—X the natural projection. Then the canonical
homomorphism

P oo, (T, 372)-——9%,%%5,(5*971, U*F )

above is isomorphic if (F., F,) satisfies the condition (C) over S.

Proof. Let X'=X,. Let x’€X’ be an arbitrary point. Let x=
v(x"). Take any exact sequence (*) defined in a neighborhood of
x (cf. ¢)). From this we get the commutative diagram

0> 5% fomo (F1y Fo) —> 5% (FP) — 5*(FF)

- l i

00— %”‘GX' (ﬁ*gzl, 17*3‘.2)————9 (ﬁ*%z)@l’ —_— (ﬂ*g"vz)@q

where the top (resp. bottom) sequence is obtained as the pull-back
by o of the exact sequence

0> Homoy (Fry Fo) ——>FH——FF

coming from (x) (resp. by applying Homoe,( , ¥*F,) to the exact
sequence 0% 0% prF, 0). Hence the top (resp. bottom)
sequence is exact by virtue of the condition (C) (resp. without any
assumption on &%; and f). The lemma follows from this.

1.2. a) Let X be a complex space. Suppose that we are given a
diagram

b c

& & 83 0

6 I+ s

%, %4

of coherent analytic sheaves on X, where the horizontal sequence is
exact and u,, u; are surjective. Then we set

F.=Keru;, i=1,3
(5) [

F=c N Fy /b(F).
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Let o be the kernel of ¢. Then we get an exact sequence

(6) 0—— A — T U(F;) —> F—0.

Conversely, ¢7'(%,) is characterized as a submodule of &, by (6).
Further ¢ induces the natural homomorphism ¢ :%,—— %, and ¢ in
turn induces a homomorphism

(7) a:%mmx(y& F)

> J{Ia‘mdlx(g’—& 37:3)-

Definition. A completion of (4) is a commutative diagram

& 6y £ 0
|
(8) bl | "
0— B> Ry Ry 0

“3

of exact sequences of coherent analytic sheaves on X, where u, is
surjective as well as u, #,, We define the isomorphisms of two
completions in an obvious way; then the set of isomorphism classes
is naturally identified with the set of quotients of &, which fit into
the commutative diagram (8).

Lemma 7. Let id € Homg (Fs Fo) be the identity of Fa.
Let M=a™'(id), which is an affine linear subspace of the vector space
Homgx(g*”g, F). Then the set of isomorphism classes of completions of
(4) is in natural bijective correspondence with the set M.

Proof. Suppose that we are given a completion (8) of (4). Let &,
be the kernel of u,. Then ¢ induces an isomorphism c¢y: Fp/0(F) =
Fi Let j: F,/b(F)>F,=c(F,;)/b(F,) be the natural inclusion.
Then je;' 1 F3—>F, clearly determines a point of M which depends
only on the isomorphism class of (8).

Conversely, given a point meMC Hom@X(é"g, F,), define F, to
be the natural inverse image of m(F;)CF, in ¢ H(F3)C &, Let
R,=8&,/F, and let u,: &,—>%, be the quotient homomorphism.
Since ¢(F,) =im(F3) =F, ¢ induces a surjection ¢ : Z,—>%; Further
b(F)=%,Nb(&,) so that b induces an inclusion s : %,—~>%, Then
(s, t) is exact and u;, 1<i<3, ¢, s fit into a commutative diagram
(8), thus giving (an isomorphism class of) a completion of (4).
Finally it is readily checked that the above correspondences (8) —jc,
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and m—(8) are inverses to each other. g-e. d.

b) Let f:X—S be a proper morphism of complex spaces with §
reduced. Suppose that we are given a diagram (4) on X. Let v:
T—S be any morphism of complex spaces. Then pulled back by v
(4) gives rise to the diagram

b. c
Er1— Eng— Es7—0
<4')T |“1.T U3, T
«%11 '%3.T

with the same property as (4). Then we set
Fr,=Keru,, 1=1,3

(5)r g 1 o T
Fra=ct (Fr1.3)/br(Fry).

Then we have the natural homomorphisms

Vgt For—>F i 1=1,3

o A1 -1
wr 1 N F D > e (Fr.)
where v, ; is surjective. Further »,, and w; induce a homomorphism

Uyt For— F 10

Lemma 8. Suppose that &, and %5 are f—flat. Then vy and v,g
are isomorphic.

Proof. For us, this is immediate {rom the flatness of %, We
shall show that v, is isomorphic. Since v, is surjective, b;(F 1) =
bro, 7 (F1r) in &,,. Hence it suffices to show that w; is isomorphic.
Let 47 be the kernel of ¢;: &,7,—> &5, Then since &5 is f-flat,
the natural homomorphism % ;—#7 is isomorphic. The assertion
then follows from the following commutative diagram (cf. (6))

O——) ‘}{‘T_—) 6_1(573)7,___—) 9"3',[-% 0

o L L

00— J{.T—>C;1(y7*'3>'_9 g‘:Tﬁ’é’ 0

where the top sequence is exact since %, is f-flat as well as &5 and
Z. q.e.d.

Suppose now that we are given a completion (8) of (4). We
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assume that #; is f~flat. Then the pull-back (8); of (8);

°r

gl.T (9@2,7‘ £3'T 0

( 8 )T “.T l“Z,T j“B.T
0 %11 gz,r '%B.T 0

is again a completion of (4); because #,,——>%,r is now injective.
Thus we can speak of the functor G : (An/S)°——Sets defined by
G(T) : =the set of isomorphism classes of completions of (4).

We set

9 = Homo (F 3 &, and Qf:%mwx(g"‘s, Fy)

where &#; and %, are as in (5). Then the homomorphism a : % —
# (cf. (7)) induces the natural homomorphism
(9) B:fu¥—ful
In order to have the representability of G we make the following
assumption;
&3 Ry G, H are all f-flat, (F3, F,) and (Fi F)
(10) satisfy the condition (C) over § and dim H°(X,, ¢,)
and dim H°(X,, #;) are locally constant on S.
Since S is reduced, this implies that
(11) f+% and f,o# are locally free on S
and further that for any v : 7T—S§ as above
the natural homomorphism a; : v*f, 4 — f1, % and
ap 1 v #—> froH#r are isomorphic (cf. [1]).
By (11) we can consider the holomorphic vector bundle M (resp. N)
associated to f, ¥ (resp. f.o#) (cf. (1.1, b)). Let y: M—N be the

bundle homomorphism corresponding to B. Let ¢c=H(S, S (N))
correspond to id& Homy (F 3 F,;) with respect to the natural isomor-

(12)

phism
(13) H(S, S(N))=H"(S, fo) =H'(X, #)= Homp (F3 Fs).
Define

Y=7y"c(5)).

Then Y is an analytic subspace of M and hence is naturally a com-
plex space over S.
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Proposition 1. Under the assumption (10) G is represented by the
complex space Y above.

Proof. Let »: T—S be any morphism of complex spaces. First
note that since &; and £, are f-flat, %, also is f-flat. Further by
Lemma 6 the canonical homomorphism o : G 1> Hamo (Fsry Fur)

T

is isomorphic. Also, by Lemma 8 v;, and v, induce an isomorphism
dp : yém@XT(?g,T, Fuir) _)%m@XT<'97T'3’ Fr.4). Together with (12)
these induce a natural isomorphism g;:v*f, & — fr, =}’zﬁ,,.g;XT(ﬁ"’T‘g, Fra).
Similarly we get an isomorphism /4y : u*f*,yfﬁfT*j[amwa(ﬁf'T‘g, Fr3)

Using these isomorphisms for 7=Y we shall now construct the
universal completion of (4)y on Xy. Let = : M—S be the natural
projection and set d=x|y:Y—>S. Let o €H'(Y, 6*/,¢) be the
restriction to Y of the universal section §EH'(M, n*f,%). Let ¢'=
gy(o) € H'(S, fY*%m@Xy(fy,g, Fy)) = HOmng(,gziy‘s, Fy.4). Similarly,
let ¢=hy(0) EHomgxy(ﬁ'y_g, Fyi). Then ¢ is the identity of ¥y ; and
¢’ is sent to ¢ by the natural homomorphism Homgxy(ﬁ‘*-y,g, Fy)—
Homgxy(g"y,s, Zy3). Therefore by Lemma 7 ¢’ gives rise to a com-
pletion (14) of (4)y;

Sy oy Igs.y >0
(14) J{ul_y J/u
0 Ry R Ry 0.

We claim that (14) is the desired universal completion (up to
isomorphisms). Let v:7—§ be any morphism of complex spaces
with a completion (8); of (4);. Then by Lemma 7 (4), defines an
element Z'EHom(pXT(ﬂ'T,g, .. whose image in HO’”‘”XT(g:T-S’ Frs)
is the identity. Let 2=g7 (1) €H"(T, v*f,%). Then the image of 2
in H°(X, v*f.o) by v*(B8) equals v*(¢). Hence by the universality
of M together with the definition of Y there exists a unique S-
morphism 7 : T—Y such that 2is the pull-back of ¢ by 7 ; 2=1*(0).
This then implies that z*(¢") =4" with respect to the natural isomor-
phism #* é’émszT(g‘-Y.s, Fy) = %m@XT(f*fy.s, T F ) = %m@XT(yT.Sa
Fr.4), where #: X = X, X ,T— Xyis the natural projection (cf. Lemmas 6

and 8). This in turn is equivalent to saying that (8); is isomorphic
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to the pull-back of (14) by 7, in view of the correspondence of
Lemma 7. g.e.d.

1.3. Let f: X—S be a proper morphism of complex spaces with §
reduced. Suppose that we are given a diagram (4) on X. As in
1.2 b) we set G =omo, (F3, F,) and H'=Homo, (F3 F,) where
F3, F, are defined by (5). We fix a Zariski open subset UCS with
the following property (cf. Lemma 35);

&y By G, H are all f-flat over U, (F4 F,) and (F,, F3)
(15) satisfy the condition (C) over U, and dim H°(X,, ¢,) and
dim H°(X,, #,) are locally constant on U.

We then apply the consideration of 1.2 b) to fy: Xy—U and (4)y,
the restriction of (4) over U. Let M, and N, be the vector bundles
on U associated to the locally free sheaves f,%|y and f.#|y
respectively. Let 7 : My—N, be the bundle homomorphism induced
by B:f.%—f.# restricted to U (cf. (9)). Let ¢:U—N, be the
holomorphic section defined by the identity of &#; via (13) for S=U.
Let Y=7"1(¢(U))Z M, and ¢ :Y—U the natural morphism. Then by
Proposition 1 Y represents the functor Gy :(An/U)°—Sets defined
by Gy(U’) = the set of isomorphism classes of completions of (4);
with T=U’. Thus we get the universal completion (14) on Y (with
$ replaced by U there).

Proposition 2. In the above notations there exist a projective morphism
6 : Y-S and an inclusion YC Yy over U such that Y is a dense Zariski
open subset of Y. Moreover exists a coherent quotient @ : &,3—>% on
Xy=X XY such that the restriction of @ to Xy=XXsY is isomorphic to
the quotient u: &,y—>R in the universal completion (14) on Xy.

Proof. a) The construction of Y. Let M4=f,% and N=f,H#.
Let L=L(#*) (resp. L'=L(A*)) be the linear fiber space over §
associated to the dual #* (resp. A*) of 4 (resp. #) (cf. 1.1 b)).
Since A=.4** on U, we may identify M, with L; Let P=
P(#*D0Os) (resp. F'=P(N/*P0Os)) be the projective fiber space
over § associated to MA*@D O (resp. /*PO5). Then we have the
natural inclusions LE P and LC P’ as Zariski open subsets (cf. Lemma
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3). Then the transpose a*: #/*—>/* of a (cf. (7)) induces a
homomorphism b : L—L’ of linear fiber spaces over S which is easily
seen to extend to a meromorphic map b:P—P’ over § (cf. the proof
of Lemma 3 and [8]). Let ¢eH(S, £ (L)) be the section induced
by the identity of &, via the natural homomorphism Homgx(ﬁ'}, F )
= H(S, /) = H(S, A**) = H'(S, (L)) (cf. (1)). Note that ¢
restricts to ¢ on U with respect to the natural isomorphism A = ™*
on U. Let Y=b1(i(S)). Then we define Y to be the analytic
closure of (i.e., the minimal analytic subspace containing) Y=Y;NLy
in Y. Then Y is a dense Zariski open subset of Y and the natural
morphism 6 : Y—§ is projective as well as P—S.

b)  Construction of a coherent quotient 1 : &,7—%. Consider the
diagram

Uﬁl.Y 632.1" ga,)’ 0

(4)y

1!1' b3 ll3’ 7
v v

2% R 3y

The restriction of (4)y to Xy admits the natural completion, i.e., the
universal completion (14). Hence by Lemma 7, (14) determines a
unique section 2, of Homoy (F 7.3 Fv.) on Xy (cf. (5); for Fy.).

We first show that this 4, is extended meromorphically to the
whole Xy. Clearly, it suffices to show that the holomorphic section
2, of fy*%ﬁaaxi(gji'g, Zy4 on Y determined by 4, is extended
meromorphically to the whole Y. In view of Lemma 2, for this
purpose we have only to show the following assertions.

1) (6*a*)* and fy*jfg‘ﬁ(gxy(g’—f.g, Fy.,) are meromorphically equiv-
alent and isomorphic on Y, and

2)  the section 2, H°(Y, (0*.4*)*) corresponding to 2, by 1) is extended
meromorphically to Y.

Proof of 1). Let d,:é*4/—0*(M4**) be induced by the natural
homomorphism /—.#**. Let d,:0*(.4/**)—(6*4*)* be the canonical
homomorphism (3) applied to F=./*  Let dy=ay : 0* M =0"f, % —
Jrs@y (cf. (12)). Let s JoxG 7o fru(Homoy (Fav, Fuy)) be in-
duced by the canonical homomorphism (2) gf’:%’”@x(‘%S’ F)yg—
yfmax‘_{(é‘*&y, Z4.v). These d; are all isomorphic on Y (cf. Lemma 6).

Hence (6*.7*)* and fy*(,}ﬁm@w (Fsv, F,v)) are meromorphically
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equivalent and isomorphic on Y. Next note that vy : %y —>Fy;
i=3, 4, are isomorphic on Xy (cf. Lemma 8). Then v,y and u,¢
induce homomorphisms fY*(%mwxy(eﬂd/:Y'g, 3"4,7))—>f?*(9f§maxy(917.3,
Fy.4) and fr, (%m@XY(g‘TYA, Fu9)) ﬁfY*(%m@Xy(g”-Y,a, Fya)) res-
pectively which are isomorphic on Y. Hence fv. (%mgxy(?y_g, Fv))
and fy*(%mwxy(ﬁf'&y, ZF.v)), and hence the former and (0*.4*)*
also, are meromorphically equivalent and isomorphic on Y. Thus 1)
is proved.

Proof of 2). Let m :L—S and # : P—S be the natural projections.
Consider the following commutative diagram of coherent analytic

sheaves on P

ﬁ:*.//l/—s—>(ﬁ‘*.///*)*

"1 2
which is isomorphic on M, where e=d,d, and ¢ is defined analo-
gously and where the vertical arrows are induced by the inclusion
YCP. This gives rise to a commutative diagram of the spaces of
global sections

H(M,, o* M) —— H (M, (z*M*)*)

" 72

HO(Y, 6* ) —> HO(Y, (0% 4*)%).

Let 6 € H'(M,, n*.4#) be the universal section. Then r,e(d) =er,(6) =
A (cf. the proof of Proposition 1). Thus it suffices to show that ¢(d)
is extended meromorphically to the whole P. This, however, follows
from Lemma 3 applied to & =.£* since (&) is the restriction to M,
of the universal section of (z*.#*)* on L. This proves 2).

Next, using the fact that 4, is extended meromorphically to Xy
we shall construct a desired quotient @: &,y—>%. Let h: X—>Xy be
the blowing up of Xy with center A4 :=Xy— Xy, where 4 is endowed
with the reduced structure. Then there exists an effective Cartier
divisor D on X whose support coincides with X —A"1(Xy). Since 4
is isomorphic on A7!'(Xy) we identify A71(Xy) with Xy and consider
Xy also as a Zariski open subset of X. Now consider the pull-back



DOUADY SPACE OF A COMPLEX SPACE IN ¥ 475

of (4)y to X by k;

I S

&, &, 0
! iy

%, %s.

Let #;=Ker @;, i=1, 3, and & ,=¢(%,) /b(¥,). Then by the same
argument as in the proof of 1) we see readily that h*Jﬁmaxy(?y.&
Fy.,. and (}/tgm@)?(ﬁa, %, are meromorphically equivalent and
isomorphic over Xy. Thus the section 1 of %mwx(ﬁa, Z,) on Xy
corresponding to ~*2, is extended meromorphically to X by Lemma 2.
Hence by Lemma 1 for any relatively compact subdomain WZ X
we can find an integer >0 and a holomorphic section 21*=21j of
Homoy(F3 Fi) (nD) on W:=h7(I¥) such that 7* restricts to 1lwnx,
in the obvious sense. Then through the natural isomorphism
Homoy(F 3 F) (0D) = Homo,(F3(—nD), F,), 2* determines a homo-
morphism £* : #3(—nD)—>%, on W. Let & (W)=C"1(4*(F,(—nD)))
where { : ¢71(&F;) —>&, is the natural homomorphism. Then if we set
F=Ker u, F(W)=% on XyNW as a submodule of &, Further
ho% (W) is a coherent submodule of &, &,=h,h* &,y. Let a: &,y
hyh* &,y be the natural homomorphism which is isomorphic on Xy.
Then F(W):=a'(h,% (W)) is a coherent submodule of &,y on W
with Z(W) lwnx,=F | wnx,, Thus we have shown that # extends
locally to a coherent submodule of &,y at any point of Y.

Now we define the submodule #<A4)> of &,y, which is defined
on the whole Xy and which extends &, by the following condition ;
a holomorphic section s of &,y defined on an open subset B of Xy
is a section of F<{4) if and only s|x,nsEH(XyNB, F). Since on
any W as above F{A>=(F (W) lx,)<4> (with the right hand side
defined in the same way) and &% (W) is coherent on W it follows
that #<{A4) is a coherent submodule of &,y on the whole Xy. (On
W, F{A) is characterized by the exact sequence 0—>F (W) >F<{4>—
HY(E 3/ F (W))—0.) Thus if we set Z=&,9/FA), then the
natural homomorphism & : &,y—>% satisfies the condition of the
proposition. g. e. d.

1.4. Let f': X—B be a proper morphism of complex spaces. Let m
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>1 be an integer. Suppose that for each 0<k<m we are given
coherent analytic sheaves &, &* and a coherent quotient u,: & ,—
%, on X such thatl) £°=¢&, and 2) &, &* fit into an exact
sequence

Ey—— Er—— &0, k=1

Let U be a complex variety and r:U—B be a morphism of complex
spaces. Suppose that for each 1<k<m there exists a commutative
diagram of exact sequences

&y EY EH? 0

(IG)k l"k.v )
0 Ry R* RH1 0

of coherent analytic sheaves on X, with all #* surjective as well as
Uy y, where (u°: €5—>R° =(upy : €3—>%y) by definition. Then we
have the following :

Lemma 9. We can find 1) a complex variety A which is locally
projective over B (¢f. [4, (1.2)1), 2) a dense open subset V of U and a
B-morphism v : V—A and 3) a coherent quotient u : E53—R of &7, such
that a) the pull-back of u to Xy=X,X,V via 7 is isomorphic to the
restriction of u™ : EF—>RA™ to Xy and b) A is the analytic closure of 7(V)
in A.

Proof. Replacing B by the analytic closure B, of (U) we may
assume that B=5, In particular B is reduced. Now we prove the
lemma by induction on m=1. So suppose that the lemma is true for
the data above with 0<k<m—1. Then we can find a complex
variety A’ which is locally projective over B, a dense open subset
V'CU, a B-morphism 7: V"—A4" and a coherent quotient u": &% '—
R’ of &% such that a)’ the pull-back of «’ via 7" is isomorphic to
u™ ! restricted to Xy, and b)’ the analytic closure of 7 (V) in 4’
coincides with 4’. Here, when m=1 (the beginning of the induction)
we set V'=U, A'=B, 7'=7 and u'=u,. Now we consider the diagram

(g’m,A’ éa:‘ln’ édzl’_l 0

(17) j/um./{’ l"‘/
'%m,A/ .%/
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Let U’ be a Zariski open subset of A" which satisfies the condition
(15) for f, : X4, —A" and for (17) (instead of f: X—S§ and (4)).
Let Y’ be the complex space over U’ which represents the functor
Gy : (An/U")° —Sets ; Gy (U") =the set of isomorphism classes of
completions of (17)y» (cf. Proposition 1). Then Xy, =Xy XY’ carries
the universal completion

& m.ys eV Ev! 0

(18) j i
0— Ry y— 'R Ry, 0

v

of (17)y.. Let d:Y —U’ be the natural morphism. Let §: YA’
be the projective morphism which extends 0 obtained in Proposition 2.
By that proposition v extends to a coherent quotient 7:&¥%—'Z% on
Xy.. Let V=7"*(U). Then by b)" V is dense in V' and hence
also in U. On the other hand, by a)" (16), (restricted over V') is
regarded as a completion of the pull-back (17)y of (17) to Xy via
n’. Hence by the universality of Y’, 7| lifts to a unique morphism
7 : V=Y’ such that the pull-back of (18) to Xy via 7 is isomorphic
to (16),.y. Thus if we define 4 by the analytic closure of 5(V) in
Y and u: &3~ by the restriction of 7 on X,, then the conditions
a) and b) are obviously fulfilled (cf. [4, (1.2.1)] for the local pro-
jectivity). q.e. d.

Remark 1. Actually we can show that » is a restriction of a
meromorphic map U—A4 over B, and hence we can take the above
V as a Zariski open subset of U.

§2. Proof of Theorem

2.1. We begin with two lemmas which are used in [3] without
explicit proof.

Lemma 10. Let g: Z—T be a proper flat morphism of complex
spaces.  Suppose that Z is (i.e., Zwq is) pure dimensional and T is
irreducible. Let F be a g-flat coherent analyiic sheaf on X. Let T be
a complex variely and 7 : T'—T a morphism. Then the followings hold
true. 1) If Zp, is reduced, then Z itself is reduced. If, further, Z;, is
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irreducible, then so is Z. 2) Suppose that Zy, is reduced and Fy is torsion
Sree. Then F also is torsion free.

Proof. Write Z'=Z;, and #' =%,. Let g:Z —T be the natural
morphism. Suppose first that Z" is reduced. Since 7" is a variety
and g is flat, Z' is pure dimensional as well as Z. Then by 3)—
1) of [3, Lemma 1.4] Z;, is reduced for some {’€7" and hence Z,,
also is reduced. Then by 1) —3) of the same lemma Z is reduced.
If further &’ is torsion free, then by 3)—1) of [3, Lemma 5.6]
F,, 1s a torsion free 02z,,,~module for some t"eT’. Then by 1)—
3) of the same lemma & is torsion free.

Next suppose that Z' is reduced and irreducible. Let {'€7" be
as above and set {=7%(t") so that Z, is reduced. Let Z,..., Z, be
the irreducible components of Z. We have to show that r=1. We
use the same argument as in [4, Prop. 3]. By our assumption, for
any i Z;2Z, and hence Z;,=Z, since g(Z)=T. Let Z;=Z:NZ;
and Ti;;={t€T ; dim Z;;,=dim Z—dim T}. Let Ty=U;,;T:;;. Then
we can take a holomorphic map 4 : H—7T of the unit disc H :=
{deC;|d|<1} into T such that 4(0) =¢ and A 2(7,) = {0}. Set Z=
Zy and Z;=Z; . Then by [3, Lemma 1.4] Z and hence Z; also,
are reduced since Z, is reduced. Hence Z,—H is flat as well as
7—H. Let y be any Hermitian form on Z (cf. [3, Def. 1.2]) and
y: the restriction of yx to Z. Then by [3, Cor. 3.3] the positive
functions

w:=\,n  2@:={, 1.

are continuous on H. (Note that by taking £ suitably, we may assume
that Z, and Z;, are all reduced for d=H.) Hence

lim 3 4(d) = % 4,0 =3, SZ Yo

d-0 i=1 i=1 i=1 i,0

- rSZ %o=rA(0) =r lim 2(d).
0

d—0

On the other hand, by our choice of %, 2(d) =i} 2;(d) for any d+0.
i=1
This is possible only when r=1. g.e.d.

Lemma 11. Let f: X—S§ be a morphism of complex spaces and Z a
subspace of X. Let & be a coherent analytic sheaf on X. Let ¢ :T—S
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be a morphism of complex spaces. Let & be the ideal sheaf of Z in X
and Sy that of Z; in X;. Then for each k=0 there exist a natural
isomorphism 2, : *(E/FE) > ¢* &/ IEP* & and a natural surjective
homomorphism py : ¢* (I*E /I E) > IEP* &/ IEWY* &, where ¢ Xy
—X is the natural projection.

Proof. First, 4, is defined by the requirement that the following
diagram of exact sequences be commutative
P(IRE)—P* & —¢* (6 /I ¢) — 0
12 ;[ g

>0

where b, is the inverse of the canonical isomorphism (cf. [6, 0,
(4.3.3)]) and the top (resp. the bottom) sequence is obtained by
pulling back by ¢ the exact sequence S*Q&E & —>& /7% —0 (resp.
by tensoring the sequence ¢* #*— 0 x,— @XT/J’%HO with ¢* &). The
isomorphy of 2, is then clear.

Next, we define g, by the requirement that the following diagram
of exact sequences be commutative

gb*(f’”l@é") gb*(jk@éa) ag[)*(fké’//k“@@)

‘r+1 l“k “p

SEI* & > SIEPFE > IR &/ I E —— 0
where ¢, is the composite of b, above and the natural surjection
P* FRQP* & > F4Pp* & and where the top sequence is obtained from
the exact sequence J*!'— F¥— g%/ 7*"1( by applying to it ¢*( ® &),
taking the natural isomorphism J*¢& /f*1¢ =1/ Q) E into

account. The surjectivity of p, is clear. g.e.d.

>0

2.2. Now we come to the reformulation of [3, Lemma 5.8] mentioned
in the introduction. We say that a meromorphic map g: Z—Y is
generically surjective if the image of Z contains a dense open subset
of Y. Moreover we employ the following notations through the end
of this paper.

Notation. Let f: . X—§ be a morphism of complex spaces and &
a coherent analytic sheaf on X. We denote by ux,s(&): & p—>Zx/s( &)
a fixed universal quotient (homomorphism) on X, : =X XD (defined
up to automorphisms of Zyx,5(&)), where D=Dy,(&). Let Zx,
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C X, : =X XD be the universal subspace where D=Dy,. Then as in
[3] for any irreducible component D, of Dx,s( &).,.a we shall denote
Xp, =X XsDoy Ep, (Zxys(8))p, simply by Xo, &, %, respectively,
and further, when & = O, denote Zy,sxXsD, by Z, By ﬁx,s we
denote the union of those irreducible components D, of Dy/sa for
which Z, is reduced. We set dim X/S=dim X—dim § and dim & /S
=dim supp ( &) —dim S, where supp denotes the support.

Lemma 12. Let f:X—S be a proper morphism of complex spaces and
& a coherent analytic sheaf on X. Then for every irreducible component
D, of Dx;s( &) rea with dim 2,/D,=q=0, there exist 1) an irreducible
component T of EX,S such that dim Z;/T=q where Z=Zx;s, 2) coherent
analytic sheaves &, 0=<k=<n, on Zp, 3) an irreducible component B, of
DZT/T( & 1) rea for each k such that ZpX (B, is reduced, 4) a complex variely
A which is locally projective over By X 7 «++ X B, and finally 5) a generically
surjective meromorphic S-map h : A—D,.

Proof. Let # be the ideal sheaf of annihilators of %, on X,.
Let supp £, be the support of #,. Then define the subspace S(Z,)
of X, by S(£,) =(supp Z. 0O0/F). Let # be the ideal sheaf of
supp £, on X,. Define Z,=5*R,/I*"'R,, k=0, where S°=0=
Ox,. Then we have the following commutative diagram of exact

sequences on X,

0— St/ IV E e E I E e E o/ I E 0
(19)1; u, LE+1 luk

0— &, s R IR R o) IR — O
with the vertical arrows surjective. Take n>0 sufficiently large so
that ¢ 2.#"! over U, for some Zariski open subset U, of D,. Let U
be a Zariski open subset of D, such that UCU, and that ¢/ and
R, 0<k<n, are all flat over U. Then by (19), we see that %,/
FER, also are flat over U for 1<k<n-+1. Now since 0/ is flat
over U, by the universality of Dy, we have a unique S-morphism
¢ . U—Dygss such that

(20) (Supp '%a)U; ZU . :ZXDX/SLI.

Let T be any irreducible component of Dy/s.a containing ¢(U).
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Then by (20) and Lemma 10 Z; is reduced, so T;f)x,s.

Let £, be the ideal sheaf of Z; in X; and &,=SFLE L/ FL 1€,
regarded as a coherent analytic sheaf on Z;. We then consider the
relative Douady space D, : =Dz (& ,) associated with the pair (Z;/T,
&:). Then by (20), Lemma 11 and (19),, #,, restricted over U,
are flat quotients of (&,)y=¢* &, where ¢ : Zy=Z; X ;,U—Z; is the
natural morphism. Then by the universality of D,, ¢ lifts to a unique
morphism 7, : U—D, such that &, : ( &)y—>%, is isomorphic to the pull-
back via 7, of the universal quotient Uzpr( &) éak,Dk—x%ZT,T( ).
Let B, be any irreducible component of D,,. containing z,(U).
Then again by Lemma 10 Z; X B, is reduced. Let 2;: &5, % be
the restriction of uzT,T(é”k) over B,. Define t=1tyXy++2X,7,: U
B:=ByXy+++XB,, Let =, :B,—»T, =:B->T, p,: B—>B, be the
natural projections, and %, : Zp —>Zy, %1 Zy—>Zs, fi: Zy—Zp, the in-
duced morphisms.

We shall now apply Lemma 9 to our situation ;

B
T pk
D, 2U ——;;—“—) B, € D, T
Ty,
¢ ’
TC Dyys.

In the notation of 1.4 first we set m=n and
(f: X—>B)=(fp: Xz—B)
2n (64 EH=(F* Sy, #*(E 1/ I E 1))
(2 E4>Ry) = (P (o) 7% 6= b (& € ) = pi GR))P.
Then &°= &, and we have a natural exact sequence &,—> & &*?
—0. We further set
(r : U-»B)=(r: U->B)
W EE>RN =Wl (Eo/ I E D> (Ra/ IR ) y)

where we identified #*(#* (&,/ S E0)) =¢*(E /I E ) with

1) We consider €, &* %, as coherent analytic sheaves on X with respect to the natural
inclusion Zp : =Z; ~ rB& X5, where these sheaves are zero outside Zj.
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(&o/ I E D) y=P* & 1/ F*P* & ¢ with respect to the natural isomor-
phism $*( &/ I E D) =P* &1/ I P* €1 given in Lemma 92, With
this definition #’=u,, by the definition of 7, and u, and we get the
commutative diagram (16), on Xy in view of (19),.

Thus we can apply Lemma 9 to these data; we can find a com-
plex variety 4 which is locally projective over B, a dense open subset
VCU, a B-morphism 7:V—4 which lifts 7|, and a coherent quotient
u(A): =2 (ED >R (A) on X,=XXsA, where &" is defined by
(21) such that a) u"': &/ I E DR/ F "R, restricted to Xy is
isomorphic to the pull-back of u(4) via » and b) 4 is the analytic
closure of 7(V) in A. Let WCA be a Zariski open subset over
which £ (4) is flat. Then by the universality of Dx,s(&) there
exists a unique morphism /4, : W—Dx,;s( &) over § such that the
composite quotient & ,— &%—>Z% (4) restricted to Xy is isomorphic to
the pull-back of the universal quotient uxs(&): &p—>Zxs(E) by ho
where D=Dy,s(&). Then by the condition b) above W,:=»""(W)
is a nonempty Zariski open subset of ¥ and by the condition a)
ho(n|w,) is the identity of W, (Note that &,/S"'&,=&, on Xy.)
Hence W,Ch(W), and then since W is irreducible, Ay(W)ZE D,.
Finally by [4, Lemma 4] 4, extends to a meromorphic map h: 4 —
D, which is generically surjective. This completes the construction
of all the objects required in the lemma. q. €. d.

2.3. For the proof of Theorem, besides Lemma 12 above we need
Lemma 5.9 and Lemma 5.7 of [3], which we shall quote here as
Lemma 13 and Lemma 14 respectively.

Lemma 13. Let f: X—S be a proper flat morphism of reduced com-
plex spaces and & a coherent analytic sheaf on X. Let g=dim X/S.
Then for any irreducible component D, of Dx/s( &)rea such that X, is
reduced, there exist 1) irreducible components T, 1<i<m, of Dy such
that Z;:=Zx;sXsT; are irreducible, 2) for each i subvariety Y; of
DX,/T,-( & ;) rea, Where X=X, and ¢ ;= & such that either a) dim £,/Y;
<q or b) Z :=Z,-><TiYi is reduced, R; is a torsion free @Z‘—module and
Y,.gDzl,Ti( &) with respect to the natural inclusion Dy 1 ( &) EDxr,(64)

2)  is the natural morphism Z; < ;U—Z; £ ;B induced by z.
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where R;=(Rx,1,(E:))y, and &= € Qo 0z, 3) an analytic subvariety
N of YiXs...XsY,, and finally 4) a generically surjective meromorphic
map h : N—D, over S.

The newly added statement ’YigDZi,Ti( & ;)’ above is in fact shown
in the final part of the proof of Lemma 5.9 of [3].

Lemma 14. Let f: X—S be a proper flat morphism of complex
varieties and & a coherent analytic sheaf on X. Let r>0 be an integer
and Y=XXsG, (&), where G,(&) is the Grassmann variety over X of
locally free quotients of rank v c¢f & (c¢f. [6]), regarded naturally as
a complex space over S. Then for any irreducible component D, of
Dx,s( & )rea Such that X, is reduced and that R, is torsion free of rank
r on X, there exist an analytic subset E, of Dy,s and a bimeromorphic
map t : E,—~D, over S.

Here we remark that the proof of this lemma in [3] wuses [3,
Lemma 5.5], but unfortunately its proof is incomplete. (Perhaps not
true as is stated there.) So we shall formulate and prove another
version of it (Proposition 3 below), which is enough for Lemma 14
above as follows immediately from the proof of Lemma 5.7 in [3].

Let T be a complex variety and A : Y—T be a morphism of
complex spaces with Y reduced. Let Y;, 1<:¢<m, be the irreducible
components of Y. Then we say that Y is pure dimensional over T if
Y is pure dimensional and each Y; is mapped surjectively onto T.
In this case dim Y;/T=dim Y/T is independent of i.

To state the proposition we introduce some notations. Let f: X—S,
f+ X’>S be proper morphisms of complex spaces. Let ZC XXX
be a subspace. Then we set

My={s&S; X, is reduced and Z,CX, XX, is a graph of a
meromorphic map X,—Xi}.

Assume further that there exists an S-morphism g: X —X. Then we
further set

M={se§; X, is reduced and Z, is a graph of a meromor-
phic section of g, : X;—>X}.
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Proposition 3. Let f: XS, [ : X'>S, ZC XXX and g: X' —X
be as above. Suppose that both X and Z are reduced and S is a variety.
Suppose further that both X and Z are pure dimensional over S. Then

1) Z is a graph of a meromorphic map X—X' over S if and only if
there exists a Zariski open subset UCS such that for any s€U, X, is
reduced and Z, is a graph of a meromorphic map X,—X..

2) Let h: Z—S be the natural morphism. Suppose that both f and h
are flat. Then M, is Zariski open in S (possibly empty) and M is
locally closed with respect to the Zariski topology of S.

First we make the following obvious remark. Let g: Y—Y be a
morphism of complex spaces. Then

g is isomorphic if and only if 1) dim;g~'g(§) =0
(22) for any j&Y and 2) the natural homomorphism
tg - Oy—g, Oy is isomorphic.
The essential part of the proof of the proposition is contained the
following

Lemma 15. Let S be a complex variety. Let f: X—S, h: Z—S be
morphisms of reduced complex spaces and wm: Z—X an S-morphism.
Suppose that X and Z are pure dimensional over S. Let Uy :={s&S; f
is flat along X, and X, is reduced} and U,:={s&S ; h is flat along Z, and
Z, is reduced}. Then the set N:={seU;NU,;7,:Z,— X, is bimeromorphic}
is Zariski open in S. Moreover N is nonempty if and only if m is bimero-
morphic.

Proof. First we note that U; and U, are Zariski open by [3,
Lemma 1.5]. We set Uy=U;NU,. Let p=dim Z/§ and g=dim X/S.
Then

(23) Z, (resp. X,) has pure dimension p (resp. ¢) for any s€U.,.

Let A={z€Z; dim,z"'z(z) >0} and A==(4). Then clearly 4,={z
eZ, ; dim,w;'r,(2) >0}. Consider now the exact sequence

4.3

(24’> 0 A 0 X (™ 0 VA M 0

of coherent analytic sheaves on X where X (resp. .#) is the kernel
(resp. image) of ¢. Let B=supp «# and C=supp #. Let W=
X—-A4, W,=X—(AUB) and W,=X—(AUBUC). Let W.=z"Y(W))
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and m;=7 |y, : W,—»W;. Then =, : W,—W, is a finite morphism, and
Tt We—sWs is an isomorphism in view of (22). In fact, W, is the
maximal Zariski open subset of X with this property. Further
(25) B;=supp =, @Zs/’ﬂs(st on W,NnX.

This can be seen as follows. By the restriction to each fiber X;
(24) gives the exact sequence

(!n)s

Ox— (@4 0z)— M—> 0.
On the other hand, since =z, is finite, on XN W, there exists a nat-
ural isomorphism between (¢,); : Ox— (@ 02)s and e 20 x om0,
Thus supp 7, 0z /t: O x =supp A, and (25) follows. Next we shall
see that

(26) C;=supp (Ker ) on Wonf~HU,).

Indeed, on W, (24) reduces to 0->H"— 0 x>, 0,0 and on W;N
fHU,), me 05 is f~flat. Thus for any s€U, the restriction of (24)
to X; gives the exact sequence

!zs

0 ‘%s (OXS T[S*@Zs—>0

on W,NX,. Thus supp (Ker :,;s) =supp ¥ s and (26) follows.

Now set Ty={seS;dim 4,>p}, Tp={s=S; dim B,=>gq}, and
Te={s€S;dim C,=q}. Let U;=S—(T,UTzUT,). Then the first
assertion follows from the following:

Claim. N=U,NU,.

Proof. 1t is clear that NCU, Let s&€N be arbitrary. Then
w, : Z,—X, is bimeromorphic. In particular s&7T, by (23) and hence
Win X, is dense in X,. It follows then that s&73 by (25) and so
W,N X, is also dense in X,. Then by (26) s&T, either. Thus s&
U, and we have proved that NCU,NU, Conversely, let seU,NU,
be an arbitrary point. Then by (23) A, is nowhere dense in Z, and
then x, is generically finite. Thus 71:3(/L)=AS is nowhere dense in
X,.. Hence X,NW, is dense in X, and Z,NW, in Z,. Thus =, is bi-
meromorphic and s&N.

By the above claim it follows that N+ ¢ if and only if U,# ¢.
Further by the pure dimensionality assumption the latter condition
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is equivalent to the condition that W; is dense in X and W, is
dense in Z. From this the desired equivalence follows. q.e. d.

Proof of Proposition 3. Let = : Z—X be the natural morphism.
Let N be defined as in Lemma 15 applied to #. 1) If Z is a graph
of a meromorphic map, = is bimeromorpnic. Then it suffices to set
U=N. Conversely suppose that a Zariski open subset U satisfying
the condition of 1) exists. Restricting U, we may assume that f, A
are flat over U and Z, is reduced for any sS (cf. [3]). Since Z;
is a graph of a meromorphic map if and only if =,: Z,—X, is bi-
meromorphic, U is contained in N. Hence N# ¢ and then =z is
bimeromorphic by Lemma 15.

2) Since both f and & are flat, N={s&S; X,, Z; are reduced,
and =,: Z,—X, is bimeromorphic}. Then clearly NC M, Conversely,
if s&eM,, then Z, is reduced since X, is reduced. Thus s&N. Hence
N=M, and M, is Zariski open. Once this is established, the proof
for M is the same as that of Lemma 5.5 2) in [3].

2.4. Using Lemmas 12, 13, and 14 above and Theorem in [4] (cf.
Introduction) we shall prove Theorem along the line of Proof of
Theorem 5.2 in [3].

Proof of Theorem. First we assume that f is a % -morphism. For
the functorial properties of % -morphisms used below we refer to
[4. (2.4)]. The statement of Theorem is clearly equivalent to the

following :
Let D, be any irreducible component of Dy/s( & )ra. Then for
any irreducible component D), of D,,: =D,XsQ, the natural

morphism &, ¢ :D; o—Q (is proper and) is a % -morphism.

We prove Theorem in this form by induction on ¢=dim £,/S.
If g=—1 (.e., supp Z.=0), then Z,={0} so that D,=S and
hence the theorem is clearly true. So assume that ¢=0 in what
follows.

Step 1. We may assume that f is flat, dim X/S=g¢, and that
both X and X, are reduced.

Proof. Suppose that the theorem is true in this case. We look
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at Lemma 12 applied to f, & and D, We use the notations of
that lemma. First of all, since 7 is an irreducible component of
Dys and p;: Z;—T is a % -morphism (being induced by the pro-
jection fr: X;—>T), for any irreducible component 75 of T, the
natural morphism 7§—Q is a % -morphism by Theorem in [4].
Moreover, we note that T is actually relatively compactin 7T as we
see immediately by applying the above argument to any relatively
compact Q'CS with Q&Q’. (The same kind of remark applies also
to the other spaces defined below, though we do not mention it
explicitly.) On the other hand, o, is flat, dimZ;/T=¢ and for any
0<k<n Z;x;B, is reduced. Thus Theorem is true for (o;: Z;—T,
&1 By) for each £ by our assumption. Hence by the above remark
for any irreducible component Bj :=Bj, of B, the natural morphism
Bi—T, is a % -morphism. Hence for any I=(iy,...,i,) B;OXTQ e

XTQB;"—>TQ is a %-morphism, and so the composite map
Ab—— B x Tg "t XTQB;”—> To—>Q

also is a ¥ -morphism, where A4j is the inverse image of BE,OXTQ---
XTqB;” in A. From this it follows that b), is a %-morphism by

Lemma 12.

Step. 2. In addition to the conditions of Step 1 we may further
assume that both X and § are irreducible and that %, is torsion
free on X,.

Proof. Suppose that Theorem is proved under this assumption.
We observe Lemma 13 applied to the given f, & and D, and use
the notations of that lemma. First since T;C Dy,s, for any irreducible
component 17 :=T77, of T;, the natural morphism 77—-Q is a
% -morphism by Theorem in [4]. Hence for any (7,...,7.) the
induced morphism T Xgq -+ X oT"—Q also is a % -morphism. Next
we shall show that for any irreducible component Y# :=Y#, of Y;,
the natural morphism Y*—T;, is a % -morphism, and hence that
for any M= (u,..., #t,) the induced morphism NY :=NyN (Y} X,

c XYM 5T, =TieXq*** Xl e also is a % -morphism. This
would then imply that the composite map Ng—T,—0Q is again a
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% -morphism. Hence by Lemma 13 b}, would also be a % -morphism.
Now we show that

27 Y¢>T;, is a % -morphism.

Suppose first that dim #,/Yi=q. Let Y, be any irreducible com-
ponent of Dzi,Ti((f,-),ed containing Y;. Then we claim that the triple
(0: : Zi—T;, &, Y,) satisfies the condition of Step 2.  First, by
Lemma 13 Z; and T; are varieties, p; is flat and dim Z,/T:=dim Z;/
Y;=dim #,;/Y;=q. Further by Lemma 10 Z}i :=Z;><TiYﬁi is reduced
since Z~i=Z~ﬁilyi is reduced. Similarly, . :=%7,7,(£),, is a torsion
free @zﬁi~module by Lemma 10 since Z~/gi is pure dimensional as well
as Z; (cf. [4, Lemma 3]) and %,=%;,,(&/)y, is torsion free. Thus
our claim is proved. Hence from our assumption (27) follows. Next
assume that dim #,/Y;<{q. Then dim %,/Y;<q also by the flatness
of %, over Y,. Hence by induction hypothesis (27) again follows.

Step 3. By Step 2 we may assume that f and D, satisfy the
condition of Step 2. This time we observe Lemma 14 applied to our
f, & and D,. We use the notations of that lemma. Since E,C Dy/s
and Y—S§ is a ¥ -morphism (G,( &) —X being projective), by Theorem
in [4] for any irreducible component E., of E,, the natural mor-
phism E},—Q is a % -morphism. Then the theorem follows from
Lemma 14 because D), is a bimeromorphic image of some E},.

In the case where f is Moishezon, the above proof works without
any change if we replace ‘% -morphism’ by ‘Moishezon morphism’
there. (See (1.5) and Proposition 1 of [4] for the functorial properties
instead of [4, (2.4)]). g-e.d.

Remark 2. In [3, Theorem 5.2] we asserted that any irreducible
component of Dys(&)a is proper over the whole § without
restricting to a relatively compact subdomain Q as above under the
assumption that f is a K#hler morphism. However, this seems to be
incorrect; the gap in the proof lies in the final statement of Lemma
5.7 of [3] based on the false claim that the composite map G,(&)
—X—§ is again Kéhler in the notation of Lemma 12, (which is in
general true only after restricted over Q as above (cf. [4, §2])).

At the end of [3] we also asserted that Theorem is true also for
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f:X->S§ in loc-¢ /S in the sense of [4, (2.3)] (in € /S in the sense
of [3]). But this is obviously false, e.g., for the fiber bundle f: X—
C constructed in [3, Remark 4.3], though the proof indicated there
applies to a ¥ -morphism in the sence of [4], i.e., of this paper, as

we have seen above.
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