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Jacobi-Perron Algorithms, Bi-Orthogonal
Polynomials and Inverse Scattering

Problems

By

Yoshifumi KATO* and Kazuhiko AOMOTO**

§ 0. Introduction

It is well-known that the spectral theory of a Jacobi matrix is
essentially equivalent to the theory of orthogonal polynomials with
respect to its spectral density on a real interval. This is also related
to the Fade approximation of a Stieltjes integral by rational functions
which gives us the inverse spectral theory of Jacobi matrices (See
[19] and [20]).

On the other hand several people have shown that the equations
of Toda lattices are described by Lax type formalism of Jacobi ma-
trices and related to its spectral densities (See [2]5 [6], [7], [8] and

[10]).
It seems to be interesting to ask whether these facts can be gene-

ralized to higher order linear difference operators. The purpose of
this note is to construct 3rd order linear difference operators by Jacobi-
Perron algorithms as a generalization of continued fractions (See [5])
and to prove an equivalence between linear evolution equations of
spectral densities and Lax type equations (See Theorem 1 and 2).

§ 1. Jacobi-Perron Algorithms

Let two Radon measures f*o(d£)9 ^i(fl?Q be given on a compact
set F in C. We consider the Stieltjes integrals

Communicated by S. Hitotumatu, June 1, 1983.
* Department of Engineering Mathematics, Faculty of Engineering, Nagoya University,

Nagoya 464, Japan.
** Department of Mathematics, Faculty of Science, Nagoya University, Nagoya 464, Japan.



636 YOSHIFUMI KATO AND KAZUHIKO AOMOTO

d.l)

which are holomorphic with respect to z^C—P. Then the functions
have Laurent expansions at the infinity as follows:

(1.2)
v=Q

where cjtJ> denote the moments:

(1.3)

We assume the following "regularity condition" holds for //0WQ and

.l) All the determinants of order 2k and 2k + 1 for the sequence

. . . . ,
(1.4) det

(1.5) det

are different from zero for fc^O. These will be denoted by D2k and D2k+i

respectively. We put DQ to be equal to 1.

We can put

, -I r*\ U\ V\

° vo\ 1 ^i'
such that iii, yi3 wi ar^ described as Laurent series as follows :

(1-7)

where 37_i=lAo,o and ?o = ^i,oAo,o ar*e well-defined. We apply the
Jacobi-Perron algorithm of 3rd order (see [5]) to (1.7) at the
infinity £ = oo in the following manner :

, W2
(1.8)
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where u2/w2 = 0(z~l) and v2/w2 = 0 UT1). Namely we consider a
projective transformation

MI

(1.9) =
' 0 0 1

1 0 a2

^ 0 1 p2z+P'2 . ^ ^2 ^

between the points Ui'.vl'.wl and U2'.v2:w2 in CP2. u2/w2 and v2/w2 are
also expressed by Laurent series:

W2(1.10)

-=xj&r-
Then we can define the similar determinants D2k and D2k+i as Z)2fe

and D2k+i respectively for the sequence [c'QiV, c'l>v} Q<:v<00. First we show

Lemma 1.

( I l l ) Z)' =c~3k~lD

for k^.0.

Proof. The relation (1.8) implies the following identities:
n-l

(1.12)

Then we have firstly

(1.14) «2=£iA &= 1 ^=^1.
''O.O ^0,0 ^0.0

Successive uses of the relations (1. 12)~(L 14) give the formula
r-l ,

(1.15)

r _
6l.s+r + l

^ = 0 C0io

r-1 ̂ ' c

— ~~Zj-

= -L-det
^0,0

^0,0

£0,0

C0,2 C0,2k

CQ.Q
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for ^o.-i^O, which is equal to c^~lD2-k+\. We have thus proved
(1.11) 2 f t . ( I . l l ) 2 f t 4 . i can be proved similarly.

Since D2k and D2k+i, £^0, are all different from zero, D2k and
DU+D k^Q, are also different from zero. In particular we have
£0,0^0. This makes it possible to repeat the substitution (L8) for
(v2/u2, w2/u2) instead of (PI/MI, Z^I/MI) and so on. Therefore the
regularity property allows us to consider successively the /2-thJacobi-
Perron transform

(1.16)

^R

for /z^2. By the same reason, we can also see all the coefficients
A» = Ai+i/Ai9 ^2, are different from zero. If we take O)^ = VQ/UQ,

then M0, y0, w0 are linearly related to wn, &„, ̂ B as follows :

" «« "
»„

. wn ^

—

" 0

1
I o

0

0

1

1
Kn + 1

A,+i*+jfi

""I

n + 1 J

(1.17) P'nU) P'n+

Wn

where pn(z), p'n(z)9 pn(z) denote polynomials of exact degree ?z— 3,
/2— 4, n—4: respectively. The matrix in the right hand side will be
abbreviated by An(z). Note that det^4wU)=l, so that An(z) and
lAn(z)-1 lie in GL3(C[z]). Therefore tAn(^)'1 can be written

' AU) 9«U) ?,.U)

where j5w, qm rn, p'n, qn9 f'H9 A» ?« f« denote polynomials. This algorithm
to compute sequences of polynomials pn(z), p'n(^}^ AW and AW5

AW ? AW is nothing else than the usual Jacobi-Perron algorithm
with respect to Laurent series.

Proposition 2. (i) Each polynomial <pn=pM p'M p"n satisfies the
difference equation :

(1 .19) ^» + 3 =

(ii) Each triple (<pn, $„ fc) = (A, tf« ^ ), (A, ?i, O, (A, C O



JACOBI-PERRON ALGORITHMS 639

satisfies the difference equations

<f>n + l= -«» + lft,

(1.20)

Proof. In fact these follow from the obvious recurrence equation
for AH(z) :

f 0 0 1

1 0 an+l(1.21)

Since all f)n are different from zero, we can see from (1.20) that
the degrees of pM qn, rn, p'n, q'n, rn, p"n, qn, f'n are exactly equal to k-2,
k-l, k-2, k-l, k, k-l, k-l, k—l, k-2 if n=2k and equal to
k — 1, k, k — 1, k, k, A — 1, k — 1, k, k — l if n=2k+l respectively.

Proposition 3. (i) For a pair of measures /A) (WO, ft(rfC) on F
which have the regularity property (Jf.l), the Jacobi-Perron algorithm can
be carried out up to any stage. We have the following Fade approximation
for ft>0 (,?;), a)i(z) at the infinity z = oo ;

3)

(ii) The function

(1.24) Mn/Mo=

has the property

(1.25) L

Proof. First we want to prove (1.24). Since un+i= — an+lun+vn

and vn/un = an+l + 0(z~l), we have

(1.26)
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This shows (1.25) by induction on n. Next we want to prove

the first part of (1.22). The left hand side is equal to

( 1 2 7 ) V° _ P2k —

yu2k\r2k

On the other hand, we have that u2k/uQ = 0(z~2k), V2k/u2k

, deg p2k = 2k-3, deg ff» = A-2, deg q2k = k-L Thus,

(1.28) z;o_«
UQ

For the second part we have

(1 29) ^0 _p2k —

(1.23) can be proved similarly.

Conversely, under the condition (Jf.l) the triples (/?„, p'M p"n} or

(pn, p'M p"n) are the unique ones except for constant factors such that

they satisfy (1.22), (1.23) or (1.25) among polynomials of the same

degrees as (/>„ p'M p"n) or (/„ f>M p"n). Namely the triples (pn, p'H9 p"n}

or (/„, p'M p"n) are "perfect systems" in the sense of K. Mahler (See

[13] and [14]). In fact (1.22) and (1.23) imply

,

«>lp2k

l 23y ( «>oPzk + l ~P2k + l = 0 (^-') ,

1 <*>lP2k + I-p2k+l = 0(Z-k},

which give linear equations with respect to the coefficients of p2k, p'2k,

Pn or p2k->-i9 p2k+i> p2k+i- The determinants coincide with (1.4) and
(1.5). Owing to (Jf.l), (1.22)' and (1.23)' determine uniquely

the polynomials p2k(z) and p2k+i(z) except for constant factors. These

give us the following formulae :
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CQ,1 CQ,2 * " ° CQ,2k-2

(1.31)

•l.Q Cl,l ' ' " Cii2k-3
a a e
a e o

1 Z e • e £2 ~3

'C.O ^O.l " ° " ^0,2fe-2

CQ,l £0,2 * ' e CQ,2k-l

C0,k-2 CQ,k-l' " 8 £o,3fc-4

Cl,0 Cl,l * B * cl,2k-2

1 < • 8 • < |

These are rewritten in integral form by using the relation (1.3) as
follows:

(1.32) p2k(z')=i<Zi ^

n u- -*o- n u , - ^ - ) - n

r
(1933) p2k+\(z) — S \ (^ ~^i) (^ "^2)B • ° (z ~-

il<"-<ik_lJr

• n fe-£,-)• n u , - -^ ) - n

Owing to (1,1), the left hand side of (1,22) ' is equal to

= f (/»aU)-/'a(C))/4,(ff) ^(,} , f MCM

-

_

polynomial part



642 YOSHIFUMI KATO AND KAZUHIKO AOMOTO

Therefore we have

(1.35)

(1.36)

Similarly

(1.37) $»U)='

(1.38)
£ — C,

(1.39) /4+1U)

(1.40)
^ — C

.4 1) ^+1 a)

( 1 .42) 0 a^) =: ( A»+i(C)Mff). t
Jr ^ — C

In particular from (1.36), (1.38), (1.40) and (1.42) the following
bi-orthogonality holds:

(1.43)

(1.44)

(1.45)

( 1 .46) ( C^a+1 (Q ft WO = 0, 0 ̂  n ̂  A - 2.
Jr

(1819) can be rewritten as follows:

n 1 Q ^ ' TYO — — ^n — an + l (n _ Pn + l .-, l _ £ r e + 3
(1,1?) Z<Pn + 2— ~n - -Q - <Pn + l -Q - ^« + 2-r-o - .

Pn+l Pn+l Pn+l Pn+l

Namely the operators of multiplication by £ gives a matrix representa-
tion as follows :
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-4- o

(1.47)

B'2 a, I
2

ft ft & ft

A r4 ^5
y ^o~ ~~~£~~ ~^~Q~~ ~~p~

Ps A Ps PG

The matrix in the right hand side will be denoted by L. Then
the pair (ft+i/^ft+i/O satisfy the adjoint difference equation :

(1.48) = L

Let £" be the Banach space consisting of continuous functions on
F which can be approximated uniformly by polynomials. Then the
operator L defines a bounded operator on E. We denote by E* the
dual space of E. Then en^ = pn(Q =pn(L)e09 n^3, or e*^= (ft-n/k
ft+i/'»)=ft+i/n(i)«o*+ft+i^(L)«1*5 w ^ l , give dual bases each other of
E or E* :

(1.49)

for H^W, w, 777^1. We can also prove the following formulae:

Proposition 4. For n ̂  1 5

( l .50) A (,) = ( A(<) -^) ^0 (rfC) + \ KW-
jr z — L, Jr z —

and

(1.51)

These imply that the matrix elements of the resolvent of L, (e*,

(z—L)~len) are described by the integral representation

(1.52) (rf,^-L)-1O

T??, ?2^0. In particular,
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(1.53)

The operator L has thus been reconstructed from the spectral
densities /^(rfC), //i(<C) such that L coincides with the multiplication
of the variable z with respect to the bi-orthogonal system of poly-
nomials pn+$(z) and (p'n±i(z), p n + i ( z } } . This result can be summarized
in the following way.

Theorem 1. Under the regularity condition (Jf.l), we can uniquely
construct by Jacobi-Perron algorithm a bounded operator L on the Banach
space E such that its spectral densities coincide with the pair //0(<O,

on F.

§ 2. Spectral Densities and Lax Type Equations

We want to show that Lax type equations for the operators con-
structed in §1 are equivalent to linear differential equations for their
spectral densities.

Let co= {(oat(^ <O}0^^v-i, o^r^M-i, C^C, be a matrix valued continu-
ous 1-form in a neighbourhood of a rectifiable curve F in C. Let

0^j<oo? be two linearly independent systems of continuous functions
on F such that the following bi-orthogonal relations hold :

(2.1) 8ij = (ef |<y |*/>

We assume further that there exist two suitable Banach spaces E
and E* which are generated by the dual bases {ef = <>z

(r)>5 0^z'<oo}
and {£* = <£ t*

(ff)>, 0^gf<oo} respectively. The duality is denoted by

(2.2) E

such that the right hand side of (2.1) is equal to <0* |cy |0 ; >. We
assume further that *,-, ̂ / and cw depend differentiably on time t in a
neighbourhood U of the origin and satisfy the following order pre-
serving properties :
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(jf.2) e'i and e* are linear combinations of 0,-/, i^i\ and #*/, J^/,

respectively.

We consider linear differential equation for <w(C, rfC) of the following

type:

Ui) <KC, rfo (=-J-cc, #))="«;, #)/(*, o =/*(*, CMC, #)

for suitable continuous square matrices f(t, C) = (fae) and /* (£, Q =
(/*#) on ^ °f order M and A^ respectively. Let L be the operator
on E such that its spectral density matrix coincides with o>(C? <C) :

(2.3)

Further we define the operators f ( t , L) and /* (^, L*) respectively
as follows :

(2.4) (e?, /(/,£)«,•).=

(2.5)

Definition. L^^ ^4 (or A*} be a bounded operator on E (or E*) defined

by an infinite matrix (aij}0^ij<00 with respect to the bases {e{} and

{e*} such that (e* ,Aei) —a{j. Then A(+\ A(~} and A(Q} are defined as

follows :

{j if i>j

(2.6) tf i=j2 "

0 if i<j
| 0 if i*j

(2.7) W, ^.) = l .
IT"" lf l=J

and A(-^=A-A(+\ Remark (^ (+))* = (A*)(~\ (^(-})* = (A*)(+\

Then we have the following theorem:

Theorem 2. Suppose that the measures <war(C, rfC) ^^ non-degenerate

and normalized such that we can choose ^-(Q, e * (Q as follows :
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(2.8)

(«,(C) = '(0, -, 0, 1, 0, -, 0), Q^i^M-l,

(1+0-/A

(C) = (0, -, 0, 1, 0, -, 0), O^j^N-l.

(l+f)-th

Then the differential equation (S^ is equivalent to the Lax type nonlinear
equations :

U2) L =lf(t, LY», L],
(£1) £* = [/*(/, i*)(+), £*]•

Proof. We firstly show that ( < ? 0 implies (<? 2 ) and (c?2*). By
Leibniz rule, the differentiation of (2.1) with respect to t gives

(2.9) 0=<*; |o.| «,-> + <«* \<b h> + 0* o»| e,->.

According to («3f .2) , e; and e* are described as follows :

(2.10) 4=££,vi*,,,
z'^i'

(2.11) *} = £ W}.
j-s.i'

Therefore from (2.1), (2.10) and (2.11)

(2.12) (ef, f(t, L)«,-). + fy.-=0, i>j,

(2.13) (/*(f, I*).;, «,-). + 7,v = 0, Kj,

and

By taking £u = y{i, we can determine uniquely f;; as follows:

(2.15) £« = ?«= -yC*.*

On the other hand

(2.16) («;, £,«,).=<«; i a.z,i«,.>

.

='- z: < ;̂
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By using the relations of completeness, we have

(2.17) <*/ a>f(t, L)L\ fiy = Z <ef \a>f(t, L) \ «»><«? a>L\ «,->.
k = 0

Therefore

(2.18) («;, £,«,).= S <«>* \vf(t, L} I «,,><*;, |aiL| «,->

(<f|) can be deduced similarly.
Conversely, under the condition («?f. 2), suppose that (<?2) or
?) holds. Then for 0^i^#-l, and O^j^Af-1,

(2.19)

By differentiation with respect to t, the left hand side is equal to

(2.20)
r £-

while the right hand side is equal to

(2.21) («;, {/(/, Z,)^^-!.)-1-^-!.)-1/^ Z,)(+)}«,.).

From the normalization (2.8), ( f * ( t , L * ) ( + ) e * , e k ) a ) and G?*,/(£, L) f+)

•£,-)<» vanish for Ofgz '^M — 1, Ofgj^TV —1, 0^/t< + oo0 Therefore (2.
21) is equal to

(2.22) (ef

And we have the equality;
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(2 23) ( *ij(^l_ = ( MC, <g)/(*, QU-
Jr £-C Jr £-C

which implies (<f 0 :
M-l

(2.24) ^(C, rfC) =S ««««, #)/„(*, 0 on T.
fc=0

The theorem has been completely proved.

§ 3. Examples

(1) Pochhammer integrals (see [3]).

Let a, /3, p be complex numbers such that Re a, Re /3, Re ^>0. The

1-form o)(x9 dx)=xa I —x \B\t —x \rdx, f> l , gives Radon measures

fjtQ(dx} and fatdx) on each interval [0, 1] or [1, £]. We define the

polynomials p2k+i of degree 2k— 2, £^1, and p2k of degree 2A— 3,

A^2, respectively by the following formulae. For some constants rfe,

c'k and tj

and

(3.2) c'k-\x
a+k-2 (x - 1 ) ^9+fe-1 (* - 0

(* - i ) /?+""
where ^ and ^ are to be chosen such that

(3.3)

We express c'k and cj by

(3.4)

where

f l
^= -V ̂ ^-'(x-

*• Jo
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for a suitable constant pk which will be determined later.
By partial integration we have the bi-orthogonal relations (1.43)

-^(1.46). We want to compute explicitely orB+1, pn+l and f$'n+l in (1.47).
We put

(3.6) 4,= -A% l^a + k-l, A2

and consider the integral of Pochhammer

(3.7) F(4 4 4 ^ =(y-X)yi(y

Then xa(x — \Y(x — t)rpn(x) can be identified with F, except for
constant factors :

(3.8) xa(x-ir(x-t^p2k+l^=ckF(^ 4

(3.9) x'dx-iyax-VpaW =

if the integration (3.7) is taken to be the residue around x. A
general result about difference systems in [1] shows that F(4 4 4
^3) satisfies a maximal overdetermined linear difference equations with
coefficients of rational functions of 4 ^i? 4 4 In fact this follows
from the following lemma.

Lemma 3.1. (Stokes formula) . The integral

vanishes for an arbitrary polynomial <[>(y).

We use (3.10) to get an explicit expression of (1.47). an+1, /3W+

and f}'n+i in (1.47) can be obtained by solving the following equations:

i) (y-fi

l) +^+1(7— 0}
1 1 ,

for a polynomial <l>i(y) of degree 3 in case ?i = 2k, k^2, and
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y-x

y x

_ - _
dy \y—x y y — l y — t

for a polynomial <[>2(y) of degree 4, in case of n =
We can solve (3.11) and (3.12) by elementary computation and

have the following result :

Lemma 3.28 (i) Case n = 2k, k^2.

(3.13) ^(y}=-^-y(y-\)(y-t}- * * (y-x} (y-l} (y-t)
AQ Atf

and

x1/ ^2(1-0

where %„ denotes
(ii)

(315)c • J

(3.16)

(3.14) and (3.16) immediately imply

Lemma 3.3.

(3.17)

where
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1 (a + k-\}t2 (0 + A;- l ) (*- l )

Ck

and

As a result,

Corollary. For A^

(3.20)

(3.21) Pk+2 = ^'

Lemma 3.4 (Characterization of ck and c"k). c^ c( satisfy the following

recurrence relation:

/Q OO'N ( &' s" \ /«' ^"N
\D,£Z.) k^/^+l? 6/fe+iy — V6^5 6 / f e ^

flu (A:), a2i(k}, al2(k) and a22(k), in view of (306)9 denote rational
functions of k as follows :

(3.23)

f-1
(3.24)
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(3.25)

32
"0

and

(3.26) -
1 ; (/DO -f- z ;

Prooj. In view of (3.5), c'k and ^ are equal to F(0? x^ — 1, /l> —1,
^3) and — F(0, ^ — 1, /12, ̂ 3 — 1) respectively. Then the relation (3.22)
implies that there exist polynomials ^i(tf) and (p2(

x) of degree 2 such
that

(3.27) x-t= ' —1) x ( x — t ) dx

A+_A_+_A_
. x x — I x—t

and

(3.28) *-!=-
x ( x — t ) dx

w>
# ^ — X

^n(^)5 #21(^)5 flwW and «22(^) can be determined as in Lemma 3.2
by explicit computation of these equations.

Proposition 4. (i) 0^+1, /32jm a^zrf /S^+i <2r^ rational functions of

tin ck+i-> c'k, c"k, c'k+i, cl+1, a, /3, 7, k and t.
(ii) tf2£+2, fe+2 ^^fif /S2fe+2 are rational functions of ck, ck+i, c'k+i,

cl+i) c'k+2) c'k+2i a? ^5 T? ^ fl?z^ t. Here ck, pk, c'k and cl are obtained by
the formulae (3.9), (3.21) and (3.4) respectively and c'k and c"k satisfy
the recurrence relation (3.22).

The spectrum of L coincides with the intervals [0, t~\. The supports
of its spectral densities /^o(rfC) and /^(rfQ are equal to [0, 1] and
[1, £] respectively. /4)(fi?C) and //i(rfQ satisfy a linear differential
equation as function of t:
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(3.29) (,-,-(Ar\ ii.(Ar\\ — (n_(jr\ •• (Ar\\ T

According to Theorem 2 in §2, we have

Proposition 5.

f / r \(+)

(3.30) L

(2) Periodic case (See [18]).

We assume further that the matrix elements of L have period m:

(3.31) an+m = an, fin+m = &, &+»=#,

for n^l^2. The matrix L can be extended to a periodic matrix L

such that (3011) holds for non-positive integers. Then t (uh vh wi)

satisfies the characteristic equation

(3.32)

where Ai>m denotes the product

= 0,

(3.33)

1

1

r
1

and y is an eigenvalue of Aiiin(z). y satisfies an integral algebraic

equation

(3.34) /- (fl0 + fli* + • • • +a^k)y2+ (bQ + b1*+ - - - +b^}y -1 =0,

or

(3.35) /- (a, + a^+ • • - +flafc+i*a+1)/+ (i0 + ̂ + e • • +^")j -1 = 0,

according as m = 2k or 2&+1. We denote by &m the algebraic curve

defined by (3.34) or (3.35). Then we can make use of the same
method as in [17] and prove the following:

Proposition 6. Under the assumption that

(3.36) \a2M-4a2k}^0 for m = 2k,

(3.37) Ua+i^O for m=2k+l,
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the genus of 3?m is equal to 3k—2 for m = 2k or 3k for m = 2k+l.
i) The divisor of y in 3?m is written as follows

(3.38) 00 - -2£P + £(P'+P") for m = 2k,
(3.39) (jO = -(2& + l)P+(2/t + l)P' for m = 2k + l,

where P, P7, P" (m = 2k) or P, P' (m = 2k + l} denote effective divisors
of degree 1 lying over £ = oo :

or

\ Un+t Un+i /

satisfy

(3.40)

(3.41)

(3.42)

(3.43)

(MW+I) =j(2P-P'-P") + £>2j+i-2>i,

( u>,+, \

CL = w+np-icp'+n+^
/ 7, \
/ Vzj+i+i \ og' & - i i

I W2j+i-i.i \ — p , pf , -pit | QI ^
\ U2j+i+i /

in case m~2k, or

(3.44) (un+l

(3.45)

i/i cfl^1^ m = 2A +1.

Conversely

Proposition 7. Suppose that an arbitrary sequence of complex numbers

{#0, <2i, • • • , <%, 6 0 , - - - , 6A} /or m=2k or (<20, • • • , fl2*+i5 ̂ o? "•? ^J /^ ?^=2A;+1
is given such that (3.36) or (3.37) holds. We choose (uh vh WL} for
1^2 such that



(3.46)
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m =

(3.47) "Ul

t^L\ = pf-pjr^l_l-^h m=2k+l,
\ HI J

where &t denotes a regular effective divisor on £? m. Then we have the
periodic Jacobi-Perron algorithm for the pair (vi/uh WI/HI) of period 2k or
2k +1 such that

(3.48) yuA+l = uh

(3.49) _?!»+/_ = _z^ ^hk±L = -^L9
U2k + l MI ^2fe + / MI

or

(3.50)

(3.51)
Z/2£-f/-fi Ui U2]z+l + i Ui

In particular we consider the case m = 2. Then J£?2 is an algebraic
curve defined by the equation where we put y = h~1:

__^- h l

$„
(3.52)

and h, h'9 h" be three roots of it. If |A| =£1, |A'| =£1, |/z /x | 9^19 we
may assume that there are only two cases, (i) \h\ <13 \h'\ >1, |/z /x | >1

or (ii) !/*|<l, lA'Kl, I^I>1- For k|>!3 case (i) occurs. There

exist three linearly independent quasi-periodic solutions for (1.47)

?co)=K"}, <P™ ={??>}, ^ ={??},
such that

(3.53)
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Consequently ^(0)e/2[0, oo) and none of non-trivial linear combina-
tions of ^?(1) and <p(2} belong to Z2[0, oo)e We have

(3.54) ^0)

(3.55) ??f:

for rc^O. ^0) coincides with un+i in (1.24). Suppose further that
the algebraic equation (3.34) defines a Galois covering over CP\ Then by
choosing a suitable variable for z we may assume that h is equal to

(3.56) h = z + ̂ T^?

and the matrix L has the following expression
2ni/3h'(c) h" (c) —1 0

— h'(r\ — f > 2 l l i f t h ' ( r \ h ( r \ /»2ffI'/3 HII \L>) o il\L>)Il\(jjV \)

0

where ceC. We denote by F the set of all ^eC such that |A| =1
or |A ' |=1 or 1^1=1. Then F is a real algebraic curve having
branch points 1, e27Ll/3, e4nt/3, and C—F has four components which

we denote by @^ &2, ^3 and ^4 (see the figure).

1
/Q ^7\ r _ x

^J.O/J 1^— 23ci/3_i

/z 0

1

0
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Proposition 8. The spectrum of L consists of 22^ ^3 and ^4. The
interior part of C — F, ^ 2 U ^ 3 U ^ 4 coincides with the residual spectrum
of L.

Proof. We denote by .' •' /_ and •' • the determinants
L Z3 J> KJ L z, jj

9?

respectively. Then the resolvent ( z — L ) 1 can be described as the
Green kernel G(z, j\z), i, j2^2, as follows:

^ ( 0 ) r i , 2 II- 0, 1, 2
^ [j, j0.58)

r o, i,
u-i, j, j

If z lies in the resolvent set of L, then (z—L~) x and (z—L*~) l

must be bounded operators, so that

2 \G(i0, jk)|2<oo,
(3.59) J':°

S |G(i, jok)[2<oo,
for fixed iQ and j'0. From (3.53), we must have | /z |<^l , \h' ^>1 and
\h" >1. This implies the proposition.

Remark. In Examples 1, the matrix L has only continuous spectrum
while in Example 2, L has residual spectrum. It seems to be interest-
ing to give a criterion whether L of (1.47) has any residual spectrum
or not.

The authors are thankful to Professor S. Takenaka for having
given them a preliminary numerical computation by computer. This
was very helpful to them.

References

[ 1 ] Aomoto, K.j Les equations aux differences lineaires et les integrates des fonctions
multi-formes,/. Fac. Sci. Univ. of Tokyo, 22 (1975), 271-297.

[2] j Lax equation and the spectral density of Jacobi matrices for orthogonal



658 YOSHIFUMI KATO AND KAZUHIKO AOMOTO

polynomials, preprint 1981.
[ 3 ] Appell, P. et Kampe de Feriet, J., Fonctions hypergeometriques et hyperspheriques, Gauthiers-

Villars, Paris, 1926.
[ 4 ] Berezanski, J. M., Expansions in eigenfunctions of self-adjoint operators, Transl, of

Math, 17 (1968).
[ 5 ] Bernstein, L., The Jacobi-Perron algorithm, its theory and application, Springer Lee.

Notes, 207 (1971).
[ 6 ] Case, M. and Kac, M., A discrete version of the inverse scattering problem, J. Math.

Phys., 14 (1973), 594-603.
[ 7 ] Chudonovsky, G. V., The inverse scattering problem and application to arithmetics,

Springer Lee. Notes in Phys. 120 (1980), 155-198.
[8] Flaschka, H., The Toda lattices II, Prog, of Theor. Phys., 15 (1974), 703-716.
[9] Hirota, R., Direct methods in soliton theory, Springer, 17 (1980).
[10] Kac, M. and Van Moerbeke, P., On an explicitely soluble system of nonlinear differ-

ential equations related to certain Toda lattices, Adv. in Math., 16 (1975), 160-169.
[11] Kate, Y., On the spectral density of periodic Jacobi matrices, Nonlinear integrable systems-

Classical Theory and Quantum Theory, World Sci., Pub., 1983.
[12] Kodaira, K., On ordinary differential equations of any order and the corresponding

eigenfunction expansions, Amer. J. Math., 72 (1950), 502-544.
[13] Mahler, K., Zur Approximationen der Exponentialfunktion und des Logarithms, I, II,

CretteJ., 166 (1932), 118-136.
[14] 3 Lectures on transcendental numbers, Springer Lee. Notes, 546 (1976).

[15] Mergelyan, S. N., Uniform approximation of functions of complex variables, Uspehi
Mat. Nauk, 7 (1952), 31-122.

[16] Mckean, H. P., Bousinesq's equation on the circle, Courant Inst. of Math. Sci., 1980.
[17] Minkowski, H., Uber periodische Approximationen algebraischer Zahlen, Acta Math.,

26 (1902), 333-351.
[18] Van Moerbeke, P. and Mumford, D., The spectrum of difference operators and alge-

braic curves, Acta Math., 143 (1979), 93-154.
[19] Stone, M. H., Linear transformations in Hilbert space and their applications to analysis,

A. M.S., 1932.
[20] Szego, G., Orthogonal polynomials, A. M. S., 1938.


