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Fourier Integral Operators in Gevrey Class on
Rn and the Fundamental Solution for a

Hyperbolic Operator

By

Kazuo TANIGUCHI*

Introduction

Consider a hyperbolic operator

( 1 ) L = />p+I? Z <*j.a(t9 x}D«Dj
t on [05 T]

with constant multiplicity, where #/ ,«(£, x) are functions in the Gevrey
class of order d(>l) , that is, they satisfy

! rfrfl&n (t v^ I <? C* A/f-^+lBDMdNd fr»y ( t -vA CT fH Tl V /?"
j (/£ UxU>j a \") ™ ) I — wiKt /vl p; 1OI \ t, X) c— L^j J- J ^ Jf*-^e

The purpose of the present paper is to construct the fundamental

solution £"0(^3 s} of the Gauchy problem

I Lu = Q £>0,

l3f r (0)=&, j = 0, !,••-, ;w-l,

and obtain the result on the propagation of singularities for a solu-

tion w(0 of (2).

To investigate the above problem we introduce the following
symbol classes as subclasses of a symbol class Sm studied in [12], In

the following we tacitly use the notation in [12].

Definition (S). i) We say that a symbol p(x9 f) (eS1") belongs
to a class SGW if

( 3 )

hold with constants C and M independent of a and £.
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ii) We say that a symbol p(x, f) belongs to a class 6 ,̂1) if
p ( x , £) belongs to ,SGW) and satisfies for constants C, M and jj. inde-
pendent of a, /3

(4) )/,$(*, f) I^CM-^' + '^al^O""1"1 for |f ^/i.

Hi) We say that a symbol />(#, IX^S"00) belongs to a class ^?GW)

if for any a there exists a constant Ca such that

( 5 ) |$g(*, f) \^CaM-^+N^ldNld^>-lal-N

hold for any /3 and N with a constant M independent of a, £ and N.

Definition (T). Let A be a subset of an Euclidian space R*. We
say that a symbol />(? ,# , f) in ^X/?^ belongs to AfK^Sw)) if for any a
and /S ̂ (^(f, ^, f) is a Cz-function and for any fixed l^.A the symbol
3J/?(f, x, ?) (|f 1^0 satisfies (3) with C and M independent also of

L We also set M~t(S^

In the same way we define the classes M\(Sc(dil))^ M\(3%G(d)) and
)5 which correspond to 5G(dil) and ^G(d). Using these symbol

classes we reduce the problem (2) to the problem

l/(0)=G

for the perfectly diagonalized operator

t, X,

( 7 )

lr(t, X,

0 '

.(t)

+

o
under the condition that (1) is a hyperbolic operator with constant
multiplicity (c.f. Proposition 3.4). Here, Aj(t, x, f) belong to
Mt(Sc(d)\ ^i is an identity matrix, Bj(t) are IjXlj matrices of pseudo-
differential operators with symbols in Mt(S°G(d^ (0^<7^ (r — l ) / r ) and
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R0(t} is a matrix of pseudo-differential operators with symbols in
^GW). Note that from (5), for any t, R0(t) maps a class $' of

distributions with compact supports to a class jd of functions in the

Gevrey class of order d. This result shows that in order to study

the problem (2) for (1) it is sufficient to construct the fundamental

solution E(t, s} for the operator

(8) <?=Dt-l(t, X, DJ+b(t, X, A) on [0, T}

with Z ( t , x, f)eM?(5few) and b(t, x, f) &M0
t(S&w) (O^tf^ l/d). So,

what we have to do is the construction of the fundamental solution

E(t, j) for &.

Now, we give our main theorem in this paper.

Theorem 1. Assume A(t, x, f) ^A/JC^ao) ZJ real-valued andb(t, x,

<?) ^Mt(Sa
G(d:>) for some Q^a^l/d «1). Then, the fundamental solution

E(t, s) of (8) can be written in the form

(9) E(t, s) = {I+ZWn(t9 J)}/^U, s}+R(t, s)

for 0^, s^

for a small T0. In (9) 2 Wv(t, s) is a series of pseudo-differential oper-
v=l

ators Wv(t, s} with symbols wv(t, s; x, f) satisfying for j = Q, 1

(10) 13/apXa, s; x, 0|
^ (Co \t-s \vv\-l)M-(M + l™aldpld^Ya-lal

with constants C0 and M independent of a, /3, and u; I ^ ( t y s} is a Fourier

integral operator with the phase function <f>(t, s; x, f), where <p(t, s; x, f)

is a solution of

(11)

and R(t, s} is a pseudo-differential operator with symbol r(t, s; x, f) in

Since the symbol of R(l, s} belongs to MJ i S(^G ( d )), R(t, s} maps

g ' to yd for any fixed t, s. Hence we can call R(t9 s} a regularizer.

From Theorem 1 and Proposition 1. 3 we easily obtain

Theorem 2. Assume that A(t, x> f) in (8) is homogeneous for large
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|f |. Then, for a solution u(t} of

=g,

we have

(13) WFCtf)

/or large \ij , |0>0},

t£;/2<?r£ WFGW)(tt) z'j a wflz;^ /ro/zJ j££ o/ M i/z £/z<? Gevrey class of order d
(see Definition 1.2) and {q(t,y, ^), p(t, y, 7]}} is a solution of

(14)

This result is also obtained by Mizohata [17]. He has showed it
by using the energy method, not by constructing the fundamental
solution. For the parametrix of £? Lascar reported in [15] that he
constructed it, but the author has not known his detailed proof. An-
other result concerning the construction of the parametrix is reported
in [2] and the propagation of singularities for a solution of (2) is
studied in [19] and [25].

From Theorems 1,2 and Proposition 3.4 we obtain

Corollary 3. In (1) we assume

r"l+*2? £ «,.«(*, *)eV = n(r-^(f, x, ?))*'• /or |f |^1
j = 0 |a|=j j = l

aAzrf 0" = max { ( m,- — l)/m;-} ̂  1/rf. Then, the fundamental solution E0(t, s)

can be constructed in the form

(15) £,(*, j)

WjiV(t, ^), /^.(^ j) «^fi? R(t, s} satisfy the similar properties to

those in Theorem 1. Moreover, let feU, j, 57), p j ( t , y, rf)} be a solution
of (14) £m"£/z A=Aj. Then, we have for a solution of (2)

wi-i
(16) wWFGtf) (3/iiCO)
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In Section 3 we study the above result under a weaker condition :

There exist regularly hyperbolic operators L1? L2, '"•> Lr such that L

has a form

(17) L = L1L2---Lr + I?fl}(f, X, DJDi
j = 0

with a'j(t9 x, ft&Mt(SS$-j) ( l^g^r) . This formulation is based on
the work in [16], where the authors proved ^-well-posedness for
d<:r/(r — q) in the case that a'j(t, X, D%) are differential operators.
The number r/q is called the irregularity in [8], For the case of
constant multiplicity, Ohya [22] also proved the ^-well-posedness
and in [5] Ivrii gave the necessary and sufficient condition for (1)
to be 7^-well-posed. Under Ivrii's condition we can also reduce (2)
for (1) to (6) for (7) and get Corollary 3.

The construction of the fundamental solution E(t, s} (the proof
of Theorem 1) is performed by the way employed in [13], [14] and
[23]. There, the authors construct E(t, s} for the C°°-case by using
the successive approximation after solving an eiconal equation (11).
The key point of their proof is obtaining a sharp estimate of multi-
products of Fourier integral operators. Since we assume rf^>l, we can
use cut functions in the Gevrey class and can improve their estimate
to the Gevrey class. This enables us to prove Theorem 1. In [6]
and [7] Kajitani has constructed the fundamental solution for a
hyperbolic system with coefficients in the Gevrey class of order d by
solving transport equations and using the asymptotic sum of ampli-
tude functions. His fundamental solution E(t, s) has the form similar
to (15) and the regularizer R(t, j) in his E(t, s) is an integral
operator with a kernel in the Gevrey class of order 2d— 1. So, from
his E(t, -0 we get (16) in the case d=l, but we cannot obtain (16)
for the case rf>l. In our construction, since we do not solve trans-
port equations and hence we do not use the asymptotic sum, the
regularizer R(t, /) becomes an integral operator with a kernel in the
Gevrey class of order d and get (16) for the case rf>l.

The outline of the present paper is the following: In Section 1
we give a class of Fourier integral operators and a result on wave
front sets. In Section 2, after showing the result on products of
Fourier integral operators, conjugate Fourier integral operators and
pseudo-differential operators we obtain a sharp estimate of multi-
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products of Fourier integral operators. Since we need tedious cal-

culation to obtain the former results, we devote their proofs to Section

4. In Section 3 we prove Theorem 1 and show the way of reducing

the problem (2) to the problem (6).

In Section 5 we prove a sharp estimate of symbols of multi-prod-

ucts of pseudo-differential operators, which is also used in Section

2. For the proof we follow the discussions in Section 1 of [23].

There, to obtain the key estimate we divide the multi-product of v

+ 1 pseudo-differential operators into 2y terms by using cut functions

depending on a parameter e (see (1.57) of [23]). But, in our case

we cannot use such a decomposition since we cannot find a suitable

£ to obtain our estimate, especially to find a suitable "radius of con-

vergence". So, we employ a different method of the division into 2y

terms. Then, we obtain the desired estimate for our case.

The final section, Section 6, is devoted to the proof of Proposition

3.4 on the perfect diagonalization. This is a version of the one in

[10] for the Gevrey class. Since we use the asymptotic sum for

products of pseudo-differential operators, we use the class SGV.U*

not the class Sew* and the discussion in [1], Then, the discussions

in [10] work well and we can obtain Proposition 3.4.

The author wishes to thank Prof. M. Ikawa for his encouragement.

§ 1. Definitions and Wave Front Sets

Throughout this paper the constant d denotes a number larger

than 1. To define Fourier integral operators we will introduce a

class ^GW) (r) of phase functions as follows:

Definition 1.1. Let 0^r<l. We say that a phase function

$(x, £) belongs to a class ^Gw)(T) if $(x> £) belongs to & (r) and for

J(x, f )=^(#, £ )—* '£ tne estimate

(1. 1) \J$(x, f) |^rAf-( |a| + l^l)a!^<f>1Ha|

hold for a constant M independent of a, j8. We also set

Remark L We say that for fa^^cwM (0^r f l<l) the set {0fl}flee
is bounded in ^G(d} if TQ^TO for a constant r0«l) independent of 0
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and Jg(x, $)=(f>Q(x, f ) — x*£ satisfies (1.1) with T — TQ and a constant
M independent of 0.

Remark 2. In the same way we define bounded sets in SJ?W) and

^GOO as follows: We say that for pe^Scw the set {pe}ee© is bounded
in SGW if we can take constants C and M in (3) independent also
of the parameter #e®, and we say that for pQ&&G(d} the set {pe} ee0

is bounded in ^GW if we can take constants Ca and M in (5) inde-
pendent also of 0^0.

Let 0(#3 f) be a phase function in ^Gw)- Then, a Fourier inte-
gral operator P0=p$(X, Dx) with the phase function $(x, <?) and a
symbol ff(Pj)=p(x, f) in 5^) is defined by

(1.2) />(*) =0

for

where y is the Schwartz space of rapidly decresing functions on Rn

and the right hand side of (1.2) is the oscillatory integral defined

in [12] (Chap. 10). Following [12] we denote the set of such Fou-

rier integral operators by SG^.Q. If $ = x*£, the set Scw.t *s tne one

of pseudo-differential operators. In this case we write SGW.Q simply
by $G(d}> Similally, we define a Fourier integral operator P^ with the
phase function <f>(x, f) and a symbol p(x, f ) e^ G y) by (1.2) and
denote a class of such Fourier integral operators by ^Gw).0- Corre-
sponding to this class we write a class of pseudo-differential operators

as &Gw=[p(X* A<) ;^(^5 f )^-^G(d)} 5 since no confusion occurs be-
tween the class of symbols and that of pseudo-differential operators.
Remark that the following holds: If p(x, f) belongs to 3&G(d) and a
real symbol /( x, f) satisfies (1.1) then eij(x'& p(x, f) also belongs to
^GW). This fact shows that &Gw.t = &Gw for all ^e^G(d)3 which
corresponds to (2.6) of [9]. So, we may use mainly the class ^GW

among the class ^G(d),05 0^^cw)- Denote by f(M) the class of
functions u(x) satisfying

and denote ?d=\j?d(M}. Then, the operator in ^GW) maps a class
M>0

$ ' of distributions with compact supports to a class f. In this sense,
we call the operators in ^Gw> regularizes.
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The following definition coincides with that of WFL(w) for L~
{Lk=(k+\Y} in [4].

Definition 1.2. Let u ^ f f ' . We say that a point (x° , f°) of
T*(#*)\{0} does not belong to the wave front set WFG W )(M) (cT*(#n)
\ (0) ) of w, if there exist a conic neighborhood F of £° and a func-
tion #(#) in fd with ^OO^O such that the Fourier transform
^"[%M](?) of ZOOwW satisfies for any JV

(1.3) ]f r|.F[jpi](£) |^CM-*W for feF

with constants C and M indepedent of N.

Concerning the wave front set WFGW) (u) of the Gevrey class the
following holds.

Proposition 1.3. Let a phase function $(x, ?)e^cw) be homogeneous
for large |£|. Then, for a Fourier integral operator P^ with a symbol

p(x9 f) in SGW the relation

(1.4)

/or u e

Proof. We may assume ^e^ by the similar result for the C°°-case0

Suppose that the points (*°, £°) and (j°, ^°) satisfy f°=F^(x°, 5^°),
j;°=r^(*°, ^°), O°, 7°)<£WFG M )(M) and l^ i^Q. From the defini-
tion there exist a function & (#) in ^ satisfying Xi = 1 in a neighbor-
hood of jy° and a conic neighborhood /^ of if such that (1.3) holds
with x = Xi and r = Flm Take ^0?)^$^) satisfying supp^c^ and
^ = 1 in a conic neighborhood of 27° , and take a function &(#) in jd

such that X2U°)^ I0 and supp%2ci{#; ^(^^(x, 37) ) =1 /or a// ^}.
Using these functions we divide «^[;kP0w](?) into three parts:
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For a fixed a we estimate £ a f j ( $ ) , j= 1, 2, 3, individually. First,

we estimate 6a/i(f). Note that we can write

(1.6) «-••*

with the property

(1.7) |3f3J?W*, f)

Using (1.6) we write

Then, from (1.3) for u ( x ) we have

(1.8) ifa/i(f)

if we take new constants C and M independent of a. Next, we

estimate fa/2(O- If we take an appropriate conic neighborhood F2

of f°, the relation

l l ) f o r

holds on the support of the integrand of /2(f)- So, if we set

Ll = i \ ^ - F x ( f ) ( x , f]Y\-2(^-Fx^(x, 3y))-r , we have from £/c--i

X (l-

Hence, we have

(1.9) | fa /2(f)I^CAf- I a |a!d for

For /3(f) we write

/rl 1<31

r/3cf)= 2 ,;. S
a/+a//+(5=a

X {O

with ^,feU, f) in (1.6)-(1.7). Note that on suppXaW (1 -

the inequality | F|0 (#, 5y) — j v | ^ C 0 > 0 holds. Hence, setting
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L2=-i\Ptf(x9 y)-y\-2(Ptf(x, ^-jO-F, we write

a' + a»+d=a CX a o k=0j

x {O.-^^^-^-'^C^O^'^^^H^.*^ 7)
X /vo (*, vj) } ( 1 - xi 00 ) M 00 dyiifi dx,

where /(m) =[max(w?, 0)]. This implies

(1.10) |^/3(f)|^CM- |a |aK.

Consequently, we have for any a

«'a'!d for

from (1.5) and (1.8) -(1.10). This means U°, f°) SWFGW)(/».
Q. E. D.

§ 2. Multi-Products of Fourier Integral Operators

In this section we will obtain a sharp estimate for the symbols of
multi-products of Fourier integral operators. For simplicity we denote

for 0GE^G t f )

, Dx) ; p°(x, f)

that is, symbolically LGW)(^) =^GW)10 + ^GW.#. If ^(^, f) =*•£ we
denote LGW)(^) simply by L5W).

For a sequence {<f>j} of phase functions ^;-(x, £ )^^GW)( r j ) we

consider multi-products

(2-1) Q.y+1— ^1, ̂ 2.^" 'Pv+l,<i>v+l

of Fourier integral operators P;-^. in LG W )(^j) with a^O. We put

following assumptions:

(A.I) There exists a small constant r° such that 2r/^r°- If we

y=i
set Jj(x9 f ) = ^ j ( ^ 9 f ) — ̂ ' f , [Ji/Tj\ is bounded in 5GW).

(A.2) If we write P^p^X, DJ+fa^X, Dx

the set {/>?(#, 6)} is bounded in 5GW) and {j5;-(^, f)} is bounded in

The result we want to show in this section is the following :
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Theorem 2.1. We assume (A.I) and (A.2). Then, the multi-product

(2.1) of Fourier integral operators Pj,$. is a Fourier integral operator

Q,»+i,Vi in LGW°(®»+I) with a phase function $v+1(x, ?) in & G(d} and

is represented by the form

(2.2) Qv+l,0v+i = q°v+l(X, DJI*v+l + qv+l(X, DJI*v+1

for the symbols q°l)+i(x, f) and qv+i(x, <?) satisfying

(2.3) l?2+iS(*, f) I ^C8Af-(|a|

(2.4) |&+1$U, O 1 ^CSCaM-^'

i£;/z£r£ the constants C0 and M are independent of v, a, /3, JV and ^^

constant Ca is independent of v, ft and N.

In (2.2) the operator /^ for ^e^G(d) is the Fourier integral oper-

ator with the phase function $(x, f) and the symbol 1.

We will prove Theorem 2.1 after some preparations. First, we

give the product formulae between Fourier integral operators, conju-

gate Fourier integral operators and pseudo-differential operators,

whose proofs are given in Section 4.

Proposition 2.2. The following inclusion formulae hold.

(2.6)

(2.7) #GW)-£*M)(0

Remark L It is easy to see from (2 .5)— (2.7)

(2.8) L

(2.9) i

Remark 2. The inclusion mapping (2.5) is bounded in the follow-

ing sense: "Assume {pe}ee©'1^ bounded in SGW> {pe} Bee ^s bounded in
5Sw) and {^}0e0 is bounded in ^GW). Denote pe(X, Dx}pg^(X, Dx}

= q°e.te(X9 Dx)+qd,fe(X, /),) with ?g(x, 6) e^J,"1' and &(*, f)e«G ( r f ) .

Then, {ge}5e0 and {^]^0 are bounded in S^tdT' an^ ^GW> respec-
tively." In the same sense, the inclusion mappings in (2.6) and (2.7)

are bounded.
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Denote by /r the conjugate Fourier integral operator with the
phase function <f>(x, f )e^ G W ) and the symbol 1. Then, we have

Proposition 2.3. The following relations hold.

(2.10) LSnW •/.cL&o, 1^(

Remark. The inclusion mappings in (2.10) are bounded in the
similar sense to Remark 2 of Proposition 2.2.

For the multi-products of phase functions we have

Proposition 2.4. Let fa(x, f) e^G^to), J=15 2, • • - . Assume (A.I).
Then, the multi-product @»+l(x, ?) = ^# ••• #0y+1(#, f) defined in [14]

belongs to ^cw^tPv+i) (jy+i — rH ----- h ry+i) z0i£/z J0m£ constant c0 indepen-
dent of v,

Proof. Let {Jfj, ^}^i(x, f) be the solution of

Then, by the induction on N we can prove from the method of the
proof of Theorem 1.7' in [14]

for constants Cl and M independent of a, /3 and v. This implies

(2.12)

Since <P,,+1(x, f) =?5i#-"#^+i(^, f) is denned by

(*»=*),
we get <?1)+i(^, f) e^GW)(Co^u+i) with an appropriate constant c0.

Q. E. D.

Proposition 2.5. Let <f>s(x, f ) e ^GW> (^) , j=l , 2. Assume TI
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is small enough. Then, we have

(2.14) /

Remark. For <f)LQ<^& G(d}(rj<Q), j=l , 2, we denote 1*^1*.^ = Po.*e

(X, Dx)+p6t0Q(X, D,)(^=^#^2lfl). Then, if rlifl + r2.^r, for a r0

independent of 0 and the sets {<f>j,e\ e<=o(j— 1? 2) are bounded in ^GW)J

the sets {/?§}0e(9 and {j50}0e(9 of the corresponding symbols /$(#> f)

and /?00r, ?) are bounded in SGW) and ^GW), respectively.

We postpone the proof of this proposition to Section 4.

For the multi-products of pseudo-differential operators we have

Theorem 2.6. Let P^p](X, DJ+fatX, />,)€=!£«> ( j=l ,2, • • • )

with tf^O. Assume

(2.15) i/$?K*, 6)|

(2.16) W$(x, f)

/or a^j; JV, where the constants C0 and M are independent of j, a, /35

the constant Ca is independent of j, ^S, TV. Then^ the multi-product Qv+i = Pi

P2'"Pv+i has the form Qv+l = q°v+l(X, Dx} +qv+i(X, Dx} with the properties

(2.17) |

(2.18) |

^, A and Ml are constants determined only by the dimension n and M,

C0= max {Ca, C0} and the constants C'a are determined by n, a and Ca.
\a\^n+l

All the constants A, Ml and C'a are independent of u.

Since the proof is rather long, we will give it in Section 5. As

in [23] we get two corollaries.

Corollary 2.7 (cf. Theorem 3 of [23]). Let P = p\X, Dx) + p(X,

) with

(2.19)
- - M - N f o r a n y N .

Assume that C0 and max Ca are small enough. Then the inverse 0 of
^
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/ — P exists in LGW) and is represented by the Neumann series Q,= Z! Pv-

Corollary 2.8 (cf. Proposition 2.2 of [23]). Let $(x, f )<E^ G W ) ( r ) .
// T is small enough, there exist pseudo-differential operators R and R' in
LGW such that

(2.20) -,--,»* = /,

Now, we are prepared to prove Theorem 2.1. Since we can prove it
by the parallel way to the proof of Theorem 1 in [23], we will give
only the sketch of the proof. Set 0j=$i%fa%~'$fa- Then, as in
Proposition 2.3 and Lemma 2.10 in [23] we can find, by using
Proposition 2.2, Proposition 2.3, Proposition 2.5 and Corollary 2.8,
pseudo-differential operators P'j in LGW) such that

From this we have

Combining this with Theorem 2.6 and (2.8) we get the theorem.

§ 3. Fundamental Solution for a Hyperbolic Operator

We will construct the fundamental solution for ££ of (8). For the
proof we will solve an eiconal equation

(3.1)

Proposition 3.1. Assume that A(t, x, £) is a real symbol in M®(Sl
G(d}}.

Then, there exists a constant T0 such that the solution <f>(t, si x, f) exists
uniquely in { ( t , s) ; O^/, s^T0} and belongs to 0*Gw(co\t—s\) for a
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constant c0 independent of t and s.

Proof. We follow the proof of Theorem 3.1 in [9] combined
with the idea in §1 of Chap. XI of [24]. Let [q, p} (t, 5; y, 77) be
a solution of

Then, by the method of the proof of Lemma 3.1 in [9] we obtain

(3.2) |3;35(?-jOI ^C|^-j |M-

(3.3) |3?3J(/>-?)| ^C\t-s\M-™

if OgU, s^T'0 for a small T0. From (3.2) there exists an inverse
function Y(t, s; x, £) of x=q(t, s; Y, f) for 0^£, s^T0 if T0(^T'o)
is small, and it satisfies

(3.4) |3f3£(y-*)| ^C|^-j| Af- ( |

Set 4>(t, s\ x, ft=p(t, s; Y(t, s ; x, f), f) and

Then, $(t, j; x, f) is a solution of (3.1) by the similar discussions

in §1 of Chap. XI of [24] and it belongs to ^Gw>(£0 1*— -*! ) with a
constant c0 independent of t and s. Q. E. D.

Now, we prove Theorem 1. Let I$(t, s) be the Fourier integral
operator with the phase function 0(/5 s; x, f) and the symbol 1.
Operate S£ in (8) to I $ ( t , s). Then, we can prove by the similar
way to the proof of (2.5)

(3.5) &If(t, *)=/>,(*, j)

with P$(t, j) in Z,GW)(0(*5 ^)) for any £ and .y. Now, we seek £(/, 5
in the form

(3.6) E(t, s}=It(t, s ^ + t , f f )W(0, s)d6.

Then, W(t, s) must satisfy

(3.7) />,(*, j)

Set
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(3'8) (.5:2).

Then, in the formal sense W(t, -0=2 Wv(t, s) is a solution of (3.7).
y=l

From (3.8) W^(t, s) for i^2 has the form

(3.9) wv(t0, j) = (-
xP, (*„_!,

Hence, substituting WYf, 5)=f] W^(£, 5) with (3.9) into (3.6), the
y=l

fundamental solution E(t, s} can be written formally in the form

(3.10) E(t, 8)=^^, j)

In what follows we give the precise meaning for (3.10). From
3° of Theorem 2, 3 in [14] we have 0(f, f0)#0(*o, O# — #^fe-i» ^)
= $(t, j). Hence, if T'0(^To) is small, from Theorem 2.1 there
exist symbols z0°(f, f'1, s ; x, ft in M^ .,_! s)(5^)) and wu(t9 iv~\ s ;

x, ft in M°. y _ l s (^ G W ) ) ( f - 1 =a o , ^, -., ^_0) such that for j=0, 1

for any TV

and

Here, we have applied Theorem 2. 1 noting that the order of the above
operator becomes ua because the order of I$(t, s} is zero. Define

wu(t,s;x, f) = (-i)

and

f.Ct, s; x, f) = C-O^T0-r""2rf)l,U,
Jsjs Js

Then, they satisfy for j = 0, 1
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^(C5i*-jrio

for any N.

Take T0(^T'0] such that T0C0<\, Then, the series f(t, s; x9 S) =

2 fy(£, j; #, £) converges and we can see the sum f( t , s; x9 f) be-

longs to AfJ ( S(^?G t f )) if 0:g£, s<LT0. Note that the series £1 ̂ (^ s ;

X, Dx} has a meaning as an operator from yd into itself if ad<^\ and
as an operator from f ( M } into yd for a small M if ffd = l« Summing
up the above results, we obtain Theorem 1.

Remark. In the expression (9) of Theorem 1 we set R(t9 s}
= r(t9 s; X, DJIffa *). This belongs to ^G W l # U i 5 ) . But from ^Gtf),0u,s)

—-^G(ef) we see that jR(£, 5) belongs to ̂ Gy).

Next, we consider a hyperbolic system

' ^(f, Z, DJ 0
o

(3.11) ^?=£)(-
e

with the diagonal principal part, where 2j(t, x9 f) are real symbols

in M°t(Scw) and ^y*(^ x-> ^ belong to M?(5cW)) (Q^a^l/d). Let
0j(^ J; x9 S) be a solution of (3.1) with A = Aj. Then, we have by
the similar discussions for the proof of Theorem 1

Theorem 3.2. The fundamental solution E(t9 s} for (3.11) can be
represented in the form

i
C\ 19") F(t rt — YF (f ^\J*1Z,J ^v^j $) — / i J-<lQ,m,$ \^5 ^ /

-
"E»iflt0 (t, 1Q9 • • • , tv-l

s ^

+ R(t, 5) (f_! = 0

^/, s^T0. Here, T0 is a small constant, Uu+l= {^=(mb • • • , m^} ;
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for fi=(ml9 • • • , m,+1) e/7y+1. In (3.12) EViftt^(t9 t0, • • • , tu.l9 j) /or

v+l is a Fourier integral operator with symbol e»ifl(t, tQ, • • - , £y_ l5 5;

satisfying
a"|a|

/?(£, s) is a regularizer with a symbol in &Gw

From (3.12) we can investigate the propagation of singularities for

a solution t/(0 of the Cauchy problem

(5U3) i -r\t==0—Lr.

The details are left in the future. The author is not convinced that

the similar result to (3.34) in [13] holds.

In the remainder of this section we give a method of reducing a

Cauchy problem

Lu=Q,
(3'14) ' Quitch J=0, 1, -, m-\

for a hyperbolic operator

m-l
(3.15) L=D?+Z 2 a]ia(t, x)DiD{ with ay.a(f, *)

to a Cauchy problem (3.13) for a hyperbolic system & of the form

(3.11). Here, a(t, x) <=Mt(f} means that it satisfies \d{Da
xa(t, x)\

^CjMjlalald for constants Q and Mj independent of a. We assume
that there exist regularly hyperbolic operators L15 L2, • • • , Lr such
that L has a form

(3.16) L-L^.-^+EKt, ,Y, D,)D{ for fl}eM,
j = 0

where q is an integer satisfying l^q^r.

Proposition 3.3. Set a=(r — q)/r. Then, there exists a hyperbolic

system & of the form (3.11) with bjk(t, x, f) in M?(6£W)) j«cA ^to

^A^ Cauchy problem (3.14) can be reduced to an equiualent Cauchy prob-
lem (3.13).

In the following we disregard the contribution of regularizers and
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the equality means that it holds modulo regularizers in ^GW).

Proof of Proposition 3.3. We divide the proof into two steps.

(I) Denote the order of Lk by sk and let A k j ( t , x, f), J = l, • • • , sk,

be characteristic roots of Lk. We may assume A k i j ( t , x, f) eAf, (Sc^))
by multiplying a cut function with respect to ? if necessary. Since

Lfe is a regularly hyperbolic operator, there exist Xkj(t, x, f ) e

MC^cw) such that

with bkJ^Mt(Scld^' Denote ^^O, sk=s1-\ ----- \-sk and

3; = ̂ -^,,--.^^ X, DJ-^^t, X, A) if J*-i</^J*.

Then, L has the form

w m — q

(3.17) i-SA-a.+ S ^-a, ^ A)3y-3»+ S ̂ (^ ^
J=2 j=0

with ^-a ^ f i eAf fCSgw, ) and ^(f, ^, f) eM,(5g5f-0- Set 77= {0} U

U IIr, for

and denote the number of elements in /7 by /, where f r / = v H ----- h^

and /jtr,(J} =sr, — (the number of elements in: {jl5 ••• jfe} f| R'-i+ 19 "•?

v}) for J=(ji, • • - , jft). Then, by the method of [20] (see also §111
in Appendix of [12]) we can prove that L in (3.17) has the form

(3.18) L = d1d2..-dm+£ b-(t, X, Dx)dr.-dm+ S bj(t, X, Dx}3'
3=2 j^nr

with 6;eM,(5U)(l^J^?)5

where II' = {(j1? •• . , jk) ^II\k<>m-r} , dj = dji"-3jk for JT= (jl5 —5 j f t) and

dj = l for J = Q. In fact, first we prove
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+ Si}(f, x, DJV
J*"r

with 6}.ySM,C'S'SwJ-/|-s-0 and 6}eAf(C$GW)), where \J\ denotes the
length k of J=(ji, •••, jk) ', and next we prove

S (~l^b}j(t, X,
j^n,\j\=sr-i j=o

b}(t, x, Dx)

with ^e^CSftlj71-*--7') and *}eAf, (££$). Repeating this method
we can prove (3.18).

(II) Suppose that a function u = u(t, x) satisfies Lu = Q. Set for

:k=A^°u (/ = ()),

ij = A(r~l}adJu for |/|

ij=A(r~l~®adJu for |/| _ _

where A = (Dxy. Then, by applying the method of §3 in [11] the
/-dimensional vector U= (uj}j^n satisfies &'U = Q for a system 3? of the
form (3.11). In this way we reduce the problem (3,14) to a
problem (3.13). The fact that (3.14) and (3.13) are equivalent is
verified by the method in [18] and [11]. This concludes the proof.

From this proposition and Theorem 3.2 we can prove that (3.14)
is ^-correct (or ^-well-posed) in the sense of [5] if d^r/(r — q) and
we can investigate the propagation of singularities for a solution of
the Cauchy problem (3.14). In the case of constant multiplicity we
can improve Proposition 3.3 as follows.

Proposition 3.4. Assume that the operator (3.15) is a hyperbolic
operator with constant multiplicity and its coefficients ajta(t, x) satisfy

(3.19) \8ID0
xajia(t, x)\ ^CM~<*+l™kldpld for (t, x) <E[0, T] xRn

x.

Then^ the problem (3J4) is reduced to the problem (3.13) for a perfectly
diagonalized operator £? of the form (7) in the Introduction. Moreover,
if the operator (3.15) satisfies (3.16), then the lower order terms Bj(t}
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in (7) are pseudo-differential operators of order a with o=(r—q)/r.

We will prove this proposition in Section 6. We note that from
Proposition 3.4 we obtain Corollary 3 with a — max { (m, — 1 ) /m-\

replaced by a = (r—q)/r if (3.15) satisfies (3.16).

Next, we turn to the problem studied in [3] and [21]. Consider
a regularly hyperbolic operator

(3.20) L=D*-£ b°jk(t, x)D D +b(t, *).A + S bj(t, x}Dx.j.k 3 k j 3

+ c(t, *) on [0, T\

with continuous coefficients. We assume

(3.21) bQ
jk(t, x), b(t, *), bs(t, x), c(t, x}^rd for any fixed t,

(3.22) \D*M(t, ^-bl(s, x»\^C\t-s\KM-^a\* (t,

(3.23) is*?*a, *) fyf* i^* ie r
We show Proposition 3.3 with a=(r — q)/r replaced by a = l— tc. We
may assume (3.22) holds for all £, s^R1. Take an even function

l(t}^rd such that \y(t)dt = \ and % = 0 if |^| ̂  1/2. We approximate

b°jk(t, x) by

Then, from the evenness of x the symbols bjk(t, x, f) belong to

Af?f5gw ,)nAf}C5SW )) and

hold. Denote

where %'(£) is a function in f- satisfying %' = ! for |f| ^2 and %/ = 0
for |f | ^1. Then, the operator L can be written in the form

L = D2
t-t(t, X, D,y+b(t, X)(Dt-t(t, X, Dx}}+b(t, X, Dx}

with S(t, x, f)eMJ(^tS). Note that dtl(t9 x, f)eM?(^"£g). Then,
L has the form

L=(Dt + A(t, X, Dx}+b(t,X}}(Di-X(t, X, D^+b'(t,X,DJ

with b'(t, x, f) eM?(61ctd))- For a function u = u(t, x} we set u^ — Au
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and u2=(Dt—%(t, X, Dx))u. Then, if u satisfies Lu=Q, U=t(ul, M2)
satisfies J^t/^0 for a system

r l(t. X. Dx) A •) \
&.=£>.-\ + -

L 0 -W, X, Dx} J I b'(t, X, Dx}A~l b(t, X) j-

=S?! has a lower order term in M1(Sa
G(d-l'). Next, we set

1 n(t, X,

0 1

for a symbol n(t, x, f) eAf?(SgM)) n M\(S'G^) satisfying n(t, x, f) =
f l ~n(t,X,D^}

for | f | ̂ 2. Then, using

and 3 ((ff(JV(0))eAf?(5SW )) we obtain

(3.24) &^N(t)

with

(/, Z, .DJ 0 ]
'(3.25) _. L Q

In this way, we can prove Proposition 3.3 with £? in (3.25).

§4. Calculus of Products of Fourier Integral Operators

The end of this section is to prove Proposition 2.2, Proposition
2.3 and Proposition 2.5. To begin with, we prove

Lemma 4.1. i) Suppose that a double symbol r ( x , f, x'9 f') satisfies

Xa\*a'\dBldB'ld

Le;^/z constants C and M independent oj a, a', /3 flrcrf /3'. Then, the
simplified symbol

rL(x, £)=0,-

of r(x, f, x', f) belongs to S%w.
ii) Suppose that a double symbol r(x, f, x', f) satisfies

!^!^!^)'1"1"1^1^ for any N
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with a constant M independent of a, a, /?, /3', N and a constant Ca,a/

independent of /3, jf and N. Then, the simplified symbol rL(x, <?) of

r(x, f, x, f)

Proof. First we assume (4.1). Differentiating rL(x, ?) with re-

spect to x and f, we have

(a) |

Here and in what follows we often omit the notion "Os-". Using

(6. 10) of Chap. 1 in [12] we obtain

for new constants C and M indepedent of a and ^B This shows

rL(x, DG.S'GW). Similarly, we can prove ii). Q. E. D.

Now, we prove Proposition 2.2.

Proof of Proposition 2.2. Let p^X, Dx) ^$SW and /^(Z, Dx)

e^.#. Then, from Theorem 2.2. of Chap. 10 in [12] the product

pi(X, Dx)pz.^(X9 Dx} is a Fourier integral operator with a symbol

<?(#, £) defined by

where $ = x*£ — #'ef +^(/, f) — ̂ (:v, f 7 ) . Take a function #(?) in f

satisfying

(4.3) O^x^l , X=l ( I f ! ^2/5), * = 0 C | f |

and divide q(x, f) into two terms:

(4.4) q(x, ft=q0(x, ?)+?.(*, f),

where

q.(x, f )=« '^ 1 (* , Od

~ f1

Denote Vx<!>(x, t;, x")=\Vx<j)(xf + 0(x—x'}, 5}dO. Then, (f) has the form
Jo

(p= (x — x'} • (<? — Vx<j>(x, fx, ^')). Hence, using the change of variables:
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y=x— x, 7] = £ — yx<f>(x, f, #') we have

This formula shows that q0(x, ?) is the simplified symbol of a double
symbol

q'o (x, £, #', f)

which satisfies (4.1). Hence, from i) of Lemma 4.1 we obtain

Now, we prove q00t(j)(X^ Dx) ^&G(d)ij. This result is equivalent

to ^(Jf, A)e=#GW if we set ^(^ f)=?-o(*, f)^mi) for /U, f)
= <f>(x, 6)— ^-f. So, we may prove gooCx, f )e^G W ) . It has the form

where s5 = * . f -Ar / - f +0(^, O-^'f- Set ^a(/, .£ ; ^, f) =e-i*d%,ei*.
Then, it satisfies

Using this and F^ = f — f' we have

*', f) }<&'*.

Set L1=-i|-f+F^(x 'J r)|-J(-f+r,#(*', f'))-^ and Z, =
— x'\ 2)~l(l —i(x-x') -Ff). Then, integrating by parts we have

(4 ^ n W(Y f) — V I a \ P' #*'•"" Iv £'\(.t.OJ ?»(W (.X, $ J — Zj I „' ) D'\6''\a"'\ Q°°.ff'.P":/3'"{X> $)
a'+a"=a \" / p Iff Ip \
P' + $" + P"'=0

with

(4.6) ^'.-I'^.^c*, n =(L 1
i ) 'a2 i )" + 1 + "" | {Cf-o / "

XDI"¥a,(X\ f; *, f)Atf»,(*, f)

In (4.6) we take /= |j8'| + \a'\ +JV+«+l + [maxOn, 0)+max(m', 0)]
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Then, we obtain from |-f + F^U, f) | ̂ C j f - f | ̂ C'<O

(4.7) l&oSX*, O l^CaM-(!^1+]V)
j8!^!d<r>-lotl-JV for any JV.

This shows q^^&G^. Consequently, we have proved (2.5). Similarly,
we can prove (2.6). The above proof is also valid for the proof
of (2.7) if we use Lemma 4. 1-ii) instead of using Lemma 4B 1-i).
This concludes the proof of Proposition 2.2. Q. E. D.

Remark. Throughout this section we denote by %(?) a function
in jd satisfying (4.3).

Using the method of the proof of (2.12) we can improve Lemma
2.1 in [23] as follows.

Lemma 4.2. Let <?>(x, f) belong to &*GW Then, we have the
following:

i) The inverse function £ = Fx<f>~l(x, y, x') of 7 = \ Px<f>(x' + 6(x — #')?

q)dO satisfies (2.3)-a), (2. 3)-b) in [23] and

(4.8)

/ f1

ii) The inverse function x=7^~l(^y\ f') of yf = \

(4.9)

~ ( | a | + | a / l

Now, we prove Proposition 2.3.

Proof of Proposition 2.3. Let p$(X, Dx) be a Fourier integral
operator in $?WM. Then, by (1. 29) -(1. 30) in Chap. 10 of [12]

DJ/0* is a pseudo-differential operator with a symbol

for
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?'(*, f, x) = [p(x, Q

where for a vector /='(/l5 ••-,/„) of functions /}(*, £) --/ denotes

Then, using Lemma 4. 2-i) we see that the first term belongs to 5"GW)

because of Lemma 4. 1-i) and the second term belongs to ^Gw> if we

use the integration by parts. This shows $GW).0'VC^G(*)- Next, we
assume p^(X9 Dx) e^GW)i#. Then, the product ^(-Y, D*)V is a
pseudo-differential operator ^(Jf, Z),,, X') with a symbol ^(#, f, ^')
=/>(A:, f)^(/c*.«)-/c*'.5))B Since q(x9 f, ^) satisfies

for any TV,

we can prove that its simplified symbol qL(x, f) belongs to 3% G(d).
These results show the first formula of (2.10). In the same way we
can prove the second formula of (2.10) by using Lemma 4. 2-ii).

Q. E. D.

The remainder of this section is devoted to the proof of Proposi-
tion 2.5. We divide it into three steps.

(I) We follow the proof of Proposition 2.8 in [23]. Set 0(x, £)
= $W2 (*, £) and set

«*=<&(*, x'-, f, f)

Then, /^^ is a Fourier integral operator with the phase function

®(x, f) and a symbol /?(x, f) defined by

(4.11) j&(x, O-O

Set ^(f, f )= l -Z(( f - f / ) /<O) and consider



FOURIER INTEGRAL OPERATORS 517

For <f>' = fa(x, £) + &(*', f')-0(*5 O we have

(4.12) 3f,Z)£^'=yfi V^x', f; *, f)
fe = 0

with symbols ^k:a^(x\ f ; A:, £') satisfying

(4.13) |9p ;̂a,,|

Hence, following the way of (2. 34) — (2. 36) in [23] we obtain

i
(4.14) /,.«(*, O =

for symbols />»,«.„.«(*', f ; «, f) satisfying

(4.15) I3p^...0...ffll

On supp />„.(».«.« the inequality ||-|'| ̂  (2/5)<O holds.
This implies

(4.16) !/7^|^^_|f_f|^_

ifr2<l/3. Set

Then, by the integration by parts we have

I / s i r r
/, («) /^ r p /N\ _ y> \ \ -»c& / r n » + i + j + J V / r r n n f i + i a i / , / ' p. r £'\AV' J£
P°o (ft (X > £)— 2-*\\e (-^l ) V-L.2 / P°o,(k.a,ft\X , $ , ^, C J " ^ ^ C .

& = OJ J

Note 1+ |F^| ^C<*-*'>. Then, we obtain from (4. 15) and (4. 16)

\pJ$(x, n\ ^CaM-^+N^\dN\\?yN for any N.

This implies

(4.17) p00(x,

(II) For &(£, r)-x((f-f)/<r» we consider

Let {X, E] (x, £) be the solution of

(4.18)
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Using a change of variables: x'=X(x, f) +/, £=S (x, f ')+J?, we
write

(4.19) p0(x, r)=Os-

Here,

(4.20) 2o(V, x, £)=*((*(*, £)+?-£)/<?»

and

(4.21) ^=<50>, 7; *, £) = -<&(*, *(*, f )+75 S(x, f)+7 , f)

As in the proof of Theorem 2.3 in [13] we divide p0(x, ?) into two
terms

(4.22) p0(x, $)=p0,o(x, t)+Po.~(x, O;

(4.23) p0,0(x, f) =0,-

(4.24) p0^(x, f )=0,-«-"j ; 0( i7; *, f)

X (1 -X(«O2 bl 2+ l7

where a positive constant e (^1/2) is determined in the step (III).
In this step we will prove

(4.25) &.~e^H)n^CW) .

On the support of the integrand of (4.24) we have

because of

Hence, po.-w(x9 f) can be written in the form

|a+^!
(4.26) po..®(x, O= E

fe = 0

for symbols po.-.ik.a.flfy, V 5 *» f ) satisfying
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(4.27) \drDs
yp0^,,t.a.

Here, we have used the similar discussions to the one in (4012)
(4.15). From (2.45) in [23] we have

(4.28) <f>2 \vj\ 2+

Set L3 = i«O2!F^|2+ |F,$| VH<O2P^-^ + P^-F,) and integrate each
term in (4.26) by parts. Then, we have for any N

(4.29) po.J&(x, f)=

From (4.27)— (4.29) we have

lA>.-8)(*,

which shows (4.25).

(Ill) In this step we consider (4.23). The following lemma
originates from the idea in the III) -step of the proof of Theorem 2.3
in [13].

Lemma 4.3. Assume r1 + r2^l/4. Then, there exist matrices F(y, 27;
x, ?)> F'(y, y\ x, ?) and G(y, 77; x9 f)

(4.31) ^

holds for (p in (4.21). Moreover, there exists a constant s (^1/2) such
that

(4.32) D(y, f]\ x, f) =det

\y\ +M
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Admitting this lemma for the moment we continue the proof of

Proposition 2.5. In (4.23) we take a constant e as the one in the

above lemma. Then, by (4.32) we can change the variables from

O, 7) to U, C) = 0> + *>7, Fy + Gij). Let y = Y(z, C ; *, f ) and ? =
W(£5 £ ; # , ? ) be the inverse function of z=y + F(y, y ; #, £)>?, C

= F'0>, ^; *, £}y + G(y, f]\ x9 £)?. Then, from (4.23) we have

This shows that PO,O(XI f) is the simplified symbol of

Po.o(x, f, ^,O = {&(?7;^ O
XDO, 37; A:, O~V^r.#K*'-*.f-i';;c.i')«

Since p'0,o(x, f, ^'j O satisfies (4.1), we obtain

(4.33) p0t0(x, f)e5gw.

Combining (4.33) with (4.17) and (4.25) we obtain (2.14). This

concludes the proof of Proposition 2.5.

Proof of Lemma 4.3. Set

= 5(7; x, £) =

Then, from (4.21) and (4.18) we have

<fi = y . 7] — Bf] • iq — B'y • y.

Hence, the equation (4.31) holds when F, F' and G satisfy

(4.34)

[ 'GF= -B,

where J is the identity matrix.
n

Denote the norm max 2 \ajk\ of a matrix A = (ajk) by ||^1||. Note

that B and B' are symmetric and

if \rj\ <^<f>/2. In the following we assume that the inequality \TJ\ ^
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<?>/2 always holds. Set

(4.36) F= -

Then, since 2r1r2<l/4 the series (4.36) converges from (4.35) and

satisfies

FB'F+F+B = Q.

Using this matrix F we set

G = S + ffF.

Then, the matrices F, F' and G satisfy (4.34). From (4036) and

(4.37) we also get (4.30) and

Hence, we obtain (4.32) if ^ + ̂ 1/4 and \y\ + \TJ\ (fX1^ hold for

a small constant e. Summing up, we get matrices F, F' and G

satisfying (4.30) — (4.32). Q. E. D.

§ 5. Multi-Products of Pseudo-Differential Operators

In this section we prove Theorem 2.6. First, we consider

(5.1) O,+i =/>!(*, Dx)p°2(X, Dx)-p
Q

v+l(X, Dx)

for pseudo-differential operators p](X, Dx) in $a
G(d).

Proposition 5.1. Assume that p](x, f) satisfy (2.15) wf /A constants

C0 and M independent of j, a and /3. Then, the same result as in

Theorem 2.6 holds with C0 = C0.

Proof. We follow the discussions in Section 1 of [23]. We divide

the proof into three steps.

(I) It is well-known that the symbol qv+i(x, <?) of Qv+l has the
form

(5.2) qv+,(X, f ) = o
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where

(5.3) 0=.sy-(^-i7 /+i)=s cy-y-1)-
and df=dyl"-df, iff = tij— &tf for /=(
For J^y we set

(5.4) $(*, f, *')=

Then, from Lemma 1.5 of [23] we have

which implies

(5.5) gy+1U, ^=Os-

From (5. 4) we also have

(5.6) \P'$.e>)(x, f, *')

with new constant Al and M independent of j9 a, ft and ft'. Here

and in what follows the constant C0 denotes the one in (2.15). For

X^Td satisfying (4.3) we set

Setting

^={^=C*1, -, *„); Ay=0, 1},

we divide qu+i(x9 f) in (5.5) into 2y terms:

(5.8) ^i U, f)= S ^+I.(,).L(^ f),
^^

where ^U+I.^.L^J <f) is a simplified symbol of

(5.9) qu+1.wW, x", f+1)

eJ, e+1)Up-(x'-\ f, ^O^H-xU

(II) First, we consider qM,^,L(x, f) for «r°=(0, 0, • • - , 0)

On suppj.+nrtC*0, x", f"+1) the relations (l/2)<f+1>

hold for any j. Hence, q^+i.^^x0, x", f"+1) satisfies



FOURIER INTEGRAL OPERATORS 523

\xj~l~xj\ )- (w+i)

J=l
with a constant M replaced by a smaller constant Af, where \aD+l\
= \al\ +-+ |ay+1|? |/3U| = I/31 + - + |^| , ay+1! =all ••> aM\ and ^!

= J8
1!-^! for a^^Ca1, • • - , a^1), ^=(j81, • • • , ̂ ). Differentiating

^+I,OCO) ,L(^ O witn respect to % and £ we have

(5.11)

for

(5.12) q»+it(fP.*»+\(Ptfr.L(x, f)

Z'^^-'3f-X^^ (^

Here, in (5.11) the summation is taken over all au+1=(a1, • • • , av+1) and
(/3°, j?) = (j8°, /31, -., ^) satisfying ^+ - + a^ = a, PQ+P+
Take one of symbols in (5.11) and denote it simply by

where

From (5.10) r(x\ x\ f+1) satisfies

'"for

for constants A2 and M2 independent of a, /3 and P, This means that
r(x\ xv, fy+1) satisfies (1.32) in [23] with B = Cv

0
+lA2

1}M2-
(lal + l^av+lld

x/3¥/3y!d, ^ = 0 and ^ = 0,^ = 1, 2, • • - . Hence, applying Proposition
1.7 in [23] we have

\rL(*9

that is,
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Combining this with (5.11) we get

r"+1 4 M "M
a"! ° ° 2 2

X ^+i!<W<*/gi'|<

Consequently, if we set gS+i(#,f) =?»+I,GC°).L(*J f), it satisfies (2.17).

(Ill) We will prove for K

(5.13)
a|"iV for any TV

with constants A, C'a and Afx satisfying the same conditions as in
Theorem 2.6. Then, setting qv+1(x, £)= 2 ^y+i.oo.iX^j ^) we obtain

K^KV,K*KQ

the desired symbols q1+i(x, f) and gy+i(^, f)«
In the following we fix K=(kly • • • , k») £E.K» (K^K°) and prove

(5013). We change the variables in

X ?,+!.«(*

as ^'=y— y1 (j^l, • • • , i^; j;° = 0). Then, we have

where z*=£-\ ----- h^J and d£>=dzl—dz". Take a sequence {/rcjjli and
a sequence {//j}JLi of non-negative integers //,- satisfying

(5.14)
a9 j = l, 2, ..-,

j j
IS Wj ' l ^-o- for any j.
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Set />=[/; *, = 0}U {*+!}, /= {j; *y = l}, j° = max{j ; je/1} and / =
« Then, using the integration by parts we have

i2^.^} n {-iVrY-r' '

where /?21,+1 = m1H
„' /yo ,~,y f^+l^
^fy+l .Oc) V-* 9 A 3 C ;

|-2(fj'-r+1) • (i7 ,-+ - +F

Note that on suppyi+1.wOf°, A>U, f"+1) we have

Hence from (5.9) and (5.6) we have for \f\^n+l (j=l, •••,

y + 1

xn
3 = 1

je/°

x n ( i + \xj-l-xj\}-(n+»

3 = 1

3 = 1

with constants A2, A& C'Q and A/2 independent of u and ^V. This
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means that q'v+l>(K}(x\ x», fy+1) satisfies (1.32) in [23] with B=A3
V

xC»+lC'QM2-
N5N2dN(N+[va']}\d, d = 0 and a sequence {ms} defined by

(5.14). Hence applying Proposition 1.7 in [23] we obtain

^ {AjAfC^C'tM^W* (N+ [

Here, we remark that in [23] we have used only the condition

"IE^;!^4- for any k" for the proof of Proposition 1.7 in [23]

instead of using a stronger condition (1.12) in [23]. So, we obtain
(5.13) with constants A=A0A3 and M1=2~dM2/5 for the case a =
fi = Q. Similarly we obtain (5.13) for the other cases. This proves
Proposition 5.1. Q. E. D.

Next, we consider a multi-product

(5.15) fr(X, Dx}p2(X, Dx)-pu+1(X, D,)

of pseudo-differential operators pj(X, Dx), assuming that at least one
factor pi(X9 Dx) belongs to &GW.

Proposition 5.2. In (5.15) we assume that

(5.16) |/>/$(*, 0| ^CaM-'*'j8!<<O'-|a|

and there exists a number /e{l, 2, • • • , u+l] such that pi(x9 f) satisfies

(5.17) \p$(x, ^\^CaM-^+N^m\d<^-^-N for any N,

where M is independent of a, /3, j, N and Ca is independent of /3, j, N.
Set C0= max Ca. Then, the symbol q»+i(x, f) of multi-product (5.15)

l a l ^w^- l

satisfies (2. 18).

Proof. As in (5.4) we set for j(^

fi(x, f, /) = (!+ k-^|2)"(K+1)(l

Then, we have

for
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3 = 1

Here, <p is a function in (5.3) and &(?, f ' )5 £=0, 1, are defined by
(5.7). Note that the following holds: There exists a constant A1

independent of j, a, /3, ft' and N such that we have for constants C"a

with CJ = 1

and

f,

if pi(x9 f) satisfies (5.17). Hence, by the same way as in (III) in
the proof of the preceding proposition we obtain

(5.18) 1 3ffl&+li «.*(*, f)|

^^C^CMr^'^^^+C^])!^?)"1"1"^ for any JV

for K=£K°. It is clear that ^Wi.oA.LC*? f) also satisfies (5.18). This
shows that the symbol qv+i(x9 f) of (5.15) satisfies (2.18).

Q, E. D0

Now, we prove Theorem 2.6.

Proof of Theorem 2.6. Assume that Pj=p°j(X, D^+p^X, Dx) for
pj(x9 f) and p j ( x , f) satisfying (2.15) and (2.16). Write Q^+1 =

*lP2'"Pu+l aS

(5.19) <L»i=PlPl-P*M
+ P,P°2-P°+1
\pp po... po

"T-t 1-* 2-* 3 •* w+1

+ ......

+ -t 1-t 2 ' * * PV- 1 PvPv+l

where Pj=p](X, Dx} and P,- =£• (Z, DJ . Note that pj (x9 $)(=<* (Pj) ) =
p°j(x, ?)+pj(x, f) satisfies (5.16). Hence, applying Proposition 5.1
to the first term in (5.19) and Proposition 5.2 to the other terms in
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(5.19), we obtain Qv+l=ql+l(X, DJ+q^X, Ac) for the symbols
ql+i(x, f) and qu+i(x, f) satisfying (2.17) and (2.18). This concludes
the proof. Q. E. De

§ 6. Perfect Diagonalization

In this section we give a proof of Proposition 3. 4 by showing a
method of the perfect diagonalization for a first order hyperbolic
system with constant multiplicity. We will begin with giving the
product formula for pseudo-differential operators with symbols in

Proposition 6.1. Let pj(x9 £) belong to $*{*.!•) (j = 1> 2). Then, there

exist symbols q°(x, ?) in Scla.™2 and q(x, f) in &GW such that for Pj
=pj(X, DX) the equation

(6.1) PJ>t = f(X,DJ+<l(X,D3

holds. Moreover, there exist constants C, M and ft such that

(6.2) | %Dt (<f (*, f ) - T>~py (x, S)p2W (x, 0 ) |

for \£\^p

hold for any N.

We will prove Proposition 6. 1 after some preparations. Let ff be
a constant satisfying for j = l, 2

(6.3) \p$)(x, f ) | ^CAf - ( l a l + l^a!^<e>*J'"lal for |f| ^//°.

Define

(6.4) ?1>(^, £)= 2 -1 (̂*, f)A(7)(^ «.
i r l = y T !

Then, ^y(^, f) satisfy for new constants C and M independent of a,
P and v

(6.5) !?„$(*, f)
for

Taking account of (6.5) we investigate the following lemma.
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Lemma 6.2, Assume that qv(x, f) eS^i)^ — 05 1> '") satisfy

(6.6) \q$>(x, 01 ^CM-(|a| + l^l+l')a!^!d<Ow"1'"|a| /^ 1^1^

^zY/z constants C, M a^rf ^ independent of a, /3 <2?Z6? vs Then, there exists

a symbol q(x, f) z?2 SGW.D JM^ ^fl^ ^ inequalities

(6.7) 1 3f />£(?(*, O-XjV*, f ) ) i

^CxMr^^^'^a!^^^?)"^""1"1 Jor | f | ^^+l

hold for any TV, where the constants Q and Ml are independent of a, ft

and N.

Proof, Let K}T=o be a sequence of complex numbers satisfying

(6.8) Hfol ||2EES 1 5, 2M2^r2W+1)<°°
y

for a constant M2- Then, from the discussions in [1], pp. 314-317,

we can find a function 000 such that the inequalities

hold with constants C and M3 independent of k, N and {jy} . Apply
this result to a sequence

with parameters A: and f . Note that from (6. 6) we have for new
constants C and M

yn-|a! for

if we take an appropriate constant M2 in (6,8). Then, we can find
a function <I>(t\ x, f) satisfying

(6.9) \dk
td

(jD^(t; x9 f) | ^CAf4~(*4

for
JV-l f»

(6.10) \dtdaD% [<p(t; ^3 f) — 2 — Jy(^5 f )} |
y=0 v!

for |f | ^//,

Take a function x^(f) in 7d satisfying %ft = l for |f| ^^+1 and %U = Q
for |f | ̂ //. Then, the desired symbol q(x, f) is obtained by setting
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since the property <?(#, £) ^SGU.U follows from (6.9) and the prop-
erty (6.7) follows from (6.10). Q. E. D.

Now, we prove Proposition 6.1.

Proof of Proposition 6.1. For a sequence [qv(x, f)} of symbols

defined by (6.4) we apply Lemma 6.2. Then, we can find a symbol

q°(x, f) in Sccd.T)2 satisfying (6.2). Note that for the symbol q(x, c)

defined by

we have

PlP2=q(X, A).

So, the proof is completed if we prove that the symbol

<?(*, £)=?(*, ft-f(x, f)
belongs to &Gw-

Let %(f) be the function in f satisfying (4.3). We write q(x9

as

(6.11)

where

(6.12) f (x, f) =Of-

(6.13) f'U, O=0I-

It is easy to see

(6.14) ?(x, «e*GW

from the similar discussions in the proof of Proposition 2.2 in §4.

For the proof of

(6.15) f ( x , £ )€=# G t f J

we fix an integer N and divide f(x9 f) into three terms

(6.16) f(x, £)=[ 2 4-/>i(rtO,

rC -''Wtx, f+>?)
151=1 7"! Jo
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+ N Z •
l r i = w f o

-?"(*, f)

where

*U*, f)= E - "

s, 0= s
| r i < j V I5 |

x

I7|=W ?"! JO

) (*

Then, from (6.2) we have

(6.17)

for |f | ^/£.

In the integrand of each term in r2
N(x, f) the inequality (2/5)<<f>

2 holds. Hence, integrating by parts we have

E -
i « i = i "! Jo

X (-*

which implies

(6.18) \t%®(x, f ) | ^ C
for |f!^^'

if we take a constant (j[(>.[jt) satisfying

(6.19) If + ̂ l^^ 0 when |f| ^^' and |7| ^

for the constant ft° in (6.3). Using (6.19) and (6.3) we also have

(6.20) !&$(*, ^ - " * " " " ' " 1 1

for |

Summing up (6.16), (6.17), (6.18) and (6.20) we obtain for

(6.21) |f^(«, f)
for any JV.
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From the definition (6.12) the inequalities (6.21) hold also for
|£| ^fjf. This proves (6.15). Q. E. D.

Remark. We will write q°(x, f) satisfying (6.1) and (6.2) as

Now, we turn to the proof of Proposition 3.4. In the following
we use the symbol class ^CS^ou)) defined by the following: We say
that a symbol p(t, x9 £) belongs to /^G^cou)) if p(t, x9 f) belongs
to r\M\(SG(d,i)} and satisfies

for (t, x, £)e=[0,

with constants C, M and /^ independent of &, a and £. Since the
operator L of (3.15) is of constant multiplicity, in view of (3.19)
we may assume that its distinct characteristic roots ^(£, x, f), • • • ,
Ah(t, x, f) satisfy ^(t, x, f)erf(^W i l )) and

(6.22) |^-a, *, f)-^^ ^, f)| ^C<f> (C>0, j^^)

by modifying them in [0, T] X^X { |f | ̂  1}. Assume (3.16). Then,
using Proposition 6.1 and the discussions in the proof of Proposition
3.3 we can reduce the problem (3.14) to the problem (3.13) with

(6.23) <?=Dt-&(t)

where

W, X, DJSt

(6.24)

Bjk(?) are Z j - X / j matrices of pseudo-differential operators with symbols
in JTfCSGou)), a=(r — q)/r, and J?(0 is a regularizer in ^GW)J which
means that /2(£) is an Ixl matrix of pseudo-differential operators
with symbols in Af,(^?GW)). So, the proof of Proposition 3,4 is
completed if we apply the following theorem,
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Theorem 6.3. Let <£ be a hyperbolic operator of the jorm (6.23),

where @ (t) is defined by (6.24) with real symbols lj(t, x, f) in /TC^co?.!))
satisfying (6.22), Bjk(t) are ljXlk matrices of pseudo-differential operators

with symbols in rd
t(Sc(d,i^ (O^f f^ lAO and R(t) is a reqularizer in

3$G(d)' Then, there exists a matrix P(f) of pseudo-differential operators

with symbols in ^?(5^1,1)) suc^

(6.25) &(

holds for a perfectly diagonalized operator

(6.26) +R0(t}

0 Bh(t)

and the inverse Q(t} of J>+P(t] exists with Q(t} ^L°G(d^for any t, where

in (6.26) B j ( t ) are IjXlj matrices of pseudo-differential operators with

symbols in ^f(5GW>1)) and R0(t) is a regularizer in 3%Gw

For the proof we will give two lemmas.

Lemma 6.4. Let & be a hyperbolic operator of the form (6.23).

Then, under the assumptions in Theorem 6.3 there exists a matrix Pl(t}

of pseudo-differential operators with symbols in /^(-Sc&u)) su°h ^at for a

matrix Bl(t) with a(Bl(t}} eTf GScWil)) and a regulari^er /?HO in &GW

(6.27) &(S+1

holds with £?l of the form

where

for Ij X Ij matrices F] (t} of pseudo-differential operators with symbols in

rXS'cu.v'). Here, diag[Ff(n, -, ^J(0] means

F{(t) 0

diag[F?(0,
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Proof. We construct F°(0 and POO satisfying

(6.28) c7(

modulo rfC5Sw.i)), where B(t)= (Bjk(t^. Then, from Proposition
6.1 the property (6.28) yields (6.27).

Define pseudo-differential operators Fco](0 and PCO]U) by

and

' '"' H

with

Here, we denote the (j, k) blocks of a ( P m ( t ) ) by <r (P™ (0 ) ,> Then,
«j(/^(0) belongs to rd

t(S°Ga,»} and a(PCO](0) belongs to rf(5gSu).
Hence, if ff^ 1/2, the property (6.28) holds by setting F°(t}=Fw(t)
and P1 (0 = Pw (0 . This proves the lemma in the case of ff^l/2.
For the case of ff>l/2 we take an integer N satisfying N^(2a — I)/
(1-ff) and define FM(0 and PM(0 0=1, • • - , N) inductively by

] with

and a(PL»i(t)*) = (a(Pm(t))jk) with

, ,.
Aj(t) —

Then, we obtain the desired operators F°(t) and Pl(t) by setting

Q, E. D.

Lemma 6.5. Let Pl(t} be as in the preceding lemma. Then, there
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exists a matrix Q}(f) of pseudo-differential operators with symbols in

.») such that

(6.29) (•

holds for a regularizer R(t) in 3%G(d}.

Proof. Since o"<Cl, there exists a constant fjt such that

for |f| ^ji.

Take a function &(?) in f satisfying x^(f) =0 if |f| ^ and %^(f)
= 1 if if | ^// + 1. Define matrices qw(t, x, f) (y = 0, 1, • • • ) of symbols
by

*, f)
i /+l7" |=y T.
vf <v

Then, q^(t, x, f) belongs to F*($$*.!>) and satisfy

la| for |

with constants C and M independent of k, a, ft and v. Hence, apply-
ing Lemma 6.2 we can find ql(t, x, f) in rj(S°G(dil^ satisfying for
constants Cl5 M1 and ^

(6.30) \3}dtiyx(q
l(t9 x, f)-go?MU, *, f ) ) l

y " J V " | a l f o r

Using (6.30) and Proposition 6. 1 we get (6.29) with Q} = ql(t, X, Dx)
by the usual method. Q,. E. D.

Define ^ ( 0 = ( 0 ' '"' by— •••

Then, from (6. 27) we obtain

(6.31) J2?( j r+P l(0)=(

for a regularizer /?2(i) in ^G«)> where JS?2 denotes the operator

(6.32) 3'2=Dt-g>(t}+F°(t*)+B2(t').

In (6.32) we may assume a(B2(t} ) e/'f (Soy.!)) by means of Proposi-
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tion 6.1. Moreover, replacing F°(f) by

we may assume that in (6.32) the diagonal blocks of B2(t) are zero.
Now, we are prepared to prove Theorem 6.3. The following discus-
sions originate from those in [10] and in §IV of Appendix in [12].

Proof of Theorem 6.3. First, we construct P2(t} and F(f) with

(7(P2(0)erf(^i,i)) and tf(F(0)erf(^i,i)) such that

(6.33) ^2(^+P2(0) = (^+P2(0)(A-^(0+F0(^+F(0)+^3(0

holds, where the blocks of F(t} are zero except diagonal blocks and
is a regularizer in ^G(rf). Set

.7 (pw (0 ) . . = o, a (PM co )jk EE r?
Here, the notation <* (/"•"•'(£))/* nas the same meaning as in the proof
of Lemma 6.4. For {PM(0}r=o^ we define {FM(0} and (Am(t)}
as follows:

(6.34) (rCFMC^)

with

(6.35) <7(F

and

(6.36)

(6.37)

with

(6.38)
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regarding the third term in the right hand side of (6.38) as zero
in case v=\. Next, we solve equations for unknowns 01 ( PM (0 )

= Cff(JBM(0)rt)0 ' , * = 1, -, K):

(6.39) ff( ^(0)^=0,

(6.40) a(P^(t})ik-
 l * (*"?(*)) g ( ft"] CO ),•»

for large |£| (jl=k),

where ^MCO are defined by (6.36)— (6.38). Set

*' f) = MO-^(O f f (

From (6.22) and o(F°j(t}} ^Tf (5SWil)) for <r<l there exists a con
stant /^ such that the matrix norms \\gjk(t, x, f ) | l and \ \ h j k ( t , x^
of g j k ( t , x, f) and /z^(^, jv, f) satisfy

| |&fc(f, x, £)| |^l/4, \\hjk(t9 x, f) | |^l /4 for |f| ̂ /i.

Hence, the solutions ff(PLvl(t})jk of (6.40) are given by

for |f| ^. We modify a(PM(0),•* in [0, T]x^x {|f| ̂ /^+1} such
that o-(PM(0);fe belong to r?(ScjTi1))• Then, we obtain a solution
{(j(PM(0)} of (6.39)—(6.40) in I7.

Now, we define a mapping ^ from J to I by «y({PMCO}) =
{PM(0}. From the definition the operator PLvl(t} is determined only
by Pco](0, • • - , P[2J~1](0- So, by the induction on v we can see that
the fixed point {P^(t}} of ^ exists uniquely in I. Assume that
the fixed point {P^(t}} of *T satisfies

(6.42) |3J3|^(P?](0)!
~1~y~ | a l for |£ ^
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with constants C, M and ft independent of £, a, ft and v. Then,
from Lemma 6.2 there exists a symbol p2(t, x, f) in F* (Sold.!)) such
that

with new constants C, Af and //. Then, setting P2(t}=p2(t, X, Dx}
and

=diag[F1(0, -,

with a ( F j ( t ) ) = t h e (j, f) block of ac(B
2(f)P2(t~)'), we have

F(0 + (0 ft) -F°(f))P2(0 -P2W (® (0 -F'(0)
= 52(<) +B2(.t)P\t) +Pf (0 -P«(OF(0 -tf3U),

for a regularizer /?3(0 in ^GW), where P2(/) is a matrix of pseudo-
differential operators with symbol Dta(P2(t)}. This is nothing else
but (6.33).

In order to prove that the fixed point {P^CO} of &~ satisfies
(6.42), we define following [1] a formal norm |||{?M(Oh ^ll!(m) for
a sequence {?M(0)r=o with q^(t)=q^(t, x, ^^^(S^n) by

(6.43)

t,x

where fj. is some constant,

(6'44) <*••'=-( M + r t K
and || • || denotes the matrix norm. For a symbol q(t, x, £)

we denote \\\q(t)9 Af|||(lfl)=l||{gM(0}, Af|||(lfl) by setting grra(0 =gr(0 and
^M(0=0 02^1). Then, from the assumptions there exists a constant
M such that the following hold if we take ft in (6.43) sufficiently
large :

(6.45) |||<70B2(0), Aflll^d,

(6.46) IIKW-^CO)"1, Afl|l(-"^C2

(6.47)

and
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(6.48) 2 CJ.../,

for da,ft defined by (6.44) with y = 0.

Now, suppose that {PM(0}eJ satisfies

Let {FM(0}r=o, {4Mt01r-o and {PMU)}r=o be defined by (6.34)
(6.40). Then, from Lemma 1.2 of [1] we have

(6.49)
(6.50) |||

^C1 + C1Af2l||{ff(PM(0)}> M\\\^v+M\\\{a(Pm(t))},

and from (6.46)— (6.47) and (6.41)

(6.51) l i lK

^ 2 s (*')(4-T'c^ 1 1 {ff (^M w ) } , MI i r (4-T"'
K=o K '=O\^ /\6 / \ o /

Hence, we have

(6.52) |1|{<

with some constants C4 and C5. So, if we set for a constant C°

larger than SC^

we see that the mapping & maps J0 into ^ if Af is sufficiently small.

Moreover, if we go over the proof of (6.52) once again, we see that

the restriction of ZT to I0 is a contraction if we take M satisfying

C4M+2C5C
0M<1. This implies that the fixed point {P^(t}} of *T

belongs to 20, which means {P[ul(t}} satisfies (6,42). Summing up,

we have found P2(0 and F(£) satisfying (6.33).

In (6.33) we set

Then, B°(0 has a form
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o BM )
and from (6.31) and (6.33) we have

(6.53)

with a regularizer P4(0 in ^GW)« For a positive number /* we take

a function ^(f) in f satisfying &(£)=() if |f| ^/* and &(£)=1 if
if | ^ f j t + l and let P(£; //) be the pseudo-differential operator with the

symbol

Then, from (6.53) we have

for a regularizer PU; //) in ^Gw> depending on a parameter ft.

Since the order of 0(Pl(t}) + <r(P2(0) +a0(P
l(l}P2(t}} is less than zero,

a(P(t\ fjt)) satisfies the first inequality of (2.19) with an arbitrary

small constant C0 if JJL tends to the infinity. Therefore, we can take

sufficiently large constant ff such that the inverse Q,(0 of J? +P(t ; /^0)

exists. Now, we set P(t)=P(t; /f) and R0(t) =Q(t)R(t; ff). Then,

we obtain (6.25). This concludes the proof of Theorem 6.3.

Q, E. D.

Finally, we give some remarks concerning the inverse Q,(0 of

j?+P(t) in Theorem 6.3. In order to apply Theorem 6.3 to Proposi-

tion 3.4 it is sufficient that Q,(0 belongs to Z£(jf) for any t. But,

we can improve the result "Q,(0 ^L°G(d:> for any £" in the following

way: "the inverse Q(t) has the form Q(t}=qQ(t, X, Dx}+q(t, X, Dx}

with symbols qQ(t, x, f) ^Sc(d^ and q(t, x9 f) G^GW) /or ^^ ^" This
result is proved by applying the following property (*) and the

discussions in proving Corollary 2.7 since a(P(t\ (i) ) belongs to

^ * WG(d.l)) '

(*) //z Theorem 2.6 ^ assume furthermore that p°j(x, 6) belong to
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li) and satisfy

ff"|flI for \S\^p

with constants C03 M and p. independent of a, /3 and j. Then, the multi-

product a,+1 = P1-/Vi o/ Pj=pi(X9 Dx) has the form d,+i=fi+i(X, AJ
+ qu+i(X, Dx) with symbols ql+i(x, f) satisfying

j,+i(#5 ?) satisfying (2.18). Here, the constants A, All and pl are

independent of v.

The above discussions also give another proof of Lemma 6.5. In

fact, we can prove (6.29) by setting QXO = C^+^CO&C0*))"1 for
large constant //, where %^(f) is the function used in the last part of

the proof of Theorem 6.3.
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