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Ortho-Independent States of
the C.C.R. Algebra

By

J. M. LINDSAY*

Abstract

We determine all states of the C.C.R. C* algebra [1] which have a certain indepen-

dence property relative to a family of von Neumann sub-algebras indexed by subspaces
of the test function space.

§1. Introduction

In [2] Kac gave a simple characterisation of the normally
distributed R"-valued random variables (n>>1) with covariance matrix
o’I —namely they were those random variables X for which the
components (0X); i=1,..., n are stochastically independent for every
orthogonal matrix O (the degenerate case ¢=0 being included). In
this paper we generalize this result to the non-commutative context
of states on the (*-algebra of the canonical commutation relations
(C.GC.R.) [11], isolating the family of states which have an inde-
pendence property which is pertinent to the theory of canonical
Wiener processes (“quantum Brownian motion”) [3].

The main result is Corollary 1 while Theorem 1 serves as a
bridge between this and Kac’s result (Corollary 2). The proof
employs Cramer’s theorem [ 4] (see Section 2) and the methods of
Kac’s proof, together with a quasi-free-type analysis of a pair (8, b)
consisting of a symplectic form and a real inner product respectively
which are related by an inequality. This inequality reduces to the
Cauchy-Schwarz inequality in the context of the first corollary and
is vacuous in the classical case —in other words it is only required for
the bridging theorem.
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§2. Preliminaries and Notation

If B is a (possibly degenerate) symplectic form on a real vector
space V, we denote by A(V, B) the “smallest C*-algebra of the
C.C.R. s” [ 1] and note that any state @ on ¥(V, B) is determined
by its generating functional

F,: V->C
Soo(Wy)
where W, are the unitaries, satisfying the Weyl relations: W,W,=
eI DW ., ., which generate A(V, B).
A state is called regular if the map

t—o( Wf+tg)

is continuous from R to C for each f and gV —equivalently if the
map
S (W)

is strongly continuous when restricted to finite dimensional subspaces
of V—mr, being the G.N.S. representation of €(V, B) corresponding
to the state .

A map F:V—C is the generating functional of a state on U(V,
B) exactly when

(i) F(0) =1,
(ii) > qaF(fi—f)e* v >0
j k=1
VneN, (a, f)eC x V"

We shall refer to maps with property (ii) as being of g-positive type
(or of positive type when $=0). In view of Bochner’s theorem the
characteristic functions of n-dimensional distributions are the gen-
erating functionals of regular states on Y(R") (i.e. A(R", 0)).

Cramer’s theorem states that if the sum of two independent
R'-valued random variables is normal then each of the summands
is normally distributed —in terms of characteristic functions we may
state that if the product of two characteristic functions is a normal
characteristic function then each is normal.

If we have a von Neumann algebra N and a state ® on N, then
a family of von Neumann subalgebras {N,:2€4} is said to be
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stochastically independent in the state o if
o(IT 4) =1 0(4) VreN, L,EN,, (X,..., 4} A
i=1 i=1 :

Each state w on 2€(V, §) gives rise to a state on the von Neumann
algebra {z,(W;): feV}” through the cyclic vector 2, of the G.N.S.
representation. When V has a complex inner product space structure
and f is the symplectic form given by the imaginary part of the
inner product we write €(V, Im<.,.>). We now introduce a new
term: a state o on WAV, Im<.,.>), or its generating functional
F,, will be called ortho-independent if it satisfies

Fo(f+8) =Fo(f) F,(g) whenever < f, g>=0.

An example is the Fock state which has generating functional
1 1
f*“’CXP[_—Z—HfHZ:I-
We shall be considering a triple (V, 8, b) consisting of a real

vector space, a symplectic form and an inner product (positive
definite, symmetric, bilinear form) for which

b(f, /Hbg, & =B(f, & VS, g€V.

V7 will denote the completion of V in the inner product norm given
by b. In view of the above inequality there is a unique continuous
extension B of B to V and, by the Riesz representation theorem,
there is an operator M on V such that

B, 9=bMf, 9 V[, geV.

We now drop the primes. Letting V=V,@V,, where V,={fec
V:8(f,9=0 VgeV} and V=V, we have the following properties
[5]1:

(i) M=08@N, ||N|=1.

(ii) N=JP=PJ with P positive, J orthogonal and symplectic

on V..
(i11) J gives a B-allowed pre-Hilbert structure to V; [6].

U=V ®BV,DV, may be made into a complex pre-Hilbert space
by defining:
i(faga h) = (—ga .fa Jh)a
B((J1 & M)y (S & 1)) =b(J1, [ +b(g, &)+0(Phy, 1)
+i(b(fy, &) —b(g, f2+Bh, h))
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and then V may be identified with the real-linear subset V,@®{0}@
V, of U. Thus for f;=fH+fieV,
B((f% /D, (o /D)= SD+ELSL, f[D+iB(fL, f2).

Finally, quasi-free states on A(V, B) are precisely those states
whose generating functionals take the form

Lo :fi—)exp[im(f)—%t(f, f)],

where me& V* —the algebraic dual of V' —and ¢ is a non-negative
definite, symmetric bilinear form on V satisfying the inequality

t(f, tg, 9 =2B(f, 9% V[, gV.

m is the first truncated functional of the state w and ¢ is the
symmetric bilinear form determined by the quadratic form of the
second truncated functional of the state w.

§ 3. Statement of Results

Theorem 1. Let (V, B) be a symplectic space, b a real inner product
on V for which

(a) b(fs Hb(g, © =B(f, 9° V[, g€V,
(b) dim V,#1 where Vy=ker 5,

and F the generating functional of a regular state o on U(V, B). Then,
provided either the continuous extension of B to V is non-degenerate (i. e.
Vo=1{0}) or o extends to a state on U(V, B'), the following are equivalent:

(i) FU+9 =F(NF@ whenewer B(f, 9 =0,
(i) FO)=exp[in() =5 @B (fs S+0(ES 1) ]

for f=fotf, where meV*, g,[0, o), g,€[1, o),
(iii) F(f+g =F(f)F(g) whenever Re B(f, g) =0.
((1) must be dropped when dim V,=2.)

Note: 1. (i) may be written

F(f)= CXP[im(f) —%B<00f0+0'1f1: oo fot o f1) :l

2. These states are thus the quasi-free states whose bilinear
form is given by
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fs 9 '—’b([ggQ,VO‘{‘ U%PQ,Vl]fa 9]

where Qy, Qy are the orthogonal projections onto the subspaces Vy,
V, of V.

Corollary 1. Let h be a complex pre-Hilbert space of dimension greater
than or equal to 2 and F the generating functional of a regular state on
Ak, Im<.,.>) then the following conditions are equivalent:

(i) F is ortho-independent
(it) F{) =exp[im(f)—07zj|f|lz] og&[l,00),m: h—R real-linear

() F(f+g =F(f)F(g) whenever Re<f, g>=0;
when dim A=1 the result remains true if (1) is dropped.

Corollary 2. Let V be a finite dimensional real inner product space.
If X is a V-valued random variable whose co-ordinates, with respect to
each orthogonal basis, are stochastically independent then X is normally

distributed with covariance oI, i.e.
fx(0) 1 = B(exp[i(X, ) ]) =exp[i(m, 9) —%02(0, v)] meV,sel0, o),

the degenerate distributions where o=0 are possible.

Proof of Corollary 2. fix is a generating functional on (V)
satisfying the hypothesis of our theorem, thus

fx (@) = exp[inz () —%o‘zb (v, v) ], since V=V,=7,

=exp[i(m, v)——%az(v, v)], since V*=V for dim V< oo,

Proof of Corollary 1. In this case the hypothesis of the theorem
is satisfied since the continuous extension of the symplectic form is
obviously non-degenerate, moreover this means that VCV,=V and,
since Im<f, g>=Re<if, g>, we have P=I so that

P =explim(p =51 |

Thus (1)=>(ii). Clearly (ii)=>({ii)=> (i) since
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explim (f+9) = 5 |Lf+ell | =explim(£) = 5 1171 | expl im(@ — 5 lel
x exp[—o® Re<f, g>1].

§4. Proof of the Theorem

The following well-known properties of functions F, G of B-positive
type will be used:

(Bi) F(=f)=F(),

(Bii) F is also of jB-positive type where f=—3,

(Biii)) FG is of positive type.

(Bi) and (Pii) are simply verified and (Biii) follows from (Bii) and
the fact that the component-wise product of positive semi-definite
matrices is positive semi-definite.

We shall consider Fy=F|, and Fi=F|y, separately (or simply F
in case V,={0}).

Now in view of the argument deducing Corollary 1 from the

theorem, it is only necessary to prove (i)—(ii) when dim V;#2
and (iii) »>(ii) when dim V;=2—the remaining implications being
immediate.
A. Assume first that V; is four-dimensional as a real vector space
(complex dimension two) and let {f, g8 be a pair of its elements
orthonormal with respect to B.

(i) Define 4, p: C—C by

A(w) =F(uf), p(w) =F (ug).

(ii) Since B(u(f+e%g), v(f—¢g)) =0 Yu,veC, 0=R we have

Au+0) p(e®(u—20)) =2(w) 2(v) p(eu) p(—e).

(iii) Letting 0=0, u=o: z(u)=z<%>2ﬂ<%>#(_%)

= v p(w) =p( 2\ (2 — &
=T ’“‘(“)_‘(2)2(2)2( 2>
in particular 4 and g are in fact of positive type by (8iii).

(iv) Considering 2 and g as maps from R? to C, they are
characteristic functions.
(v) Now assume, for the moment, that 4 and g are even

functions, and thus real:
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(a) A =pw) =z<%>4: z<2_“k)4k VueC, keN
so, by the continuity of 4, and the fact that 2(0) =1,
0<2(w) L1, YuelC.

(b) Putting u=v in (ii) and using the previous inequality
we also have

A(eu) =2(u), YuesC, ER.

(c) Since 2 is non-vanishing and continuous we may apply
Cauchy’s method to the functional equation

Au+0)A(u—o) =2(u)?A ()% u, vER
to obtain
A(t) =e*° where k<0, by (a).
(d) In view of (b), l(u)=exp[—%oziulz], ueC
so that if
h=uf+vg,
F(R) =2(w) 1(0) =exp[—%023(h, B ]
(vi) Now in order to eliminate the assumption that 1 and g
are even consider the functions 44, yg—these are even characteristic

functions on R? and so the above analysis applies to them, moreover
Cramer’s theorem tells us that

A(x+1p) =exp|:i(mlx+lzly) ——%(x, Cix) :l,

p(x+1p) =exP[i(mzx+ﬂz}’) _%(x, Cox) ]’ x=<; )ERZ

where

2C,=2C,=kl,
thus if A=uf+vg,

Fi(h) =2(u) p(v) = exp[im(h) — éazB (h, k) :l,
where

m: V>R
is the map defined by

m (x9S + (%2+12) &) = muxs+mprt mpxs + 13,
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B. We now extend the result to dim V;>4. For any (complex)
two-dimensional subspace U of V;, F,|y determines a pair (my, oy)
by the above method. Define (m, o) by m(f) =my(f), 6=0y; where
U is any two (complex)-dimensional subspace of V, containing f.
We must now check that these are well-defined —if they are, then
clearly

Fl(f):exp[im(f) —%UZB(f, f)], fev.

Let U and W be two (complex) two-dimensional subspaces of V)
containing a particular non-zero vector f, then

explims (/) =555 BU, ) |=F(f) =exp im(f) =5 B, ) |

thus oy=0y and, in view of the continuity of the maps (—my(¢f),
t—my(¢f) we have my(f) =my(f). Thus ¢ and m are well-defined.

C. Now consider F, and suppose that V, is two-dimensional.
Let {f, g} be an orthonormal pair in V.

(1)’ Define 2, p: R—C as in (i). (iii)-(vi) may be repeated
with R? replaced by R (and (v) b omitted) we then obtain, for
h=xf+yg

Fo(h) =2(x) p(p) = exp[im(h) — B, h)].

D. The argument in B may be used to extend the result to
dim V,>2.

E. It remains to deal with the case of V; being one (complex)-
dimensional. Let f be a vector in V, normalised with respect to B.

(i)” Define 4, g: R—>C by 2@)=F,Gf); p@)=F (itf).
(ii)” Since Re B((s+it) f, (¢i—is)f)=0 Vs, iER we have
A+ AL —5) =2() A (&) (=)
and we may proceed as in C to obtain, for h= (s+it) f

Fu(h) =2(s) p(t) = exp[im(h) — Bk, ) ]

The proof is now complete.
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§5. Conclusion

The importance of the result seems to lie essentially in the
fact that it singles out those regular states of the C. C.R. algebra
A(h, Im< .,.>) for which the von Neumann algebras generated by
the Weyl operators with argument ranging over orthogonal subspaces
of h are stochastically independent. To elucidate we state

Corollary 3. For a regular state o on U(h, Im<.,.>) the follow-
ing are equivalent:

(1) F, is ortho-independent
(ii) Ny={m,(W;) : f€h}” are stochastically independent in the
state determined by 2,, for any family {h;: A€ 4} of orthogonal subspaces

of h.

The proof is simply a matter of taking strong limits of uniformly
bounded sequences of linear combinations of x,(W,)s.

Finally we remark that the statement of Kac’s result in [2] is
incorrect —the independence conditions do not force the distribution
to have zero mean.
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