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Ortho-Independent States of
the C. C. R. Algebra
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Abstract

We determine all states of the C.C. R. C* algebra [1] which have a certain indepen-
dence property relative to a family of von Neumann sub-algebras indexed by subspaces
of the test function space.

§ 1. Introduction

In [ 2 ] Kac gave a simple characterisation of the normally
distributed /^"-valued random variables (?z^>l) with covariance matrix
G2l — namely they were those random variables X for which the
components (0_Y)Z- z = l,. .., n are stochastically independent for every
orthogonal matrix 0 (the degenerate case a = 0 being included). In
this paper we generalize this result to the non-commutative context
of states on the C*-algebra of the canonical commutation relations
(C. C. R.) [1], isolating the family of states which have an inde-
pendence property which is pertinent to the theory of canonical
Wiener processes ("quantum Brownian motion") [3].

The main result is Corollary 1 while Theorem 1 serves as a
bridge between this and Kac's result (Corollary 2). The proof
employs Cramer's theorem [ 4 ] (see Section 2) and the methods of
Kac's proof, together with a quasi-free-type analysis of a pair (/3, b)
consisting of a symplectic form and a real inner product respectively
which are related by an inequality. This inequality reduces to the
Cauchy-Schwarz inequality in the context of the first corollary and
is vacuous in the classical case — in other words it is only required for
the bridging theorem.
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§ 2. Preliminaries and Notation

If £ is a (possibly degenerate) symplectic form on a real vector
space F, we denote by 21 (F, /3) the "smallest C* -algebra of the
C. G. R.' s" [ 1 ] and note that any state CD on 31 (F, /3) is determined
by its generating functional

F» : V-+C

where Wf are the unitaries, satisfying the Weyl relations: W fW g —

e-M'^Wf+g, which generate 2T(F, jS).
A state is called regular if the map

is continuous from R to C for each / and g^V — equivalently if the
map

is strongly continuous when restricted to finite dimensional subspaces
of V — TT ,̂ being the G. N. S. representation of 2l(F, /5) corresponding
to the state CD.

A map F : V-+C is the generating functional of a state on 21 (F,
j£) exactly when

( i ) F(0)=l,

(ii) S afrFM-fjS'W >0

T, (a,

We shall refer to maps with property (ii) as being of ^-positive type
(or of positive type when /3 = 0). In view of Bochner's theorem the
characteristic functions of ?z-dimensional distributions are the gen-
erating functional of regular states on 21(12") (i.e. 21(12", 0)).

Cramer's theorem states that if the sum of two independent
12"-valued random variables is normal then each of the summands
is normally distributed — in terms of characteristic functions we may
state that if the product of two characteristic functions is a normal
characteristic function then each is normal.

If we have a von Neumann algebra N and a state co on TV, then
a family of von Neumann subalgebras (A^ : l^A] is said to be
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stochastically independent in the state o) if

a)(fl AJ =11 a)(A{}

Each state a) on 21 (F, /3) gives rise to a state on the von Neumann

algebra [na(Wf) : /eF}" through the cyclic vector flffl of the G. N. S.
representation. When V has a complex inner product space structure

and /3 is the symplectic form given by the imaginary part of the

inner product we write 2l(F, Im<^ . , . ». We now introduce a new
term: a state a) on 31 (F, Im<^., .», or its generating functional

FO, will be called ortho-independent if it satisfies

F»(f+g)=Fa(f)Fa(g) whenever </,g> = 0.

An example is the Fock state which has generating functional

We shall be considering a triple (F, f$, b) consisting of a real

vector space, a symplectic form and an inner product (positive

definite, symmetric, bilinear form) for which

b ( f , f ) b ( g , g ) > f i ( f , g)2 V/, g^V.

V will denote the completion of F in the inner product norm given

by b. In view of the above inequality there is a unique continuous

extension ft' of £ to V and, by the Riesz representation theorem,

there is an operator M on V such that

F(f,g)=l>(Mf9 g} V/,£eF.
We now drop the primes. Letting F=F0©F19 where VQ= {/e

F : fi(f, g) =Q V^^F} and FX^FQ-, we have the following properties

[5]:

(i) Af=0©#, \\N\\£1.
(ii) N=JP = PJ with P positive, / orthogonal and symplectic

on F!.

(iii) y gives a /S-allowed pre-Hilbert structure to Vl [6].

C/=F0©F00F1 may be made into a complex pre-Hilbert space

by defining:
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and then V may be identified with the real-linear subset
F! of U. Thus for /4=/?+/ie=7,

B ( (/?, /i) , (ft, /I) ) = b (fl, fl~) + b( Pfl, f$ + i[3 (f\, f$ .

Finally, quasi-free states on 21 (F, /3) are precisely those states
whose generating functionals take the form

ft, :

where meF* — the algebraic dual of V — and t is a non-negative
definite, symmetric bilinear form on V satisfying the inequality

??z is the first truncated functional of the state co and t is the
symmetric bilinear form determined by the quadratic form of the
second truncated functional of the state co.

§ 3. Statement of Results

Theorem 1. Let (F, /3) be a symplectic space, b a real inner product

on V for which

( a ) *(/, f ) b ( g , g) >fi(f, gY V/, gs=V,
(b) dimFo^l where 70 = ker 0',

and F the generating functional oj a regular state co on 21 (F, £). Then,
provided either the continuous extension of ft to V is non-degenerate (i. e.
VQ= {0}) or a) extends to a state on 2l(F, /3'), the following are equivalent'.

( i ) F(f+g) =F(f)F(g) whenever B(f, g) -0,

F(f)= e x p i m (/) - - (a

for f=fo+fi where me 7*, o-0e[0, oo)5 ^e[l, oo)5

(iii) F(/+g) =F(/)F(g) ^^r Re

( ( i ) wM.y£ ^^ dropped when dim Fi = 2.)

: 1. (ii) may be written

(/) -—5 (<70/0+ ̂ /15 aQfQ+aJ^ J.

2. These states are thus the quasi-free states whose bilinear
form is given by
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where (£yo, Qy are the orthogonal projections onto the subspaces F0,

Vl of V.

Corollary L Let h be a complex pre-Hilbert space of dimension greater
than or equal to 2 and F the generating functional of a regular state on
31 (/z, Im<C . , . » then the following conditions are equivalent'.

( i ) F is ortho-independent

(ii) ^(/)=expU??2(/)---j|/||2 <je[l , oo) 5 ? /z : h-+R real-linear

(iii) F(f+g) =F(J)F(g) whenever Re</, £> = 0 ;

when dimh=l the result remains true if (i) is dropped.

Corollary 2. Let V be a finite dimensional real inner product space.
If X is a V-valued random variable whose co-ordinates, with respect to
each orthogonal basis, are stochastically independent then X is normally
distributed with covariance <r2/, i. e.

, <7 EE [0, oo)5

the degenerate distributions where 0 = 0 are possible.

Proof of Corollary 2. fix is a generating functional on 21 (F)
satisfying the hypothesis of our theorem, thus

flx(v) =exp ijw(z;)— -y-a2b(v, v) L since V=V0=V,

= exp i(m9 v)—-y-o2(v,v) L since V*=V for dim F<ooB

Proof of Corollary L In this case the hypothesis of the theorem
is satisfied since the continuous extension of the symplectic form is
obviously non-degenerate, moreover this means that V^V^—V and,
since Im</5 g> = Re<z/, g>, we have P = I so that

Thus (i)iXii). Clearly (i i)=>(ii i)^>( i ) since
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Xexp[-ff2Re</,

§ 4. Proof of the Theorem

The following well-known properties of functions F, G of ^3-positive
type will be used:

08 i) F(-f)
(/3ii) F is also of ^-positive type where fi = —fi,
(/3iii) FG is of positive type.

(ft i ) and (/Sii) are simply verified and (/5iii) follows from (/5ii) and
the fact that the component-wise product of positive semi-definite
matrices is positive semi-definite.

We shall consider F0 = F VQ and F1 = F v separately (or simply F

in case V0= {0}).
Now in view of the argument deducing Corollary 1 from the

theorem, it is only necessary to prove ( i )->(i i ) when dim V1^2
and (iii)— >( i i ) when dim V1 = 2 — the remaining implications being
immediate.

A. Assume first that V1 is four-dimensional as a real vector space
(complex dimension two) and let {/, g} be a pair of its elements
orthonormal with respect to B.

( i ) Define 1, p : C->C by

* 00=^1 Of/), lt(u)=F^(ug).
(ii) Since B(u(J+ei6g},v(f-ei6g))=$ \/u,v(EC, O^R we have

(iii) Letting 6 = 0 , u = v : *(«) ^ ~

in particular A and [JL are in fact of positive type by (/Siii).

(iv) Considering 1 and ft as maps from R2 to C, they are
characteristic functions.

(v) Now assume, for the moment, that 1 and // are even
functions, and thus real:
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( a )

so, by the continuity of /I, and the fact that /l(0) = l,

(b) Putting u — v in (ii) and using the previous inequality
we also have

( c ) Since 1 is non-vanishing and continuous we may apply
Cauchy's method to the functional equation

to obtain

i(0=X where &<0, by (a).

(d) In view of (b) , ^ (M)=exp — - n - ^ i ^ ] 2 ?

so that if
h = uf+vg,

(vi) Now in order to eliminate the assumption that 1 and JJL
are even consider the functions /U, {jtft — these are even characteristic
functions on R2 and so the above analysis applies to them., moreover
Cramer's theorem tells us that

iy) =exp idntx + niy) — ̂ (x, C2x) L

x + iy) =exp| i(m2x + n2y} —^(x, C2jc) J9 x =

where

2d = 2C2=A/,

thus if h = uf+vg,

F,(K) =i(u)t*(v) =exp[iw(A)--l<j25(A, A)],

where

m : 7!->12

is the map defined by

m((xl + z>i)/+ ( A;2 + z>2) g) =
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B. We now extend the result to dim Fx>4. For any (complex)
two-dimensional subspace U of Fl5 Fl\u determines a pair (muy av}
by the above method. Define (m, a) by m ( f ) = m u ( f ) , ff=ffv where
U is any two (complex) -dimensional subspace of Vl containing f.
We must now check that these are well-defined — if they are, then
clearly

F, (/) = exp[«n (/) -±JB (f, /) ], /e V,.

Let U and W be two (complex) two-dimensional subspaces of Vl

containing a particular non-zero vector f, then

exp[imn(/) -- i*#

thus OU — G^ and, in view of the continuity of the maps t->mw(tf),
we have ?%(/) —mw(f). Thus a and m are well-defined.

C. Now consider F0, and suppose that F0 is two-dimensional.
Let {/, g] be an orthonormal pair in F0.

( i ) ' Define /!, /^ : R-^C as in ( i ) . (iii)-(vi) may be repeated
with R2 replaced by R (and (v) b omitted) we then obtain, for

-^25(/z, A) J.

DB The argument in B may be used to extend the result to
dimF0>2.

E. It remains to deal with the case of Vl being one (complex) -
dimensional. Let f be a vector in Vl normalised with respect to B,

( i ) " Define ;*, p : R^C by ^G0=^i((/); j" (0 = ^i(*y) •

(i i)x / Since Re5((j + t'0/, (^-w)/)=0 V^5 ^ef2 we have

and we may proceed as in C to obtain, for h=

The proof is now complete.
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§ 5. Conclusion

The importance of the result seems to lie essentially in the
fact that it singles out those regular states of the C. C. R. algebra
SI (/z, Im<^ .,. » for which the von Neumann algebras generated by
the Weyl operators with argument ranging over orthogonal subspaces
of h are stochastically independent. To elucidate we state

Corollary 3. For a regular state CD on 21 (/z, Im<\ .,. » the follow-
ing are equivalent:

( i ) Fa is ortho-independent

(ii) NI= {n<o(Wf) :f£=-h*}" are stochastically independent in the
state determined by Qm for any family {/ZA : A^A] of orthogonal subspaces
of h.

The proof is simply a matter of taking strong limits of uniformly
bounded sequences of linear combinations of ^(W/^s.

Finally we remark that the statement of Kac's result in [2] is
incorrect — the independence conditions do not force the distribution
to have zero mean.
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