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§ 0. Introduction

In this note, F denotes the field of the complex numbers C or the field of
the quaternions H. We denote by FPn the F-projective space of nF-dimensions
and by Qn(F) the quasi-F-projective space. Gn(F) denotes the unitary group
U(ri) or the symplectic group Sp(ri) according as F is C or H. Let d be the
dimension of F over the field of the real numbers R and Sdn~1 the unit sphere
in F". Let T'n: Sdn~2—> Gn-i(F) be the characteristic map for the normal form
of the principal Gn_i(F)-bundle over Sdn~1. Then, as is well known ([2], [3]
and [9]), Ini T^Q^-^F), precisely, the following diagram commutes:

where jn-± is the canonical reflection map. Qn(F)-=Qn~i(F\jTn&
dn~l and Qn(C)

=E(CP+~1), where E( ) denotes the reduced suspension and CP+'1 a disjoint
union of CPn~l and {one point}.

Let o)n-1=a)n-1(F') be the homotopy class of Tn and p : Qn(C) -> Qn(C}/Qi(C)
^ECP71"1 the collapsing map. In the previous paper [6], we proved that the
&-th suspension Ek(p*o)n(C)) is of order n\ for ^^0.

The purpose of this note is to examine the order of Ekcon-i(H).
Let a be an element of a homotopy group xn( ) and E°°a^7rn

s( ) the stable
element of a. o(fi) denotes the order of /3. Then, our result is the following

Theorem, i) o(£*o>n_1(//))=2-(2n— 1)! for k^Q if n is even.
ii) o(Ecoa)n-l(H))=(2n-Y)\ if n is odd.
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Our method is essentially to use the K-theory. To examine o(o)n-\(H}\ we
use Toda's theorem about the generator of x2n-i(U(ri)) [6] and the group structure
of 7T4rl+2(S£(n)) [4]. To determine the lower bound of o(Eka)n-l(H)}, we use the
standard method of D. M. Segal [7] from the unstable viewpoint, exactly, we
use the Hurewicz homomorphism h: Xk+in-i(EkQn(H)} -> f f k + i n - l ( E k Q n ( H ) ; Z).
A powerful tool is Toda-Kozima's map tn : Qn(H) -> QZn(C} [8].

In the stable case, our result overlaps with Corollary 4 of [5] and Theorem
5.8 of [9].

The author wishes to express his sincere gratitude to Professor Seiya Sasao
for many advices given during the preparation of this paper.

§1. Determination of o(con-1(H)) for Even n

First we recall the definition of the quasi-projective space and the reflection
map. S(Fn) denotes the unit sphere in Fn. Qn(F] is the space obtained from
S(Fn)xS(F) by imposing the equivalence relation : (u, q)~(ug, g~lqg] for g^S(F)
and collapsing S(Fn}X {1} to a point. The reflection map /n=/n(F) : Qn(F)-*Gn(F)
is defined as follows :

for weS(Fn), <?eS(F) and v^Fn, where <w, v>=S*=i«*i>* for u = (ult ••• , un)
and v=(vl9 • • - , vn).

Let z=x-\-jy^H, where x, y^C. By regarding .reCas %+j'Oef/, we have
the injection Cd> //. Obviously, this induces the canonical maps in : Qn(C} ~> Qn(H)
and z^ : Z7(n) -> S^?(n). From the definition, the following diagram commutes :

Qn(C] — -> Qn(H]

In the complex case, we can define the reduced reflection map [6] :

By abuse of notation, we often use the same letter jn for the reduced case.

Lemma 1.2. i) // n is even, jn* : 7u4n-i(Qn(H)) -> 7r47i-i(S^(n)) is an epimorphism.
ii) // n is odd, lmjn*=aKin-1(Sp(ri)), where a=l or 2.

Proof. Let p: Q2n(C) -> 02n(C)/Oi(C) = ECP271'1 be the collapsing map, A:
Qn(H)-*Q2n(H) and £x : Sp(n] —> Sp(2n) the inclusion maps, respectively. Then,
by (1.1), the following diagram commutes for r=&n—l:
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> 7tr(QZn(H}} <^- Kr(

/>. is an epimorphism since Q2Tl(C)^JECP2n-1V 'S1. By Theorem 4.1 of [6],
./WC). is an epimorphism. So, j2n(C\ is an epimorphism. £„ and &' are
isomorphisms respectively. As is well known, i'zn* is an isomorphism if n is even
and Im/2n*=27r4ra_i(5^(2n)) if w is odd. Therefore, the above commutative dia-
gram leads us to the assertion. This completes the proof.

Proposition 1.3. i) o(o)n-i)= 2-(2n — 1) ! for even n.
ii) o(a)n-i} = a-(2ji— 1) ! for odd n, where a is the same

number as in Lemma 1.2.

Proof. Let p : (Qn(H\ Qn-i(H)} -> (S171-1, *) be the collapsing map. We con-
sider the natural homomorphism between the exact sequences for r=4?z— 1 :

p, . A.
^— > TTrCS4"-1)

where the mappings are canonical and 9 and A' are the connecting homomor-
phisms.

As is well known, ii,n-^Sp(n})^Z, 7uin-t(SpW)^0 and 7rm(SOT)= {cm} &Z.
By the Blakers-Massey theorem [1], pt is an isomorphism. By the definition,
a)n-l=A(^n-1}, where A=dop~*. So, by Theorem 2.2 of [4], /„_!• is an epimor-
phism and the following holds :

(1.4) xin-2(Sp(n — 1))= {/n-i*<»n-i} «^6.(2«-i)!, where ft=l for odd ?z

and ^=2 for even n.

By the exactness of the upper sequence, o(o)n-J is equal to the order of the
cokernel of /„'. Hence, by (1.4), Lemma 1.2 and by the above commutative
diagam, we have the assertion. This completes the proof.

By inspecting the above proof, we have the following

Proposition 1.5. jn+ '• Xin-i(Qn(H))-* Km-i(Sp(n)) is an epimorphism if and
only if o(a)n-i}=b-(2n— 1) !, where b is the same number as in (1.4).

§ 2. Some Fundamental Facts

For n^O, Xn denotes a connected finite CW-complex such that XQ= {*} and
Xn = e*Ueri\J~'\JeTn for n^l. Here r=rn=dn—e with s=0 or 1 and
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0n-i : Sr~l— > Xn-i denotes the attaching map, and so Xn=Xn-1{J0n_1e
r. For

example, Xn=FPn(d=2 or 4 and e=0) and Xn = Qn(H)(d=4: and e=l).
Let p:Xn-+ XJXn-l=Sr and p' : (Xn, Xn-J -* (5r, *) be the collapsing maps.

Let 3 : nr+m(EmXn, EmXn-l) -> nr+m-i(EmXn-i) be the connecting homomorphism.
Then, (Emp% : xr+m(EmXn, EmXn-1)~^7ur+m(Sr+m) is an isomorphism for m^O [1],
and we define a homomorphism J: 7rr+m(Sr+m) -> 7rr+m_1(£

1OTZ7l-i) by the composi-
tion d°(Emp%1. By the definition, A(cr^m}^=Emdn-l, where the same letter is
used for a mapping and its homotopy class.

Let h = hm: xr+m(EmXn} -> Hr+m(EmXn ; Z)^Z for wz^O be the Hurewicz
homomorphism and h(n, m) the non-negative integer such that Im/z =
7z(n, m)Hr+m(EmXn ; Z). Then we have the following

Lemma 2.1. o(Em0n-1)=h(nf m) .

Proof, j : (EmXn, *) -> (£mA'n, EmXn-l] denotes the inclusion. Then, we
consider the commutative diagram :

j. 3

Hr^m(EmXn; Z)—>Hr+m(EmXn, EmXn^; Z) ,

where /z' denotes the relative Hurewicz homomorphism and the upper sequence
is exact. From the cell structure of Xn, the lower /„ is an isomorphism. By
the relative Hurewicz theorem, h' is an isomorphism. This completes the proof.

According to [8], a representative element of Qn(H} can be taken as
(x+jy, eist), where x, y^Cn satisfying x+jy^S(Hn) and O^^l. Toda and
Kozima defined fn: Qn(H) -> Q^n(C) by the equation

We define tn: Qn(H) -> ECPzn~l by the composition p*fn, where p: Q2n(C)
-> ECPzn~l is the collapsing map. From the definition, the following diagram
commutes for k < n :

(2.2)

where / and i' are the canonical inclusions.
The following lemma is a reduced version of Proposition 2.5 of [8].

Lemma 2.3 (Toda-Kozima). The following diagram commutes up to homotopy :
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f n C
Sp(n) — > SU(2n] ,

where c is the complexification map.

Let p : Qn(H) -> Qn(H)/Qn-i(H)=S*n-1 for n^l and p' : ECP271'1

ECP^-'-S^-VS^-1 for n^2 be the collapsing maps. Then, by (2.2), there
exists a mapping t'n: S171"1 -> S^'VS411"1 for w^2 such that the following dia-
gram commutes :

I /> ,/ U'
V tn Y

C4n-l _ ^ C 4 n - 3 \ / Cin

Let p2: S^^VS171^1 -^ Sin~l for ?i^2 be the projection map. Then, we have
the following

Lemma 2.5. deg^ = — 1 and deg(/>8fi)=(— I)71 /or n^

/. We define £72 : S(^n) -> 5(C2n) by the equation

for x, y^Cn. It is clear that gn is a homeomorphism and dQggn = (—iyi. By
Lemma 2.3, ^i — ̂ i and p.2t

f
n-gn for w^2. This completes the proof.

Hereafter the same letter is often used for a mapping and its homotopy
class. Let Tn=Tn(F} : S(Fn hl) -H. FPn be the projection map. Let i : ECP"71'1 ->
ECPzn be the inclusion map. Then, we have the following

Proposition 2.6. (-l)n+\Eftn(C)=*^<yn(#).

. By (2.2) and (2.4), the following diagram commutes for r=4n-r3:

A

where the mappings are canonical.
^ and pH are isomorphisms [1]. We note that o)n(H)=dp~1(sin+B} and E^Zn(C]

=8"p"~1(c4n+3\ So, by Lemma 2.5 and the above commutative diagram, we have
the assertion. This completes the proof.
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Remark 1. Owing to Proposition 2.6, it suffices to take (— l)n+1tna)n as /2;l

in Proposition 6.5. ii) of [6]. By Theorem 1.2 of [6] and Proposition 1.3, o(lzn}
= (2?z+l)I or 2-(2n+l)!. In the last section, we shall show that 0(2^=51 (cf.
Lemma 11.1 of [6]).

§3. Determination of the Lower Bound of o(Emo)n-l(H))

Let v^K(CPZn~1} be the stable isomorphism class of the canonical line bundle
over CPzn~\ We denote by Ic : K( ) -> K(EZ ) the Bott periodicity isomorphism.
The following lemma is well known (cf. Lemma 2.2 of [8]).

Lemma 3.1. Ic(v)^K(EzCP2n~1) is represented by the adjoint of the composite
of the canonical maps :

ECP211-1 — > SU(2n) -*-> U(2n) — > QBU(2n) ,

where k is the homotopy equivalence.

Hereafter, Z or the rational number field Q is taken as the coefficients of
the homology or cohomology groups, unless otherwise stated.

Let ch* : # ( ) - > Hzk( ; Q) be the fe-th Chern character and ch=2ch* the

total Chern character. Let a : Hl(E ) -» Hi~1( ) be the suspension isomorphism.
Then, as is well known, the following diagram commutes :

(3.2) |ch a., |ch
>H*(E2CPZn-1; Q).

We denote by y a generator of Hz(CPZn~l). It is also well known that

(3.3) ch27l-Ji;=l/(2n-l)! yzn~l .

Proposition 3.4. o(Ema)n-1) is a multiple of (2n— 1) ! for m^O.

Proof. The assertion is a direct consequence of Theorem 1.2 of [6] and
Proposition 2.6. For the later use, we give another proof for even m.

By (2.4) and Lemma 2.5, t*: H **-\ECP*n-*) -> H*n-l(Qn(H}) is an isomor-
phism. So, y/=t^a~1yzn~1 is taken as a generator of H^n~l(Qn(H}\ We choose
a generator x of H^-^Q^H}) satisfying </, ^-> = 1, where < , > denotes the
Kronecker index.

Put o(Ema)n-1)=k(n). Denote by s : Hl( ) -> Hi+1(E ) the suspension isomor-
phism. Then, by Lemma 2.1, there exists an element ae7rm+47l_i(EmOn(ff)) sat-
isfying hm(a}=k(n}smx. By the definition of the Hurewicz homomorphism, hm(a)
= a*smfn, where gn denotes a generator of H^-^S^'1). So, we have
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((j~my , (x%sm£n/
i=i\o!.>fo my , sm^n/. Choose a generator Tn ol H. "(o ) sat-

isfying <rw, fn> = l. Then, we have a^a~myf = k(n}a~mrn.
Put m=-2t and u=Ic

t(Etn)*Ic(v}^K(Em+lQn(H». Then, by (3.2), (3.3) and
by the naturality of the Chern character, we have the following:

So, we have ch*n^(Ea)*u = k ( n ) / ( 2 n — l ) I a~m-lTn. As is well known, Im chzn+t

=Hin+m(S^mi Z). Hence, £(n)/(2n-l)! is an integer. This completes the
proof.

Lemma 3.5. (Etn)*Ic(v) belongs to the image of the complexification homo-
morphism c': KSp(EQn(H» -> K(EQn(H}\

Proof. By Lemmas 2.3 and 3.1, uf—(Etn}*Ic(v)~(&&}(koi°J2n(C)}}*(Etn) —
(adj k}*(Ec)*(Ejn(H)}.

Let pc: BSp(n) -> BU(2n) be the mapping induced from c : Sp(n) —> U(2n)
and kf: Sp(n) -» QBSp(ri) be the canonical homotopy equivalence. Then, it is
well known that k°c^Qpc°k'. So, we have (adj k)*(Ec)*=(pc)*(adj &')*• Hence,
u'=(pc)*(ad] k')*(Ejn(H))^lmc'. This completes the proof.

As is well known, the following diagram commutes:

^, c'
TV'C'i./' \ ^ Iff \Ksp( ) —> K( )

(3.6)

KSp(E8

where /// denotes the Bott periodicity isomorphism.

Proposition 3.7. // n is even and m=0mod8, o(Emct)n-1} is a multiple of
2-(2/2-1)!.

Proof. As is well known, the following diagram commutes:

^ (Ea)*
KSp(Em+lQn(H}}

„
K(EQn(H))

and lmc=2K(Sin + m} if n is even. So, by Lemma 3.5, (3.6) and by the proof of
Proposition 3.4, (EaTu^(Ea}^Ic

t(EtnTIc(v')^2K(Sin+m) and ch2n+t(Ea}*u^2H*n+m

(S4 7 l + m ;Z). Therefore, £(n)/(2n— 1) ! is an even integer. This completes the
proof.

Remark 2. By the similar arguments, we have the following for &^l(cf. [7]) :
(1) o ( E k j n - l ( C } } is a multiple of n\ for even k.
(2) o(Ekjn-l(H)') is a multiple of (2ri)\/2 for even k. If n is even and k =
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OmodS, o(Ekrn-i(H)) is a multiple of (2n)!.

§ 4. Proof of the Theorem

To prove ii) of our theorem, we use the following [3] :

Theorem 4.1 (James). The stunted quasi-projective space Q n(F) / Q n- k(F] is
an S-retract of the factor space Gn(F}/Gn-k(F} for k<n. In particular, j^:
7ii(Qn(H)} -> x?(Sp(ri)) is a monomorphism for z'^0.

Now we are ready to prove the theorem. The assertion i) is a direct con-
sequence of Propositions 1.3.1) and 3.7.

By Theorem 4.1, j%-i*: 7r^n-2(Qn-i(H))—>nJn-2(Sp(n~l)) is a monomorphism.
So, we have o(Ecoa)n-1}=o(Ecojn-1*.con-1). Therefore, (1.4) and Proposition 3.4 lead
us to the assertion. This completes the proof of the theorem.

Remark 3. We can give an improved proof of Theorem 1.2 of [6], We
use the first half of the proof of Theorem 1.2 of [6] and Remark 2.(1). We
have

(1) o(E*r»-i(C))=n! for k^L
By (1) and Remark 2. (2), we have the following:

(2) If n is even, o(Ekrn-i(H}}=(2n}\ for k^L
By Theorem 1.1 of [7] and by Lemma 2.1,

(3) o(E~rn-i(H}}=(2ri)\/2 if n is odd.
In this case, the Adams spectral sequence is used for the 2-primary stable

homotopy of quaternionic and complex projective spaces [7].

§ 5. An Example

An open problem is to determine the order of oon(H} completely. The
author hopes that an affirmative answer is given to the following

Conjecture. o(a)n-1(H))=(2n— 1) ! if n is odd.

In this section, we determine the group structure of 7cw(Q2(H)) and we show
that the conjecture is true for n=3. We use the following: 7rn(S

10)^ Zz, n^S1)
~Z3 and 7T10(S

3)~Z15.

Example. nw(Qz(H}}^Z5l@Zz and o(o)2(H))=5l.

Proof. Let p : (QJfl), S3) -> (S7, *) be the collapsing map. Then, p* :
~7(Q2(H), S3) -» 7T7(S

7) is an isomorphism [1], We choose a generator a of
7r7(Q2(ff), S3)«Z such that p*a=t7.

Sp(2} is regarded as the cell complex Q2(#)Wg7-3. Let p' : (S/>(2), QZ(H}}-+
(S10, *) be the collapsing map. Then, pi : nn(Sp(2\ QZ(H}} -> ^n(S

10) is an isomor-
phism for n^ll [1],
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We consider the following commutative diagram:

ffii(S/»(2), i

, i3 y') —'-*Jcu(Q,(H»^+icut

J

where the mappings are canonical and the horizontal and perpendicular sequences

are exact respectively.
p* is a split epimorphism since pJ^av^^Vv So, we have 7i10(Q2(H\ S3)^

^24©^2- By the commutativity of the above diagram, i* is a monomorphism and
3/x is an epimorphism. Therefore, by the upper horizontal sequence, 7r1Q(Q2(H))

~Z5!©Z2. Hence, by Proposition 1.3. ii), we have 6>(<w2)=5!. This completes

the proof.

References

[1] Blakers, A. L. and Massey, W. S., The homotopy groups of a triad. II, Ann. of
Math., 55 (1952), 192-201.

[2] James, I. M., Spaces associated with Stiefel manifolds, Proc. London Math. Soc.,
(3) 9 (1959), 115-140.

[3] -, The Topology of Stiefel Manifolds, London Math. Soc, Lecture Note,
24, Cambridge, 1976.

[4] Mimura, M. and Toda, H., Homotopy groups of symplectic groups, /. Math. Kyoto
Univ., 3 (1964), 251-273.

[ 5 ] Morisugi, K., Stable self maps of the quaternionic (quasi-) projective space, to appear.
[6] Mukai, J., The S^transfer map and homotopy groups of suspended complex pro-

jective spaces, Math. J. Okayama Univ., 24 (1982), 179-200.
[7] Segal, D. M., On the stable homotopy of quaternionic and complex project!ve spaces,

Proc. Amer. Math. Soc., 25 (1970), 838-841.
[8] Toda, H. and Kozima, K., The symplectic Lazard ring, /. Math. Kyoto Univ., 22

(1982), 131-153.
[9] Walker, G., Estimates for the complex and quaternionic James numbers, Quart. J.

Math. Oxford, (2) 32 (1981), 467-489.




