A Remark on the Segal-Becker Theorem

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By

Kazumoto KOZIMA*

§1. Introduction

Let CP^{∞} be the infinite dimensional complex projective space and BU the classifying space of stable complex vector bundles. Then there is the natural inclusion $j: CP^{\infty} \longrightarrow BU$ and the structure map of the infinite loop space structure defined by the Bott periodicity $\xi: Q(BU) \longrightarrow BU$ where $Q() = \operatorname{Colim}_{\pi} \Omega^n \Sigma^n()$. Let $\lambda: Q(CP^{\infty}) \longrightarrow$ BU be the composition $\xi \circ Q(j)$. The results of Segal [8] and Becker [2] show us that there exists a map $s: BU \longrightarrow Q(CP^{\infty})$ such that $\lambda \circ s = \operatorname{id}$.

The main result of this paper is to show that one can take s satisfying that $s \circ j \simeq$ inclusion: $CP^{\infty} \longrightarrow Q(CP^{\infty})$.

To show this, we will use the results of Brumfiel-Madsen [4] for the evaluation of the transfer map.

§2. The Construction of the Splitting

Let U(n) be the unitary group and T^n its maximal torus. Let NT^n be the normaliser of T^n in U(n). We also define homogeneous spaces of U(2n):

$$E_n = U(2n)/U(n)$$
 and $E'_n = U(n+1)/U(n)$.

Then the construction of splitting in [2] can be reformulated as follows.

Let $r: Q(X_+) \longrightarrow Q(X)$ be the map induced by the canonical projection and $a: Q(X) \longrightarrow Q(X_+)$ the right adjoint of r. Let $t_n: E_n/U(n)_+$

Communicated by N. Shimada, May 10, 1983.

^{*} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

 $\longrightarrow Q(E_n/NT_+^n)$ the Becker-Gottlieb transfer ([2], [3]) associated with the smooth fiber bundle

$$U(n)/NT^{n} \longrightarrow E_{n}/NT^{n} \longrightarrow E_{n}/U(n).$$

 E_n/T^n has the action of $NT^n/T^n = \Sigma_n$ which sends eT^n to enT^n where $e \in E_n$ and $n \in NT^n$. $(X)^n$ is also a Σ_n -space by the permutation of the coordinates.

Since the elements of E_n can be considered as the *n*-frames in C^{2n} , we define a Σ_n -equivariant map

$$h_n: E_n/T^n \longrightarrow (CP^{2n-1})^n$$

by corresponding each vector to its representative element in CP^{2n-1} .

Also, since $E_n/T^n \longrightarrow E_n/NT^n$ is a principal Σ_n -bundle, there is a Σ_n -equivariant map

$$c_n: E_n/T^n \longrightarrow E\Sigma_n$$

which covers the classifying map of this principal bundle where $E\Sigma_n$ is the contractible free Σ_n -space. Thus we obtain a map

$$k_n = (c_n \times h_n) / \Sigma_n : E_n / NT^n \longrightarrow (E\Sigma_n \times (CP^{2n-1})^n) / \Sigma_n.$$

There is also the Barratt-Quillen map

$$w_n: (E_n \times (X)^n) / \Sigma_n \longrightarrow Q(X_+).$$

Notice that the composition $X \xrightarrow{i_1} (E\Sigma_n \times (X)^n) / \Sigma_n \xrightarrow{w_n} Q(X_+)$ is homotopic to the composition $X \xrightarrow{\text{incl.}} Q(X) \xrightarrow{a} Q(X_+)$ where i_1 is the map defined by the equation

$$i_1(x) = (*_{E_x}, (x, *_X, *_X, \cdots, *_X))$$
 for $x \in X$.

So the following Lemma is clear.

Lemma 2.1. The composition

$$CP^{n-1} = E'_n / S^1 \longrightarrow E_n / NT^n \xrightarrow{w_n \circ k_n} Q(CP^{2n-1})$$

is homotopic to the composition $CP^{n-1} \longrightarrow CP^{2n-1}_+ \xrightarrow{\text{incl}} Q(CP^{2n-1}_+)$.

Remark. One can easily show that the composition $w_n \circ k_n : E_n/NT^n \longrightarrow Q(CP_+^{2n-1})$ agrees with the composition of the Kahn-Priddy pretransfer $t : E_n/NT^n \longrightarrow Q(E_n/NT^{n-1} \times S_+^1)$ associated with the *n*-fold covering $E_n/NT^{n-1} \times S^1 \longrightarrow E_n/NT^n$ and the map $Q(E_n/NT^{n-1} \times S_+^1) \longrightarrow Q(CP_+^{2n-1})$ which is induced from the quotient map. (Compare

596

[6], [7].)

Now we are ready to define the splitting s. Let us consider the composition

$$s_n: E_n/U(n) \xrightarrow{\zeta} Q(CP_+^{2n-1}) \xrightarrow{t_n} Q(E_n/NT_+^n) \xrightarrow{Q(w_n \circ k_n)} QQ(CP_+^{2n-1})$$

where $w_n \circ k_{n+}$ is the pointed extension of $w_n \circ k_n$ and ζ is the structure map of the infinite loop space $Q(CP_{2n-1}^{2n-1})$. As in [2] and [9], t_n is compatible with *n*. So, since all the constructions are compatible with *n*, by taking the limit, we obtain *s*: $BU \longrightarrow Q(CP^{\infty})$.

§ 3. The Proof of the Main Result

By virtue of (2.1), we have only to prove that the diagram

$$E'_n/S^1_+ \xrightarrow{\text{incl.}} Q(E'_n/S^1_+)$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_n/U(n)_+ \xrightarrow{t_n} Q(E_n/NT^n_+)$$

commutes up to homotopy where the virtical maps are induced from the inclusion $E'_n \xrightarrow{c} E_n$.

We need the evaluation of the transfer.

where the maps with no name are induced from the canonical projections.

This proposition is a corollary of Brumfiel and Madsen [4]. (See Theorem 3.5 of [4].)

Since the diagram

$$\begin{array}{cccc} E'_n/S^1_+ & \longrightarrow & Q(E'_n/S^1_+) \\ & & & \downarrow \\ E_n/T^n_+ & \xrightarrow{\text{incl.}} & Q(E_n/T^n_+) \\ & & \downarrow \\ E_n/NT^n_+ & \xrightarrow{\text{incl.}} & Q(E_n/NT^n_+) \end{array}$$

commutes up to homotopy, we get the main result:

commutes up to homotopy.

Thus $s \circ j$ is homotopic to the canonical inclusion as an element of $\lim_{n} \operatorname{Map}(CP^{n}, Q(CP^{\infty}))$. Then $\lambda \circ s \circ j$ is homotopic to j on the finite skeleton. So one can easily show that $\lambda \circ s \colon BU \longrightarrow BU$ induces identities on the K-homology groups and on the K-cohomology groups, by using the fact that s is an H-map. (See [9].) Thus our s is a splitting.

Let $P^m()$ be the *m*-th term of the cohomology defined by $Q(CP^{\infty})$. Then we have the Milnor exact sequence

$$0 \longrightarrow \lim_{n} P^{-1}(CP^{n}) \longrightarrow P^{0}(CP^{\infty}) \longrightarrow \lim_{n} P^{0}(CP^{n}) \longrightarrow 0.$$

As in [5], one can easily prove that $P^{-1}(CP^n)$ is finite. So \lim^{1} -term vanishes and we have the main theorem:

Theorem 3.2. The composition

 $s \circ j : CP^{\infty} \longrightarrow BU \longrightarrow Q(CP^{\infty})$

is homotopic to the canonical inclusion.

References

- [1] Adams, J. F., Infinite loop space, Annals of mathematics studies, 90, Princeton Univ. Press, 1978.
- Becker, J. C., Characteristic classes and K-theory, Lecture Notes in Math., 428, Springer, 1973, 132-143.
- [3] Becker, J. C. and Gottlieb, D. H., The transfer map and fibre bundles, *Topology*, 14 (1975), 1-12.
- [4] Brumfiel, G. W. and Madsen, I., Evaluation of the transfer and the universal surgery classes, *Inventiones math.*, **32** (1976), 133-169.
- [5] Kono, A., A note on the Segal-Becker type splittings, to appear in J. Math. Kyoto Univ.
- [6] Kahn, D. S. and Priddy, S. B., Applications of the transfer to stable homotopy theory, Bull. A. M. S., 78(6) (1976), 981-987.
- [7] Roush, F. W., Transfer in generalized cohomology theories, Thesis, Princeton, 1971.
- [8] Segal, G. B., The stable homotopy of complex projective space, Quart. J. Math. Oxford (2), 24 (1973), 1-5.
- [9] Snaith, V. P., Algebraic cobordism and K-theory, Memoirs of the A. M. S., vol. 21, no. 211, 1979.

598