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Jacobi-Perron Algorithms, Bi-Orthogonal
Polynomials and Inverse Scattering
Problems

By

Yoshifumi KATO* and Kazuhiko AOMOTO**

§0. Introduction

It is well-known that the spectral theory of a Jacobi matrix is
essentially equivalent to the theory of orthogonal polynomials with
respect to its spectral density on a real interval. This is also related
to the Padé approximation of a Stieltjes integral by rational functions
which gives us the inverse spectral theory of Jacobi matrices (See
[19] and [20]).

On the other hand several people have shown that the equations
of Toda lattices are described by Lax type formalism of Jacobi ma-
trices and related to its spectral densities (See [2], [6], [7], [8] and
L10D).

It seems to be interesting to ask whether these facts can be gene-
ralized to higher order linear difference operators. The purpose of
this note is to construct 3rd order linear difference operators by Jacobi-
Perron algorithms as a generalization of continued fractions (See [5])
and to prove an equivalence between linear evolution equations of
spectral densities and Lax type equations (See Theorem 1 and 2).

§1. Jacobi-Perron Algorithms

Let two Radon measures p(df), (df) be given on a compact
set I' in €. We consider the Stieltjes integrals
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(L.1) a)j(z):gr_/ii_dc_), 0<j<I,

which are holomorphic with respect to z&C —I". Then the functions
0;(z) have Laurent expansions at the infinity as follows:

(1.2) w;(z) = i €527,
where ¢;, denote the moments:
(1.3) 0=\ Cus(0).

We assume the following “regularity condition” holds for y,(d{) and
t(dS):

(#.1) All the determinants of order 2k and 2k4-1 for the sequence

{¢0.05 cl,u} 0=v<oo

(14) det [(CO.€+j)Ogigk—l‘0§j§2k-1\| >1
' (Cl.i+j) Oéiék—l,oéjé.?k—lj, 7
Co,i+j)0<i<r.0<j< ]
(15) det ‘/( 0, +J)0§ <k.0<j<2 /[3 kgO,
\(Cl.i+j)0§i§k—1.0§i52k

are different from zero for k=0. These will be denoted by Dy, and Dy,
respectively. We put D, to be equal to 1.

We can put

u
(1_6) woz_l_’ W, =—,
wy wy

such that u;, v, w; are described as Laurent series as follows :
Jul =1 ’
=g+ S
(1.7) A=ttt gt
[w1=71_1z+7/o+%+%+---,
where 7_3=1/c,, and &y=c,/co, are well-defined. We apply the

Jacobi-Perron algorithm of 3rd order (see [5]) to (1.7) at the
infinity z=o0 in the following manner :

U Wy

wy _ O
}\ul IBZz-l_ABZ wzv

(1.8)
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where u,/w,=0(z™") and o2,/w,=0(z7Y). Namely we consider a

projective transformation

[ u 0 0 1 \l ( Uy
o |=| 1 0 a, v |,
N O B i

between the points ;:0,:w, and wu,:0,:w, in CP% u,/w, and v,/w, are

(1.9)

also expressed by Laurent series:

o ’
Uy _ Co.»
j By o 3G

w »=02<Z
(1.10) vz .
2 — 1,» .
{ wz EO Z:.H-l

Then we can define the similar determinants Dj and Dj., as D,

and D, respectively for the sequence {c¢g., ¢1,}ozscee  First we show

Lemma 1.
(1.11) 4 Dy =33 "Dy,
(1.11) g1 Diy1=(—1) k53 2Dy 10y
Sor k=0.

Proof. The relation (1.8) implies the following identities:

n—1
(1-12) a200.n+ Zc(’),uco,n—l—»:cl,ns Tlgo,

»=0

n—2
(1.13) ABZCO.n+:B;CO.n—1+ ;}C;.»Co.n—uzos n=0.
Then we have firstly
]. ’ —C

1. 4 :6‘1_'0 = = D>1_
(1.14) a3 60‘0’ (92 Co,o’ B2 63,0

Successive uses of the relations (1.12)~(1.14) give the formula

_ r—=1 ./
51,s+r+1 a2€0.5+r+1 . CO,DCO.s+r—u 0=r=<k-1
5 0=s=2k-1

(1.15) D}, =det foo L

— . ’ Y_l 7
,Bzco,s+r+2 B2Co.54r+1 -3 C1,500,s+r—»  0=r=k-1

Coo = Coo s 0=s=2k-1
Co,0 J Co1  Co2 Co,2k
1 Chpon | Clsirs1 = Qb sps1 _ "ot Cé.DCO,S+r—u, 0srak-1
= Cos det Co.0 / »=0 /(;0.0 == ,
' ’ “18260,5+r+2 —18260,3+r+1 _1_201.u€0,3+r~v 0<r<k-1
C1,p-1 ‘ 2 5 0=s=2k-1

Co,0 v=0 Co0
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for ¢, _,=0, which is equal to ¢;3*'Dy.;. We have thus proved
(1. 1) . (1.11)44; can be proved similarly.

Since D, and D,,,, k=0, are all different from zero, D; and
D31, k=0, are also different from zero. In particular we have
¢007#0. This makes it possible to repeat the substitution (1.8) for
(vy/ug, wy/u,) instead of (v/u;,, wi/u;) and so on. Therefore the
regularity property allows us to consider successively the n-th Jacobi-
Perron transform

n r 0 0 1 |/ Upt1
(1'16) Un = 1 0 Hut1 ‘ Uns1 ’
w, L 0 1 ﬁn—%lz +‘81’1+1 L Wyl

for n=2. By the same reason, we can also see all the coefficients
B.=D,../D,, n=2, are different from zero. If we take wy=uy/uy,
, =wy/u,, then u, v, w, are linearly related to u,, v, w, as follows:

Uy D2(2) Pns1(2) Dus2(2) [
(1.17) v |=| p2(2) Prs1(2) Pri2(2) v |, n=3,
Wy N p;(z) PZH(Z) 17;+2(Z) wy,

where p,(2), pn(2), pn(2) denote polynomials of exact degree n—3,
n—4, n—4 respectively. The matrix in the right hand side will be
abbreviated by A4,(z). Note that detd,(z) =1, so that 4,(z) and
*A,(z)7 lie in GL;(C[z]). Therefore {4,(z)! can be written

£(2) Gu(2) 7a(2)
(1.18) A, =| F.() ¢.(2) 72 |

£ 4u(2) 7.(2)
where f,, Guy Fas Pus Gus Tus Dus Gny 7o denote polynomials. This algorithm
to compute sequences of polynomials p,(2), p.(2), pn(z) and £,(2),
£.(2), pn(2) is nothing else than the usual Jacobi-Perron algorithm
with respect to Laurent series.

Proposition 2. (i) FEach polynomial ¢,=p,, p., p. satisfies the
difference equation :

(1'19) §0n+3:$0n+an+1¢n+1+ (ﬁn+1z+ﬁ;t+1) 90n+2, ng 1,

(i1)  Each triple ($ny Guy 7n) = Py Gus T )5 (Prs Gus )y (Brs Gy 7o)
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satisfies the difference equations

¢n+1 = - au+1¢n +Sz;n:

(1-20) ¢n+1: - (‘Bn+lz+18:n+1) ¢n+ Zn,
Zn+1 =¢n'

Proof. In fact these follow from the obvious recurrence equation
for A4,(2):

0 0 1
(1.21) A,:1(2) =4,(z2)| 1 0 L PES]
O 1 18;1+1z+‘8:’z+1

Since all 8, are different from zero, we can see from (1.20) that
the degrees of f., Gy Fuy Pus Gus Tus Dy Gns Tn are exactly equal to £—2,
k=1, k=2, k=1, k, k=1, k—1, k—1, k—2 if n=2k and equal to

k=1, k, k=1, k, k, k=1, k=1, k, k—1 if n=2k41 respectively.

Proposition 3. (i) For a pair of measures p,(dC), m(dl) on I’
which have the regularity property (H.1), the Jacobi-Perron algorithm can
be carried out up to any stage. We have the following Padé approximation
Jor ©y(2), w(2) at the infinity z=o00:

(1.22) [ 0y~ /P =0(2"*"),

01— pu/bu=0(Z"*"), k=1,
(1.23) [ @) —prst/ D1 =0(27*),

0= popir/ P =0 *7), k=1

(i1) The function

(1.24) Uy/thy= P+ pry+ frwy, n=1,
has the property
(1.25) u,/u,=0(z"").
Proof. First we want to prove (l.24). Since u,y1= —a, u,+v,

and v,/u,=a,.,+0(z7'), we have

(1.26) %zoww.

n
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This shows (1.25) by induction on n. Next we want to prove
the first part of (1.22). The left hand side is equal to

(1.27) Yo _@ = Doation + Pops10m + Prisoton ﬁ;k_
Uy pu  Dullart PVt PopraWo P

_ (paboes —bubuc)Va+ (Paposra— p;k_ka-a-Z) Was

UoPor
~ ~M
— Torlsp — GrWpy
Uo P
v Uy o Wap
u2k<’ 2%
— Uz Uor
Uofion

On the other hand, we have that wuy/uy=0(z"%), vy/up=0(1),
Wy Uy =0(2), deg py=2k—3, deg 74=k—2, deg ¢, =k—1. Thus,

1.28 ”l_ﬁk_zo ~3h+3y
( ) U ka (Z )

For the second part we have

1.29 Wo _ Pn — —Tulat Gutn
( ) U D Up P
=0 (z-3k¢4> .

(1.23) can be proved similarly.

Conversely, under the condition (s#.1) the triples (p,, p. p.) Or
(fus fns Pr) are the unique ones except for constant factors such that
they satisfy (1.22), (1.23) or (1.25) among polynomials of the same
degrees as (pn, pn, pn) Or (P pr pn). Namely the triples (p,, pr, pr)
or (fu, fi, Pn) are “perfect systems” in the sense of K. Mahler (See
[13] and [14]). In fact (1.22) and (l1.23) imply

(1.22)" { Wopn —pu=0(z"),
Opy —pn =07,
{ WP~ P =0(27"),

O o1~ P =07,
which give linear equations with respect to the coefficients of pg, pu,
P OF puiiy Pme1, Pmer- The determinants coincide with (1.4) and
(1.5). Owing to (.1), (1.22)" and (1.23)" determine uniquely
the polynomials p,(2) and py.:(z) except for constant factors. These

(1.23)’

give us the following formulae:
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Co0 Co1 °°° Co,2k—3
Co1 Co2 °°° Co,2e—2
Cor—2C0,p—1""" Co,3%—5
(1.30) pu(2) = ,
Ci0 C11 °°° C1,2%—-3
C1,p-3C1,p—2°°" C1,3k—6
1 2 ees >2k=3
i Ceo Co1 °°° Co,2e-2 |
|
l Co1 Coz2 °°° Co.2e—1 |
. . . i
Co,p—-2Co,p—1°"" Co,3k—4 ‘
(1.31) baui1(2) =] }
.V €10 €11 °°° C12e-2 |
j Cir—201,p-1°°" C1,3k—14
|
‘ 1 z 060 sz—Z ]
These are rewritten in integral form by using the relation (1.3) as
follows :
(1.32) ba(z)= 20 g (z2—21) (2—22) *» = (2 —22-2)
ll<'"<lk-l I
f1<"'<jk_2

(l].'".'ik—l)U(jl'".'jk—z)=(1’2'."'Zk_3)

o (=2 I (z,=z) I (z,—%)

1<i<j<2k—3 1sa<f<k-1 & 1=y<sgh-2 4

to(dz.) e e po(dzi,_ ) - (d2;) = oo (dzj, ),

(1.33) Pair(2) = Z S (2—21) (2—22) * == (2—2m-2)
i <eee<iy 1 JT
j1<...<jk_1
(poeemip PU Gy iy P =(L e, 2k-2)

I (zj—z)- 11 (Ziﬂ —zia) - II (z5,—z)

L js N
1<i<j<2k—2 1Sa<p<k-1 1<y<8<k-1 4

° o (dZil) eeely (dZik_l) th (del) ool (dek_l) .

Owing to (1.1), the left hand side of (1.22)" is equal to
Db () o (dC) )
(1.34) SF———*Z L D)

— (P2 (2) —pa(©)) o (dO) . D2 (D) 4o (d0)
T S i

polynomial part
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Therefore we have

(1.35) pa(z) = S[M?gpg—@—po o),
(156 e = PO

Similarly

(1.37) JACE SFWW‘K%
(1.39) D (2) = SF p2k+1(§) :ng(C) 1 dO),
(1.40) 0z = Spﬁﬂz(%uogﬁ,

(1.41) P (2) = Srﬁzkﬂ(? - p2£+1(C) ),
(1.42) 0@z = SF@%_

In particular from (1.36), (1.38), (1.40) and (1.42) the following
bi-orthogonality holds:

(1.43) (cra@mun =0, 0zazi-2,
(1.44) SFC"ka(C) 1.(d) =0, 0<n<k—3,
(1.45) | tan@um@ =0,  0sn=k—2,
(1.46) | Cpan©ma =0,  o=nzk-2.

(1.19) can be rewritten as follows:

(119)"  zppp=——fo —Gusig By L O
SD +2 19"+1 ‘Bn+1 )0 +1 ‘Bn+1 )D +2 ‘Bn+1

Namely the operators of multiplication by z gives a matrix representa-

tion as follows:
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_:B;_a‘a_l 0

B. B B
LY - S 7R S
(147)  2(0s @4 @5pe o) B B B Bs

:(933 Doy @5,"') 0 L —ﬁ‘/‘ — % —_1_

A A A

0 .

The matrix in the right hand side will be denoted by L. Then
the pair (8,:10,,8,+1f,) satisfy the adjoint difference equation :

B BE Y[ BB B
(148) o| B Bf |=L| Bfr B

Let E be the Banach space consisting of continuous functions on
I' which can be approximated uniformly by polynomials. Then the
operator L defines a bounded operator on E. We denote by E* the
dual space of E. Then ¢, 3=p,(0)=p,(L)e, n=3, or e} 1= (Bre1fis
Bui1fn) =Buripn (L) eF + B,1p. (L) ef, n=1, give dual bases each other of
E or E*:

(1.49) [ 0620 (B () + (0 (00 =0,

for n#£m, n, m=1. We can also prove the following formulae :

Proposition 4. For n=1,
(150)  f(={ £OAO yury +{ O LO @),
and

15D n@ /= EOBE L £OLED,

These imply that the matrix elements of the resolvent of L, (e,
(z—L)%,) are described by the integral representation

(1.52) (e,’f,,(z-—L) —1en) — Sr>pn+3(C) (ﬁ;;u(é);‘o(‘i@ —Eﬁ;H (C) ﬂl(dC)) ,

m, n=0. In particular,
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(1.53) {w(): (eg,(z—L) ey,

;= (ef,(z—L) "eo).

The operator L has thus been reconstructed from the spectral
densities g, (df), £4(dC) such that L coincides with the multiplication
of the variable z with respect to the bi-orthogonal system of poly-
nomials p,,5(2) and (f,.1(2), frni1(z)). This result can be summarized
in the following way.

Theorem 1. Under the regularity condition (H#.1), we can uniquely
construct by Jacobi-Perron algorithm a bounded operator L on the Banach
space E such that its spectral densities coincide with the pair p(dC),
mdl) on I,

§ 2. Spectral Densities and Lax Type Equations

We want to show that Lax type equations for the operators con-
structed in §1 are equivalent to linear differential equations for their
spectral densities.

Let o= {0,. (£, d0)}o<o<n-1, 0<e<r-1, CEC, be a matrix valued continu-
ous l-form in a neighbourhood of a rectifiable curve I" in C. Let
e=1{e ), 0<r=<M—1}, 0<i<oo, and e} ={f“(), 0S6<N-—1},
0=j<oo, be two linearly independent systems of continuous functions
on I' such that the following bi-orthogonal relations hold :

(2.1) 0;;=<ef |w e
=3 Spe}“ @ Q) (& dO) e ().

We assume further that there exist two suitable Banach spaces E
and E* which are generated by the dual bases {¢;=<{¢/”)>, 0=i<{oo}
and {ef=<{eF), 0<i< oo} respectively. The duality is denoted by
(2.2) E* X E—C

(5%, )= (2%, ) o=<x" |0 ),
such that the right hand side of (2.1) is equal to <{e¢f|wle;>. We
assume further that e¢;, ¢f and o depend differentiably on time ¢ in a
neighbourhood U of the origin and satisfy the following order pre-
serving properties :
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(#.2) ¢ and éf are linear combinations of e, i=i', and e}, j=7,
respectively.

We consider linear differential equation for w (g, df) of the following
type:

(69 o€ ) (=% @) =0 WfE O=f¢ Do &)

for suitable continuous square matrices f(¢, £) = (f,s) and f*(t, {) =
(f¥) on I' of order M and N respectively. Let L be the operator
on E such that its spectral density matrix coincides with @({, dC) :

(23)  (ef, Lei)o=<ef le\ef>=ZSFC€}“”’ @y (C, d)el Q).

Further we define the operators f(¢, L) and f* (¢, L*) respectively
as follows:

@8 @ S D= Q0 C S0 ),
@5) (L6, e)0= 5 | 7O Of3 (D0, el @),

a.p.r
Definition. Let A (or A*) be a bounded operator on E (or E*) defined
by an infinite matrix (@) osi j<w With respect to the bases {e;} and
{eF} such that (ef,Ae:) =ai;. Then AP, AT and A® are defined as
Sollows :

aij if 1>y
(2.6) (ef, A®¢) = %a,-,- if i=j
0 i<y
0 if i#j
(2.7) (ef, A%e)=¢ | .
o if 1=j

and AV =A—A®. Remark (A®)*=(4*)C, (47)*=(4*)".
Then we have the following theorem:

Theorem 2. Suppose that the measures w,, (C, d0) are non-degenerate
and normalized such that we can choose ¢;(§), ef (C) as follows:
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e.()='0, ---, 0,1, 0, -, 0), 0Zi=M~-1,
(1+d)-th
e )=, ---,0,1,0, -+, 0), 0=Zj=N-1I.
(145 -th
Then the differential equation ( &,) is equivalent to the Lax type nonlinear
equations :
(&) L =[ft, LY®, L],
(éa;) L*=[f*(t, L*)(+), L*].

(2.8)

Proof. We firstly show that (&,) implies (&,) and (&£3). By
Leibniz rule, the differentiation of (2.1) with respect to ¢ gives

(2.9) 0=<¢} |olep+<ef |o e +<ef [ @] ).
According to (#.2), ¢é; and ¢} are described as follows:
(2.10) €= é §uiirs
(2.11) é¥ =;§_, Njrieh.

Therefore from (2.1), (2.10) and (2.11)
(2.12) (efs [y Lye)otE:=0, i>],
(2.13) (f* (4 LN)ef, e)otn;=0, i<j,
and
(2.19) (ef, (& L)edotEutnu=0, i=j.

By taking &;=7;, we can determine uniquely &; as follows:
(2-15) fii:ﬂﬁ: ‘%(61*, f(f, L)ei)w-

On the other hand

(2.16) (e, Le)o=<e} |oLie>
=<{¢é} lwL|e;>+<ef {@L]e;>+<ef |oL|é>
=, mpieploLley+<eflaf (6 D Lled>+ % 67l oLl e
== 3 <erlaft L] eyXep oLl e>+<ef laf(t, L) Lle>

— T <ot lwLlened lof (61 ey = <ef lf &, L)]ep>,

e} L ey = <e} loLle>et [f (1, L) [eo>,
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By using the relations of completeness, we have
217)  Leflof(t, LY Llep=¥ <ef jof (¢, L)|en<ef loL]eo.

Therefore

(2.18)  (¢f, Leo= 2 Lef lof(t, L)[e;p<e} |wL|e:>

— 3 e oLl et 0f )] ed+ef [0f (L) fegy
' CefloLe
— <ot 1oLl ed<et [0f (5, T)le
=3 (e St DVeuer, Leda—3 (ef, Le
LGt S D),
:(e}ka [f(t9 L) (+), L]ei)m-

(&%) can be deduced similarly.
Conversely, under the condition (4#.2), suppose that (&,) or
(€3) holds. Then for 0=i<N—-1, and 0 =M —1,

@19) | @SR mterlo-L) =1, =D

By differentiation with respect to ¢, the left hand side is equal to

(2.20) Sri"’i"f—’_gc—),

while the right hand side is equal to

221)  (ef, {f, LYV (z—L)—(z—L)71f (¢, L)P}e,
=(ef, (f@t, L)—f&, L)7)(k—L)e)a
_(5;‘, (.Z—L)_lf(l, L)(+)ez)w

= (e}, f(t, L) (z—L) %), — i (f*t, L*YDet, ¢,
° (61?7 (5 - L) —161')@—20 (e;'k’ (Z"’L) —lek)m' (eik, f(t’ L) (+)el)m-

From the normalization (2.8), (f* (¢, L*) e}, e1), and (ef, f (¢, L)™
¢;), vanish for 0<i<M—1, 0= =<N—1, 0Zk<+oco. Therefore (2.
21) is equal to

(2-22) (6?9 f(t7 L) (Z—L) _161') 2

And we have the equality;
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@ij , dO) , d ) ij
(2.23) & if_&wcaycn,

which implies (&) :
(2.24) 03 G, dD) =5, 0a G, d) fis(t, ©) on T

The theorem has been completely proved.

§3. Examples
(1) Pochhammer integrals (see [3]).

Let @, 8, r be complex numbers such that Re @, Re 8, Re y>0. The
l-form o(x, dx)=x*1—x|f|t—x|"dx, t>>1, gives Radon measures
to(dx) and g (dx) on each interval [0, 1] or [1, ¢]. We define the
polynomials py,; of degree 2k—2, k=1, and p, of degree 2k—3,
k=2, respectively by the following formulae. For some constants c,
¢, and ¢}

d \*! _ _ _
(3.1) ck<ﬁ> [xo+h1 (s — 1) B+E1 (g — ) THE-1]
=k =D!x*(x =1 (x =) pm1 (x),

and

(3.2) C;(_g%)’e'z[xﬁk—z (x — 1) F++1(x — 1) 7+4-7]

of d NP qinez Bth—2 7+E-1
ra( ) T = =T

=Gk =2 x*(x—1)F(x—8)Tpu(x),

where ¢, and ¢} are to be chosen such that
1
(3.3) C;S XOHR2 (o — ) AHEL ( — f) THE2
0
1
+c',§$ xoHR2 (o — ) PR (p — ) THE L =0,
0

We express ¢, and ¢} by
’ al ” al?
3.4 Cr= Olhy Cp= PsCps
where
1
&= S X% (x 1) /9+k—2<x —£) T+,
0

(3.5)

1
é: —_ S xa+k—2<x _ 1) ﬁ+k—1(x —t) 7+k—2dx’
0
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for a suitable constant p, which will be determined later.

By partial integration we have the bi-orthogonal relations (1.43)
~(1.46). We want to compute explicitely a,,;, 8,.1 and 8,,; in (1.47).
We put

(3.6) A= —k, h=a+k—1, L=p+k—1, h=y+k—1,

and consider the integral of Pochhammer

(3.7) F (o, by 2y ) = (=) (5= 1) (r =) “dy.

Then x*(x—1)%(x—1t)7p,(x) can be identified with F, except for
constant factors:

(8.8) xa(x_l)ﬁ(x—t)rpzkﬂ(x) =0 F (A, 21y Aoy 43),
(3.9 (=1 =0 Tpu (%) =cF (A1, 4—1, %, —1)
+C/I,2F(ZO+1, 21—17 22_17 23)9

if the integration (3.7) is taken to be the residue around x. A
general result about difference systems in [1] shows that F(4, 4, 2,
4;) satisfies a maximal overdetermined linear difference equations with
coeflicients of rational functions of A, 4, 4, 4. In fact this follows
from the following lemma.

Lemma 3.1. (Stokes formula). The integral

(3.10) S(y =09 -D"0 —t)ZS{ dg@;y) +<y'2_°x +§1_
%

2 ,
R AEE

=+

)}

vanishes for an arbilrary polynomial ¢(y).

We use (3.10) to get an explicit expression of (1.47). a,.1, Bt
and f,.; in (1.47) can be obtained by solving the following equations:

3.11 _ (=) (=0 J— I
( ) y—x +{c y(y t)+ So— 1)}
+ gyt (ﬁ2k+1x+.3;k+1) {5k+1()’ 1) +6Z+1()’ )}
—_ d¢’1()’) Z0 21 22
a dy +{y— +y—+),_l }¢1(}’

for a polynomial ¢;(y) of degree 3 in case n=2k, k=2, and
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(3_12) _C),e+z}’()’—1)2()’_t>+CZ+2)’()”'1) (y—t)z
9 —x
+€k+a2k+z{€£+1(y—1)+0§§+1(y~t)}
+ (BopsoX + Bops2) Cona J(‘y—_y%;u)v
o
dy )—x y -l
for a polynomial ¢,(y) of degree 4, in case of n=2k+1, k=1.
We can solve (8.11) and (3.12) by elementary computation and
have the following result:

e,

Lemma 3.2. (i) Case n=2k, k=2.

(B13)  $:0) = =2y (=) (=) —EHED -y (5 1) =)

’

i ¢
t = OO0+ ey OO -D,

and

B+ +2,+2) . {_ ch it ch
(3-14) 20 Cr1= (3+2w) thz + 22(1 —t)

Cr
YOSy }

where 2., denotes Ao+ 2+ 2+ 2,
(ii) Case n=2k+1, k=1.

= (GotanyO=D o=t [ (1+h)+ 1+t
(3.15) & (y) At {y S+ + 2+ 2 }’

and

(8.16) (34‘11"‘12‘{‘23) (4+4.) (CI;+1+6‘Z+1> Cr
==t =1) (hratcisz) [cher (1 +2) {(1+29) (1 —1) — (1 +2)}
+epat (1+4) {(1 +24) =1+ (1+2)t}].

(3.14) and (3.16) immediately imply

Lemma 3.3.

(3.17) Chp1= 0404 0k=5z'apk+z,

where
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(3.18) ¢ z‘*k(a+ﬁ+r+2k){_ Grén &
. k (a+pg+7r+3k) (atk—DE  (B+E=1 (t=1)

¢
+<r+k—1)t2<t—1)}’

and
’ _(t—l) (5llz+z+5g+2) o
GID) = G 43k (a Bt 7 F R+ D) (G o)
s [ (BHE) {G+E) (¢t —1) —a—k}
+ it (rHE) {(B+E) ¢ =1) + (a+k) £} ].

As a result,

Corollary. For k=0

c — 53k"'53 c
3k+1—5/—57 1y
3z—2°° °0;

53k+1‘ *+0

(3.20) Capra™= mcza
and
(3.21) PR

Or+2

Lemma 3.4 (Characterization of ¢, and ¢3). &, &, satisfy the following
recurrence relatlon :
an(k)  an(k)
an(k)  ax(k) ]’
where ay (k), an(k), ap(k) and an(k), in view of (3.6), denote rational
Sunctions of k as follows :

(3.22) By ) = (6 &) [

- A=) _ (Aot 2) (Bt 2, +1)
(3.23) all(k)—zm(2m1+1)(2w+2){ Ao (1 +2,) + -2 to 2
2(1+A42)
LR }
I At O] A (L2 2)
628 aa® == T gy G (2 SO

_23}
t—1)’°
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— “]‘t(t_l) _(.'20‘{‘22)(1""21)
(3.25) alz(/c)—-lw(szl_l)(lm_l_m{lz(l+20+21) hth) (A48
_ A
t—l}’
and
220 —1)

(3.26) an(k)=

{—(zo+zl> (ot 2 +1)

_ A0 +4) + (A +A4+4) }
t t—1 )

2. (A +1) (2.+2)

Proof. In view of (3.3), ¢, and ¢, are equal to F(0, 4,—1, 4,—1,
43) and —F(0, 2,—1, 4, 4;—1) respectively. Then the relation (3.22)
implies that there exist polynomials ¢;(x) and ¢,(x) of degree 2 such
that

o — ay (k) an (k) dg, (x)
(8.27) x—t= x(x—1) + x(;—t) + P

A+ BB e,

X x—1 x—t

and

1= a1z (k) az (k) depy(x)
(3.28) x—1 2x—T1) + % (x—1) + Ix

(BB 0.

A
x  x—1 x—1t
ay(k), an(k), a,(k) and ay(k) can be determined as in Lemma 3.2

by explicit computation of these equations.

Proposition 4. (i) a@y.1, By and PBou.1 arve rational functions of

. ’ ” ’ ” k d
Chy Crtly Chy Chy Ch+1> Cht1y @, ‘89 7> and t.

(1) iz Burz and By, are rational functions of cw Cri1, Chins
Chils Chizs Chizs Oy By 7, k and t. Here c,, o4, ¢; and ¢, are obtained by
the formulae (3.9), (8.21) and (3.4) respectively and & and ¢, satisfy
the recurrence relation (3.22).

The spectrum of L coincides with the intervals [0, ¢]. The supports
of its spectral densities #,(d{) and p(d() are equal to [0, 1] and
[1, ¢t] respectively. (df) and g (dl) satisly a linear differential
equation as function of ¢:
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(3.29) (m(dD), n(dD)) = (o), 1 (dD)) ;L
According to Theorem 2 in §2, we have
Proposition 5.
(3.30) t=[1, (;1;)"]
(2) Periodic case (See [18]).

We assume further that the matrix elements of L have period m:

(3.31) =y Bren™ By Bavm= B

for n=1=2. The matrix L can be extended to a periodic matrix L
such that (3.11) holds for non-positive integers. Then ‘(u;, v, w;)
satisfies the characteristic equation

-
(3.32) [y—4.(2)] o |=0,
L w,
where 4,, denotes the product
1 f 1
(3.33) 1 A eeel 1 Xpim s
1 Braz+Bia N 1 Biimz+Biim

and y is an eigenvalue of A4,,(z). y satisfies an integral algebraic
equation

(3.34) = (apt+az+ - +ag®) y*+ (bo+biz+ -+ +b2Hy —1=0,

or

(3.35)  P—(avtaz+ -+ Fap2# Ny + (bot+biz+ e +b2t)y —1=0,

according as m=2k or 2k+1. We denote by &,, the algebraic curve
defined by (3.34) or (3.35). Then we can make use of the same
method as in [17] and prove the following :

Proposition 6. Under the assumption that
(3.36) Ay (b2 —4ay) #0 Jor m=2k,
(3.37) Ag 170 Sfor m=2k+1,
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the genus of £, is equal to 3k—2 for m=2k or 3k for m=2k+1.
i) The diwvisor of y in &, is written as follows

(3.38) (y) = —2kP+k(P'+P") Jor m=2k,
(3.39) )=—Qk+DP+Qk+1)P"  for m=2k+1,
where P, P, P" (m=2k) or P, P’ (m=2k-+1) denote effective divisors
of degree 1 lying over z=00:
k) +P+P +P'=0,

or (z) +P+P'=0.

1)  u,.; and <—Z"i, %"*—’> are meromorphic functions on &, whose divisors
n+1 n+l

satisfy

(3.40) (uzj+,) :J(2P—P/—P”) +.@2j+1—9[,

3.41) <_*ZZH,>= P —P'+ Dy 10— Does

(M) =—P+Dsj100— Dajsi

Uzjri

(3.42) (gj1:0) = (2J+ D P —j(P'+P") + Dyjsr:1— Dy
D2j+14+1 \— ¢, —g..

(3.43) < u2]j+1+l ) =Dyj1-1— Dajir4is

(Lo ) = — P4 P 4P+ D= Dy

Uzjr1+1

in case m=2k, or

(3'44) (un—i-l ) :n(P_P/>+9n+l_~gl7
()= =P + D= Do
(3.45) o
( wn+l>=P’ _P+ @n—l-&»l'—@n«)—b
Unta

in case m=2k+1.
Conversely

Proposition 7. Suppose that an arbitrary sequence of complex numbers
{ao, @iy ==, amy boy -+ 5 by} for m=2k or {ag, -, aysr, boy -+, by} for m=2k+1
15 gwen such that (3.36) or (3.37) holds. We choose (w, v, w)) for
=2 such that
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(—”L): P —P'+2|,—a,
U

(3.46)
(%): —P+92,_,— 2, m=2k,
1
or
< ”’) —P+9,— 9.
(3.47) “‘

(JZL):P'—P+ D= D), m=2%+1,
1

where 2, denotes a regular effective divisor on &£,. Then we have the
periodic Jacobi-Perron algorithin for the pair (v/w, w,/u) of period 2k or
2k+1 such that

(3.48) DU 1=Uy,
Ugpy1 _ U1 Wopr1 __ Wi
(8.49) =—, =—
Usp+1 U Usk+1 U
or
(3-50) Dlgr141—= Uy
Ugp+1+1 __ U Wopti+1 __ Wi
(3.51) = =,
Ugp+1+1 U Usk+1+1 Uy

In particular we consider the case m=2. Then %, is an algebraic
curve defined by the equation where we put y=4A""

_B_ k1 ey

N 182 ‘82 183 183
(3.52) F(z, by h7) = L B B

B B T B B

and h, h’, B be three roots of it. If |k|=#1, |A'|#1, |A"|#1, we
may assume that there are only two cases, (i) || <1, [A'| >1, |A"] >1
or (ii) |a| <1, |K'| <1, |A"]>1. For |z| >1, case (i) occurs. There

exist three linearly independent quasi-periodic solutions for (1.47)

0= (g0}, ¢O= (), ¢2= [P},

such that
(0) —'th(G)
(3.53) o =h e,
S0(2) ._h” (2)_
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Consequently ¢®&?[0, o) and none of non-trivial linear combina-
tions of ¢® and ¢® belong to [?[0, o). We have

(3.54) oP=0(z"",
(3.55) O = Pr1(2) 9 fr1(2) + 01 prir (2,

for n=0. ¢ coincides with u,,; in (1.24). Suppose further that
the algebraic equation (3.34) defines a Galois covering over CP'. Then by
choosing a suitable variable for z we may assume that % is equal to

(3.56) h=z+41~2°
and the matrix L has the following expression
R (c) e™Ph ()R (¢) —1 0
1 —h'(c) — e B () h(c) €™/ 0
(3.57) L=7,;,~,£Tl 0 — g/ \
0

where c€C. We denote by I'" the set of all z&C such that |i] =1
or || =1 or |A"|=1. Then I' is a real algebraic curve having
branch points 1, ¢/ ¢*/3 and C—I has four components which
we denote by 2, 2, 2; and 2, (see the figure).
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Proposition 8. The spectrum of L consists of Dy D3 and P, The
interior part of C—1I", 2,U DU D, coincides with the residual spectrum

of L.

Proof. We denote by I:O’ L, 2:, and [6;’ [J)] the determinants

i J, k .
O© SO HO
G P P @ @
e @

@ D D : J
IR A ® L, |
@ @ @ LA

(2N

respectively. Then the resolvent (z—L)™! can be described as the
Green kernel G(i, j|z), i, j=2, as follows:

(01,2}/ 0, 1,2] o
we| L/l 7 b =
0, 1

(3.58) G(i,jlz)=1 ﬁf{@f”[gjjil}_%@bJ'+1]} i<j

[o, i 2]

If 7z lies in the resolvent set of L, then (z—L)™! and (z—L*)7!
must be bounded operators, so that

I, G, 121 <o,

216G, jilo) [*<eo,

for fixed i, and j,, From (3.53), we must have 4] <1, |A'|>1 and
|| >1. This implies the proposition.

(3.59)

Remark. In Examples 1, the matrix L has only continuous spectrum
while in Example 2, L has residual spectrum. It seems to be interest-
ing to give a criterion whether L of (1.47) has any residual spectrum
or not.

The authors are thankful to Professor S. Takenaka for having
given them a preliminary numerical computation by computer. This
was very helpful to them.

References

[1] Aomoto, K., Les équations aux différences linéaires et les intégrales des fonctions
multi-formes, J. Fac. Sci. Univ. of Tokyo, 22 (1975), 271-297.
, Lax equation and the spectral density of Jacobi matrices for orthogonal

£2]



658

£3]
[4]
[5]
L6]
L71]
[8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]
(171

L18]
[19]

[20]

YosHIFUMI KATO AND KAZUHIKO AOMOTO

polynomials, preprint 1981.

Appell, P. et Kampé de Fériet, J., Fonctions kypergéométriques et hypersphériques, Gauthiers—
Villars, Paris, 1926.

Berezanski, J. M., Expansions in eigenfunctions of self-adjoint operators, Transl. of
Math, 17 (1968).

Bernstein, L., The Jacobi-Perron algorithm, its theory and application, Springer Lec.
Notes, 207 (1971).

Case, M. and Kac, M., A discrete version of the inverse scattering problem, J. Math.
Phys., 14 (1973), 594-603.

Chudonovsky, G. V., The inverse scattering problem and application to arithmetics,
Springer Lec. Notes in Phys. 120 (1980), 155-198.

Flaschka, H., The Toda lattices II, Prog. of Theor. Phys., 15 (1974), 703-716.

Hirota, R., Direct methods in soliton theory, Springer, 17 (1980).

Kac, M. and Van Moerbeke, P., On an explicitely soluble system of nonlinear differ-
ential equations related to certain Toda lattices, Adv. in Math., 16 (1975), 160-169.
Kato, Y., On the spectral density of periodic Jacobi matrices, Nonlinear integrable systems-
Classical Theory and Quantum Theory, World Sci., Pub., 1983.

Kodaira, K., On ordinary differential equations of any order and the corresponding
eigenfunction expansions, Amer. J. Math., 72 (1950), 502-544.

Mabhler, K., Zur Approximationen der Exponentialfunktion und des Logarithms, I, II,
Crelle J., 166 (1932), 118-136.

, Lectures on transcendental numbers, Springer Lec. Notes, 546 (1976).
Mergelyan, S. N., Uniform approximation of functions of complex variables, Uspehi
Mat. Nauk, 7 (1952), 31-122.

Mckean, H. P., Bousinesq’s equation on the circle, Courant Inst. of Math. Sci., 1980.
Minkowski, H., Uber periodische Approximationen algebraischer Zahlen, Acta Math.,
26 (1902), 333-351.

Van Moerbeke, P. and Mumford, D., The spectrum of difference operators and alge-
braic curves, Acta Math., 143 (1979), 93-154.

Stone, M. H., Linear tiransformations in Hilbert space and their applications to analysis,
A.M.S., 1932.

Szegd, G., Orthogonal polynomials, A. M. S., 1938.



