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§0. Introduction

In this note, F denotes the field of the complex numbers C or the field of
the quaternions H. We denote by FP™ the F-projective space of nF-dimensions
and by @Q,(F) the quasi-F-projective space. G,(F) denotes the unitary group
U(n) or the symplectic group Sp(n) according as F'is C or H. Let d be the
dimension of F over the field of the real numbers R and S?"~! the unit sphere
in F*. Let T,: S %*— G,_,(F) be the characteristic map for the normal form
of the principal G,-,(F)-bundle over S¢*, Then, as is well known ([2]. [3]
and [9)), Im T7,=Q,-(F), precisely, the following diagram commutes :

Sdn 2'_'——9Qn 1

\/

Gra(F) ;

where j,-, is the canonical reflection map. Q.(F)=Q.-.(F)Ur,e?" " and @¢.(C)
=E(CP%"'), where E( ) denotes the reduced suspension and CP%"! a disjoint
union of CP""! and {one point}.

Let w,-1=w,-:(F) be the homotopy class of T, and p: Q,(C) — Q,.(C)/Q.(C)
=FECP"! the collapsing map. In the previous paper [6], we proved that the
k-th suspension E*(p.«w,(C)) is of order n! for k=0.

The purpose of this note is to examine the order of E*w,_,(H).

Let a be an element of a homotopy group z,( )and E*acr,5( ) the stable
element of a. o(B) denotes the order of 8. Then, our result is the following

Theorem. i) o(E*w, ,(H))=2-2n—1)! for k=0 if n is even.
i) o(E°w,-(H)=02n—1)! if n s odd.

Communicated by N. Shimada, June 10, 1983. Revised September 19, 1983.

* Department of Mathematics, Faculty of Liberal Arts, Shinshu University, Matsumoto
390, Japan.



718 Juno Mukar

Our method is essentially to use the K-theory. To examine o(w,-,(H)), we
use Toda’s theorem about the generator of w;,-,(U(n)) [6] and the group structure
of my,12(Sp(n)) [4]. To determine the lower bound of o(E*w,_,(H)), we use the
standard method of D.M. Segal [7] from the unstable viewpoint, exactly, we
use the Hurewicz homomorphism % : Tpisn-1(E*Qu(H)) — Hyrin-(E*Q.(H); Z).
A powerful tool is Toda-Kozima’s map f,: Q.(H)— Q..(C) [8].

In the stable case, our result overlaps with Corollary 4 of [5] and Theorem
5.8 of [9].

The author wishes to express his sincere gratitude to Professor Seiya Sasao
for many advices given during the preparation of this paper.

§1. Determination of olw, ,(H)) for Even n

First we recall the definition of the quasi-projective space and the reflection
map. S(F™) denotes the unit sphere in F*. Q,(F) is the space obtained from
S(F™x S(F) by imposing the equivalence relation : (u, ¢)~(ug, g7'¢g) for geS(F)
and collapsing S(F™) X {1} toa point. The reflection map j,=7.(F): Q.(F)— G,(F)
is defined as follows :

T, ¢Dw)=v+ulg—1)}<u, v>

for ueS(F™), gS(F) and ve F", where {u, v)=>,%i,v, for u=(uy, -, un)
and v=(vy, ***, VUp).

Let z=x+jy<H, where x, y=C. By regarding x=C as x+j0=H, we have
the injection C<, H. Obviously, this induces the canonical maps 7, : @.(C)— Q(H)
and 7, : U(n) — Sp(n). From the definition, the following diagram commutes :

in

@.(C) Qn(H)
(LD E
Un) —— Sp(n).
In the complex case, we can define the reduced reflection map [6]:
7w=Ja(C): ECP*'2Q,(C)/Q:\(C) —> Um)/U(1) = SUm).
By abuse of notation, we often use the same letter j, for the reduced case.

Lemma 1.2. i) Ifniseven, Ju:wun-1(Qn(H)) = mipn-1(Sp(n))is an epimor phism.
ii) If nis odd, Im j.=an,,-(Sp(n), where a=1 or 2.

Proof. Let p: Q2,(C) — Q4,(C)/Q:(C)= ECP?"* be the collapsing map, %:
Q.(H)— Q(H) and k&’ : Sp(n) — Sp(2n) the inclusion maps, respectively. Then,
by (1.1), the following diagram commutes for »=4n—1:
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b. lans k,
ﬂ77‘(£;CP271_1) < ﬁr(QQn(C)) - ﬂr(QZn(H)) - ﬂr(Qn(H))
i jzn(c>, \L ]'Zn(c>; \L _7'2n* l ].n‘
=(SU@2n) = =U@2n)) B s p2n)) <— m(Sp(n)) .

). is an epimorphism since @Q,,(C)=FECP?*"*~'\vS*. By Theorem 4.1 of [6],
J2x(C), is an epimorphism. So, j:.(C). is an epimorphism. £, and £/ are
isomorphisms respectively. As is well known, 7;,.is an isomorphism if n is even
and Im7;5,.=2m,-1(Sp(2n)) if n is odd. Therefore, the above commutative dia-
gram leads us to the assertion. This completes the proof.

Proposition 1.3. i) olw,-)=2-@2n—1)! for even n.
i) olw,-1)=a-2n—1)! for odd n, where a is the same
number as in Lemma 1.2.
Proof. Let p: (Q.(H), Qn-1(H))— (S %) be the collapsing map. We con-
sider the natural homomorphism between the exact sequences for »r—=4n—1:

~!

I 0
T Qr(H)) —> 7 (Qn(H), Qn-1(H)) —> 7 f(Qn-1(H)) —> 7 1(Q,(H))

l Jne o ‘L b 4 l Jn-1e l Jne

z(Sp(n)) > (S > Tr-(Sp(n—1)) —> m-(Sp(n)),

where the mappings are canonical and 0 and 4’ are the connecting homomor-

phisms.

As is well known, 7,,-,(Sp(n))=Z, 74n-o(Sp(n))=0 and z,(S™)={tn} =Z.
By the Blakers-Massey theorem [1], p, is an isomorphism. By the definition,
Op-1=A(t4n-1), where d=3d-p7*. So, by Theorem 2.2 of [4], j,-,« iS an epimor-
phism and the following holds:
(1.4) Tin-o(Sp(n—1)={Jn-1:@n-1} = Zp. 2n-1;, Where b=1 for odd n

and b=2 for even n.

Byv the exactness of the upper sequence, o(w,-,) is equal to the order of the

cokernel of ;.. Hence, by (1.4), Lemma 1.2 and by the above commutative
diagam, we have the assertion. This completes the proof.

By inspecting the above proof, we have the following

Proposition 1.5. ;! 7 (Qr(H)) = 7win-(Sp(n)) is an epimorphism if and
only if ol@y-1)=b-2n—1)!, where b is the same number as 7n (1.4).

§2. Some Fundamental Facts

For n=0, X, denotes a connected finite CW-complex such that .X,= {*} and
Ap,=e'Ue\U---Ue™ for n=1. Here r=r,=dn—e with ¢e=0 or 1 and d—s=2.
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Orn-1: S7'— X, denotes the attaching map, and so X,=X, s, e For
example, X,=FP™(d=2 or 4 and ¢=0) and X,=Q,(H)(d=4 and e=1).

Let p: X, — X,/ X,-1=S"and p’ : (X, Xu-1) — (ST, *) be the collapsing maps.
Let 0: mrm(E™X,, E™ X, 1) = Trim-1(E™X,_1) be the connecting homomorphism.
Then, (E™p")s: mrem(E™ Xy, E™Xpo1) = Trem(STH™) is an isomorphism for m=0 [1],
and we define a homomorphism 4 : 7, n(S™™) = mrim-1(E™X,-,) by the composi-
tion 9-(E™p")z'. By the definition, 4(¢;+,)=E™#,-,, where the same letter is
used for a mapping and its homotopy class.

Let h=h,: mryn(E™X,) > Hoyn(E™ X, ; Z)=Z for m=0 be the Hurewicz
homomorphism and A(n, m) the non-negative integer such that Imh=
hin, m)H, n(E™X,; Z). Then we have the following

Lemma 2.1. o(E™8,_)=h(n, m).

Proof. j:(E™X,, x)— (E™X,, E™X,_;) denotes the inclusion. Then, we
consider the commutative diagram :

7 0
Trim(E™Xp) —> Trim(E™ Xy, E™Xpoi) —> rom (E™ X oy)
I s
Lk 7. vt
H, w(E™X,; Z) —> Hpy(E™ Xy, E™Xyo1;5 Z),
where i1’ denotes the relative Hurewicz homomorphism and the upper sequence

is exact. From the cell structure of X,, the lower j, is an isomorphism. By
the relative Hurewicz theorem, A’ is an isomorphism. This completes the proof.

According to [8], a representative element of @,(H) can be taken as
(x+7y, '), where x, yeC™ satisfying x+;7yeS(H") and 0=<¢<1. Toda and
Kozima defined ,: Q,(H)— Q.,(C) by the equation

tal(x+7y, e*)]=[(xDy, **")].

We define t,: Q,(H)— ECP®**! by the composition p-f,, where p: @.,(C)
— ECP?®"! is the collapsing map. From the definition. the following diagram
commutes for k<n:

t
Qu(H) —> ECP*-*
/ . .,
(2.2) i . |
Qu(H) —> ECP*,

where / and 7/ are the canonical inclusions.
The following lemma is a reduced version of Proposition 2.5 of [8].

Lemma 2.3 (Toda-Kozima). The following diagram commutes up to homotopy :
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[Se3
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2
Q.(H) —> ECP*"?
Ve o | e
Sp(n) —> SU@2n),
where ¢ is the complexification map.

Let p: Q(H)— Q.(H)/Qn-«(H)=S""*for n=1 and p’ : ECP*"*— ECP*""/
ECP2r-3~§tn-s\/Sin-1 for n=2 be the collapsing maps. Then, by (2.2), there
exists a mapping ¢, : S'*"' — S4-3\v/ S+ for n=2 such that the following dia-
gram commutes :

In
Q,(H) — ECP?*"1
(2.4) lp a lp’
S4n—-1 —_— S~1n—'5\/sln—1 .

Let p,: Sin-3vStr-t — Si»-1 for n=2 be the projection map. Then, we have
the following

Lemma 2.5. degt,=—1 and deg(pstn)=(—1)" for n=2.
Proof. We define g, : S(H™) — S(C*") by the equation
gn(x+7y)=xDy

for x, yeC® It is clear that g, is a homeomorphism and deg g,=(—1)". By
Lemma 2.3, t,~g, and p,tn~g, for n=2. This completes the proof.

Hereafter the same letter is often used for a mapping and its homotopy
class. Let y,=7.(F): S(F"")— FP™ be the projection map. Let 7: ECP*" ! —
ECP®" be the inclusion map. Then, we have the following

Proposition 2.6. (—1)""Ey,,(C)=it,w,(H).

Proof. By (2.2) and (2.4), the following diagram commutes for r=4n—-3:

. 0
w(S'") «——— 1 Qnii(H), Qu(H)) —> 7r-o(Qn(H)

-

‘1’ tn,+1‘ p: l tn+14 a/ l tn'
WT(S47L+1VS47Z-‘-G> < n.T(ECPZn+1’ ECP277,~1> > :TT_I(ECP‘.‘.IL—I)

P

(S48 <

7(ECP**, ECP*™) —> r, ((ECP*"),

where the mappings are canonical.

b, and p” are isomorphisms [1]. We note that w,(H)=0p;(tsn+s) and Eyz,(C)
=0"p" Uetgn+s). S0, by Lemma 2.5 and the above commutative diagram, we have
the assertion. This completes the proof.
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Remark 1. Owing to Proposition 2.6, it suffices to take (—1)"*t,w, as s,
in Proposition 6.5.1i) of [6]. By Theorem 1.2 of [6] and Proposition 1.3, 0(2:,)
=2n-+1)! or 2:(2n+1)!. In the last section, we shall show that o(2)=5! {cf.

Lemma 11.1 of [6]).

§3. Determination of the Lower Bound of o(E™w,-(H))

Let vel?(CP“‘l) be the stable isomorphism class of the canonical line bundle
over CP?*1, We denote by I,: K( )— K(E®* ) the Bott periodicity isomorphism.
The following lemma is well known (cf. Lemma 2.2 of [8]).

Lemma 3.1. IC(‘U)Ej;I(EZCPZ"_I) is represented by the adjoint of the composite

of the canonical maps:

Fon i k
ECPp2n-1 _Z> SU@2n) —> U(2n) —> .QBU(ZH) ,

where k is the homotopy equivalence.

Hereafter, Z or the rational number field Q is taken as the coefficients of

the homology or cohomology groups, unless otherwise stated.
Let ch®*: K( )— H**( ; Q) be the k-th Chern character and ch:%}chk the

total Chern character. Let o: H{((E )— H!"'( ) be the suspension isomorphism.
Then, as is well known, the following diagram commutes :

Ic

K(Ccp2»-1) K(E*CP?m-1)

(3.2) leh e |eh
H*CP?*1; Q) —> H*ECP*'; Q).

We denote by y a generator of H*(CP?*"*~'). It is also well known that
(3.3) ch?-ly=1/2n—1)! y2n-t,

Propesition 3.4. o(E™w,-,) is a multiple of (2n—1)! for m=0.

Proof. The assertion is a direct consequence of Theorem 1.2 of [6] and
Proposition 2.6. For the later use, we give another proof for even m.

By (2.4) and Lemma 2.5, ¢} : H**"Y(ECP?"') - H**~}(Q,(H)) is an isomor-
phism. So, y’=tfcy?"1is taken as a generator of H*""%(Q,(H)). We choose
a generator x of H,, ,(Q.(H)) satisfying <y’, x>=1, where <{ , > denotes the
Kronecker index.

Put o(E™w,-,)=Fk(n). Denote by s: ﬁL( ) — ﬁm(E ) the suspension isomor-
phism. Then, by Lemma 2.1, there exists an element @€ wmiun-1(E™QL(H)) sat-
isfying hn(a)=Fk(n)s™x. By the definition of the Hurewicz homomorphism, A, (a)
=aws™E,, where &, denotes a generator of H,,(S**"!). So, we have k(n)=
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(o ™y, axs™E,y=<La*c"™y’, s™&,>. Choose a generator z, of H**"*(S*"!) sat-
isfying <z,, £&,>=1. Then, we have a*c ™y =k(n)o ™z,.

Put m=2t and u=I 4 (Et)*I,(v)=K(E™"Q,(H)). Then, by (3.2), (3.3) and
by the naturality of the Chern character, we have the following :

o ch®*™ ¥ (Ea)*u=a*o ™tfo™* ch®* " (v)=1/2n—1)! a*a ™y’.

So, we have ch*" Y Ea)*u=Fk(n)/2n—1)! 6™ 'z,. As is well known, Im ch?®**¢
=Hintm(Sinm . 7). Hence, k(n)/(2n—1)! is an integer. This completes the
proof.

Lemma 3.5. (Et,)*Ic(v) belongs to the image of the complexification homo-
morphism ¢’ 1 KSp(EQ,{H))— ]%(EQ,L(H)).

Proof. By Lemmas 2.3 and 3.1, u'={Et,)*[¢(v)=(adj(keie]s,(C))x(Et,)=
(adj k)x(Ec)«(Ejn(H)).

Let p.: BSp(n) — BU(2n) be the mapping induced from c: Sp(n)— U(2n)
and k’: Sp(n) — 2BSp(n) be the canonical homotopy equivalence. Then, it is
well known that kec=Q2p.-k’. So, we have (adj k)sx(Ec)x=(p.)«(adj #")x. Hence,
u'=(p)x(adj B )x(Ej(H))€Im¢’. This completes the proof.

As is well known, the following diagram commutes :

~ ¢

KSp( ) —> K¢ )
(3.6) | 1 | I,

’\j’ pig C, lN C

KSpEs ) —> R(E® ),

where [; denotes the Bott periodicity isomorphism.

Proposition 3.7. I/ n is even and m=0mod 8, o(E™w,_,) is a muliiple of
2-2n—1)1.
Proof. As is well known, the following diagram commutes :

*

> %p(S-ln-‘rm)

N % (Ea)* J«c
I((EQR(H» > K(S“H—m.) ,

KSp(E™ Q. (H))

and Im ¢=2K(S"*™) if n is even. So, by Lemma 3.5, (3.6) and by the proof of
Proposition 3.4, (Ea)*u=(Ea)*I;'(Et,)*I;(v)2K(S*™) and ch?*+{(Ea)*us2H "+
(S#ntm s 7). Therefore, k(n)/(2n—1)! is an even integer. This completes the
proof.

Remark 2. By the similar arguments, we have the following for £2=1(cf. [7]):
(1) o(E*r,-,(C)) is a multiple of n! for even k.
(2) o(E*r,_(H)) is a multiple of (2n)'/2 for even k. If n is even and k=
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0mod 8, o(E*y,_(H)) is a multiple of (2n)!.

§4. Proof of the Theorem
To prove ii) of our theorem, we use the following [3]:

Theorem 4.1 (James). The stunted quasi-projective space Qn(F)/Qn-r(F) is
an S-retract of the factor space Gu(F)/G.-w(F) for k<n. In particular, j5.:
7S(QL(H)) — n$(Sp(n)) is a monomorphism for 1=0.

Now we are ready to prove the theorem. The assertion i) is a direct con-
sequence of Propositions 1.3.i) and 3.7.

By Theorem 4.1, 735 1o 75-2(Qn-1(H)) = w5r-5(Sp(n—1)) is a monomorphism.
So, we have o(E“w,_1)=0(E®j, 1 «w,-1). Therefore, (1.4) and Proposition 3.4 lead
us to the assertion. This completes the proof of the theorem.

Remark 3. We can give an improved proof of Theorem 1.2 of [6]. We
use the first half of the proof of Theorem 1.2 of [6] and Remark 2.(1). We
have

(1) o(E*r,-(C)=n! for k=1.

By (1) and Remark 2.(2), we have the following :

(2) If n is even, o(E*y,«(H)=@2n)! for k=1.
By Theorem 1.1 of [7] and by Lemma 2.1,

(3) o(E=rn-,(H))=(2n)1/2 if n is odd.

In this case, the Adams spectral sequence is used for the 2-primary stable
homotopy of quaternionic and complex projective spaces [7].

§5. An Example

An open problem is to determine the order of w,(H) completely. The
author hopes that an affirmative answer is given to the following

Conjecture. o(w,-(H))=02n—1)! if n is odd.

In this section, we determine the group structure of z;,(Q.(H)) and we show
that the conjecture is true for n=3. We use the following : n,,{S*)=Z,, 7,,(S")
={v} ®Z,,, m1:(SN=0, 75(S*)=Z; and 71,(S?)=Z 5.

Example. 7,(Q.(H)=Z:;PDZ, and olw,(H))=5!.

Proof. Let p: (Qx(H), S®)—(S%, %) be the collapsing map. Then, py:
7(Qs(H), S®) — m,(S7) is an isomorphism [1]. We choose a generator a of
7(Qy(H), S*)=Z such that pra=t,.

Sp(2) is regarded as the cell complex Q,(H)\Ue™? Let p’: (Sp(2), Q.(H)) —
(S, %) be the collapsing map. Then, p%: 7.(Sp(2), Q.(H)) — 7,(S*) is an isomor-
phism for n=11 [1].
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We consider the following commutative diagram :

mu(SpD, S0

7
n'“(Sj)(Z), Q«(H))= E;l(SP(Z), Qz(H))_%
0 o Z
'* '* all
7187 —> 71 QuUH) > 7 QuHD), 5 ——> wS,
“ .1" j2* p’ Zb* A, ” y
711(S7) —> 710(S?) — 710(Sp(2)) e 710(S7) —— 7s(S*) —> 7,(Sp(2)),
Q U S S . U
0 Zss Zs 710(5p(2), S?) 0
0 710(Sp(2), Qx(H))
A\

where the mappings are canonical and the horizontal and perpendicular sequences
are exact respectively.

p. is a split epimorphism since p.(av;)=v;. So, we have m,(Q.(H), S®)=
Z.,DZ,. By the commutativity of the above diagram, 7, is a monomorphism and
0” is an epimorphism. Therefore, by the upper horizontal sequence, m:,(Q@:(H))
~ZsPZ, Hence, by Proposition 1.3.ii), we have o(w,)=5!. This completes
the proof.
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