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The Completeness Theorems for Some
Intuitionistic Epistemic Logics In

Terms of Interval Semantics

By

Michiro KONDO*

Introduction

So far, "normal" modal logics are considered in many papers. In
these logics the rule of necessitation (if |- A, then h QA) is permitted.
Philosophically speaking, it means that what is assertoric is what is
necessary. For example, if it rains today, then it necessarily rains.
But it seems that this necessitarian world view is different from our
ordinary one. Hence in order to consider modal logics which are
akin to our world view, we had better do the non-normal modal
logics.

To begin with, we take the intuitionistic logic as a basic logic, and
we will consider the non-normal modal logics on it. Moreover we
will evaluate the modal formulas in terms of interval semantics
mentioned below.

It seems that this procedure gives rather weak modal logics and
that they are akin to our ordinary world view. Mathematically
speaking, to consider the epistemic logics on the intuitionistic logic
corresponds to this procedure. So, in this paper, we will consider the
intuitionistic epistemic systems, in which no formulas of the form QA
are provable. Trying to develop semantics for these systems, a com-
plication arises. Every formula of the form QA is not provable in
these systems. Especially Q(p^p) is not valid if we could have the
completeness theorems in our semantics. But in usual semantics for
modal logic, QA is said to be true at a world x in W if and only if
A is true at every world y in W such that xRy. Accordingly, if
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D(p—>p) is not valid in this semantics, then p-^p is not valid at some
world. However p—>p is a tautology, it must be true at every world.
In order to overcome this difficulty, S. A. Kripke has developed a
new model structure in [7], which includes one more set whose every
member called normal. Namely he divided the set of worlds into two
disjoint subsets of normal and non-normal worlds.

Further in [6] he has considered the intuitionistic logic and its
semantics with the idea of a model structure.

Recently, I. L. Humberstone ([5]) and P. Roper ([8]) have
developed a different semantics, called "interval semantics", from
Kripke's one essentially, although these structures are alike. In this
semantics the truth of a formula is evaluated not at a moment but at
an interval. For example, if a formula A is true at an interval x,
then it is true at every subinterval of x.

In this paper, we will show the completeness theorems for some
intuitionistic epistemic logics (IE, IE2, IE3, IET, and IE4) in terms
of interval semantics which is a fusion of Kripke's non-normal and
intuitionistic structures. L. F. Goble has studied these logics in [3], but
he used an axiom DAV~~OA, which is somewhat unfaithful to the
spirit of the intuitionistic enterprise. Here we do not use this axiom.

Further, we refer to the decidabilities of these systems.

§ L Formal Systems and Semantics

It is supposed that these systems (IE, IE2, IE3, IET, and IE4)
are expressed in a language with propositional variables p, q, r, etc.,
the usual truth-functional connectives A (conjunction), V (disjunc-
tion), -> (implication), ~1 (negation), and the modal operator L]
(necessity), governed by the usual grammatical rules. Since we are
working with intuitionistic systems, we suppose that A> V> -», ~~~1,
and G are the primitive connectives. Letters A, B, C, etc. are used
as variables for well-formed formulas.

The systems are generated from among the following axiom
schemata:

A.O axioms which are adequate for the intuitionistic proposi-
tional logic

A.I D(A-*B)->(nA->rTB)
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A.2

A.3

A. 4 CUT-^nOT, where T is some designated tautology such

as p->p,

and the rule schemata:

R.I modus ponens

R.2 if hA^B, then F-DA-^DB.

The system IE is denned by A.O, A.I, R.I, and R.2. IE2 is the

result of adding A.2 to IE; IE3 is the result of adding A.3 to IE2;

IET is the result of adding A. 4 to IE2 ; and IE4 is the result of

adding A.4 to IE3.

The structure <W, N, c? R) is called a frame, where W is a non-

empty set, N is a subset of W, c is a reflexive and transitive relation

on W satisfying the property: if xeN and yCx then yeN, and R

is also a relation on W satisfying the following property: persistent

for future i.e. if xRy and z^y then xRz. Every element of N is

called normal.

Let P be a set of propositional variables and V be a function from

PxW to the set of truth- values {0, 1} such that V(p, x) = 1 and

yCx imply V(p, y ) = l . Then the structure <W, N, c, R? V> is

called a model on the frame <W, N, C? R)o By adding further

conditions to the frame we obtain some models corresponding to these

systems.

We now define the truth of a formula A at xeW in a model

Snj = <W, N, C5 R3 V> by recursive definition on the length of A as

follows :

(1) 2KN*p iff V(p, x )= l
(2) SKt= x ~~lA iff for every y such that yC= x

not 3Kf= y A(3Kt£ y A)

(3) SK|=XAAB iff 3Kt=xA and SKN X B

( 4 ) Wl |= XA VB iff 9K (= XA or 2K |= XB

(5) SK[=XA->B iff for every yCx if 3K^yA then

(6) 5DZ|=XQA iff xeN and for every yCx and z such

that yRz, 2Kf= z A.

When 2K |= XA, we say that A is true at x in a model 3K. A is

said to be valid when A is true at any x^W for every model
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SK-<W5 N, C, R, V>.
Let L be one of systems of IE, IE2, IE3, IET, and IE4. We list

the frame conditions of these systems :

(IE2) R is reflexive on N
(IE3) if xRy, yRz, and yeN, then xRz
(IET) if xeN and xRy, then yeN
(IE4) (IE3) and (IET).

Now we define L-frame: when L is IE, an IE-frame is the same
one as defined above. An IE2 (IE3, IET, IE4) -frame is a frame
with the condition (IE2) ((IE3), (IET), (IE4)). An L-model means
a model on an L-frame.

Our first main theorem is that A is provable in L if and only if
A is L-valid, where we say that A is L-valid when A is true at any
element of every L-model. We will show this in the next section.

§ 2. Completeness of IE

First we mention the soundness part. Here we consider only IE,
so L means IE.

Theorem 1. // |-L A, then A is L-valid.

Proof. We have to show that the axioms of L are valid and
that rules preserve the validity. We only show that R.2 preserves
the validity.

Suppose that A-^B is L-valid but QA— >[[]B is not. There is a
counter model 9K = <W, N, c? R? V> for DA-^DB and xeW such
that 2R|£xnA->nB- Then there is a yCx such that 3K|=ynA and
SKj^yj^jB by truth definition. Since y^N, there are z^y and u such
that zRu and 3K|£UB. By 3K^y[UA, we have 3Kt=uA and 2K|£uA-»
B. But this implies that A->B is not true at u in 3JJ, so A->B is
not valid. This contradicts the assumption. Therefore the rule R.2
preserves the validity.

Next we have to show the completeness part, but before doing so
we prepare some definitions and lemmas.

By a theory we mean a set of formulas in L. A theory A is called
a saturated theory when it satisfies the next conditions :
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( 1 ) JaAAB implies J^A and
(2) //E)AVB implies JaA or
(3) J|-A implies Z/3A
( 4 ) J is consistent.

It is easy to show that any saturated theory A is closed under
R.I: if J3A and J^A^B, then J^B.

We have a powerful method for showing the completeness theorem.
By a canonical model for L, we mean a structure <WL5 NL, CL? RL9

VL> where WL is the set of all saturated theories of L? NL is the
subset of WL whose every member has at least a sort of formula GA
for some A.

For any x, y^WL , we define CL, RL, and VL as follows:

(i) y^Lx iff x is a subset of y
(ii) xRLy iff {B|xhD(p^p)-^nB}Cy
(iii) VL(p, x) = l iff pex.

Then the canonical model SKL = <WL, NL, cLj RL? VL> becomes
a model in our semantics.

( 1 ) NL is a subset of WL

and

( 2 ) CIL is a reflexive and transitive on WL

are evident.

(3) x^NL and yCLx imply yeNL :

Suppose that x^NL and y^Lx. There is a formula A such that
[jAex. Since y^Lx, DAey, so yeNL.

( 4 ) RL is persistent for future :

Suppose that xRLy and zCLy. Let us assume that xhGKp-^p)
->DB. From the definition of RL Bey. Since zCLy ? Bez. This
means that (B |x h D(p->p)^DB} Cz and xRLz.

(5) VL(p, x )= l and yCLx imply VL(p, y) = 1 :

It is easy to show this condition.
Hence the canonical model 3KL = <WL, NL, CL? RL? VL> is indeed

a model in our semantics.
We show the fundamental properties with respect to the canonical

model. They are useful to show the completeness part.
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Lemma 2. If A \f- A, then there exists a saturated theory x such that
and

Proof. See Thomason [9].

Lemma 3. For any normal saturated theory x, if x If QA, then there
exists a saturated theory y such that xRLy and

Proo/. See Gabbay [2].

Lemma 4. // J h DB /or some B,

Proof. Suppose JhDB for some B. Since [-B— » ( p — »p),
). Thus we have

Lemma 5. L^^ 3KL = <WL, NL, CL, RL? VL> be a canonical model
for L. Then for every xeWL and formula A of L,

2RL l=xA iff A ex.

Proof, (by induction on the length of A)

We only show the cases of ~~1B and of
For "IB, suppose that 3K L f= x nB but ~lB$x. Then x(f~lB, i.e.

xU {B} is consistent. There is a saturated theory y such that
y D x U {B} by lemma 2. Clearly y^Lx and Bey. When y^Lx, the
assumption and I. H. (induction hypothesis) yield B$y. This con-
tradicts the fact that Bey. Therefore ~lBex.

Conversely, suppose ~lBex. For every y such that y^Lx5 we
have ~lBey. Since y is consistent, B$y. This yields SKL|=x~~lBe

For OB, suppose that SKL^xCB but QB$x. Since x is normal,
there is a formula C such that GCex. By lemma 4 we have

{D|xhD(p->p)->DD} = {D xhDD}. Let y be {DIxhDD}. Sim-
ple calculus and the rule R.2 yield y If B. From lemma 2, there is
a saturated theory u such that uDy but u$B. Clearly xRLu. This
implies SP^LJ^xQB, and it contradicts our assumption.

Conversely, suppose QBex. It is clear that xeNL and QBey
for every y and z such that y^Lx and yRLz. This indicates Bez.
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So SKL

This fundamental lemma has completely proved.
We are going to show the completeness theorem for L. If [fLA,

then there exists a saturated theory x such that x$A by lemma 2.
By lemma 5, 3KLt£xA. That is, A is not L-valid.

§ 3. Completeness of Other Systems

In this section, we will prove the completeness theorems for IE2
(IE3, IET, IE4) by use of the method mentioned in §2. Let IE2
(IE3, IET, IE4) -model be the model with the condition (IE2)
((IE3), (IET), (IE4)). Using these conditions, we can prove the
completeness theorems for these systems respectively. Since the
soundness parts can be proved easily, we only consider the comple-
teness parts. For IE2 (IE3, IET, IE4) it is sufficient to show that the
further condition (IE2) ((IE3), (IET), (IE4)) is satisfied by the
canonical model for IE2 (IE3, IET, IE4).

For IE2, suppose xeNL. Since there is a formula B such that
QB^x, x hCKp-^p) by lemma 4. Take any formula A such that
x 1~ CD (p ~^ p) ~* EH A. The axiom schema A. 2 and the fact that
xl~[IKp~^p) yield x}-A. Hence RL is reflexive on NL.

The proof of the completeness theorem for IE2 is carried out easily.
For IE3, suppose that xRLy, yRLz, and y^NL . Let A be any

formula such that x \- Q(p-^p)— >Q]A. The axiom schema A. 3 yields
hDA->n(n(p->p)^DA) and x h D(p->p) HH(D(p->p)-»nA).
Since xRLy and yRLz, y h nCp~>p)~>DA and zhA i.e. zBA. We
have {A |x h n(p~^p) "^CHAj Cz. This means xRLz.

Therefore the completeness theorem for IE3 can be proved sim-
ilarly.

For IET, it can be proved that the further condition (IET) is
satisfied by the canonical model for IET. The condition means that
xeNL and xRLy imply yeNL.

Suppose that xeNL and xRLy. We have x h DCp~>p)~>Dn(p~>p)
by the axiom schema A. 4. By simple calculus we have [JCp— >p) GEy
and yeNL.

The completeness theorem for IET holds.
We can prove the completeness theorem for IE4 similarly.
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In the next section, we will show that IE (IE2, IET, IE4) has the
finite model property. We use the method called "filtration".

§4. Filtration Method

We apply the filtration method to any IE-model, which is a basic
argument of our consideration.

Let 3K = <W? N, C, R, V> be an IE-model, and 0 be the set of
formulas closed under subformulas. We define a filtration model HJJ*
of 3K through 0.

For every x, yeW, we define x=y when SKt=xA iff 9K[=yA for
every formula A in 0.

[x] = {y<EW x=y}

is an equivalence class of x under = , and we set

For any [x], [y]^W*, we define N*, c*9 R*5 and V* one by one.

N*3[x] iff 9Khxr]A for some HAe0
[y]c*[x] iff if 3Kf= x A then 2K[=yA for every formula A(E<2>
[x]R*[y] iff if SWKDA then 3W|=yA for every formula of

the form [HAe0,

and for every pe$,

V*(p, [x])=l iff V(p, x )= l .

Let 3K* be the structure <W*, N*, c*5 R% V*>, which is called
a filtration of 2W through 0.

It is evident that these definitions are well-defined. Clearly these
definitions indicate that 9K* is indeed a model for IE.

We mention an interesting fact, which reflects the adequency of
interval semantics.

Lemma 6. Let L be one of systems among IE, IE2, IE3, IET, and
IE4. Let SO? be a model corresponding to that system L. For every formula
A and x<EW, z/ SK(= X A and yCx , then SKN y A.

Proof. It can be proved easily by induction on the length of A.
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§ 5. Decidabilities

We will show that IE (IE2, IET, IE4) has the finite model pro-
perty. In order to do so, we need the next lemma.

Lemma 7. Let 3K be an IE-model. For every xeW and formula AeCP,

97?*b A iff W b A**'*' F [x]A W JJ(f F x^-

Proof, (by induction on the length of A)

We only consider the cases of ~~lA and of QA.

For "I A, suppose that 3K* (=M~~!A but SK|£x~lA. There is a y such

that yCx and SK|=yA. Since y^x, by lemma 6 we have [y]^*[x]

and SK* Nr^A. Thus we have 2K* ^Cx]~lA. But this is a contradiction.

Conversely, suppose that SP rJf=x~~lA but SJl* (£ [xl~lA. There is a

[y] such that [y]c*[x] and 3K*t=[y]A. By I. H., $R^yA. From

truth definition SK^y~lA. The definition of c* shows that 2R|£X"~!A.

But this contradicts our assumption.

For QA, suppose that 3K*i=[x]Q]A but SK[£xnA. Since 271*1= WA5

[x] is in N*. By the definition of N*, there exists a formula GB in

0 such that 3Kf=xnB. Thus x is in N. The assumption SKt^DA

indicates that there are y^x and z such that yRz and 3Kf£zA.

Clearly yRz and I. H. imply 3K* f£ [z]A. Thus we have SK* (£ [x][HA.

This contradicts our assumption.

Conversely, suppose that 3K f= xnA but SK* t£wiI]A. By the defini-

tion of N*, [x] is in N*. Since 3K*^ rx]DA and [x]eN*, there are

[y]^*[x] and [z] such that [y]R*[z] and SW*^[z]A. We have

3K(£ZA by I. H.. The definitions of ^* and of R* imply SK^xQA,

but this is a contradiction.

This lemma is completely proved.

From this lemma we can prove that the IE-system has the finite

model property.

Theorem 8. The IE-system has the finite model property.

Proof. If (f I EA, then we have SK(^XA for a counter IE-model
SK and an xeW. Let 0 be the set of all subformulas of A. Let
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m* be the filtration of SK through 0. Since 0 is finite, 2K* is a
finite model. Then by lemma 7 we have SK* |£ [X]A. This means
that the IE-system has the finite model property.

For the IE2-system, we have to check that the filtration Sft* of
9K through 0 satisfies the frame condition (IE2) when Sft is a model
for IE2. This is clear.

Hence we have :

Theorem 9. The IE2-system has the finite model property.

As for the lET-system, we have to change the definition of R*B

The new definition is as follows: For [x], [y]eW*,

[x]R'[y] iff if 3K^XQA then 2K|=ynA for every formula
of the form QA in 0.

This definition of R' is well-defined and satisfies the frame
condition (IET). By simple calculus, SK' = <W*, N*, c*9 R', V*>
will be an lET-model.

In order to show that SK' satisfies lemma 7 instead of SK*, we
have to indicate that lemma 7 as to IET holds for the case of QAe
0.

For OA, suppose that SK'Nc^DA but 3Kt£xGA. Since x is in N,
there are y^x and z such that yRz and SK(£ZA. By I. H. we have
SOT[£[Z]A. The definitions of R' and of c* indicate SPr^Cx£jA. But
this contradicts our assumption.

Conversely, suppose that SKi=xQA but 3K'[£ [X]L] A. Since [x] is in
N*, there are [y]^*[x] and [z] such that [y]RTz] and SK>WA.
By I. H. 3K[£ZA. The definitions of c* and of Rx yield SKf^DA.
This contradicts our assumption.

Therefore lemma 7 as to IET also holds for 2ft'.
Hence we have:

Theorem 10. The lET-system has the finite model property.

As for the IE4-system, we take R' instead of R*. It is easy to
show that aK' = <W*, N*, c*5 R', V*> is an IE4-model when M =
<W, N, c, R, V> is one.

Lemma 7 as to IE4 holds for W.
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Thus we have :

Theorem 11. The IE4:-system has the finite model property.

Unfortunately, I can not say at present whether IE3 has the finite
model property.
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