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Fourier Integral Operators in Gevrey Class on
R" and the Fundamental Solution for a
Hyperbolic Operator

By

Kazuo TANIGUCHI*

Introduction

Consider a hyperbolic operator
m—1 .
(1) L=Dr+2 2 4. x)DiD{ on [0, T]

i=0 lalsm—j
with constant multiplicity, where a;,(¢, x) are functions in the Gevrey
class of order d(>1), that is, they satisfy
|0k0%a; o (¢, x) |SCM~-*T1EDEERIE for (¢, x) &[0, T] xR

The purpose of the present paper is to construct the fundamental
solution E,(¢, s) of the Cauchy problem

Lu=0 £>>0,

(2) 3{14(0) =4, ]:03 19"', m—la

and obtain the result on the propagation of singularities for a solu-
tion u(¢) of (2).

To investigate the above problem we introduce the following
symbol classes as subclasses of a symbol class §™ studied in [12]. In
the following we tacitly use the notation in [12].

Definition(S). 1) We say that a symbol p(x, §) (€8™) belongs

to a class 8%y if
(3) P85, €) | SCM- (e m0argEcgyn-
hold with constants ¢ and M independent of a and S.
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i) We say that a symbol p(x, §) belongs to a class S¢,, if
p(x, §) belongs to SZ, and satisfies for constants C, M and g inde-
pendent of a, 8

(4) 6@ (x, &) |SCM™ I+l e for |§]= p.
iii) We say that a symbol p(x, §) (€857 ) belongs to a class Z ¢,
if for any a there exists a constant C, such that
(5) ]pgg;(x’ E) léCaM~(iﬂI+N)‘B!dN!d/\E>"ID(|"N
hold for any 8 and N with a constant M independent of @, 8 and N.

Definition (T). Let 4 be a subset of an Euclidian space R}. We
say that a symbol p(Z x, ) in 4X R, belongs to M}(S%y) if for any «
and 8 p&(F x, &) is a C'-function and for any fixed €4 the symbol
0ip(t, x, &) (|71=0) satisfies (3) with C and M independent also of
. We also set JVI;(S'G"(d))=f;\M§(SZ’(d,).

In the same way we define the classes M}(SZu1), Mi(Rsq) and
M (Z¢w), which correspond to SZ,; and Zgy. Using these symbol
classes we reduce the problem (2) to the problem

Z,U=0,
(6) U) =G
for the perfectly diagonalized operator
4(t, X, D,) S 0
(7) &Z.,=D, —
0 .
Zr(t, X: Dx) fly
B, () 0
+ ° + Ra<t)

0 B, (1)
under the condition that (1) is a hyperbolic operator with constant
multiplicity (c.f. Proposition 3.4). Here, 4;(¢, x, &) belong to
M, (Stw), F1 is an identity matrix, B;(#) are [; X[; matrices of pseudo-
differential operators with symbols in M,(S¢y) (0<e<(r—1)/r) and
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R,(#) is a matrix of pseudo-differential operators with symbols in
Rcwq- Note that from (5), for any ¢, R,(¢) maps a class &’ of
distributions with compact supports to a class 7* of functions in the
Gevrey class of order d. This result shows that in order to study
the problem (2) for (1) it is sufficient to construct the fundamental
solution E(¢, s) for the operator

(8) & =D,—(t, X, D,)+b(t, X, D,) on [0, T]

with 2(¢, x, §) e M}(Stwy) and b1, x, §) eM)(S¢y,) (0<o=<1/d). So,
what we have to do is the construction of the fundamental solution
E(t, s) for £.

Now, we give our main theorem in this paper.

Theorem 1. Assume A(t, x, &) € M?(Skw,) is real-valued and b(¢, x,
E) e M} (S%y) for some 0=Z0=Z1/d (<1). Then, the fundamenial solution
E(t, s) of (8) can be writien in the form

(9) E(t, ) ={I+ 3 Wo(t, 9} Ls(t, ) +R (&, )
Jor 0=t, s=T,

Sor a small T,. In (9) ;j W,(t, s) is a series of pseudo-differential oper-
ators W,(t, s) with symbuozlfv w,(t, s; x, &) satisfying for j=0, 1
(10) |0j0;D5w, (¢, s; x, §) |

é (CS It —s ]up!——l)M—(Iai+|Bi)a!d‘8!d<5§w—|a|
with constants Cy and M independent of a, B, and v; I4(t, s) is a Fourier
integral operator with the phase function ¢ (¢, s; x, &), where ¢(t, s; x, &)
is a solution of
(1) 0,9=2A(t, x, V.9),

Plis=x-&;

and R(t, s) is a pseudo-differential operator with symbol r(¢, s; x, &) in
M:(Rew))-

Since the symbol of R(i, s) belongs to M} ,(Zsy), R(t, s) maps
&’ to y* for any fixed ¢, s. Hence we can call R(Z, 5) a regularizer.

From Theorem 1 and Proposition 1.3 we easily obtain

Theorem 2. Assume that (¢, x, &) in (8) is homogeneous for large
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|€]. Then, for a solution u(t) of
Lul) =0 >0,

12)
( u(0) =g,

we have

(13)  WFeq (u())={(q(t, 3, n), op(t, », 1)); (¢, 1) EWFsq (9
Jor large ||, p>0},

where WFg (u) is a wave front set of u in the Gevrey class of order d
(see Definition 1.2) and {q(t, p, u), p(t, », p)} is a solution of

dg _ dp _
(14) W— Vél(lf, q, p), —C—E*—Vxl(ta q, [7):

q |t=0 :.ys p !t:Ozv'

This result is also obtained by Mizohata [17]. He has showed it
by using the energy method, not by constructing the fundamental
solution. For the parametrix of % Lascar reported in [15] that he
constructed it, but the author has not known his detailed proof. An-
other result concerning the construction of the parametrix is reported
in [2] and the propagation of singularities for a solution of (2) is
studied in [19] and [25].

From Theorems 1,2 and Proposition 3.4 we obtain

Corollary 3. In (1) we assume

f”+'§l > 4.4t x>$“r"=.1f{<r——2ju, x, N for |€]=1

i=0 la|=j

and o=max{(m;—1)/m;} <1/d. Then, the fundamental solution E,(t, s)

J
can be constructed in the form

(15) E( =3 3 Wit Iy 9+RE 9,

i=1 »=

where W; (L, ), I¢j(t, $) and R(t, s) satisfy the similar properties to

those in Theorem 1. Moreover, let {q;(t, », 0), p;(t, , 7} be a solution
of (14) with A=2. Then, we have for a solution of (2)

m—1
(16) VOWFG(d)(a{u(t))
iz

I3 m—1
=ju=1{(q,-(t, D5 1) obi(t 2y )5 (0, ) E],\:JOWFGM)(&)
Sor large ||, p>0}.
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In Section 3 we study the above result under a weaker condition :
There exist regularly hyperbolic operators L;, L;, ---, L, such that L
has a form

(17) L=LL,L~+3 &, X, D,)Di
j=o

with a;(t, x, £) € M,(Szt7) (1=<¢=<r). This formulation is based on
the work in [16], where the authors proved 7*-well-posedness for
d<r/(r—q) in the case that a;(¢, X, D,) are differential operators.
The number r/q is called the irregularity in [8]. For the case of
constant multiplicity, Ohya [22] also proved the y*-well-posedness
and in [5] Ivrii gave the necessary and sufficient condition for (1)
to be y-well-posed. Under Ivrii’s condition we can also reduce (2)
for (1) to (6) for (7) and get Corollary 3.

The construction of the fundamental solution E(f, s) (the proof
of Theorem 1) is performed by the way employed in [13], [14] and
[23]. There, the authors construct E(¢, s) for the C~-case by using
the successive approximation after solving an eiconal equation (11).
The key point of their proof is obtaining a sharp estimate of multi-
products of Fourier integral operators. Since we assume d>1, we can
use cut functions in the Gevrey class and can improve their estimate
to the Gevrey class. This enables us to prove Theorem 1. In [6]
and [7] Kajitani has constructed the fundamental solution for a
hyperbolic system with coefficients in the Gevrey class of order d by
solving transport equations and using the asymptotic sum of ampli-
tude functions. His fundamental solution E(¢, s) has the form similar
to (15) and the regularizer R(¢, s) in his E({, 5) is an integral
operator with a kernel in the Gevrey class of order 2d—1. So, from
his E(¢, s) we get (16) in the case d=1, but we cannot obtain (16)
for the case d>1. In our construction, since we do not solve trans-
port equations and hence we do not use the asymptotic sum, the
regularizer R(¢, s) becomes an integral operator with a kernel in the
Gevrey class of order d and get (16) for the case d>>1.

The outline of the present paper is the following: In Section 1
we give a class of Fourier integral operators and a result on wave
front sets. In Section 2, after showing the result on products of
Fourier integral operators, conjugate Fourier integral operators and
pseudo-differential operators we obtain a sharp estimate of multi-
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products of Fourier integral operators. Since we need tedious cal-
culation to obtain the former results, we devote their proofs to Section
4. In Section 3 we prove Theorem 1 and show the way of reducing
the problem (2) to the problem (6).

In Section 5 we prove a sharp estimate of symbols of multi-prod-
ucts of pseudo-differential operators, which is also used in Section
2. For the proof we follow the discussions in Section 1 of [23].
There, to obtain the key estimate we divide the multi-product of v
+1 pseudo-differential operators into 2° terms by using cut functions
depending on a parameter ¢ (see (1.57) of [23]). But, in our case
we cannot use such a decomposition since we cannot find a suitable
¢ to obtain our estimate, especially to find a suitable ‘“‘radius of con-
vergence”. So, we employ a different method of the division into 2”
terms. Then, we obtain the desired estimate for our case.

The final section, Section 6, is devoted to the proof of Proposition
3.4 on the perfect diagonalization. This is a version of the one in
[10] for the Gevrey class. Since we use the asymptotic sum for
products of pseudo-differential operators, we use the class S$Zgy,
not the class S%4, and the discussion in [1]. Then, the discussions
in [10] work well and we can obtain Proposition 3.4.

The author wishes to thank Prof. M. Ikawa for his encouragement.

§1. Definitions and Wave Front Sets

Throughout this paper the constant d denotes a number larger
than 1. To define Fourier integral operators we will introduce a
class Z;4 () of phase functions as follows:

Definition 1.1. Let 0<t<l. We say that a phase function
& (x, &) belongs to a class Py () if ¢(x, &) belongs to £ (z) and for
J(x, §)=¢d(x, §) —x-£ the estimate
(L. 1) T8 Gy &) | SeM-0a+ 18D gligia gt
hold for a constant M independent of &, 8. We also set

2w :0<\/1 Psw (7).
=z<

Remark 1. We say that for ¢,& Py, (t5) (0=<7,<1) the set {¢s}seco
is bounded in 2.y, if t,=<%, for a constant #,(<(1) independent of @
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and Jy(x, §) =¢s(x, §) —x-§ satisfies (1.1) with =7, and a constant
M independent of 6.

Remark 2. In the same way we define bounded sets in S¢, and
Ry as follows: We say that for p,eSZ, the set {ps}sco 1s bounded
in 8%, if we can take constants C and M in (3) independent also
of the parameter 06, and we say that for p,& %oy the set {ps}oco
is bounded in %y, if we can take constants C, and M in (5) inde-
pendent also of #6.

Let ¢(x, &) be a phase function in #4,. Then, a Fourler inte-
gral operator Ps;=p,(X, D,) with the phase function ¢(x, §) and a
symbol ¢ (Py) =p(x, §) in SZ, is defined by

(12) P¢u(x) :OS_SSei@(x.E)—x/-E)p(x, f)u(x’)dx’df
for ue &,

where & is the Schwartz space of rapidly decresing functions on R"
and the right hand side of (1.2) is the oscillatory integral defined
in [12] (Chap. 10). Following [12] we denote the set of such Fou-
rier integral operators by $%, 4. If ¢==x-&, the set §Z, 4 is the one
of pseudo-differential operators. In this case we write $&, 4 simply
by $%4. Similally, we define a Fourier integral operator P, with the
phase function ¢(x, §) and a symbol p(x, §) E%¢yu by (1.2) and
denote a class of such Fourier integral operators by Zgg4  Corre-
sponding to this class we write a class of pseudo-differential operators
as Zew={p(X, D, ;px, )Ry}, since no confusion occurs be-
tween the class of symbols and that of pseudo-differential operators.
Remark that the following holds: If p(x, &) belongs to %, and a
real symbol J(x, &) satisfies (1.1) then ¢/®9 p(x, &) also belongs to
R This fact shows that Rgy s=Rey for all ¢=Psy, which
corresponds to (2.6) of [9]. So, we may use mainly the class g,
among the class %¢u .4 OEPsw. Denote by y2(M) the class of
functions u(x) satisfying

[02u(x) |[ECM~ ¥l (x&R")
and denote y*=\U y*(M). Then, the operator in %, maps a class
M>0

&' of distributions with compact supports to a class y?. In this sense,
we call the operators in %, regularizers.
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The following definition coincides with that of WF(x) for L=
{L,=(k+1)% in [4].

Definition 1.2. Let us &’. We say that a point (x°, £°) of
T*(R")\ {0} does not belong to the wave front set WF¢, (1) (CT*(R")
\{0}) of u, if there exist a conic neighborhood I' of &° and a func-
tion x(x) in y? with x(x°)#0 such that the Fourier transform
Flaul(§) of y(x)u(x) satisfies for any N

(1.3) &Y | F[qu] (&) |ISCMYNE for eI

with constants ¢ and M indepedent of N.

Concerning the wave front set WFgy, (u) of the Gevrey class the
following holds.

Proposition 1.3. Lei a phase function ¢(x, §) € Py, be homogeneous
Sor large |&|. Then, for a Fourier integral operator P; with a symbol
b(x, &) in SZy the relation

(1.4) WFG(d) (P¢u)
c {(xa pVx¢<x: S)) 5 (VE¢(x9 "S): 5) EVVFG(ti) (u)
for large |€], p>0}
holds for us &".

Progf. We may assume u& & by the similar result for the C~-case.
Suppose that the points (x°, §°) and (»°, 7°) satisfy &°=V,6(x°, 1°),
9 =V:0(x°, 1°), O°, 1°)&WFs, (@) and [9° |=C,. From the defini-
tion there exist a function y(x) in y? satisfying y;=1 in a neighbor-
hood of »° and a conic neighborhood I'; of 7° such that (1.3) holds
with y=yx and I'=I". Take ¢(§) =82, satisfying supp¢g !, and
¢=1 in a conic neighborhood of 7°, and take a function y,(x) in 7¢
such that x(x°)#0 and suppy.C{x; n(V:d(x, 7)) =1 for all 7}.
Using these functions we divide Z[y,Psu](§) into three parts:

(1.5)  FLpPul®

=gef<-x-f+¢<xvv>>xz<x> p(x, NG F [padd (n) dydx
n Sei(""5+¢(”"’))Xz(x) b, 1) (L= () F [l () ddx
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+Se‘i"'5x2 (x) {Os—gge’”("'”"y'”)[? (x, D A=n0)u(p)dydy)dx
=1,(8) +£,(&) + f2(6).

For a fixed @ we estimate & f;(§), j=1, 2, 3, individually. First,
we estimate §%f1(£). Note that we can write

. . 18
(16) B W)

with the property
(1.7) 1950254 (x, £) | <CM~U8I*1a1+18D g1dgdg1df 1 ~d( &yt
Using (1.6) we write

la’] ,
Eaf1(§> — ,+;__ kZ:Q(Z,)SSet(-x-5+¢(1.7}))¢a,’k(x, 7})
X D" (g () p (x5 7)) () FLyu] (1) .

Then, from (1.3) for u(x) we have
(1.8) 18 (8) | =CMal?
if we take new constants C and M independent of a. Next, we
estimate £°f,(£). If we take an appropriate conic neighborhood I,
of £°, the relation

|§=V.0(x, ) 1ZC(I€i+ ) for €', (¢>0)

holds on the support of the integrand of f,(§). So, if we set

Li=i|é=V.¢(x, ) |72(§—V.6(x, 7))V, we have from L, == =
i (CxE B

£ (&) =g\t e (LN ) p (v, )
X (1 =¢ () Z [xul () dydx.
Hence, we have
(1.9) [&2f,(8) | S CM~“al? for £T,.
For f;(§) we write

e
&Ef)= X e lZ Se—”'éxz(w) (%)

a’+a’+0=a a"a;llﬁl k=0
X {OS‘SSe'w(x'”)_y'v)%,k(xa 7])P<a”) (x, 1)
X (L= (9))u () dydy} dx

with ¢,,(x, §) in (1.6)-(1.7). Note that on suppy(x) (1 —xn())
the inequality V¢ (x, ) —y| =C, >0 holds. Hence, setting
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Ly=—i{Ved(x, 1) =y |?(Fed(x, 1) —»)-F, we write
a _ a! Ul —ixe
CHRO= T, e B T
X {Os_ggei(g&(x,;;)—y.;,) (th) E+1(m)+n+1 {¢6,k<x, 77)
X pan (%, M} (1 =0 (9))u(y)dydy} dx,
where [(m) =[max(m, 0)]. This implies
(1.10) [E2f3(8) | S CM~"al,
Consequently, we have for any «a
'Eag:[XZPgsU] (&) | ECM~al¢ for £eT,

from (1.5) and (1.8) —(1.10). This means (x°, £§°) & WFg,) (Pau).
Q. E. D.

§2. Multi-Products of Fourier Integral Operators

In this section we will obtain a sharp estimate for the symbols of
multi-products of Fourier integral operators. For simplicity we denote
for =P

LZw (9) = {p5(X, D) + (X, D) 5 p°(x, &) ES%ay, (%, €) E R},
that is, symbolically LZy (@) =824 s+ Zew.s. 1 S(x, §) =x-& we
denote LZy(¢) simply by LZg.

For a sequence {¢;} of phase functions ¢;(x, &) € Psy (r;) we

consider multi-products
(2.1) le:P1,¢1P2,¢2"'Pu+1,¢u+1

of Fourier integral operators Pjg, in Lgg(4;) with ¢=0. We put

following assumptions:

(A.1) There exists a small constant z° such that Zf <<% If we
set Ji(x, §) =¢;(x, §) —x-§, {J;/7;} is bounded in SG(d)

(A.Q) If we Write PJ¢J:p9¢](X, Dx) +ﬁ]¢](X, Dx) ESEM)‘%—I— ‘%G(d).qﬁj
the set {pJ(x, &)} is bounded in S%, and {f;(x, £)} is bounded in
'%G(d)'

The result we want to show in this section is the following :
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Theorem 2.1. We assume (A.1) and (A.2). Then, the multi-product
(2.1) of Fourier integral operators Pj4; is a Fourier integral operator

QU“-%H in LEP(D,,) with a phase function @, .(x, &) in Py and
is represented by the form

(2.2) Q,u+1.¢u+1:q8+1(X, Dx)I¢D+1+qu+l(X9 Dx)Id?D_H
Sor the symbols qb..(x, &) and G, (x, &) satisfying
(2.3) g0 B (5, £)] SCHM =1+ Paliglecgyerenie,

24)  [Ga(x, )| SCHC.M A8 (N 4 [v0]) WE"4¥ for any N,

where the constants C, and M are independent of v, a, B, N and the
constant C, is independent of v, B and N.

In (2.2) the operator I for ¢ =Py is the Fourier integral oper-
ator with the phase function ¢(x, §) and the symbol 1.

We will prove Theorem 2.1 after some preparations. First, we
give the product formulae between Fourier integral operators, conju-
gate Fourier integral operators and pseudo-differential operators,
whose proofs are given in Section 4.

Proposition 2.2. The following inclusion formulae hold.

(2.5) S8y 88w .o CLES ($),
(2.6) SEar.o° S8y CLEEY (),
(2.7) Row LEwy () CRcwy LE(P)Zew CRcw-

Remark 1. 1t is easy to see from (2.5) —(2.7)
(2.8) Liw - LEa () CLEG (6),
(2.9) L ($) L@ CLEG" (4).

Remark 2. The inclusion mapping (2.5) is bounded in the follow-
ing sense: “Assume {f;}sc0 is bounded in S%Zy, {ps}sco is bounded in
SZw and {@g} pco is bounded in Py, Denote po(X, D,)psq,(X, D)
=38.4,(X, D,) +Go.4,(X, D,) with g5(x, §) €825 and §s(x, §) € Zow).
Then, {¢8}sco and {gs}sce are bounded in SZE and Zgy respec-
tively.” In the same sense, the inclusion mappings in (2.6) and (2.7)
are bounded.
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Denote by I the conjugate Fourier integral operator with the
phase function ¢(x, §) € Z;, and the symbol 1. Then, we have

Proposition 2.3. The following relations hold.
(2.10) LG (@) 1y CLEwy, g LEoy($) C LEw).

Remark. The inclusion mappings in (2.10) are bounded in the
similar sense to Remark 2 of Proposition 2.2.

For the multi-products of phase functions we have

Proposition 2.4. Let ¢;(x, §) € Py, (zj), j=1, 2, . Assume (A.l).
Then, the multi-product @, ,(x, &) =@k #d,.1(x, §) defined in [14]
belongs to Py (€,Fpr1) (Fyp1=Ti+-++7,01) with some constant ¢, indepen-

dent of v.

Proof. Let {Xi, Zi}%.,(x, &) be the solution of

X{):V j Xi—ls E{, P

iy | 0TS ), i
diZVx¢j+l(Xi’ ‘:’{:+1 ’ .]=19 Tty Y (X2=x, ‘:’E+1:$)-

Then, by the induction on N we can prove from the method of the
proof of Theorem 1.7 in [14]

[a1=1+18-1/ (alBl( a4 8] —1) 1)
1s|a+BIsSN
X 25 (<& ozaf (X~ XI) ||
i=1
O 0502(F— T N S Gt
for constants C; and M independent of @, 8 and v. This implies
(2.12) le{<§>'“‘|la§aﬁ(Xi—Xﬂ‘l)H-l—<5>"“‘“‘I|3?35(5£—55*1)Il}
” <ty MU=+ 18Dg1ag1E
Since D,,,(x, &) =¢ - #4,.1(x, &) is defined by
(2-13) ¢u+1(xa E):AV_:I (¢J(X£_17 E:]J) _Xf;'Eﬁ)+¢u+1<Xga E)
=
<X3=X),

we get D,,,(x, §) € P (c,foyy) with an appropriate constant c,.
Q. E. D.

Proposition 2.5. Let ¢;(x, &) € Pewy(zy), j=1, 2. Assume 7,+7,
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is small enough. Then, we have

(2.19) I¢1I¢ZEL%(4)(¢1#¢2)-

Remark. For ¢;,€ Py (tie), j=1, 2, we denote I¢1.BI¢2'6=[)9°.¢H
(Xa Dx) +ﬁ6,¢6(X9 Dx) (¢6:¢1.0ﬁ¢2,6)- Then, lf Tl.ﬁ+72.6§79 fOI‘ a Ta
independent of § and the sets {@;¢}sco(j=1,2) are bounded in P,
the sets {pf}sco and {fs}sco of the corresponding symbols pg(x, &)
and f,(x, £) are bounded in S%, and %, respectively.

We postpone the proof of this proposition to Section 4.

For the multi-products of pseudo-differential operators we have

Theorem 2.6. Let P;=p}(X, D, +p;(X, D)eLlyy, (j=1,2,-)
with ¢=0. Assume
(2.15) PR (x, )] SCM (e 80aigce e,
(2.16) 15,3 (x, &) SC,M~UBHMRUNI £ 1al=N
for any N, where the constants C, and M are independent of j, o, B, N and
the constant C, is independent of j, B, N. Then, the multi-product Q ,.,=P,
Py-P,., has the form Q,.1=q% (X, D,) +§,..(X, D,) with the properties
(217) mgﬂg% (x, 5)[ §AuCZHMl-(Ia|+Iﬁl)a!d‘@!d<é>(u+1)a—lal,
(218) G (x, )| SACHCMT PR (N + [wa])1CEY 1N

for any N.

Here, A and M, are constants determined only by the dimension n and M,
C,= max {C,, C} and the constants C., are determined by n, a and C,.

lals=n+1

All the constants A, M, and C7, are independent of v.

Since the proof is rather long, we will give it in Section 5. As
in [23] we get two corollaries.

Corollary 2.7 (cf. Theorem 3 of [23]). Let P=p"(X, D, + p(X,
D) €Ll with
1£° (x, &) | SC, M1+ 180lagle ey -lal,
5B (x, &) | SC M~ EHBENICENII=N for any N.

Assume that C, and max C, are small enough. Then the inverse Q of

lalsn+1

(2.19)
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I—P exists in Liy, and is represented by the Neumann series Q =73, P
v=0

Corollary 2.8 (cf. Proposition 2.2 of [23]). Let ¢(x, &) € P (7).
If t is small enough, there exist pseudo-differential operators R and R’ in
L, such that

LRIu=1
(2.20) e
I¢*R I¢:I.

Now, we are prepared to prove Theorem 2.1. Since we can prove it
by the parallel way to the proof of Theorem 1 in [23], we will give
only the sketch of the proof. Set @;=¢ #d% --#4;. Then, as in
Proposition 2.3 and Lemma 2.10 in [23] we can find, by using
Proposition 2.2, Proposition 2.3, Proposition 2.5 and Corollary 2.8,
pseudo-differential operators P; in L%, such that

P1l¢1:P11¢1,
Iy, Pj,¢j=P}[¢]. (j=2; 01=¢)).

1
From this we have
Qu+1:P1 ([¢1Pz‘¢2) P3.¢3"'Pu+1,¢u+1
:P1P§(1¢2P3,¢3)P4,¢4“'Pu+1.¢u+1
=PiPy--Py(IgPoirsg,, )
= PPy Pialo,, .

Combining this with Theorem 2.6 and (2.8) we get the theorem.

§ 3. Fundamental Solution for a Hyperbolic Operator

We will construct the fundamental solution for % of (8). For the
proof we will solve an eiconal equation

a :1 t’ 9 Vx 9
3.1) 1 (t, x 3)
¢ |t=s =X- E'
Proposition 3.1. Assume that 2(t, x, §) is a real symbol in M?(Stq,).
Then, there exists a constant T, such that the solution ¢(t, s; x, &) exists
uniquely in {(t, s) ; 0=¢, s<T,} and belongs to Py (C,lt—s|) for a
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constant ¢, independent of t and s.

Proof. We follow the proof of Theorem 3.1 in [9] combined
with the idea in §1 of Chap. XI of [24]. Let {g, p} (¢, 53 », 1) be
a solution of

dq - dp—/
’dt — Véz(ta q, p); ’(]t _FJJ({’ 7 p)

li=s=0, plies=2.
Then, by the method of the proof of Lemma 3.1 in [9] we obtain
3.2) [0208(q—p) | SC |t —s| MU+ qlegE N 1al,
(3.3) [0205(p—n) | SC |t —s| M~UI+1BDlagIEN el

if 0Z¢, s<T, for a small T,. From (3.2) there exists an inverse
function Y (¢, s; x, &) of x=q(t, 53 Y, &) for 0=¢, s<T, if To(ZT5)
is small, and it satisfies

(3.4) !agaﬁ(Y—x) | <C |t_s| M—(lal+lﬁl)a!d‘3!d<&->—m1_
Set ¢(t, s x, )=p(t, 55 Y, 55 %, §), §) and

mnu&®=wﬂﬁﬂa&was%@wa

Then, ¢ (4, 55 x, §) is a solution of (3.1) by the similar discussions
in §1 of Chap. XI of [24] and it belongs to Py (¢, ]t—s|) with a
constant ¢, independent of ¢ and s. Q. E. D.

Now, we prove Theorem 1. Let I;(t, s) be the Fourier integral
operator with the phase function ¢(¢, s; x, §) and the symbol 1.
Operate £ in (8) to I;(¢, s). Then, we can prove by the similar
way to the proof of (2.5)

(3.5) LI, 5)=P,(t, s)

with Py(t, s) in L&y (4(t, s)) for any ¢ and s. Now, we seek E(¢, s)
in the form

(3.6) E@, ) =1, s)+gf1¢<t, 0)W (0, s)do.
Then, W(t, s) must satisfy
(3.7) Py(t, 5) —iW s>+S’P¢<z, 0) W (8, s)do=0.

Set
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W1<ta S) = —Z.P¢(t, 5):
(3.8) l

W, )= i\ Pt W0, A0 (22).

Then, in the formal sense W (¢, s) =i W,(¢t, 5) is a solution of (8.7).
v=1
From (3.8) W,(t, s) for v=2 has the form

t ty_
(3.9) W, (t,, 5):(—i)ugo"'g 2P¢(t0, t1)P¢(t1a ty) -
X Py(t,_1, ) dt,_,---dt;.

Hence, substituting W(t, s)=3 W,(t, s) with (3.9) into (3.6), the
v=1

fundamental solution E(Z, s) can be written formally in the form
3.10)  E@, s)=1,(, s)—igthﬁ(t, 1) Py (Lo, 5)dts
o it ty_
+§(—i)uggo"'g 2[¢(t, ta)P¢(t0, tl)"'
X P¢(tu_.1, S) dt,)_l"'dto.

In what follows we give the precise meaning for (3.10). From
3° of Theorem 2.3 in [14] we have & (&, )P (b, t) ¥ $P(t,_q, )
=¢(¢, s). Hence, if T,(<XT,) is small, from Theorem 2.1 there

exist symbols wS(¢, #7%, s; x, §) in M(Zt,f“‘l.s)(séa(d)) and w,(t, #7, s5;
Xy 5) in M?t.fb_l,s) (‘%G(d)) (fv_l=(to, tl’ sty tu—l)) SuCh that for j=0, 1

|G[0EDEACE, B, 55 %, ©)] SCEMC P aligcEyet,
|0i08 D, (t, £, 55 x, £) | SCyC M UM RUEN I ER el =N
for any N

and
I¢(t, to)P¢(to, tl)"'P¢(tu—la s)
=wy(t, 27 55 X, D)4, s) +w,(t, 274 55 X, DI 5).
Here, we have applied Theorem 2. 1 noting that the order of the above
operator becomes v because the order of I4(¢, s) is zero. Define

wu(t, 55X, E) = (_i)”gtgto .“Stu—zwg(ty fp_la 55X, E)dtu-l'“dto (t—lzt)
and

. t(to ty—2 ~
fu(ta 55X 5): (—Z)DSS S Zi),,(t, tu_la 55 X, E)dtu—l"'dtm

SJS s

Then, they satisfy for j=0, 1
|8]0¢ Diw, (¢, 55 x, £)]
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< (C3 |t —s| »u17Y) M~ Clal+18D qlaglag gpo=lal
|0j02 D27, (8, 53 x, &)
< (C3 |t —s| »191) G M~ U817 B N1 £ )= 11N
for any M.
Take T,(<T;) such that T,Co<{l. Then, the series 7(t, s; x, §) =
Z 7,(¢, s5 x, &) converges and we can see the sum 7(t, $5_% £) be-
longs to M!, (%) if 0<t, s<T, Note that the series pr(t ;.

X, D,) has a meaning as an operator from 7* into itself if ad<l and
as an operator from 7¢(M) into y? for a small M if ed=1. Summing
up the above results, we obtain Theorem 1.

Remark. In the expression (9) of Theorem 1 we set R(¢, )
=7i(t, s3; X, D,)14(t, s). This belongs to £ 405 But from Zey 40
=% ca we see that R(¢, s) belongs to Z¢u).

Next, we consider a hyperbolic system

A(t, X, D,) 0
(3.11) =D, — . + (b (¢, X, D,))

0 A, X, D)

with the diagonal principal part, where 4;(¢, x, §) are real symbols
in M?(S¢s) and b;(t, x, €) belong to M?(S&y) (0=0=<1/d). Let
&;(t, s; x, §) be a solution of (3.1) with 4=2;, Then, we have by
the similar discussions for the proof of Theorem 1

Theorem 3.2. The fundamental solution E(t, s) for (3.11) can be
represented in the form

1
(3'12) E(t$ S)ZZ EO,m.¢ (ty S)
m=1 m
o t(t ty_p
+Z Z SSO S Eu,,u,@ (ta ZO, "t tu—la s)dtu—l"'dto
v=1pell, s #
+R(@, s)  (t,=10)

when 0=t, s<T,. Here, T, is a small constant, Il,,,= {pp= (m,, ---
mj:I:» ) l} and @#<l, Loy 5 buots 5) :Sbml(ta lo>#¢m2(t0a tl)##ﬁﬁm

b mu*l) ;
(tv-—b S)

v+1
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fOT /‘l:(mls T mv+1) EH:H—P In (3-12) ED,,u.¢‘”(t9 Loy =ty bu-1s 5) for
pE1ll,,, is a Fourier integral operator with symbol e, ,(t, to, =y ts-1, 53
x, &) satisfying

|82 De,, | < oM ~Ue1+ 16D qlagIag gy le

and R(t, s) is a regularizer with a symbol in Ry

From (3.12) we can investigate the propagation of singularities for
a solution U(¢) of the Cauchy problem

UMW) =0 0<t<T,

3.13
(3.13) Ul,.o=GC.

The details are left in the future. The author is not convinced that
the similar result to (3.34) in [13] holds.

In the remainder of this section we give a method of reducing a

Cauchy problem
(3.14) Lu=0,
. a{u!t=0=hh J:Oa 15 ) m—1
for a hyperbolic operator
m—1
(B.15) L=Dr+3% ¥  a;.(t x)DD] with a;,(¢, x) €M, (7%
J

=0 |al+jsm

to a Cauchy problem (3.13) for a hyperbolic system # of the form
(8.11). Here, a(f, x) EM,(7*) means that it satisfies |9{D%a(t, x)|
=C;Mj'"'a!* for constants C; and M; independent of a. We assume

that there exist regularly hyperbolic operators L, L, ---, L, such
that L has a form

(8.16)  L=LiLL+3at X, DID] for ai&M,(Sga),
j=

where ¢ is an integer satisfying 1=<¢=<r.
Proposition 3.3. Set o= (r—gq)/r. Then, there exists a hyperbolic
system £ of the form (3.11) with b, (¢, x, &) in M?(S%y) such that

the Cauchy problem (3.14) can be reduced to an equivalent Cauchy prob-
lem (3.13).

In the following we disregard the contribution of regularizers and
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the equality means that it holds modulo regularizers in Zgq).

Proof of Proposition 3.3. We divide the proof into two steps.

(ID) Denote the order of L, by s, and let 4, ;(¢, x, &), j=1, -+, 5,
be characteristic roots of L,. We may assume 4, ;(f, x, §) €M,(Stw)
by multiplying a cut function with respect to & if necessary. Since
L, is a regularly hyperbolic operator, there exist 2, ;(¢{, x, &) €
M, (S%4) such that

Ly=(D,— 4., X, Dx)—'zlla.l(ts X, D))
X (Dt—zk.skas X, Dx)—'z;z.sk(ta Xa Dx))
sk—l

+ Z:a; bk,j(ta Xs Dz) D't’
i=

with b, ;&eM,(8z%). Denote §,=0, §,=s;+---+s, and
a.i:‘D kJ s,z (t 1Y D) ij sk (ta "Ys Dx) lf 5k—1<.j§§k'
Then, L has the form

(3.17) L=alaz---am+ﬁ bi(t, X, D,)d;0,+ ’,"z‘“éja, X, D, Di

with b;(¢, x, &) &M,(S¢w) and b;(t, x, &) eM,(Sgz"7). Set II={0} U
U 11, for
r’/=1

1I,= {J:(jl’ s Jk) 5y—1+1§j1<"'<jk§m, késr—l}
o,={J= = Ja) s Sy 1= << jp=m,
Spn=k=s.—1, p.(D=Z1=Zpu(ND==n())}
(1=r'<n)

and denote the number of elements in // by [, where §, =s, +---+s5,
and p,.(J) =s,,— (the number of elements in: {j, - 7.} N {51 +1, -,
5.1) for J=(j, -, ju). Then, by the method of [20] (see also SIII
in Appendix of [12]) we can prove that L in (3.17) has the form

(3.18)  L=0,0,0,+> b;(t, X, D,)d;+0,+ Ly X, D)
iz2 g

Wlth b EA/I (SG(d)) (léjéf[), b;EA/It (S(;(d) 1) (q<]<7') and bJEM (SG(d))
where II'={(jy, -+, ju) Esk<m—r}, /=0, ---0; for J=(j, -+, j;) and
o/=1I for J=0. In fact, first we prove

_ 5,179+

ZJ b;(t, X, DYDi= > (¥ by, X, D)D)
j=0 ]e[]r.l]izs,—l i=0
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+ 2 bj@¢, X, D)o’
Jem,

with b} ;€ M,(S2z7"*77) and bye M,(S54), where |J| denotes the
length & of J=(j;, -+, j,) ; and next we prove
§,_1—a+1

Z Elf.i(t: Xy Dx)-D';) a]

Jem,. iJi=s,-1 i=o

2 §7_2—q+1 ~ )
= 2 ¢ 5 0@ X, D)D)
r/=1 Jell,_,.1J1=§,_1—r' i=0

+ X b, X, D)

JE”y—1U”r

with 62 ;€ M,(S%57'"977) and b M,(S54). Repeating this method
we can prove (3.18).
(II) Suppose that a function u=u(¢, x) satisfies Lu=0. Set for

Jell

1o = Ar=Doy, (J=0),

u;=A""07¢7y for |J| Sm—r,

uy=A"1"Rogly for |J|=m—r+k (1SkZr—1),
where 4={D,>. Then, by applying the method of §3 in [11] the
[-dimensional vector U= (u;) ;e satisfies LU =0 for a system # of the
form (3.11). In this way we reduce the problem (3.14) to a
problem (3.13). The fact that (3.14) and (3.13) are equivalent is

verified by the method in [18] and [I1]. This concludes the proof.
Q. E. D.

From this proposition and Theorem 3.2 we can prove that (3.14)
is y*-correct (or y’-well-posed) in the sense of [5] if d<r/(r—¢q) and
we can investigate the propagation of singularities for a solution of
the Cauchy problem (3.14). In the case of constant multiplicity we
can improve Proposition 3.3 as follows.

Proposition 3.4. Assume that the operator (3.15) is a hyperbolic
operator with constant multiplicity and its coefficients a; ,(t, x) satisfy

(8.19)  |0¢D%a; ,(t, x)| SCM-*+1EDEIgIE  for (¢, x) [0, T] X R
Then, the problem (3.14) is reduced to the problem (3.13) for a perfectly

diagonalized operator & of the form (7) in the Introduction. Moreover,
if the operator (3.15) satisfies (3.16), then the lower order terms B;(t)
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in (7) are pseudo-differential operators of order o with o= (r—q)/r.

We will prove this proposition in Section 6. We note that from
Proposition 3.4 we obtain Corollary 3 with ¢=max {(m;—1)/m;}

replaced by o= (r—gq)/r if (3.15) satisfies (3.16).

Next, we turn to the problem studied in [3] and [21]. Consider
a regularly hyperbolic operator

(3.20) L=D?—3 b3, (¢, x)D,,ijk+b(t, x)D,+ 37 b; (e, x)D,,j
ik 7
4-¢(t, x) on [0, T]

with continuous coefficients. We assume
(3.21) b, @, x), b(¢, x), b4, x), ¢(t, x) E7* for any fixed ¢,
(3.22) | DY, (¢, x) =% (s, x))| =C|t—s|*M™al® (¢, s[0, T,
(3.23) IJ_Z; bR (¢, ) &6, Z01€7  (6>0).
We show Proposition 3.3 with ¢=(r—¢q)/r replaced by s=1—%. We
may assume (3.22) holds for all ¢, s&R. Take an even function
x(t) €7? such that Sx(t)dt=l and =0 if [¢{j =1/2. We approximate
0%, (4, x) by

bty %, ©=\1(=9<ENBGs, ds- <.

Then, from the evenness of y the symbols b; (¢, x, &) belong to
M?(Sg(d)) n M% (Sg(d)) and

bi(t, x, &) —b% (¢, x) € M{(Sc6)
hold. Denote
(¢, x, E)={j§ by (2, x, £)E;63 Ty (8)
where y’(§) is a function in 7* satisfying x'=1 for || =2 and 3'=0
for || <1. Then, the operator L can be written in the form
L=D}-2(t, X, D,)*+b(t, X) (D,—4(t, X, D,)) +b(t, X, D,)

with b(t, x, §) e M?(Ski5). Note that 9,4(¢, x, §) € M)(SE5). Then,
L has the form

L=(D,+2(t, X, D) +b(t, X)) (D,—2(t, X, D)) +b'(, X, D,)

with &'(t, x, &) e M?(S8). For a function u=u(t, x) we set u;=Au



512 KAzuo TANIGUCHI
and u,=(D,—2(t, X, D,))u. Then, if u satisfies Lu=0, U=*(u;, u,)
satisfies &, U=0 for a system
A(t, X, D,) A ]+['[l(z, X, D), A4+ 0

0 =t X D)L B@ X DYAT b, X) 5
%, has a lower order term in MJ(8%,). Next, we set

1 n(, X, D,)
N =
@) 0 i

for a symbol n(¢, x, §) € MI(Sey) N M1 (Stw) satisfying n(t, x, &)=

—<E>/(2A(t, x, £)) for | €] =2. Then, using vy ! —n(6, X, Do)

Z1=D,—

and 0,(c(N())) eM?(8%4) we obtain 0 :
(3.24) L NE)=NGBHZ
with
@25) z=p NP 0 x DY)
0 —a¢, X, Dy )T
(bjr e M} (Sew)-

In this way, we can prove Proposition 3.3 with % in (3.25).

§4. Calculus of Products of Fourier Integ‘ral Operators

The end of this section is to prove Proposition 2.2, Proposition
2.3 and Proposition 2.5. To begin with, we prove

Lemma 4.1. i) Suppose that a double symbol r(x, &, x', §') satisfies

(4.1) [ré:50 (%, & x/, &) SCM-UeI+IIFI8+ED
X allq /12 BIaRI 1 g7 ym—lal—la’i

with constants C and M independent of a, o', B and B. Then, the
simplified symbol
ro(x, §) =Os—gge’i"'”r(x, E+7, x+y, &)dydy
of r(x, & x’, §") belongs to SZu.
ii)  Suppose that a double symbol r(x, &, x’, &) satisfies

(4.2) lr&a) (x, &, &', )] S Cy o M~UB+IE TN
X BUBVENNE Yl I=N for any N
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with a constant M independent of a, &', B, B’y N and a consiant Cg o
independent of B, B and N. Then, the simplified symbol ry(x, &) of
r(x, & x', &) belongs to R;y.

Proof. First we assume (4.1). Differentiating r,(x, &) with re-
spect to x and &, we have

e D=, % @(ﬁ')gSe"”'”réz::zzz (%, §+n, x4+, ) dydy.
Bl+pr=
Here and in what follows we often omit the notion “O,-”. Using
(6.10) of Chap. I in [12] we obtain
IreB (x, €[ SCM e alégli¢eymre

for new constants C and M indepedent of a and B. This shows
rp(x, §)e8%y. Similarly, we can prove ii). Q. E. D.

Now, we prove Proposition 2.2.

Proof of Proposition 2.2. Let p (X, D, 8%y and p,4(X, D,)
€382%a.4- Then, from Theorem 2.2. of Chap. 10 in [12] the product

(X, D,)p.s(X, D,) is a Fourier integral operator with a symbol
g(x, &) defined by

g(x, & =Os—ggei¢p1(x, &) plx', &)dx'de,

where ¢g=x.§—x"-E+0(x', §)—¢(x, §). Take a function x(§) in 7*
satisfying

(4.3) 0=x=s1, =1 (1§1=2/5), x=0 (|§]=1/2)
and divide ¢(x, §) into two terms :

(4.4) q(x, §) =qo(x, &) +q.(x, &),

where

10 ) ={{en (e, Ou(E-EV KEMP, vt
7-Gi &) ={{,0 O A —2(E-O) KON, Oave.

. 1

Denote 7,6 (x, £, x')=g V.b(x +0(x—x), £)d6. Then, ¢ has the form
0

¢=(x—x")+(6—VF,9(x, &€, x)). Hence, using the change of variables:
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y=x—x, =6V, p(x, €, x') we have

a0, ) =\{em (740,90, €, 549))
Xt ((+V.$(x, &, x+9) =) /KEMN pa(x+y, §)dydy.
This formula shows that ¢,(x, §) is the simplified symbol of a double
symbol
go(x, & %' &)
:[ﬁl(x, C)X((C—{:l)/«:l»ﬁz(x’a E’)]§=5—E’+I7x¢(x,é’,x')7

which satisfies (4.1). Hence, from i) of Lemma 4.1 we obtain
o (x, §) ESEE".

Now, we prove ¢.4(X, D,) EZsa.4 This result is equivalent
to §. (X, D,)ER s if we set §.(x, &) =¢.(x, )/ for J(x, &)
=¢(x, £) —x+£. So, we may prove §.(x, §) EZ%su. It has the form

ig
0-Gy €= nx, O Q=2 (E=IKEMP, Eraxe,
where g=x:E—x"-E+¢(x', &) —x-&. Set T, (x, &; x, &) =e79086".
Then, it satisfies
|DEDS, LT, | < C, ,M~U8I+19D Gl x — goyiel,
Using this and V,y=£§—¢ we have
-5 =3 (S0, 655 &)
Xp(x, E)0F {(1=x((E=E)/KED)) po(x',E) } dx'dE
I . _
=5 (@agr\lee-ornte, ¢n 6
BB+ BII=8 ” ’ ’ ’ ’ 7S
X priarn (x5 €) 0 {(1—x((§—E")/<ED)) pa(x’y §)}dx'dE.

Set Ly=—i|—&+V.¢(x', &) (—E4+V.0(x, )V, and L,=(1+ |x
—x'|9) (1 —=i(x—x")+V,). Then, integrating by parts we have

a’+a’=a

B +p 41 =8

7 ! ~y! " ’
45 LB = B () g e €)
with
(4.6) GE e o g (%, &) = Sgeieﬁ (L) (L) 1+1a 1 { (& — &%

XDET (5, &5 2, &) prany (%, &)
X 0% {(1 =g ((E—=E)/KEM) (', &)} )dx'dE.

In (4.6) we take [=|§'| + |&'| + N+n+ 1+ [max(m, 0) +max(m’, 0)].
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Then, we obtain from |—&+V,f(x, &)| =C|E—E&1=2CED>
47) 169 (x, &) |<CM- I8+ MBUNI(E S 19N for any N.

This shows ¢..€ %Z¢,,. Consequently, we have proved (2.5). Similarly,
we can prove (2.6). The above proof is also valid for the proof
of (2.7) if we use Lemma 4.1-ii) instead of using Lemma 4.1-i).
This concludes the proof of Proposition 2.2. Q. E. D.

Remark. Throughout this section we denote by x(£) a function
in 7 satisfying (4.3).

Using the method of the proof of (2.12) we can improve Lemma
2.1 in [23] as follows.

Lemma 4.2. Let ¢(x, &) belong to Pgy. Then, we have the
Sollowing:
i) The inverse function E=V 67 (x, 1, ¥) of ﬂzgleqﬁ(x’—l—ﬁ(x—x'),
&)dO satisfies (2.3)-a), (2.3)-b) in [23] and ’
(4.8) |02DEDET .7 (%, 7, %)
S CM- I IBI+IBD 1d IR 1a NI lal

1) The inverse function x'=V,67 (&, ¥, &) of y’=81!75¢(x', &+
0
0(6—¢&))d0 satisfies

(4.9 ]aganggj ([7595—1(5, y',E’) "“}’,) |
< CM el 38D i R,
(4’.10) Iaga%:ij {x( (E_‘S,)/<E/>) (7E¢_1($, y/, E/) _-y,)} I

S CM~Ue1+1a/ 418D g g/ g d £y lal=la ]
Now, we prove Proposition 2.3.

Proof of Proposition 2.3. Let ps(X, D,) be a Fourier integral
operator in $%g4 4 Then, by (1.29)-(1.30) in Chap. 10 of [12]
ps(X, D,)I is a pseudo-differential operator with a symbol

q(x, 5)205—886‘”"’({(% S+, x+y)dydy

for
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¢ G & )= b, O det gePid (5 & )17 eor g
where for a vector f=!(f,, -, f,) of functions f;(x, §) -a%—f denotes
<6f,~/35k %ii’ o n> Write

, I

7, 4:):SS‘”"'”X(??/<€>)q’(x, E+47, x4 ) dydy
+SSM"’(1—X(ri/<5>))q’(x, E+7, x+y)dydy.

Then, using Lemma 4.2-i) we see that the first term belongs to S%y,
because of Lemma 4. 1-1) and the second term belongs to Zgy if we
use the integration by parts. This shows 8%y 41 CLEy. Next, we
assume fp4(X, D,) €%y 4 Then, the product ps(X, D)y is a
pseudo-differential operator ¢(X, D,, X') with a symbol §(x, & x")
=p(x, §)VEDIED  Since §(x, & ') satisfies
108 G5y & )| SCM 09100 GEBNENI gyt
for any N,

we can prove that its simplified symbol §,(x, &) belongs to Zgg,.
These results show the first formula of (2.10). In the same way we

can prove the second formula of (2.10) by using Lemma 4.2-ii).
Q. E. D.

The remainder of this section is devoted to the proof of Proposi-
tion 2.5. We divide it into three steps.
(I) We follow the proof of Proposition 2.8 in [23]. Set @(x, &)

=@ #d(x, &) and set

o=¢(x, x5 & &)
=¢(x, &) —x"-E+6,(x, §) =D (x, §).

Then, I, I;, is a Fourier integral operator with the phase function
@ (x, §) and a symbol p(x, &) defined by

(4.11) pCx, £) =Os~gge"¢dx'd5.
Set 2.(&, &) =1—x((§—€)/<{&>) and consider

(%, €) :os—ggﬂxm (&, &)dx de.
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For ¢'=¢,(x, §)+@,(x", &) —D(x, &) we have
. . 181
(4.12) 02D =V} Uynp(x'y €5 %, §)
£=0

with symbols ¥, 5(x", &5 x, &) satisfying
(4.13) |02D% ¥ 0 6]

< C,  M~UBHIDRUGIEI~d e — " H1I(E — &' ME,
Hence, following the way of (2.34) —(2.36) in [23] we obtain

BICC . L
@19 g =2 aan v, &5 x Oavie
for symbols pu g.ap (%, &; x, &) satisfying
(4.15) | 02D pec. iy
<G, , M~ B1+10D BIEGIEI-4 s — 5 Il (& — £/ DE,

On supp p. g.«p the inequality [§—¢&| =(2/5)<§")> holds.
This implies

1 , 1 .
D ==& =——
(4.16) 7.0 = 5 §—-¢' = 05 &
if 7,<<1/3. Set
L1= —l }Vx’gb} _ZVx’¢'Vx’5
Ly=(14 V! ) N (1 =il p-V,).

Then, by the integration by parts we have

pm’z%; (x, E,) =)

181
k=0

517

Sggi<b(th)n+l+k+N (LZt)nH+Imp°°.(k,a.B) (x/, E ; X, E')dx'd&'.

Note 1+ [P} =ZC{x—x">. Then, we obtain from (4.15) and (4. 16)

9.8 (x, E)| SC,M~WE+NBUNICESN  for any N.
This implies
(4.17) pe(x, &) ER o)

(I) For x(&, &) =x((§=&")/KL&>) we consider
po(, s’)=os—gge"¢xo<s, &) dx'de.

Let {X, &} (x, &§) be the solution of
[ X:Vé¢l(xs 5)5

4.18
(19 E=r.$:(X, §).
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Using a change of variables: x'=X(x, &)+, §=E(x, §)+7, we
write

(4.19) po (x, 5’)=05_Sgg—i<5(y.m.é'>zo(7}; x, E')dya’n.
Here,

(4.20) To(ns x, §)=x((E(x, E)+7—8)/<E)
and

(4.21) ¢=¢0, 75 %, E)=—¢(x, X(x, E)+y; 5x, )+, &)
=yen—1{d(x, E4+7) —X-n—¢,(x, &)}
— {6 (X+y, §) —y-E—¢:(X, ©)}.

As in the proof of Theorem 2.3 in [13] we divide p,(x, §) into two
terms

(4.22) o (x, €) =poo(x, &) +pon(x, £);
4.23)  poo(x, ©) =os—S§e-f¢zo 73 % OACER |y
+ 712/ (ED)?) dydy,

(4.24)  po o (x, 5)=05—Sge"’<5;zo<77; x, &)
X (L =2 ((KEY | 24 9] 2/ (e<ED)?)) dydy,

where a positive constant ¢ (<1/2) is determined in the step (III).
In this step we will prove

(4.25) $0.-ESew N Ry
On the support of the integrand of (4.24) we have

|82 DEGTDEG| < C M~ Ui+ 181+171=10D g1 QIG5 ((E) | y| + || ) (€D~ eI~ 17!
(lal + 8] + [7]l + 101 =1)

because of
-~ 1 -
F=ren— (7o, T+07)d0-7—X7)
1
— (| 7 (X +p, a8y 5).

Hence, o, (x, §) can be written in the form

a+B

Ja+ Bl .
(4.26) o,w% (x, &)= k;() gge—'%o.w.(k.a.ﬁ) W, 7 x, S)d)’apﬂ

for symbols po e ¢.a0 (¥, 735 %, §) satisfying
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(4.27) IarDt?po o papn | SCM~ “”"*”"“7”lﬁl)a'dﬁﬁr“’ﬁ"’k' -d
X (K Iyl A+ Iy YRE T,

Here, we have used the similar discussions to the one in (4.12)—
(4.15). From (2.45) in [23] we have
(4.28) (&P, P14+ |7 ¢12> g KO DI+ il )?

= 45 —=€<EX*  on suppfo.«, ¢.a.p-

Set Ly=i({EX VP 2+ V,p| B (KEW -V, +V,p-V,) and integrate each
term in (4.26) by parts. Then, we have for any N

la+Bi e
(4.29) /’o,w%(xa 6= 2 ggfup(Lat)ZHHHNPo,m.(k.a.ﬂ) (}’s 75 X S)d)’dﬂ-

From (4.27)— (4.29) we have
[polwétég (x, $)| éCM—ﬂaH-“9[+N)a!d‘8!d1V!d<E>_[a[-N,
which shows (4.25).

(ITI)  In this step we consider (4.23). The following lemma
originates from the idea in the III)-step of the proof of Theorem 2.3
in [13].

Lemma 4.3. Assume v,41,<1/4. Then, there exist mairices F(y, n;
x, ), F'(y, p; x, &) and G(y, 1; x, §) such that

| 3?D58;D§F| éCM—(IDIH!EI+171+IBI)a!dﬁ!d7,!d5!d<E>—1—|ai—lTI,

(4.30) | [02DEATDIF| < C M~ 181+ 141D qld glap1agii gxt-iel =1l
|62DEGI DG < G M~ (la+181+ 1714120 q 4 Bl 1dg)d (£l =171

when 3] <<{&>/2 and

(4.31) = (y+Fn)-(Fy+Gn)

holds for ¢ in (4.21). Moreover, there exists a constant ¢ (<1/2) such
that

i(y-i—Fv) %(y-i—Fv)

0

(4.32) D(y, 5; x, §) =det p
a—y(Fy+Gv) @;(Fy+677)

=0:>0

holds when |y + |p| <> 1<,
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Admitting this lemma for the moment we continue the proof of
Proposition 2.5. In (4.23) we take a constant ¢ as the one in the
above lemma. Then, by (4.32) we can change the variables from
(3, 7) to (z, Q) =(y+Fy, F'y+Gy). Let y=Y(z, {; x, §) and 9=
H(z, £; x, £ be the inverse function of z=y+F(y, ; x, £)n,
=F'(y, 7 x, )y+G(y, 1; x, §)y. Then, from (4.23) we have

po0(x, © =0\ (1o 3 % OO I+ 1)/ e
XDy, 15 % &) -t metr 0 QRAL.
This shows that poo(x, &) is the simplified symbol of
po.o(x, & &', &) ={70(m; x, E)x(KED 2+ D)/ (K€D
XDy, 75 % ) Y yp=v. mor—r. -0
Since poo(x, & x', &) satisfies (4.1), we obtain
(4.33) Po.0(x, &) E82-

Combining (4.33) with (4.17) and (4.25) we obtain (2.14). This
concludes the proof of Proposition 2.5.

Proof of Lemma 4.3. Set
B=B(y; x, s>=§:<1~a>%m¢l<x, 54 09)do,
B=B(y; x 6= (-0 2 7.6.X+0, 6)do.
Then, from (4.21) and (4.18) we have

$=y-n—By-n—By-y.
Hence, the equation (4.31) holds when F, F’ and G satisfy

tFI — _B/’
(4.34) ‘G+!FF =7,
'GF= —B,

where .# is the identity matrix.
Denote the norm max}; |a;| of a matrix 4= (a;) by [|4]. Note
Boj=1
that B and B’ are symmetric and

(4.35) UBl|=20,X8>7,  [IB]|=7X&D

il || £<{&>/2. In the following we assume that the inequality |7| <
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<(&>/2 always holds. Set

e et
(4.36) F==B2 i

Then, since 2r,7,<1/4 the series (4.36) converges from (4.35) and
satisfies

-(B'B).

FB'F+F+B=0.

Using this matrix F' we set

F=-8,

G=s5+B'F.
Then, the matrices F, F' and G satisfy (4.34). From (4.36) and
(4.37) we also get (4.30) and

[F]|=37<E 7,

RIES AN

1G—s<e.
Hence, we obtain (4.32) if 7,4+7,<1/4 and || + |9/ <§>"!'<e¢ hold for

a small constant e. Summing up, we get matrices F, F’ and G
satisfying (4.30) — (4.32). Q. E. D.

(4.37)

§ 5. Multi-Products of Pseudo-Differential Operators

In this section we prove Theorem 2.6. First, we consider
(5-1) Q,v+1:p(1,(Xa Dx)[)g(X: Dx)“'p3+1(X’ Dx)

for pseudo-differential operators p}(X, D,) in $Z,.

Proposition 5.1. Assume that p}(x, &) satisfy (2.15) with constants
C, and M independent of j, a and B. Then, the same result as in
Theorem 2.6 holds with C,=C,.

Proof. We follow the discussions in Section 1 of [23]. We divide
the proof into three steps.
(I) It is well-known that the symbol ¢,.,(x, §) of Q,,; has the
form
L v+l . )
(5.2) tr © =0\ (Tt 7, )y
j=1
(),Oznui—l:()),
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where
(5.3) ¢=szlyi.(7]i_7]i+1) =Zvll(yi._yj—1),77f (y0=7]v+1=0)
i= i=
and dj°=dy'---dy*, di =dp'---dy® for =0t -, ), =@ o P
For j<v we set
(5.4) pi(x, & ) =1+ |x—=x' |~ "D (1 +i(x—x") T 1pl(x, &).
Then, from Lemma 1.5 of [23] we have
Q»+1=P1(X, Dz’ X/)P;(X, ny X,)pu+1(X, Dz),

which implies

(3.9) Gor1(x, €)= OS_SSe_wﬁlp.’i(x }’H, E+7, x .yJ)
e
X o (a7, §)dydip.
From (5.4) we also have

(B.6) 155 & 2| SCAM- I Dalpg
X (L |5 =] ) =

with new constant 4; and M independent of j, @, 8 and §. Here
and in what follows the constant C, denotes the one in (2.15). For
yE7? satisfying (4.3) we set

(5.7) %0(& &) =x((E=E)/<ED), n &) =1-xn §).
Setting
K,={e=(ky -, k)5 k;=0, 1},
we divide ¢,,,(x, §) in (5.5) into 2° terms:
(5.8) Goa(x, ) =NEZKqu+1.(n:).L(x, £,
where ¢,,1.¢.2(x, €) is a simplified symbol of
(5.9) Qoo &, £
=113, (&), @A, &, ) (e, &)
P=(d o, 2), EI=(E, -, 8,

(II) First, we consider g¢,.; 9 .(x, §) for £°=(0, 0, -, 0) €K,.
On  suppg,:1 et (2% #, &%) the relations (1/2) (&+H<(E) <28+
hold for any j. Hence, ¢,.1 % (2% #, 1) satisfies
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(5.10) Iag A iiDﬁ“Dﬂl Df:qu+1 o (2% &, ?H)l
<Cu+1(2n+uA )DM et +180+1 4% u+1|dﬁﬁ|d‘8v|d
% <Ev+1>(u+1}o-—ld”+11)H(l+ Ix"l—- x]l Y-+
j=1

with a constant M replaced by a smaller constant M, where |&@*!|

=la| 4+ |, |Fl = |8 + -+ |f], @t =al-a*l and B!
=g"..-p1 for @ l=(al, -, &), F=(F, -, /). Dlﬁ'erentiating
Goi1 %,z (%, §) with respect to x and § we have

(5.11) 02D5g, 1. 0.1 (%, €)
18!
Za B. ”ﬂ%ﬁﬁol‘gvlq”ﬂ «0,a?+1, g0, g%y, L (x, E)<E>(u+1)a la|

for

(3.12)  quir 100, (%, §)

- OS‘SS”"‘&@zi-- 08 ADADA - Do i (x, €47,

x+y1, . 5’*‘? , x—}-y , £) <$>—(u+1)a+laldjvd’7~7v_
Here, in (5.11) the summation is taken over all @*'=(a!, ---, @*™') and
(8, B)= (", 8, -, ) satisfying @it i=a, ffit o F=h.
Take one of symbols in (5.11) and denote it simply by
ry (%, £) =OS“SS€_i¢7’(x, $+7719 x+))1, HRE) E'}"/ua x+" S)d)}”d’f]”,
where
r(x(), xvu, év+1) .

:agll,,,agiin‘(’)_,_DfiquH.(w) (%, 5, Ev¥1)(grHiy-Crbotial

From (5.10) r(x°, &, £7*1) satisfies
| D D7r | < (G241 A2 M, 91+ 180 114 g0y 14

Xﬁ(l_l_lxj—l_le )—(n+1)
j=1
for || Zn4+1 (j=1, -, v)
for constants 4, and M, independent of @, 8 and v. This means that
r(x% x*, £+1) satisfies (1.32) in [23] with B=C"14,> M, (al+18Dgr+11d
xﬂ“!'ﬂ@”!", 0=0 and m;=0, j=1, 2, ---. Hence, applying Proposition
1.7 in [23] we have
IrL(xa S) I§AOHB,
that is,
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iqu+1.(ﬁo.d”+1,,@°,ﬁ'”),L(xa E)]
gCau+1A0uA2uM2—([a1+1ﬂl)du+1!dl@0!d‘gu!d.
Combining this with (5.11) we get
lang v-‘-l.(fco).L(xs E)}
15!
éZa.ﬁ,u+1T+al|'§T',l§WC§+1onAzuM2-<1a1+mi)
a’ et ghl

h% dv+1!d‘@0!d‘§u!d<6>(u+1)a— ler|
= (ody) CoH (M/2) =1+ 180 gld g1

(e () (&) ()
X <S>(v+1)0—la|

é (QZ”AOAZ) DC10J+122n (MZ/Q)-(la]+iﬁl)a!dﬁ!d<5>(v+l)d—lal.

s

Consequently, if we set ¢).,(x,6) =¢,.1.%. . (%, §), it satisfies (2.17).

(III)  We will prove for x+«"

(5-13) IangquH,(rc).L(x: E)I
SACC MR (N [we])1EY~"# =Y for any N

with constants 4, C, and M, satisfying the same conditions as in
Theorem 2.6. Then, setting §,,1(x, §)= > §ui1m.0(x, §) we obtain

/ceKu,m&:co

the desired symbols ¢).,(x, §) and §,.:(x, £).
In the following we fix £=(k, ---, k)€K, (£#£°) and prove
(5.13). We change the variables in

trwa(s, ©=0-{Jexp (=i 5 (P =y 1)
=
X Gur1, (%, E+Wls x+.y1’ T 5+ﬂ”, X+ E)Jjudﬁu (]Ozo)
as =) —»~! (j=1, -, v; »°=0). Then, we have

Goi1.0.2 (%, §) =Sge>cp{—i21 2y}
ji=
X1, (x3 E+”19 x+21) Tty §+77D3 x4 27, S)dzudﬁus

where #=z'+--+2 and d*=dz'---dz>. Take a sequence {m;};., and
a sequence {x;};., of non-negative integers u; satisfying

(5 14) [ mi_+ﬂi=09 .]:Ia 2’ T V+l,

Ii m;| gi for any j.
=1 2
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Set J'={J; k=0 U po+1}, J'={j; k=1, S'=max{j; j€J} and [=
> 4+ [My1+1]. Then, using the integration by parts we have
0

ieJ

Goon0s Gy ) =\{exp (=2 Zor) 1L {=i /i 277 )"

j=1 jeTJ
=i [T 0} 0 (5,
47l x+2Y -, 47, x+ 2, E)ddy
ESSCXP{“’é 2o} ghirw (%, 47
X2, ey, 4P, x4+ 2, §)dPdy
X EYN =y

where i, =m;+---+m,,; and

q;+1, ) <x09 ’\'?va gu+1)
— H1 {—i [Ei_5u+1 !—2(51 _Eu+1) . (ij_l_ +V"u)}ﬂj
jieJ
=i IEj0_$u+1 I—Z(Ej0_§u+l) C (7 ot +Vx,,)’+N
“Qoit (xo, JZD, é‘»+1) <$D+1>N+n’1u+1.

Note that on suppgy.i.e (2% £, &%) we have
FEDSESUAETD i je
g-enlz 2 i jen

Hence from (5.9) and (5.6) we have for || <n+1 (j=1, ---, v)

|aﬁ"'a;:q;+l.(m) (xoa x~v, ED+1) l
SCHAPMy M (5 g+ 14+ MY
jest
v+l oM . . .
XTI CEYMIT (87 & — £7+1] ) #
j=1 jeJ
x II <E]'>”i<§v+1>N+mv+l l&iu_év-f-ll -I-N
iel®
X ﬁ (1 + ]xj—l_xj! )—(n+l)
j=1
SO A M CHOREDHEN (N 4 T(y4-1)a] 4+ 1) !JUHH<EJ'>’"J'
i=1
x IT (1 + lxi-l___le )—(n+1)
i=1
< CAPCL M5V (N [wo]) W T¢I
i=1
x ﬁ(l—l— |91 — | )= eD
i=1

with constants A4, 4; C; and M, independent of v and N. This
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means that q,.; (&% £, &%) satisfies (1.32) in [23] with B=47
X CoCMy V52N (N+[we])!4, 6=0 and a sequence {m;} defined by
(5.14). Hence applying Proposition 1.7 in [23] we obtain

,q»+1,(fc).L(xa E)l
< {4 ACrC M, V52N (N + [p0] ) Y™ 11 gy ™ T,
Here, we remark that in [23] we have used only the condition
k
“1I2 m,-]é% for any £” for the proof of Proposition 1.7 in [23]
ic1

instead of using a stronger condition (1.12) in [23]. So, we obtain
(5.13) with constants 4=A4,4; and M,=2"%M,/5 for the case a=
8=0. Similarly we obtain (5.13) for the other cases. This proves
Proposition 5.1. Q. E. D.

Next, we consider a multi-product
(5-15) [71(X, Dx)pz(X’ Dx)"'pv+1(X, Dx)

of pseudo-differential operators p;(X, D,), assuming that at least one
factor p:(X, D,) belongs to %y

Proposition 5.2. In (5.15) we assume that
(5.16) 1£;@ (x, &) S CoM 1P B &)1
and there exists a number I {1, 2, ---; v+ 1} such that p,(x, &) satisfies
(5.17) 198 (x, &) SC, M~ FFMBUNICEN14=N  for any N,

where M is independent of a, B, j, N and C, is independent of B, j, N.
Set C,= max C,. Then, the symbol §,.,(x, &) of multi-product (5.15)

satisfies l(ggrig)
Proof. As in (5.4) we set for j(=Zv)
pi(x, & &) =14 |x =)™ P (L +i(x—x") - F)"p; (%, §).

Then, we have

G (%, 6) =SSMH By e, mt )
X por (X497, €)dydip
2 Gorr .2 (%, &) (}’0=0)

k€K

for
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Gor1.0. (%5 €) :Sge—wnlhj(f-l-ﬂj, £)
e
XL pi (x4 &+, x+))
j=
X oy (x 4% §)djdy.
Here, ¢ is a function in (5.3) and yx. (&, §"), £=0, 1, are defined by
(5.7). Note that the following holds: There exists a constant 4,
independent of j, a, 8, 8’ and N such that we have for constants C,
with Gy =1
10;88 (x, & %) | SAC,CoM A1 GUEILE el
X (14 |x—x"] )~ @D

and
P18 (3 & %) S ACLCLM084157140 G N gy et
X (14 |x—x"| )~ @tV
if p(x, &) satisfies (5.17). Hence, by the same way as in (III) in
the proof of the preceding proposition we obtain

(5-18) lagD54v+1.(n).L(x7 E)I
S ACHCL MBI B (N 4 [we ) 1EYT14-Y  for any N
for k" It is clear that ¢, . (x, £ also satisfies (5.18). This

shows that the symbol §,.;(x, §) of (5.13) satisfies (2.18).
Q. E. D.

Now, we prove Theorem 2.6.

Proof of Theorem 2.6. Assume that P;=p}(X, D,)+p;(X, D,) for
pi(x, & and f;(x, &) satisfying (2.15) and (2.16). Write Q,,,=
P.P,---P,,, as
(3.19) Q. =PiP}---P),,

—|—P1Pg---P3+l
+P1P2Pg“‘PB+1

+P1P2"'Pu-1PuP3+1

+P1P2"‘Pvpu+1a
where PI=p(X, D,) and P;=§;(X, D,). Note that p;(x, &) (=0 (P;)) =
pi(x, &) +p;(x, &) satisfies (5.16). Hence, applying Proposition 5.1
to the first term in (5.19) and Proposition 5.2 to the other terms in
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(5.19), we obtain Q,.,=¢,,(X, D,)+¢,(X, D,) for the symbols
g1 (x, §) and g,y (x, §) satisfying (2.17) and (2.18). This concludes
the proof. Q. E. D.

§6. Perfect Diagonalization

In this section we give a proof of Proposition 3.4 by showing a
method of the perfect diagonalization for a first order hyperbolic
system with constant multiplicity. We will begin with giving the
product formula for pseudo-differential operators with symbols in

Sg(d, D

Proposition 6.1. Let p;(x, &) belong to Sgiy.y (j=1,2). Then, there
exist symbols ¢*(x, €) in Sghuw? and §(x, &) in Rga such that for P;
=p;(X, D,) the equation

(6.1 PP,=¢"(X, D,)+4(X, D,)
holds.  Moreover, there exist constants C, M and p such that
62 1HEDIG (x, ) = Tt (s, &) pun (5, 6))]

< CM—(]aH[B]+N)a!‘8!dN!d<$>m1+m2
Jor 1§l zp

—N—|al

hold for any N.

We will prove Proposition 6.1 after some preparations. Let y¢° be
a constant satisfying for j=I, 2

(6.3)  1pB(x, | SCM-Ua+10algECey™ ™™ for |&] = pb.
Define

I=v

(6.4) 0.(e, )= 3 %pl‘” (% &) pacy (%, &),

Then, ¢,(x, §) satisfy for new constants C and M independent of «,
B and v

(6.5) 1058 (6, )] SCM Ut 1m=glltyleey™ ™"
for 1&] = ¢

Taking account of (6.5) we investigate the following lemma.
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Lemma 6.2. Assume that q,(x, &) €S2z, (v=0,1, ---) satisfy
(6.6) 14,8 (x, &) SCM~eiriBiedgl gyl gym=—>=lal - for |&] Z p

with constants C, M and p independent of a, B and v. Then, there exists
a symbol q(x, §) in SEuy Such that the inequalities

N—
67)  13D2g(x, ©— 3 0.0 )]
gCIMI—(mH!S\+N)a,!‘3!dN!d<E>m~N—lm for lglg#+1

hold for any N, where the constants C, and M, are independent of «, B
and N.

Proof. Let {s,};, be a sequence of complex numbers satisfying
(6.8) s IP= Y |5, 2M 2ul-260+D < oo

for a constant M,. Then, from the discussions in [1], pp. 314-317,
we can find a function ¢(¢) such that the inequalities

340 SCIl S} MR (120,
‘ (9O — s )| SCISHIMTCPRNE 2 (10)

v=0 V

hold with constants C and M; independent of £, N and {s,}. Apply
this result to a sequence
55 (%, €) =q,(x, §)<EM!
with parameters x and §. Note that from (6.6) we have for new
constants ¢ and M
{0 Dis, (x, OIS CM a1 ERm1o for [§] = p

if we take an appropriate constant M, in (6.8). Then, we can find
a function ¢(¢; x, §) satisfying
(6.9) 130D 5 x, )] SCM 1= DRl pIey™1e |1

for 18] =g, 0,

N
V=

-1
(610)  [3DE{p(t5 % O — L is.(x, )]
éCA/I4—(k+|a1+|,B|+N)k!'a!ﬁ!dN!d<€>m—1a) it} N-k
for [&]l=p, t#0.

Take a function y,(<) in 7 satisfying y,=1 for [§] Zu+1 and »,=0
for |&] <p. Then, the desired symbol ¢(x, §) is obtained by setting

q(x, ) =PKE™; x, ). (8),
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since the property g(x, §) €S%4, follows from (6.9) and the prop-
erty (6.7) follows from (6.10). Q. E. D.

Now, we prove Proposition 6.1.

Proof of Proposition 6.1. For a sequence {g,(x, §)} of symbols
defined by (6.4) we apply Lemma 6.2. Then, we can find a symbol

¢(x, &) in Sghr? satisfying (6.2). Note that for the symbol ¢(x, &)
defined by

g(x, §) =05-SSB“”"7[JI (x, E+0) (x4, &) dydy

we have
P.P,=q(X, D,).
So, the proof is completed if we prove that the symbol

q(x, &) =q(x, &) —¢"(x, &)
belongs to Zg.

Let x(§) be the function in 7 satisfying (4.3). We write §(x, &)
as

(6.11) g(x, ) =#(x, &) +7 (%, £),

where

(6.12) 7(x, &) = Os—Sge“'y"’pl (%, E+)x(/<EN po(x+y, E)dydn—q°(x, &),

<&m>fu,®=a{&mem$+wu—ﬂw¢»mxmwsw@ﬂ.

It is easy to see
(6.14) i'(x, &) E%G(d)

from the similar discussions in the proof of Proposition 2.2 in §4.
For the proof of

(6,15) 7(x, §) €ER¢y,

we fix an integer N and divide #(x, &) into three terms

(6.16) K%B=R%%ﬁW%@hM%B
: S:(l_ﬁ)m {SSe—iy-%m (x, §+7)

i7i<n 1br=1 7!
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X1 (0/<ENEY g (x+09, ) dyy} O
8 3 Sfaor (ferpe e s
X p2(7) (x + 0))3 £) d)’ff’)} dﬁ] —(IO (x9 E)
Ef}v (x, E) +fN(x, &) +ﬁ\l(x, 5)5

where
Ax, &= ¥ %p;ﬂ (x, &) pay (%, £) —¢°(x, &),

i7I<N
Bo(x, &)= ¥ 3 Lgla—e)m {Sge"'y'”pl‘”(x, £t

iri<n isr=1 7! Jo
XA @ (/<EX)KED aip0y (2 + 0y, §)dydn}do,
A =N 2 L a-0m({{ermoe e
Irl=N T. 0
X% (0/<ED) bapy (x +0,8) dydr} db.
Then, from (6.2) we have

6.17) A (x, &) SCM-I=+IsM g N gy TN

for |&| =
In the integrand of each term in #%(x, §) the inequality (2/5)<§>
= |n| £<£)>/2 holds. Hence, integrating by parts we have

e 0= 3 3 2L a-om{{erme e e
I7I<N 181=1 71 Jo
X 2@ (p/<ENVCEDT?
X (=il|p| 2V IV 2y (x40, &) ~dydy}do,

which implies

(6.18)  17%&(x, )| SCM-Uai+Is W gugia Ny ey™ Vel
for [§] =z 4
if we take a constant g (=) satisfying
(6.19) [§+7 =4 when |§] =4 and |p] =<&)/2
for the constant #° in (6.3). Using (6.19) and (6.3) we also have
(6.20) 8 (x, €)| SCM~Ual+ialeMgligia N gy
for |&] =4/,

Summing up (6.16), (6.17), (6.18) and (6.20) we obtain for [§]
=4

(6.21) 17D (x, €)| S CM~0al+1814W qlaglaN1a gyt a1
for any N.
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From the definition (6.12) the inequalities (6.21) hold also for
€] <¢/. This proves (6.15). Q. E. D.

Remark. We will write ¢°(x, §) satisfying (6.1) and (6.2) as
oo (P, Py).

Now, we turn to the proof of Proposition 3.4. In the following
we use the symbol class I'f (SZg1,) defined by the following: We say
that a symbol p(¢, x, &) belongs to I'?(8Z,p) if p(t, x, &) belongs
to C\M,Z(S&"(d,n) and satisfies

[0 (8 (2, x, &) SCM~Gria'+IEDEldg)pla(Eym=lel
for (¢, x, §) [0, TIXRY,, [§|=p
with constants ¢, M and g independent of £, a and B. Since the
operator L of (3.15) is of constant multiplicity, in view of (3.19)
we may assume that its distinct characteristic roots 4,(¢, x, §), -,
2, (&, x, &) satisfy 4;(¢, x, §) €I'?(Stw.pn) and

(6.22) 12;(t, x, &) —2,(t, x, )| =ZCLE> (C>0, j+#k)

by modifying them in [0, 7] XR;x {|§|<1}. Assume (3.16). Then,
using Proposition 6.1 and the discussions in the proof of Proposition
3.3 we can reduce the problem (3.14) to the problem (3.13) with

(6.23) 2=D—2®+(Bu) |5 7 1)+RO),
where
Zl(ts Xa Dx) 'ﬁll 0
(6.24) 2()=
0 2);(t3 Xa Dx) jlh

(ll++lh:l)a

B (¢) are l; X1l matrices of pseudo-differential operators with symbols
in I'(8%4p), 0=(—q)/r, and R(¢) is a regularizer in %y, which
means that R(#) is an [X/ matrix of pseudo-differential operators
with symbols in AM,(Z%¢y). So, the proof of Proposition 3.4 is
completed if we apply the following theorem,
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Theorem 6.3. Let % be a hyperbolic operator of the form (6.23),
where P (t) is defined by (6.24) with real symbols ;(t, x, €) in I'(Stu.)
satisfying (6.22), By (t) are l; X1, matrices of pseudo-differential operators
with symbols in I'(Sgu.) (0Z6Z1/d) and R(t) is a reqularizer in
Ry Then, there exists a matrix P(t) of pseudo-differential operators
with symbols in I'*(S%3 1) such that

(6.25) L(I+P))=(F+P1) 2,
holds for a perfectly diagonalized operator
B, () 0
(6.26) L,=D,— 9 (t)+ . +R, (%)
0 B, ()

and the inverse Q (t) of # +P(¢) exists with Q (t) € LY, for any t, where
in (6.26) B;(t) are I;X1; matrices of pseudo-differential operators with
symbols in I'*(S%quy) and R,() is a regularizer in R ;.

For the proof we will give two lemmas.

Lemma 6.4. Let & be a hyperbolic operator of the form (6.23).
Then, under the assumptions in Theorem 6.3 there exists a matrix P(2)
of pseudo-differential operators with symbols in I'{(S%iy) such that for a
matrix B'(t) with o(B'(t)) €l (Skyuy) and a regularizer R*(t) in Ry
(6.27) L(I+P())=(F+P )L, +B (1) +R ()
holds with £, of the form

L =D,—2 @) +F(1),
where

Fo (1) =diag[Fi (1), -, Fi(1)]
Jor 1; X1l; matrices Fi(t) of pseudo-differential operators with symbols in
I't (8. Here, diag[Fi(¢), -, F3(¢)] means
Fi(t) 0
diag[Fi(¢), -+, Fi(©)]=

0 F:(#)
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Proof. We construct F°(t) and P'(¢) satisfying
(6.28) G (F°(2)) +0(2 ())a(P' (1)) —a(P'(t))a (D (t))
=a(B(t)) +a(B(t))o(P'(t)) —a (P (¢))a (F°(?))
modulo I'%(S8%,y), where B(¢) =(B;(¢)). Then, from Proposition
6.1 the property (6.28) yields (6.27).
Define pseudo-differential operators F™(¢) and P™(¢) by

F(¢) =diag[ By (t), -+, Bu(t)]
and

O.(PEOJ(t)):((G‘(PEO](t))jk {C—f%: : Z)

with
o (P*(1));;=0,

o (PR(1)) =

() —24,(t)
Here, we denote the (j, k) blocks of ¢ (P™(¢)) by o(P™(%));,. Then,
o (F™ (1)) belongs to I'?(S%yy) and o (P (¢)) belongs to I'¢(S%iy).
Hence, if 6<1/2, the property (6.28) holds by setting F°(#) =F™(¢)
and P'(¢) =P™(¢). This proves the lemma in the case of ¢=<1/2.
For the case of ¢>>1/2 we take an integer N satisfying N= (20—1)/
(1—0) and define F™(¢) and P* () (v=1, ---, N) inductively by
o (F™(t)) =diag[o (F¥1(¢) )y, =+, 0 (F®(¢)) 4] with

o (B (8)) (G+k).

o (F(1)) 55 =33 0 (B (£ (P(1) )y
(eTHS557)
and o (P™(¢)) = (e (P (2) )jp) with
o (P™(1));;=0,

l h
o (PPN(8) )=

U 7 () ; v-1]
O RS RO R O SR ORI

+v’+vZu—10- (P22(2)) juo (FP3(E) ) e
(el (S:G:¢ ™)), j+#k.
Then, we obtain the desired operators F°(t) and P'(¢) by setting
Fo(t) =F™(8) +F(¢) +--- + FYi(3),
[ P(t) = PON(t) 4 P(t) + - +PNI(p).
Q. E. D.

Lemma 6.5. Let P'(t) be as in the preceding lemma. Then, there
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exists a matrix Q(t) of pseudo-differential operators with symbols in
I't(S%qyy) such that

(6.29) (£ +P()Q() =2 +R (1)
holds for a regularizer R(1) in R ¢w-

Proof. Since o<1, there exists a constant g such that
|det (S +a(P(@)) (x, §)| =ZC>0 for [§] =
Take a function y,(§) in 77 satisfying x,(§) =0 if [§]| <p and x,(8)
=1if |§| = p+]1. Define matrices ¢*'(¢, x, §) (v=0, 1, ---) of symbols
by
gty x, &) =(F1+a (P@)) (x, §))7'1.(8),
¢, x, §)=—D,f§l=u%q[°3(t, %, &8 (PD) (x, &)
x Drg™ (¢, x, &) (v=1).
Then, ¢®(¢, x, §) belongs to I'%(Sgt; ) and satisfy
|2 0DEL, x, 6]
S CM - CrialtflEn fldgl pldldEN—>=lal - for [§]| Zpu+1

with constants C and M independent of %, @, 8 and v. Hence, apply-
ing Lemma 6.2 we can find ¢'(z, x, §) in I'{(8%y,) satisfying for
constants C;, M; and g
N-1
(6.30)  [8;0zDI(q' 4y %, )= ¢t %, 6))]
éClMl“”‘“'+“9"+N)/;!da!ﬁ!dN!"<E>‘N'“"' for & = p.
Using (6.30) and Proposition 6.1 we get (6.29) with Q'=¢'(¢, X, D,)

by the usual method. Q. E. D.
- jl1, e h
Define BZ(t)_<B;-k<t> AR h) by
B2(t) =Q*(t) B\(t).
Then, from (6.27) we obtain

(6.31) L(FI+P())=(F+P (1)L, +R(t)
for a regularizer R*(¢) in %y, where &, denotes the operator
(6.32) L,=D,— D (t) +F° (1) +B%(1).

In (6.32) we may assume o(B*(¢))=1¢(S¢u1) by means of Proposi-
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tion 6.1. Moreover, replacing F°(¢) by
Fa<t) +d1ag[B%1(t), tty Bzh(t)]s

we may assume that in (6.32) the diagonal blocks of B(t) are zero.
Now, we are prepared to prove Theorem 6.3. The following discus-
sions originate from those in [10] and in §IV of Appendix in [12].

Proof of Theorem 6.3. First, we construct P%(¢) and F(f) with
a(P*(t)) €I (S54) and o (F () €l'%(Ss4.,) such that
(6.33) Ly (F+PW))=(F+PA))D,—2 @) +F @) +F(t))+R(t)

holds, where the blocks of F(t) are zero except diagonal blocks and
R3(t) is a regularizer in %y Set

3= ({PP ()} o o(PEﬂ(t))=((a<Pf“1<t>),-k i:ij - Z)
o(PP(1));;=0, o(P ()l (Ssah) G#B)},
Here, the notation ¢(P™(¢));, has the same meaning as in the proof

of Lemma 6.4. For {P¥(t)};,=2 we define {F*(¢)} and {4*?(¢)}
as follows:
(6.34) o (F¥ (1)) =diag[o (F*(£) )y, =, 6 (FP (1)) 1]
with
h
(6.35) a (F™)(£));;= 2, 2 :

k=1 |7l+v/=p T‘

0% (B}, (¢)) Dio (PP (), (€11 (S6i3))

and
(6.36) o (A (1)) =a (B%(1)),
(6.37) o (AP (1)) =(a (4™ ());) (v=1)
with

[v] -
(6.38) o (4™ (4));; =0,

o (A™(1));
A

=y l%agwwﬁk,<t>>>D;<a<va':<t>>k,k>

B/=1 [7]+07=v—

+D, (¢ (P* (1)),
~ % raeE @)D FE )

[7l+v/ +v7=v=2 7"

— ¥ e s, —eFW) DI (PP )

|
Irl+v/=v [,
Irl=z1 r
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3 PR DIRW £1, =0 (D))

(el (Sst.n))  (G#h),

regarding the third term in the right hand side of (6.38) as zero
in case v=1. Next, we solve equations for unknowns o (P¥1(1))

=(a(P¥());) G, k=1, =, h):
(6.39)  a(P¥(1));;=0,
( 1
(ZO-20
+o(P0)
=
4 (t) — 24, (8)
where A™(¢) are defined by (6.36)—(6.38). Set
S S
2; () =24, ()
1
A;(8) — 24, ()
From (6.22) and o (Fi(t)) €l (S¢quy) for o<1 there exists a con-
stant g such that the matrix norms ||g; (7, x, )|l and llh; (¢, x, &)
of g, (¢, x, §) and Ay, (¢, x, &) satisfy
llgin (t, x, ON=1/4, by, x, O[I=1/4 for [§] Zp

(6.40) o (P (1)), — o(Fj(t))}o(Pm )

1
2 () —2,(8)
o(A™(t));, for large |&| (j#k),

o (F (1))}

g]’k(ta Xy E): G(F}’(t)),

hiy(t, x, &)= o (F2(8)) (k).

Hence, the solutions o (P™(¢));, of (6.40) are given by
64) (P =2 % (5 )en 0"

x (Wfi*lk(—t)” (A1) ),.k)h,-k O
for |§] =p We modify ¢ (P™(¢));, in [0, TIXR:x {|&] £ p+1} such
that o (P (¢));, belong to I'*(S35%). Then, we obtain a solution
{0 (P ()} of (6.39)— (6.40) in 3.

Now, we define a mapping J from 2 to 2 by I ({P™(1)}) =
{P¥(#)}. From the definition the operator P (¢) is determined only
by P9 (¢), ---, P®H(#). So, by the induction on v we can see that
the fixed point {P}(£)} of I exists uniquely in 2. Assume that
the fixed point {PP(#)} of I satisfies
(6.42) |00z DZo (PR (2))]

S M-I+ 1814 i) gyl (EX-1-v-lal  for |€] = p
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with constants C, M and g independent of %, @, 8 and v. Then,
from Lemma 6.2 there exists a symbol p*(¢, x, &) in I'%(Szhy) such
that

[0¢2DE (P2 (¢, x, E)—ZU(PE’“(t))(x, N
<CM-~ (k+Ial+lﬂ|+N)k|da|ﬁ]dN|d<§>-1 =N-lal  for 1€] =u

with new constants C, M and p. Then, setting P*(¢) =p°(t, X, D,)
and

F(t) =diag[Fl(t)5 Ty Fh(t)]
with o (F;(¢)) =the (j, j) block of o,(B*(t) P*(¢)), we have
F)+(2 @) —F () P() —P*(t) (2 (t) —F°(t))
=B(t)+B () P’(4) +P2(+) —P2(t) F(t) — R*(3),
for a regularizer R*(¢) in %, where Pi(f) is a matrix of pseudo-
differential operators with symbol D,s(P?(¢)). This is nothing else
but (6. 33).

In order to prove that the fixed point {P(¢)} of J satisfies
(6.42), we define following [1] a formal norm |||{g"*(¢)}, M|\ for
a sequence {g™(¢)};, with ¢™(t) =¢*1(¢, x, &) €l¢(S25%) by
(6.43) |||{qi”3(t)} M|

= Z} Ck,,,g sup{llakagDﬁqL”J(t x, §)|[CEYmHIal+r]

lflzﬂ
X Mk+la!+|ﬁ|+2v’

where 4 is some constant,

2(2n) !
(la| +)!1k+ 18]+
and || - || denotes the matrix norm. For a symbol ¢ (¢, x, §) €I'¢(SZa.1)
we denote |[lg(2), M|||" =|[|{g"* ()}, M|||'” by setting ¢"(t) =¢(¢) and
g™ (t) =0 (v=1). Then, from the assumptions there exists a constant
M such that the following hold if we take g in (6.43) sufficiently
large :
(6.45) e (B*(®)), MII|®<C,,
(6.46) @@ —24@))7Y MIITP<C,  (J#k),
g (), MII®=1/3,
ks @), MI|9<1/3,

(6.44) e

(6.47)

and
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(6.48) . Zﬁ: Ch.a.p sup {il0¢05.DE(2; (1) fzj—‘f(F?(t)))H<5>_1+'°"}
et Bz 1€,

X/\4k+m|+l/~‘ll—1§03
for (3., defined by (6.44) with v=0.
Now, suppose that {P™(¢)} €% satisfies
[[H{o (P21}, MNP <oo.

Let {FP(t)}5e (4™}, and {P*™ (1)}, be defined by (6.34) —
(6.40). Then, from Lemma 1.2 of [1] we have

(6.49) e (F™(2))}, MUY= Clll{e (PP(£))}, MY,

(6.50)  [[[{o (4™ (D))}, MI|I®
SCHCAMA|{o(PP())}, MNP +MI|[{o(PY(5))}, M|
+MA|{o (PP(£))}, MINIPIIHe (FPH ()}, M|
+2C M| {o (PR2(£))}, MI|I<P,

and from (6.46)—(6.47) and (6.41)
(6.51)  il{a(

=

)}, M|
2 (5)(5) clitlecammny, mye(4) ™

0 k=

Cili{e (4™(8))}, M|||®.

M8

Hence, we have

(6.52)  |ll{e (P¥(1))}, MIIP=3C,Co+CM||{o(P(1))}, M|
+CM(||[{e (P¥(8))}, M)

with some constants C, and C;. So, if we set for a constant C°
larger than 3C,C,

2= {{PP )} e ; IHo (PP ()}, Mi|P=CY,

we see that the mapping J maps 2, into %, if M is sufficiently small.
Moreover, if we go over the proof of (6.52) once again, we see that
the restriction of J to 2, is a contraction if we take M satisfying
CM +2C;,C°M<1. This implies that the fixed point {P(¢)} of I
belongs to X,, which means {PI(¢)} satisfies (6.42). Summing up,
we have found P2(¢) and F(¢) satisfying (6.33).

In (6.33) we set

B'(t) =F(8) + F(@).
Then, B°(¢) has a form



540 KAzuo TANIGUCHI

B, () 0
B'(¥) =

0 B, (1)
and from (6.31) and (6.33) we have
(6.53) ZL(F+P)(F+P@))
=(IL+P @) (F+P(t))(D,—2 () +B°(t)) +R'(¢)

with a regularizer R!(¢) in #;yu. For a positive number g we take
a function x,(§) in 7 satisfying y,(§) =0 if |§| <pg and yx,(§) =1 if
] =Zp+1 and let P(¢; #) be the pseudo-differential operator with the
symbol

o(P(t; 1)) =(a(P(t)) +a(P(t)) +a,(P () P*(£)))x.(&).
Then, from (6.53) we have
L(I+PE; w)=(F+P; w)) (D=2 ) +B(1)) +R(t; p),

for a regularizer R(f; p) in Zsq depending on a parameter p.
Since the order of ¢ (P (%)) +0o(P2(¢)) +a,(P (4)P(t)) is less than zero,
o(P(t; p)) satisfies the first inequality of (2.19) with an arbitrary
small constant C, if ¢ tends to the infinity. Therefore, we can take
sufficiently large constant y° such that the inverse Q (¢) of & +P(¢; )
exists. Now, we set P(t) =P(¢; ) and R,() =Q()R(t; ¢"). Then,
we obtain (6.25). This concludes the proof of Theorem 6.3.

Q. E. D.

Finally, we give some remarks concerning the inverse Q (¢) of
# +P(t) in Theorem 6.3. In order to apply Theorem 6.3 to Proposi-
tion 3.4 it is sufficient that Q(¢) belongs to L%, for any ¢ But,
we can improve the result “Q (¢) €L}, for any ¢’ in the following
way : “the inverse Q(t) has the form Q (¢) =q¢°(¢, X, D,) +4¢(, X, D,)
with symbols ¢°(¢, x, &) ESeuy and §(t, x, §) ERcyy for any ¢.” This
result is proved by applying the following property (*) and the
discussions in proving Corollary 2.7 since o (P(f; p)) belongs to
I (8¢ )

(*) In Theorem 2.6 we assume furthermore that pd(x, &) belong to



FOURIER INTEGRAL OPERAT ORS 541

8%y and satisfy
1035 (x, &)1 SC,M-1=*1DaIgEy=a for [§] 2
with constants C,, M and g independent of a, B and j. Then, the multi-

product Q,.,=Py---P,., of Pi=p;(X, D,) has the form Q,,=¢5.,(X, D,)
+§,1(X, D,) with symbols ¢,,(x, &) satisfying
IRalf (5 €)1 S ACE M0+ 17D g gy bl
Jor &l =zm
and Gy (x, §) satisfying (2.18). Here, the constants A, M; and i, are
independent of v.

The above discussions also give another proof of Lemma 6.5. In
fact, we can prove (6.29) by setting Q'(¢) = (4 +P'(¢)y,(D,)) " for
large constant p, where y,(§) is the function used in the last part of
the proof of Theorem 6.3.
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