The Order of the Attaching Class in the Suspended Quaternionic Quasi-Projective Space

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By

Juno MUKAI*

§0. Introduction

In this note, F denotes the field of the complex numbers C or the field of the quaternions H. We denote by FP^n the F-projective space of nF-dimensions and by $Q_n(F)$ the quasi-F-projective space. $G_n(F)$ denotes the unitary group U(n) or the symplectic group Sp(n) according as F is C or H. Let d be the dimension of F over the field of the real numbers R and S^{dn-1} the unit sphere in F^n . Let $T'_n: S^{dn-2} \to G_{n-1}(F)$ be the characteristic map for the normal form of the principal $G_{n-1}(F)$ -bundle over S^{dn-1} . Then, as is well known ([2], [3] and [9]), Im $T'_n = Q_{n-1}(F)$, precisely, the following diagram commutes:

where j_{n-1} is the canonical reflection map. $Q_n(F) = Q_{n-1}(F) \bigcup_{T_n} e^{dn-1}$ and $Q_n(C) = E(CP_+^{n-1})$, where E() denotes the reduced suspension and CP_+^{n-1} a disjoint union of CP_+^{n-1} and {one point}.

Let $\omega_{n-1} = \omega_{n-1}(F)$ be the homotopy class of T_n and $p: Q_n(C) \to Q_n(C)/Q_1(C) = ECP^{n-1}$ the collapsing map. In the previous paper [6], we proved that the k-th suspension $E^k(p_*\omega_n(C))$ is of order n! for $k \ge 0$.

The purpose of this note is to examine the order of $E^{k}\omega_{n-1}(H)$.

Let α be an element of a homotopy group $\pi_n(\)$ and $E^{\infty}\alpha \in \pi_n^{S}(\)$ the stable element of α . $o(\beta)$ denotes the order of β . Then, our result is the following

Theorem. i)
$$o(E^k \omega_{n-1}(H)) = 2 \cdot (2n-1)!$$
 for $k \ge 0$ if n is even.
ii) $o(E^{\infty} \omega_{n-1}(H)) = (2n-1)!$ if n is odd.

Communicated by N. Shimada, June 10, 1983. Revised September 19, 1983.

^{*} Department of Mathematics, Faculty of Liberal Arts, Shinshu University, Matsumoto 390, Japan.

Juno Mukai

Our method is essentially to use the K-theory. To examine $o(\omega_{n-1}(H))$, we use Toda's theorem about the generator of $\pi_{2n-1}(U(n))$ [6] and the group structure of $\pi_{4n+2}(Sp(n))$ [4]. To determine the lower bound of $o(E^k\omega_{n-1}(H))$, we use the standard method of D. M. Segal [7] from the unstable viewpoint, exactly, we use the Hurewicz homomorphism $h: \pi_{k+4n-1}(E^kQ_n(H)) \to H_{k+4n-1}(E^kQ_n(H); Z)$. A powerful tool is Toda-Kozima's map $\tilde{t}_n: Q_n(H) \to Q_{2n}(C)$ [8].

In the stable case, our result overlaps with Corollary 4 of [5] and Theorem 5.8 of [9].

The author wishes to express his sincere gratitude to Professor Seiya Sasao for many advices given during the preparation of this paper.

§1. Determination of $o(\omega_{n-1}(H))$ for Even n

First we recall the definition of the quasi-projective space and the reflection map. $S(F^n)$ denotes the unit sphere in F^n . $Q_n(F)$ is the space obtained from $S(F^n) \times S(F)$ by imposing the equivalence relation: $(u, q) \sim (ug, g^{-1}qg)$ for $g \in S(F)$ and collapsing $S(F^n) \times \{1\}$ to a point. The reflection map $j_n = j_n(F) : Q_n(F) \to G_n(F)$ is defined as follows:

$$j_n([u, q])(v) = v + u(q-1)\langle u, v \rangle$$

for $u \in S(F^n)$, $q \in S(F)$ and $v \in F^n$, where $\langle u, v \rangle = \sum_{k=1}^n \overline{u}_k v_k$ for $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n)$.

Let $z=x+jy\in H$, where $x, y\in C$. By regarding $x\in C$ as $x+j0\in H$, we have the injection $C \subseteq H$. Obviously, this induces the canonical maps $i_n: Q_n(C) \to Q_n(H)$ and $i'_n: U(n) \to Sp(n)$. From the definition, the following diagram commutes:

(1.1)
$$Q_n(C) \xrightarrow{i_n} Q_n(H)$$
$$\downarrow j_n \qquad \qquad \downarrow j_n$$
$$U(n) \xrightarrow{i'_n} Sp(n).$$

In the complex case, we can define the reduced reflection map [6]:

$$\tilde{j}_n = \tilde{j}_n(C) : ECP^{n-1} \cong Q_n(C)/Q_1(C) \longrightarrow U(n)/U(1) \cong SU(n) .$$

By abuse of notation, we often use the same letter j_n for the reduced case.

Lemma 1.2. i) If n is even, $j_{n^*}: \pi_{4n-1}(Q_n(H)) \to \pi_{4n-1}(Sp(n))$ is an epimorphism. ii) If n is odd, $\operatorname{Im} j_{n^*} = a\pi_{4n-1}(Sp(n))$, where a=1 or 2.

Proof. Let $p: Q_{2n}(C) \to Q_{2n}(C)/Q_1(C) \cong ECP^{2n-1}$ be the collapsing map, $k: Q_n(H) \to Q_{2n}(H)$ and $k': Sp(n) \to Sp(2n)$ the inclusion maps, respectively. Then, by (1.1), the following diagram commutes for r=4n-1:

QUASI-PROJECTIVE SPACE

$$\begin{aligned} \pi_r(ECP^{2n-1}) & \xleftarrow{p_*}{\longleftarrow} \pi_r(Q_{2n}(C)) \xrightarrow{i_{2n^*}} \pi_r(Q_{2n}(H)) & \xleftarrow{k_*}{\longleftarrow} \pi_r(Q_n(H)) \\ & \downarrow j_{2n}(C), \qquad \downarrow j_{2n}(C), \qquad \downarrow j_{2n^*} \qquad \downarrow j_{n^*} \\ \pi_r(SU(2n)) & = \pi_r(U(2n)) \xrightarrow{i'_{2n^*}} \pi_r(Sp(2n)) & \xleftarrow{k'_*} \pi_r(Sp(n)) \,. \end{aligned}$$

 p_{\star} is an epimorphism since $Q_{2n}(C) \simeq ECP^{2n-1} \lor S^1$. By Theorem 4.1 of [6], $\tilde{j}_{2n}(C)_{\star}$ is an epimorphism. So, $j_{2n}(C)_{\star}$ is an epimorphism. k_{\star} and k'_{\star} are isomorphisms respectively. As is well known, $i'_{2n^{\star}}$ is an isomorphism if *n* is even and Im $i'_{2n^{\star}} = 2\pi_{4n-1}(Sp(2n))$ if *n* is odd. Therefore, the above commutative diagram leads us to the assertion. This completes the proof.

Proposition 1.3. i)
$$o(\omega_{n-1})=2\cdot(2n-1)!$$
 for even n.
ii) $o(\omega_{n-1})=a\cdot(2n-1)!$ for odd n, where a is the same number as in Lemma 1.2.

Proof. Let $p: (Q_n(H), Q_{n-1}(H)) \to (S^{1n-1}, *)$ be the collapsing map. We consider the natural homomorphism between the exact sequences for r=4n-1:

$$\begin{array}{cccc} \pi_r(Q_n(H)) & \xrightarrow{j'_{\star}} \pi_r(Q_n(H), \ Q_{n-1}(H)) & \xrightarrow{\partial} \pi_{r-1}(Q_{n-1}(H)) & \longrightarrow \pi_{r-1}(Q_n(H)) \\ & & \downarrow j_{n^{\star}} & \downarrow p_{\star} & \downarrow j_{n-1^{\star}} & \downarrow j_{n^{\star}} \\ \pi_r(Sp(n)) & \xrightarrow{p'_{\star}} \pi_r(S^{4n-1}) & \xrightarrow{\Delta'} \pi_{r-1}(Sp(n-1)) & \longrightarrow \pi_{r-1}(Sp(n)) \,, \end{array}$$

where the mappings are canonical and ∂ and Δ' are the connecting homomorphisms.

As is well known, $\pi_{1n-1}(Sp(n)) \approx Z$, $\pi_{4n-2}(Sp(n)) \approx 0$ and $\pi_m(S^m) = \{\epsilon_m\} \approx Z$. By the Blakers-Massey theorem [1], p_* is an isomorphism. By the definition, $\omega_{n-1} = \mathcal{A}(\epsilon_{4n-1})$, where $\mathcal{A} = \partial \circ p_*^{-1}$. So, by Theorem 2.2 of [4], j_{n-1^*} is an epimorphism and the following holds:

(1.4)
$$\pi_{in-2}(Sp(n-1)) = \{j_{n-1}, \omega_{n-1}\} \approx Z_{b, (2n-1)}, \text{ where } b=1 \text{ for odd } n$$

and $b=2$ for even n .

By the exactness of the upper sequence, $o(\omega_{n-1})$ is equal to the order of the cokernel of j'_* . Hence, by (1.4), Lemma 1.2 and by the above commutative diagam, we have the assertion. This completes the proof.

By inspecting the above proof, we have the following

Proposition 1.5. $j_{n^*}: \pi_{4n-1}(Q_n(H)) \to \pi_{1n-1}(Sp(n))$ is an epimorphism if and only if $o(\omega_{n-1})=b\cdot(2n-1)!$, where b is the same number as in (1.4).

§2. Some Fundamental Facts

For $n \ge 0$, X_n denotes a connected finite CW-complex such that $X_0 = \{*\}$ and $X_n = e^0 \cup e^{r_1} \cup \cdots \cup e^{r_n}$ for $n \ge 1$. Here $r = r_n = dn - \varepsilon$ with $\varepsilon = 0$ or 1 and $d - \varepsilon \ge 2$.

 $\theta_{n-1}: S^{r-1} \to X_{n-1}$ denotes the attaching map, and so $X_n = X_{n-1} \bigcup_{\theta_{n-1}} e^r$. For example, $X_n = FP^n(d=2 \text{ or } 4 \text{ and } \epsilon=0)$ and $X_n = Q_n(H)(d=4 \text{ and } \epsilon=1)$.

Let $p: X_n \to X_n/X_{n-1} = S^r$ and $p': (X_n, X_{n-1}) \to (S^r, *)$ be the collapsing maps. Let $\partial: \pi_{r+m}(E^m X_n, E^m X_{n-1}) \to \pi_{r+m-1}(E^m X_{n-1})$ be the connecting homomorphism. Then, $(E^m p')_*: \pi_{r+m}(E^m X_n, E^m X_{n-1}) \to \pi_{r+m}(S^{r+m})$ is an isomorphism for $m \ge 0$ [1], and we define a homomorphism $\Delta: \pi_{r+m}(S^{r+m}) \to \pi_{r+m-1}(E^m X_{n-1})$ by the composition $\partial \circ (E^m p')_*^{-1}$. By the definition, $\Delta(\iota_{r+m}) = E^m \theta_{n-1}$, where the same letter is used for a mapping and its homotopy class.

Let $h=h_m: \pi_{r+m}(E^mX_n) \to H_{r+m}(E^mX_n; Z) \approx Z$ for $m \ge 0$ be the Hurewicz homomorphism and h(n, m) the non-negative integer such that $\text{Im } h = h(n, m)H_{r+m}(E^mX_n; Z)$. Then we have the following

Lemma 2.1. $o(E^m \theta_{n-1}) = h(n, m)$.

Proof. $j: (E^m X_n, *) \to (E^m X_n, E^m X_{n-1})$ denotes the inclusion. Then, we consider the commutative diagram:

where h' denotes the relative Hurewicz homomorphism and the upper sequence is exact. From the cell structure of X_n , the lower j_* is an isomorphism. By the relative Hurewicz theorem, h' is an isomorphism. This completes the proof.

According to [8], a representative element of $Q_n(H)$ can be taken as $(x+jy, e^{i\pi t})$, where $x, y \in C^n$ satisfying $x+jy \in S(H^n)$ and $0 \leq t \leq 1$. Toda and Kozima defined $\tilde{t}_n: Q_n(H) \to Q_{2n}(C)$ by the equation

$$\tilde{t}_n[(x+jy, e^{i\pi t})] = [(x \oplus y, e^{2i\pi t})].$$

We define $t_n: Q_n(H) \to ECP^{2n-1}$ by the composition $p \circ \tilde{t}_n$, where $p: Q_{2n}(C) \to ECP^{2n-1}$ is the collapsing map. From the definition, the following diagram commutes for k < n:

(2.2)
$$Q_{k}(H) \xrightarrow{t_{k}} ECP^{2k-1}$$

$$\downarrow i \qquad \qquad \downarrow i'$$

$$Q_{n}(H) \xrightarrow{t_{n}} ECP^{2n-1},$$

where i and i' are the canonical inclusions.

The following lemma is a reduced version of Proposition 2.5 of [8].

Lemma 2.3 (Toda-Kozima). The following diagram commutes up to homotopy:

$$\begin{array}{c} Q_n(H) \xrightarrow{t_n} ECP^{2n-1} \\ \downarrow j_n & \downarrow j_{2n} \\ Sp(n) \xrightarrow{c} SU(2n) , \end{array}$$

where c is the complexification map.

Let $p: Q_n(H) \to Q_n(H)/Q_{n-1}(H) = S^{1n-1}$ for $n \ge 1$ and $p': ECP^{2n-1} \to ECP^{2n-1}/ECP^{2n-3} \simeq S^{4n-3} \vee S^{1n-1}$ for $n \ge 2$ be the collapsing maps. Then, by (2.2), there exists a mapping $t'_n: S^{1n-1} \to S^{4n-3} \vee S^{4n-1}$ for $n \ge 2$ such that the following diagram commutes:

(2.4)
$$Q_n(H) \xrightarrow{t_n} ECP^{2n-1} \\ \bigvee p \qquad \qquad \downarrow p' \\ S^{4n-1} \xrightarrow{t'_n} S^{4n-3} \lor S^{4n-1}.$$

Let $p_2: S^{in-3} \vee S^{in-1} \to S^{in-1}$ for $n \ge 2$ be the projection map. Then, we have the following

Lemma 2.5. deg $t_1 = -1$ and deg $(p_2 t'_n) = (-1)^n$ for $n \ge 2$.

Proof. We define $g_n: S(H^n) \rightarrow S(C^{2n})$ by the equation

$$g_n(x+jy) = x \oplus y$$

for x, $y \in C^n$. It is clear that g_n is a homeomorphism and deg $g_n = (-1)^n$. By Lemma 2.3, $t_1 \simeq g_1$ and $p_2 t'_n \simeq g_n$ for $n \ge 2$. This completes the proof.

Hereafter the same letter is often used for a mapping and its homotopy class. Let $\gamma_n = \gamma_n(F)$: $S(F^{n+1}) \to FP^n$ be the projection map. Let $i: ECP^{2n-1} \to ECP^{2n}$ be the inclusion map. Then, we have the following

Proposition 2.6. $(-1)^{n+1}E\gamma_{2n}(C)=it_n\omega_n(H)$.

Proof. By (2.2) and (2.4), the following diagram commutes for r=4n-3:

$$\pi_{r}(S^{1n+3}) \xleftarrow{p_{\star}} \pi_{r}(Q_{n+1}(H), Q_{n}(H)) \xrightarrow{\partial} \pi_{r-1}(Q_{n}(H))$$

$$\downarrow t'_{n+1}, p'_{\star} \downarrow t_{n+1}, 0' \downarrow t_{n}, 1' \qquad f_{r}(S^{4n+1} \vee S^{4n+3}) \xleftarrow{p_{\star}} \pi_{r}(ECP^{2n+1}, ECP^{2n-1}) \longrightarrow \pi_{r-1}(ECP^{2n-1}), 1' \qquad f_{r}(ECP^{2n+1}, ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r}(ECP^{2n+1}, ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}), 1' \qquad f_{r}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n}) \xrightarrow{p_{\star}} \pi_{r-1}(ECP^{2n})$$

where the mappings are canonical.

 p_* and p''_* are isomorphisms [1]. We note that $\omega_n(H) = \partial p_*^{-1}(\epsilon_{4n+3})$ and $E\gamma_{2n}(C) = \partial'' p''_*^{-1}(\epsilon_{4n+3})$. So, by Lemma 2.5 and the above commutative diagram, we have the assertion. This completes the proof.

Juno Mukai

Remark 1. Owing to Proposition 2.6, it suffices to take $(-1)^{n+1}t_n\omega_n$ as λ_{2n} in Proposition 6.5. ii) of [6]. By Theorem 1.2 of [6] and Proposition 1.3, $o(\lambda_{2n}) = (2n+1)!$ or $2 \cdot (2n+1)!$. In the last section, we shall show that $o(\lambda_4) = 5!$ (cf. Lemma 11.1 of [6]).

§3. Determination of the Lower Bound of $o(E^m \omega_{n-1}(H))$

Let $v \in \widetilde{K}(CP^{2n-1})$ be the stable isomorphism class of the canonical line bundle over CP^{2n-1} . We denote by $I_C : \widetilde{K}() \to \widetilde{K}(E^2)$ the Bott periodicity isomorphism. The following lemma is well known (cf. Lemma 2.2 of [8]).

Lemma 3.1. $I_c(v) \in \widetilde{K}(E^2 C P^{2n-1})$ is represented by the adjoint of the composite of the canonical maps:

$$ECP^{2n-1} \xrightarrow{j_{2n}} SU(2n) \xrightarrow{i} U(2n) \xrightarrow{k} \Omega BU(2n)$$
,

where k is the homotopy equivalence.

Hereafter, Z or the rational number field Q is taken as the coefficients of the homology or cohomology groups, unless otherwise stated.

Let $ch^k: \widetilde{K}() \to H^{2k}()$; Q) be the k-th Chern character and $ch = \sum_k ch^k$ the total Chern character. Let $\sigma: \widetilde{H}^i(E_{-}) \to \widetilde{H}^{i-1}()$ be the suspension isomorphism. Then, as is well known, the following diagram commutes:

We denote by y a generator of $H^2(CP^{2n-1})$. It is also well known that

(3.3)
$$ch^{2n-1}v = 1/(2n-1)! y^{2n-1}$$

Proposition 3.4. $o(E^m \omega_{n-1})$ is a multiple of (2n-1)! for $m \ge 0$.

Proof. The assertion is a direct consequence of Theorem 1.2 of [6] and Proposition 2.6. For the later use, we give another proof for even m.

By (2.4) and Lemma 2.5, $t_n^*: H^{4n-1}(ECP^{2n-1}) \to H^{4n-1}(Q_n(H))$ is an isomorphism. So, $y'=t_n^*\sigma^{-1}y^{2n-1}$ is taken as a generator of $H^{4n-1}(Q_n(H))$. We choose a generator x of $H_{4n-1}(Q_n(H))$ satisfying $\langle y', x \rangle = 1$, where \langle , \rangle denotes the Kronecker index.

Put $o(E^m \omega_{n-1}) = k(n)$. Denote by $s: \widetilde{H}_i() \to \widetilde{H}_{i+1}(E)$ the suspension isomorphism. Then, by Lemma 2.1, there exists an element $\alpha \in \pi_{m+4n-1}(E^m Q_n(H))$ satisfying $h_m(\alpha) = k(n)s^m x$. By the definition of the Hurewicz homomorphism, $h_m(\alpha) = \alpha_* s^m \xi_n$, where ξ_n denotes a generator of $H_{4n-1}(S^{4n-1})$. So, we have k(n) =

 $\langle \sigma^{-m} y', \alpha_* s^m \hat{\xi}_n \rangle = \langle \alpha^* \sigma^{-m} y', s^m \hat{\xi}_n \rangle$. Choose a generator τ_n of $H^{4n-1}(S^{4n-1})$ satisfying $\langle \tau_n, \hat{\xi}_n \rangle = 1$. Then, we have $\alpha^* \sigma^{-m} y' = k(n) \sigma^{-m} \tau_n$.

Put m=2t and $u=I_c{}^t(Et_n)*I_c(v)\in \widetilde{K}(E^{m+1}Q_n(H))$. Then, by (3.2), (3.3) and by the naturality of the Chern character, we have the following:

$$\sigma \operatorname{ch}^{2n+t}(E\alpha)^* u = \alpha^* \sigma^{-m} t_n^* \sigma^{-1} \operatorname{ch}^{2n-1}(v) = 1/(2n-1)! \alpha^* \sigma^{-m} y'.$$

So, we have $\operatorname{ch}^{2n+t}(E\alpha)^* u = k(n)/(2n-1)! \sigma^{-m-1}\tau_n$. As is well known, $\operatorname{Im} \operatorname{ch}^{2n+t} = H^{in+m}(S^{in+m}; Z)$. Hence, k(n)/(2n-1)! is an integer. This completes the proof.

Lemma 3.5. $(Et_n)^*I_c(v)$ belongs to the image of the complexification homomorphism $c': \widetilde{KSp}(EQ_n(H)) \to \widetilde{K}(EQ_n(H)).$

Proof. By Lemmas 2.3 and 3.1, $u' = (Et_n)^* I_C(v) = (\operatorname{adj}(k \circ i \circ j_{2n}(C)))_*(Et_n) = (\operatorname{adj} k)_*(Ec)_*(Ej_n(H)).$

Let $\rho_c: BSp(n) \to BU(2n)$ be the mapping induced from $c: Sp(n) \to U(2n)$ and $k': Sp(n) \to \Omega BSp(n)$ be the canonical homotopy equivalence. Then, it is well known that $k \circ c \simeq \Omega \rho_c \circ k'$. So, we have $(adj k)_*(Ec)_* = (\rho_c)_*(adj k')_*$. Hence, $u' = (\rho_c)_*(adj k')_*(Ej_n(H)) \in \text{Im } c'$. This completes the proof.

As is well known, the following diagram commutes:

(3.6)
$$\widetilde{KSp}(\) \xrightarrow{C'} \widetilde{K}(\)$$
$$\downarrow I_{II} \qquad \qquad \downarrow I_{c^{4}}$$
$$\widetilde{KSp}(E^{s}) \xrightarrow{C'} \widetilde{K}(E^{s}),$$

where I_{II} denotes the Bott periodicity isomorphism.

Proposition 3.7. If n is even and $m \equiv 0 \mod 8$, $o(E^m \omega_{n-1})$ is a multiple of $2 \cdot (2n-1)!$.

Proof. As is well known, the following diagram commutes :

and Im $c=2\tilde{K}(S^{1n+m})$ if *n* is even. So, by Lemma 3.5, (3.6) and by the proof of Proposition 3.4, $(E\alpha)^*u=(E\alpha)^*I_c{}^t(Et_n)^*I_c(v)\in 2\tilde{K}(S^{4n+m})$ and $ch^{2n+t}(E\alpha)^*u\in 2H^{4n+m}$ $(S^{4n+m}; Z)$. Therefore, k(n)/(2n-1)! is an even integer. This completes the proof.

Remark 2. By the similar arguments, we have the following for $k \ge 1(cf. [7])$: (1) $o(E^k \gamma_{n-1}(C))$ is a multiple of n! for even k.

(2) $o(E^k \gamma_{n-1}(H))$ is a multiple of (2n)!/2 for even k. If n is even and $k \equiv$

 $0 \mod 8$, $o(E^k \gamma_{n-1}(H))$ is a multiple of (2n)!.

§4. Proof of the Theorem

To prove ii) of our theorem, we use the following [3]:

Theorem 4.1 (James). The stunted quasi-projective space $Q_n(F)/Q_{n-k}(F)$ is an S-retract of the factor space $G_n(F)/G_{n-k}(F)$ for $k \leq n$. In particular, $j_{n^*}^{S}$: $\pi_i^{S}(Q_n(H)) \to \pi_i^{S}(Sp(n))$ is a monomorphism for $i \geq 0$.

Now we are ready to prove the theorem. The assertion i) is a direct consequence of Propositions 1.3.i) and 3.7.

By Theorem 4.1, $j_{n-1}^s: \pi_{4n-2}^s(Q_{n-1}(H)) \to \pi_{4n-2}^s(Sp(n-1))$ is a monomorphism. So, we have $o(E^{\infty}\omega_{n-1})=o(E^{\infty}j_{n-1}\omega_{n-1})$. Therefore, (1.4) and Proposition 3.4 lead us to the assertion. This completes the proof of the theorem.

Remark 3. We can give an improved proof of Theorem 1.2 of [6]. We use the first half of the proof of Theorem 1.2 of [6] and Remark 2.(1). We have

(1) $o(E^{k}\gamma_{n-1}(C)) = n!$ for $k \ge 1$.

By (1) and Remark 2.(2), we have the following:

(2) If *n* is even, $o(E^k \gamma_{n-1}(H)) = (2n)!$ for $k \ge 1$.

By Theorem 1.1 of [7] and by Lemma 2.1,

(3) $o(E^{\infty}\gamma_{n-1}(H)) = (2n)!/2$ if *n* is odd.

In this case, the Adams spectral sequence is used for the 2-primary stable homotopy of quaternionic and complex projective spaces [7].

§5. An Example

An open problem is to determine the order of $\omega_n(H)$ completely. The author hopes that an affirmative answer is given to the following

Conjecture. $o(\omega_{n-1}(H)) = (2n-1)!$ if n is odd.

In this section, we determine the group structure of $\pi_{10}(Q_2(H))$ and we show that the conjecture is true for n=3. We use the following : $\pi_{11}(S^{10}) \approx Z_2$, $\pi_{10}(S^7)$ $= \{\nu_7\} \approx Z_{24}, \ \pi_{11}(S^7) \approx 0, \ \pi_9(S^3) \approx Z_3$ and $\pi_{10}(S^3) \approx Z_{15}$.

Example. $\pi_{10}(Q_2(H)) \approx Z_{51} \oplus Z_2$ and $o(\omega_2(H)) = 5!$.

Proof. Let $p: (Q_2(H), S^3) \to (S^7, *)$ be the collapsing map. Then, $p_*: \pi_7(Q_2(H), S^3) \to \pi_7(S^7)$ is an isomorphism [1]. We choose a generator α of $\pi_7(Q_2(H), S^3) \approx \mathbb{Z}$ such that $p_*\alpha = \iota_7$.

Sp(2) is regarded as the cell complex $Q_2(H) \cup e^{\tau, 3}$. Let $p': (Sp(2), Q_2(H)) \rightarrow (S^{10}, *)$ be the collapsing map. Then, $p'_*: \pi_n(Sp(2), Q_2(H)) \rightarrow \pi_n(S^{10})$ is an isomorphism for $n \leq 11$ [1].

724

We consider the following commutative diagram:

where the mappings are canonical and the horizontal and perpendicular sequences are exact respectively.

 p_* is a split epimorphism since $p_*(\alpha\nu_7) = \nu_7$. So, we have $\pi_{10}(Q_2(H), S^3) \approx Z_{24} \oplus Z_2$. By the commutativity of the above diagram, i_* is a monomorphism and ∂'' is an epimorphism. Therefore, by the upper horizontal sequence, $\pi_{10}(Q_2(H)) \approx Z_{51} \oplus Z_2$. Hence, by Proposition 1.3. ii), we have $o(\omega_2) = 5!$. This completes the proof.

References

- [1] Blakers, A.L. and Massey, W.S., The homotopy groups of a triad. II, Ann. of Math., 55 (1952), 192-201.
- [2] James, I.M., Spaces associated with Stiefel manifolds, Proc. London Math. Soc.,
 (3) 9 (1959), 115-140.
- [3] —, The Topology of Stiefel Manifolds, London Math. Soc, Lecture Note, 24, Cambridge, 1976.
- [4] Mimura, M. and Toda, H., Homotopy groups of symplectic groups, J. Math. Kyoto Univ., 3 (1964), 251-273.
- [5] Morisugi, K., Stable self maps of the quaternionic (quasi-)projective space, to appear.
- [6] Mukai, J., The S¹-transfer map and homotopy groups of suspended complex projective spaces, Math. J. Okayama Univ., 24 (1982), 179-200.
- Segal, D.M., On the stable homotopy of quaternionic and complex projective spaces, Proc. Amer. Math. Soc., 25 (1970), 838-841.
- [8] Toda, H. and Kozima, K., The symplectic Lazard ring, J. Math. Kyoto Univ., 22 (1982), 131-153.
- [9] Walker, G., Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford, (2) 32 (1981), 467-489.