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On an Abstract Differential Equation and Its
Application to Positive Eigenvalues of

Schrodinger Operators

By

M.W. WONG*

Abstract

A second order differential equation in Hilbert space is shown to have only trivial
solutions. This functional analytic result is then used to derive an upper bound for the
set of positive eigenvalues of the one-body Schrodinger operator.

§ 1. Introduction

The theory of the Schrodinger operator —A+q(x), where J is the Laplacian
and q(x) a measurable function on Rn, initiated by Kato in [7], has become a
highly developed discipline in mathematical analysis. The spectral theory of the
Schrodinger operator is by now fairly well understood.

In [12], Wigner and von Neumann have constructed a function q(x) such
that — A+q has the positive number 1 as an eigenvalue. This phenomenon sug-
gests that a natural spectral problem for the operator — A+q(x) is to give a
good upper bound for the set of positive eigenvalues under reasonable assump-
tions on q(x) in a neighbourhood of infinity. This problem has been studied by
Agmon [1, 2], Kato [8], Odeh [9] and Simon [11] among others. An exposition
of the contributions by these authors can be found in Reed and Simon [10], and
most recently, Eastham and Kalf [5], A discussion on the hypotheses and con-
clusions of the papers of Agmon and Simon can be found in Jansen and Kalf
[6], Eastham [4] has obtained an upper bound for the set of positive eigen-
values of the Sturm-Liouville operator — dz/dxz+q(x} on (0, oo).

The object of this paper is to combine the techniques of Eastham in [4] and
Jansen and Kalf in [6] to construct a second order differential equation in Hilbert
space with only trivial solutions. The details are given in Sections 2 and 3. As
an application, we derive an upper bound (similar to that of Eastham) for the
set of positive eigenvalues of the Schrodinger operator —A+q(x). For technical
reasons, we assume that the function q(x) is so smooth that the regularity and
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unique continuation properties for the solutions of elliptic partial differential
equations can be applied. Detailed assumptions on q(x) are given in Section 4.
Since the proofs are quite complicated, an attempt is made to supply with full
details. In this respect the paper is sufficiently selfcontained.

Acknowledgements are made to Professor F. V. Atkinson for suggesting the
topic, Professor T. Kato for pointing out several mistakes and unrealistic assump-
tions in the first version of this paper, and the referee for the detailed com-
ments and suggestions which have led to this revised version.

§ 2. An Abstract Differential Equation

Let M be a complex Hilbert space with inner product and norm denoted by
< , > and || || respectively. Denote by L\M) the space of all functions

u : (0, oo) — > M

such that u(t) is strongly measurable on (0, oo) and

We denote by Ck(&), l^k<oo, the space of all functions

u : (0, oo) — > M

such that its first k strong derivatives are strongly continuous on (0, oo).
Let B(M} denote the set of all bounded linear operators on M. With the

usual definition of operator norm, B(JC) is a Banach space. The derivative of a
function

T : (0, oo) — > B(JC)

will also be taken in the strong sense.
Let A be a nonnegative, unbounded linear operator with domain *D(A) dense

in M. Let T0(t) and T^t) be self-adjoint bounded linear operators defined on M
satisfying the following conditions :

( i ) The derivative T'0(t) of T0(t) exists and is a self-adjoint bounded linear
operator on M for t large enough, say for *^?i.

( i i ) For any s>0, there is a f 2>0 such that for all functions u : (0, oo) ->
M and v : (0, oo) — > M, we have

(2.1) |<T 0M, v>\^e\\u\\\\v\\,

(2.2)

whenever ^<?2.
(iii) There exist nonnegative constants L and K such that for any £>0,

there is a <?3>0 such that for all u, v as in (ii),
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(2.3)

(2.4)

whenever £^g3.

The abstract differential equation to be studied is of the following form :

;2.5)

where / is a real number.
We assume that (2.5) satisfies the following unique continuation property :

(U.C.P.) If v(t}^C2(M}r\Lz(&] is a solution of (2.5) which is not identically
zero, then there is a sequence {tn} of real numbers such that

and
\\v(tn)\\>0, n = l, 2, .».

Theorem 2.1. The abstract differential equation (2.5) has nu iwmero solutions

Proof. We assume /O>0 and L>0. Let v^Cz(3C)r\L2(^ be a nonzero
solution of (2.5). Define

(2.6) /z(0=||i;'(O

Differentiating and applying (2.5), then for t>max(f1, f2, £3),

(2.7) li'(t)=-<T'Q(t)v(t), v(0>+ 2Re<T!(Ov(0, v'(0>+2r3/.4n

By (2.3) and (2.4), the following inequality is valid:

(2.8) AW^-rWJiWIIII^

where /vx and La lie within an arbitrary but fixed e of K and L respectively
and it is understood that (2.8) is valid for t large enough.

Let c e(-l, 1). Then

'2.9) -{ct^

= -{cr

Adding (2.8) and (2.9), letting a>0, we get

(2.10) {/i(0-cr1Re<v(0, v'(ty>}'
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where Kz and L2 are constants lying within e of K and L respectively and it
is understood that (2.10) is valid for t large enough.

By (2.6) and (2.10), it follows that for t large enough, say for t^T=T(e\

provided that

(2.11)

where Ks and Lz are constants lying within e of K and L respectively.
(2.11) is valid with 0<7<1 provided that

(2.12) (l-c}>aK] Z-

The inequalities in (2.12) are valid for some a>0 if

(2.13) (l-c)(*-L+cZ)>K*.

Using (2.13), the inequalities in (2.12) are valid for some «>0 if

(2.14)

Considering K"(l — cz)~l+L(l + c)~1 as a function of c^(— 1, 1) the minimum
value is

(2.15) y{7

and is attained at

(2.16) c0=L-1{K2+L-KV(2I^Kr)}.

Hence by (2.11), ••• , (2.15) and (2.16), we have proved that there is a re(Q, 1)
such that

(2.17)

for t^T=T(e\ provided that

~ {K2+L+K V(2L+A'2)}.

CLAIM: r/2?;-^ /s a?z 37^(0, oo)

(2.18) /2(0-^r1Re

The proof of (2.18, will be given in Section 3.

Let r=max;^, T), Then (2.17) and (2.18) imply that
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0 , _ > _ r
-1 = T s '

Hence

(2.19)

where c' is a positive constant.
Recalling the definition of h(t\ we have

•2.20) ||v'(O

By (2.1),

(2.21) \\v\tW

where Cj and /! are positive constants and (2.21) holds for t large enough, say
for t^a>T.

Since v(t)<^L~(4t}, we have

Hence the function l|t;(OII2 on (0, oo) cannot be monotone increasing on any in-
terval of the form (£, oo), ^0.

Since

it follows that there exists a sequence of real numbers {tn} , t^a> such that

(2.22)

and

(2.23)

Hence by (2.5), we get

-Re<v(tn), j/(U

), v'(t»}dt

Hence by (2.1) and (2.23), we get
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(2.24)

Integrating (2.21;, we get

(2.25) ["ih-'tiWdt^^lvWifa^
Jo J a \ \ Z , / /

where C2 is a positive constant.
Hence by (2.24) and (2.25), we have

( t n ( r ( t ) . (2^~r2A}v(
Jff \ \ 6 /

Using 0<r<l and (2.22), we get

(2.26) lim
n-*coj

Since A is a nonnegative operator, (2.26) implies that

(2.27)

But (2.27) contradicts the fact that v^Lz(M). This proves the theorem.

Remark, By slightly modifying the proof of the theorem, the cases when
K=0 or L=Q can be covered. We omit the details.

§ 3, Continuation of the Proof of Theorem 2.1

In this section we prove the claim in (2.18).

Proposition 3.1. There exists an 57^(0, oo) such that

for ^57, provided that

2>~{

Proof. For t^T = T(e}} define

FW^l^'Vor-f^-rM-T

where d=l-f c0. Then using (2.5),

We have used the nonnegativity of A to obtain the above inequality. Let e>0.
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Then for t large enough, we have

\\ + {d^

The discriminant of the quadratic expression

is given by

where

Since

we can choose s small enough so that

Hence for t large enough,

(3.1)

Let f^O, ?7z^0 and p>0. Following Jansen and Kalf [4], we define

F(m, p, 0=I

where

Using (2.5), we get

<

Hence

{^F(m, p, V}'=

Let £>0. Then for t large enough,

{t*F(m, p, t)}'^t{2(2m+lWm\\2-2(K+£+p}\\vmm^^

Choose a fixed p such that

(K+pY-2 {K2+L-rKV^2L+K^\ +2L <0 .

Hence for £ small enough,
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Hence there is a £'>0 such that

(3.2) {t*F(m, p, OJ'^0, t^t', m^O.

By (U.C.P.), let t^t' be such that

Then

l-2mF(m, p,

-ToW

Let 77ii>(l— d)/2 be such that

Hence

(3.3) t\F(ml9 p,

Then by (3.2) and (3.3), we have

t*F(mlf p, t)^tlF(mlf p

Hence

(3.4) t-*

But

r2m^F(m1} p, 0

= ||v/ir+2m1r1Re<i;/, v>-r'<i;, .

^||v/||8+2m1r1Re<v/, v>-r"<v, ^v>+<(^-T0)i;, v>

provided that we choose t so large that

Hence there is a t2.>tl such that for

(3.5) t-^F(mlf p, t)

Since v^L\M\ ||i;||2 cannot be monotone increasing on any interval of the form
(jS, oo), /3^0. Hence there is a £3^2 such that
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By (3.4) and (3.5).
0<*72roiF(77i3, p, t

Hence

(3.6) t,F(t

By (3.1) and (3.6), we have

tF(t)>Q

for t large enough. This proves the proposition.

§ 4. The Positive Eigenvalues

In this section we use Theorem 2.1 to study the positive eigenvalues of the
Schrodinger operator.

Theorem 4.1. Let q^L{oc(R
n\ n^2, be a real-valued function satisfying the

following conditions :
(1) q(x) is locally Holder continuous on Rn.
(2) q(x)=qQ(x)+qi(x\ where q0(x) and q^(x) are real-valued continuous func-

tions defined on Rn.
(3) lim qQ(x)=Q and lim^1(A:)=0.

io;|-*oo m-»oo

(4) The radial derivative q'0(x) of q0(x) exists.
(5) lim sup \ x \ \ q,(x) \ = K, K< GO.

(6) \imsup\x\q'Q(x)=:L,
IX\-KX>

Let P be a self -ad jo hit extension of the operator

-J+q: C-(Rn)— >L2

Then P has no eigenvalues in (A, oo), where

Remark. Following Agmon [1, 2], Jansen and Kalf [6] and Simon [11],
we have assumed that the function q(x) is fairly smooth. The smoothness con-
ditions on q(x) need only be imposed in a neighbourhood of infinity.

Proof. We first consider the case when n^3. Let X>A bean eigenvalue.
Let u be a corresponding eigenfunction. By hypothesis (1), u can be assumed
to be in C\Rn\ Introducing polar coordinates t=\x , £=t~lx', writing v(t, ?)
=f ( n - 1 ) / 2 M(f , f) and letting

C7i-i_ ly-^-Rn . I I _ii
O — \A S=J\ . |A| — I/,
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it follows that the function

(0, oo)af , >v(t, •)eL8(Sn-1)

is in L2(^OnC2(JO, where M = L\Sn~1}. M is a Hilbert space with inner product

(4.1) </, *>=J5B_/(?)i(?)d£, /, geL'CS"-1).

We also have

(4.2) i/'+y-r2u+^)-£0-<?i}^o, o<a<oo

where u= -r(n—l)(n—3); ^4 is the negative of the Laplace Beltrami operator
4

and is hence a nonnegative, unbounded linear operator on L2(Sn~l).
Define operators T0(t) and 7\(f) on M for t>0 by

(4.3) C

and

(4.4) C

Using the real-valuedness, continuity and hypothesis (3) of q0 and q1} it follows
that T0(0 and 7\(£) are self-adjoint bounded linear operators on ^T for £>0.
Using (4.3) and hypothesis (6), for t large enough,

and is a self-adjoint bounded linear operator on M'. Let s>0. Then there is a
£i>0 such that for all functions a: (0, oo)—»,#" and /3: (0, oo) —> M,

(4.6) |<T0a, /3>|^

(4.7)

(4.8) <tT'0a, a>^

(4.9)

whenever f^^.
We have used hypotheses (3), (5) and (6) to obtain the above inequalities,

Rewrite (4.2) in the form

(4.10) v»+{^r\A+fjL)-T0(t)-T1(t)}v=Qt 0<a<oo.

The unique continuation property for the operator

-A-rq-l

(see, for example, Aronszajn [3]), implies that the abstract differential equation
(4.10) satisfies the (U.C.P.) property formulated in Section 2. Hence by The-
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orem 2.1,
v(t, -)GL*(JC)r\C*W.

This is a contradiction. Hence P has no eigenvalues in (A, oo).
For the case when 71= 2, the above proof can be modified by writing (4.2)

in the form

v"+{i-t-*A-q*-qi}v=Q, o<a<oo
where

Qti, &=Qi(t, f)-j'-s

and replacing 7\(£) by 7\(£) where

This completes the proof of the theorem.
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