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On the Structure of Arithmetically
Buchsbaum Curves in P}

By

Mutsumi AMASAKI*

Introduction

Let X be an equidimensional complete subscheme of P} of dimension one.

X will be called a curve throughout this paper. Let 4 be the sheaf of ideals

of X and I: = @ H(P}, JW)CTR: =kLx;, x5, x5, x,]. We know a kind of general
vz0

structure theorem for the ideal I and its free resolution {13, which enables us
to enter into a detailed study of some special classes of curves. As a first
attempt, we investigate arithmetically Buchsbaum curves, which are characterized
by the following property [13]:

Hi(9) := S HP, J(v) is annihilated by m:=(x;, x.. v. x)R.
veZ

When Hi(49)=0, the curve is arithmetically Cohen-Macaulay and is studied thor-
oughly in [9]. So our concern is centered on the case where Hi(4)#0 and
mHi(9)=0. We give structure theorems for the ideal I and for the free resolu-
tion of the R-module H{(Oy) : = ”@OH"(Pz, Ox()), then use them to consider small

deformations in P} of those curves.

Let us explain the content of each section.

Section 1. The results of [1; Section 3] are sometimes inconvenient, because
it involves unnecessary procedure, that is, we have to take beforehand an ideal
J such that R/J is Cohen-Macaulay. We give up this procedure and make simple
modification of [1; Proposition 3.1] to define a numerical invariant “basic
sequence” of an arbitrary homogeneous ideal ICR such that dim R/I=2 and
depth.R/I=1 (Proposition 1.3, Definition 1.4), which extend “caractére numérique”
of [9]. It is a sequence of integers (a; vy, ***, Va; Ya+1, - - Yesp) cODSisting of
the degrees of the special generators of I.

Section 2. The structure of the module Hi(9) is important in every case,
and we mentioned the relations between the matrix A; {see "1; Section 3]) and
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1(9). In pardicular, we find that (ve4i1, -, Ye+s) & part of the basic sequence
of I reflects a certain property of Hi(9) (Proposition 2.4). Then the free resolu-
tion for HY{(@y. is computed as an R-module in a simple case (Proposition 2.8
and 2.9).

Section 3. With the use of the results of Sections one and two we reach a
structure theorem for the ideals defining arithmetically Buchsbaum curves in Pj.
This theorem is stated in the language of Proposition 1.3 (Theorems 3.1, 3.2
and Corollary 3.3..

Theorem. Let X be an arithmetically Buchsbaum curve with basic sequence
(@; vi, ", Yo Yars, *** 5 Yars). Then

1) dimg,Hi(9g)=0b

2) There exist iy, -, iy 1Z0,< - <iypp=a) such that (v,,, "+, Vip) =Vas1, =+,
Ya-b, YVar1, °» Ya-p' UP 10 @ permutation.

3) a=2b, that is, the minimal degree of the surfaces containing X is larger

than or equal fo 2-dimpg Hi(9).
B I=fH0S 2 [0 é’Q Fursk(®), where
= 7=

L‘Ul Uoz O O
0 —xglb
A= L U, x5l |, A=| —xdy |, A525=0
X41b _'leb
U U, %1y U,
and
Uy Up
fi=i—1'det|U, U, (1>/detUJ 0=<i<a-+b).
Un U,

Section 4. We know [14; (2.6) Theorem] that, for an arbitrary R-module

Al of finite length, there exists a nonsingular irreducible curve X such that

(=M up to a shift in grading. But the basic sequences or the detailed

structure of such curves is not known in general. In view of this we prove

the existence of integral arithmetically Buchsbaum curves with a special basic

sequence (a; n. ---.n; n, -+, n) for arbitrary a, b, n satisfying n=a=2b (Theorem
R — N——

4.4), to supply m%nageablebexamples of arithmetically Buchsbaum curves. They
are, however. not in general verified to be nonsingular as yet (see Remark 4.10).

Section 5. Finally, applying the results of the previous sections, we try to
find irreducible components of Hilb(P}) whose general points correspond to arith-
metically Buchsbaum curves. It consists of computing flat deformations of the
ring R/I and of the R-module H{(®y), so that the cases which cannot be treated
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by this method are left as problems. These irreducible components are ex-
pressed in terms of the basic sequences of the curves corresponding to the
general points of them (Theorem 5.11).

Notation

1. % denotes an infinite field with arbitrary characteristic except in Section
four.

2. Let A be a commutative ring and xj, x,, x;, X, indeterminates over A.
We set

A(O):A[xl, X2, Xg, x(] y A(1>:A[-x27 X3y xl]y
A@)=Alxs, x,], AR)=Alx].

3. Let U be an arbitrary matrix. We denote by U (2]1 ]Zp ) the matrix
LT
obtained by deleting the 7;-th, 7.-th, -, 7,-th rows and j;-th, j.-th, -+, j,-th columns
from U.

4. Let U be a matrix of homogeneous polynomials with coefficients in a
ring A. We denote by 4(U) the matrix of integers whose (/, j)-component is
deg (u;;), where u;, is the (7, j)-component of U.

5. For a matrix U=(uy, -+, u,) in a ring B with » columns u,, +--, u, and
for a subring B’ of B, we make the following convention :

Im? (U)= {iZZIIbLuL- beB 1=i<n}

and we denote this set by U-(B’)* if and only if the columns u,, -, u, are
linearly independent over B’.

6. Let C= @ C, be a graded ring, 7=(n,, -+, n,) a sequence of integers,

and / an integer. We set
ClAl= _<_J>1C[n,] . Clat+l= & Cln+11,

where C[m] denotes the graded module such that C[m],=C,., for an integer
m. See [1; Notation] for the symbol .

7. For a coherent sheaf of modules & on P} we will often write HLP}, 9)
or Hi(T) to denote the graded module gHi( 3 F).

8. 1, denotes the pXp identity matrix.
9. Z,={peZ|v=0}.

§1. Definition of the Basic Sequence of a Homogeneous
Ideal in Z2[xy, x,, xs, x,]

In this paper R always denotes the polynomial ring A[x;, x, xi, x,] and m
its maximal ideal (x,, x,, x5, x)R. For a graded module A, M, denotes the set
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of homogeneous elements of M of degree v as usual. We begin with some
modification of the results of [1; Section 3].

Lemma 1.1. Let f, g=klx,, x.] (deg f<degg) be homogeneous polynomials
such that dim k[x,, x,1/(f, g)k[x:, x.1=0 and suppose

Ef, =@, 0+ 24 U \J {a—i, B)+0X Zd}

where E(f, g) denotes the generical monoideal associated with the ideal (f, g)
“k[x1, x2] and a, 8; (1=i=a) are positive integers (see [16; p. 282] and [4]). Then
a=deg f and the sequence of integers (a—1+Bi, a—24B,, =, Ba) s equal to
(deg g, deg g+1, -+, deg g-+a—1) up to a permutation.

Proof. Suppose
(f, @kLx, x]=fok[x, %1 D D fiklx.]
with deg fo=qa, a=deg /1= --- =deg f, and (deg f, deg f5, -+, deg f.)=(a—1+B,,
a—2+B,, -+, Bo) up to a permutation (see [1; Example 2.7]). The degree of
the (7, j)-component of the matrix of relations [g“‘] among fo, f1, -+, fa, cOomputed
1

by [1; Theorem 1.6] is deg f,+1—deg f; (0=i=a, 1=<j=a), so that

u., [ ¥ 1}1
d =1
U1 " J a
1
where the entries situated in = are all positive. It is therefore necessary and
sufficient for the ideal f,k[x,, x,]1D él fik[x5] to be a complete intersection that
deg f=a, deg g=deg f, and that rank, Ul<i)(mod (x1, x2)k[x1, x,])=a—1. This

is possible if and only if (deg f,, deg fs, -+, deg f,)=(deg g, deg g+1, ---, deg g
+a—1), which proves our assertion. Q.E.D.

Lemma 1.2. Let [ be a homogeneous ideal in k[ x,, x5 such that dim k[x;, x51/]
=0 and fo, f1, -, fo be those genmerators of J described in [1; Example 2.7],
namely

J=foklxs, 51D fukLx:]

with deg fo,=a, a=deg [,=deg f.= --- =deg f,. Suppose dim k[x;, x,1/(fo, Rk X,
x%,1=0 for a homogeneous polynomial he]J, (p=1). Then deg f,=p-+a—1.

Proof. Let E(J) be the generical monoideal associated with J and E(f,, h)
the generical monoideal associated with the ideal (f,, A)k[x;, x.]. We know
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v a .
E(])=A{(a, 0)+Zi} U \J fla—i, 3)+0XZ}

E(fy, )= 1@, 0+Z8 U U {e—i, B)-+0xZd},

where a, 8,, B, (1=i=a) are positive integers. Since E(f,, h)CE(J) by definition,
we have p;=fB; and a—i+p;=a—i+f; for 1=i=<a. The sequence of integers
(a—1+pBi, a—2+p;, -+, Ba), on the other hand, coincides with (p, p+1, ---. p+
a—1) up to a permutation by Lemma 1.1, hence a—:i+j3,=<p-+a—1 for 1=<i=a
and deg f,=<p-+a—1. Q.E.D.
The following proposition is a modification of [1; Section 3] which forms

the basis for this paper.

Proposition 1.3. Let I be a homogeneous ideal in R such that dim R/[=2
and depth, R/I=1. After a suitable change of variables by a linear transforma-
tion, dim R/I+(xs, x)R=0 and there exist homogeneous polynomials f, 0=<i=a-b,
a=deg f,, b=0) which have the following properties.

1) There exist positive integers a, B; (1=i=a) such that f,—x%, fi—x® g
(1=i<a)eNg and fq,+, (1=5=b) are in (x;, x;)Ng, where

2) Put
I={fcklx, x.]|f=f(x, x5, 0, 0) for some fI}
and ]?i:fl.(xly Xz, 0; O) (Oéléa) T/le?l

I=Fiklx, x1® B Jiklx:]

P —

- a Bi-1
klxi, x,]=1D @1 @1 X7k
{ I=f OB VD D for b @)

R:]@IVI

where N is a graded submodule of Ny as a k(3)-module.

GNsC LoD B FEOS B fur kDB,
9
5NsC & Fik @D B far kAON,

5) R/I has a free resolution described in [1; Corollary 3.5], where
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U Up 0
12: U1 Ug U1
Uy Us Us |

with Uy, U and U, (1=:/=5) satisfying the conditions [1; Corollary 3.5.2)-3)-4)]
and with a matrix U, of homogeneous polynomials of k(2).

Proof. After a change of variables by a linear transformation we may
assume that x, is R/I-regular and that dim R/I+(x,;, x)R=0. Observe that E(I)

={(a, 0)+Z§}u£j1 {(a—i, Bs)+0XZ,} with positive integers a, B, - Ba. Set Np

as in 1). By generalized Weierstrass preparation theorem applied to I there
exist homogeneous polynomials 7,/ (0</=a) with deg f,=a, deg f,=a—i+;
(1<i<aq) satisfying the condition fi—x¢, fi—x{ ‘xfie Nz (1=<i=<a), and such that
we have 2) (see [7; Satz 4], [1; Theorem 2.3]). Suppose fi(x:, x5, 0, 0)=F; 0=
i<a) with homogeneous polynomials f;=J. Let [ denote the subset fjk(0)

+ i fik(1) of I. We see by the proof of [6; (1.2.7)] that this expression is in
fact a direct sum, namely we have [=f}k(0)D é_}lf;le(l) and R=/®N; Then

the proof of [1; Proposition 3.3] goes well with J replaced by / which in general
is not an ideal. In this way there exist homogeneous polynomials f; (0=/=a-b)
such that 2), 3) and 4) hold. The proof of 5) is the same as that of [1; Corol-
lary 3.5]. It remains to prove 1). Since f,—x%, fi—x% x5 (1<i=Za), for; 157
=b)eNg is clear by the proof of [1; Proposition 3.3], we have only to show
Sa+,E (x5, x)R, that is Foi,;=Fas,(x1, %, 0, 0)=0 for 1=<j<b. This, however is
obvious, because, if f,.;#0, we would have lex f,.,€ E(I)N\(Z:\E()), which is
impossible. Q.E.D.

Let I, f, and f, (0=7/=<a-b) be as in the proposition above and suppose [ is
generated by @ I, over R. Then [ is generated by @ I, over k[x, x,] and it
V=T y=n

follows from Lemma 1.2 that max deg f;<n-a—1. By changing the order if
1sisa

necessary, we may assume (deg f;, deg f, ---, deg f,) is an increasing sequence
of integers. Set y,=deg f; (1=/=a). We find by the direct sum 1.3.2) that a
and this sequence of integers are uniquely determined by dim, I, (v=0), or rather,
since }251;{1 deg f;<n+a—1, it is uniquely determined by dim, I, 0=v<n+ta—1).

If the homogeneous coordinates x., x, X, x, are chosen generally, dim, [, (0<v=<
n-+a—1) are independent of the choice of coordinates for an ideal I, therefore
we can associate with each [ uniquely a sequence of integers (a; vy, -*+, Vo)
such that a<y;_;<y; 2=i=<aq) where v;=deg f;. Next put y,.,=deg fq+; 1=7=b).
We may assume that (deg fq-1, -+, deg fq:») iS an increasing sequence of in-
tegers by changing the order if necessary. Then b and the sequence (vqs1, -,
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b

vq-y) are uniquely determined by I, a and (v,, ---, v,), because dimk(_EBl_fa+,/e(2)).,
2

=dim, I,—dim, [,, where [= fuk(O)@ﬂ_}l f.k(1). Thus we are led to the following

definition.

Definition 1.4. Let [ be a homogeneous ideal in R such that dim R/[=2

and depth,, R/I=1. We call the unique sequence of integers (a; vi, -**, Ya; VYa+1,

, Varp) With 0<a=ZSy, Sy, < Sy, 020, aSve 1 Svee =< - <y, ., described
above the basic sequence of 1.

Remark 1.5. If dim R/I=depth, R/I=2, the basic sequence (a; vi, -:-, VaJ
defined above corresponds to the ‘caractére numérique’ (vq, Ya-i, =, vi) used
in [97.

Lemma 1.6. Let I and [, (0=i=a+Db) be as in Proposition 1.3 and let (a;
Yi. o, Yo Yat1, ©, Yarn) be the basic sequence of I, where a=deg f,, v,=deg f;
(1=i=a+b). In the matrix of relations

FTUy Uyp 0 "]
o — U1 U’ U4 %
Uy Us U, |

among fo, f1, =+, fars (see Proposition 1.3.5)), all entries of U, U, and U, are
zero mod (xs, x)R.

Proof. Let (g, g1, ', Sa, N, =+, hi-1, X1+, Ayey, -+, hy) be the i-th column

U
of {g‘f} (1=i<b). By the very definition

a b
igog1fL+j§1tha+J+x1faﬂ:0 .

When this equation is considered in the ring R/(x., x )R=FRk[x;, x,], We get
Eugzﬁ:(), since fu.,€(xs, x)R for 1=<j<b by Proposition 1.3.1). From this

follows g;=0 mod (x;, x)R (0=:=a) by Proposition 1.3.2). The assertion for U,,,
U, is proved in this way and we find similarly that all entries of U, are zero
mod (x;, x,)R. Q.E.D.

The following proposition is a minor modification of [1; Theorem 3.7.1)]
which is in fact a corollary of [2; Theorem 3.1].

Proposition 1.7. Let u,, 0=i=a+b, 1=57=<a+2b), v, (0=i=a-+Db) be integers

satisfving [1; 3.4)] and 0=<i=< g (viti—a). Let
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UOl U02 0
)ug: U] UZ U4
Un U, Us

be a matrix of homogeneous polynomials of R with d(2)=(tt)osisa+s, 12ssa+2s WHICH
satisfies the conditions [1; Corollary 3.5.2.a)-B)-7)] and such that the entries of

U, are in k(2). Suppose 2,2:=0 with 23:[:[22]. Then det 1V, (Z) (resp. det W2<i))
is divisible by det U, (resp. det U;) for 0=i §;—|-b, where
Uy Uy, Upn 0 7
W,=| U, U, We=| U, U,
Uy Us | Us Us |

Proof. The formulae (3), (4) and (5) in the proof of [1; Theorem 3.7.2)]
hold in the present case as well and the sequence
As As
0 NG Rb - Ra+2b > Ra+b1—1

is exact. We then use [2; Theorem 3.1 (a)] with n=2, P,=R? P,=R%*? P,=
Re-*"1 f,=2, and f,=4,, and get the following commutative triangle :

a+d

/{ (R*)a+2bga7\b Ra+2 -————/}—-Zi——> a/+\bR“‘“”+1
PN
where
az—/\Z3 R= /\R” — AR“””
The assertion follows from this immediately. Q.E.D.

Remark 1.8. In the situation of the previous proposition put f;=(—1)%det
Wl(j)/det U,=(—1)*det W2< )/det U; up to units and suppose ht(f,, -+, fors)R=2.

Then the statement of [1; Theorem 3.7.2)] concerning the ideal I=(f,, -, fao.s)R
certainly holds in the present case.

Remark 1.9. The Hilbert polynomial P(v) of Proj R/I is
P()")‘— { 2 VL a\a 1) b}

+<ala—D(e—5)— F g3+ Brer—
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where (a; vi, -, Ya; Ya-1, ", Yass) 1S the basic sequence of I.

§2. Free Resolution for the k[x,, x,, x;, x,]-Module
H{(©x) of a Curve X in P;

In this paper we mean by a curve an equidimensional complete scheme over
a field £ of dimension one. Let X be a curve in P} and 4 its sheaf of ideals.
Set I=H{P} J)cR. Then dim R/I=2, depth, R/I=1 and the basic sequence
of I is defined, which we call the basic sequence of X. Let 4, 4, be as in
Propositions 1.3 and 1.7. Since O x=0: p3/I, p3 is Cohen-Macaulay for every
x=X,

(2.1.1) I(A:) contains an R-sequence of length four or I(1,)=R (see [1;(3.5.5)"]).

A.P. Rao in [14] and E. Sernesi in [11] both describe a connection between
the free resolution of the module Hi(P;, 4) and that of R/I itself. We will

discuss the same subject in the spirit of [1; Section 2].
4

Let M be a graded module over R with finite length and let y,= X a,,x,

i=1
(j=3, 4) be two elements of R, algebraically independent over %, where (a;,) € %°.
A is then an S:=Fk[v;, v,]-module of finite length and has a free resolution of
length two

G H
(2.1.2) 0— S[—3*] — S[—&'] — S[—&] — M — 0,

where &°=(el, ---, €}), ¥'=(cl, -, ep) and &*=(e}, -, €?) are sequences of integers,

by Auslander-Buchsbaum’s theorem. By local duality [8] Exti(M, S)=Hom,(}.

2], so taking the duals of (2.1.2) we get a free resolution of Hom,(M, k) :
‘H ‘G

2.1.3) 0-— S[e*—2] — S[¢'—2] —> S[&*—2] —> Hom,(M, k) —> 0.

Lemma 2.2. Suppose the free resolution (2.1.2) of M is minimal. Then the
integers p, £} (1=i=p), q, ¢; 1=i=q), 7, €2 1=i=r) are independent of y, v, for
general (a;;)< k8.

Proof. Suppose (2.1.2) is a minimal free resolution. Since M,=0 for all
but a finite number of v, dim,(M,/ EBIS#My_,,) does not change for each v, when
rz

(a,,)€k® varies in a certain Zarisky open set of £% It follows from this that p
and &} (1=/=<p) are uniquely determined by M and independent of y;, v, for
general (a;;). Similarly, since (2.1.3) is minimal as well, » and ¢ (1</<r) are
also uniquely determined by Hom, (M, %) or rather by A/ itself and independent
of v,, y, for general (¢,,). We have

dim, S[—2'].=dim, S[—&*],-+dim, S[—5°],—dim; AL, ,
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whence the uniqueness of ¢, ¢} (1=i=q) follows. Q.E.D.

Let X, 9 and I as before and (a; 5'; p?) its basic sequence, where we have

put P'=(vy;, -+, vq) and P2={..1, -, Yes) for the sake of simplicity. 4 has a
resolution
b )‘3 a b N
00— @OP2(-V¢W—2) — 1@01’2(—%—1)@{]E_EOPg(—vaﬂ—l)}‘

J

A

/12 a+d 1
> Opy (—a)® P Opg(—v) —> I —>0

by Proposition 1.2, and the long exact sequences arising from this yield the
exact sequence

0 —> HiPY, o) —> & HLOp} (—var,—2)
&

A3 a b
—> G HYOP (——1) B { G HUOp (—vae, D)}
We get by this and Serre’s duality a resolution

2

2.3.1) R[»'—3]OR[*—-3]* = R[p*—2] —> Hom,(H4(9), k) —> 0.

Let us look into ImF(‘2,) in detail (see Notation 5). 'U,—x;1y, ‘Us—x.l,, U,
and 'U,, take their entries in k(2), and ‘U;—x.1,, ‘U, take their entries in %(1).
We have therefore by [1; Remark 4.1.1)]

2.3.2) RP=tU;R(0)° B UsR(1) D R(2)°,
and by [1; Proposition 1.2]
[U, Ugy
2.3.3) Res®=| [, ‘U, 1k(O)“*”@{k(l)‘””(J&k(O)”}.
U, U;

U, Wy 7
The equation 2,4,=0 implies ‘2| ‘U, U, |=0, so we see by (2.3.3)

U, U,
(2.3.4) Im®(*25)=Im (k(1)*+* % k(0)" i RY).

Recall ‘2;=[—'U, —*U; ‘U], and put [73:/\7211)“‘[]5. Then, for v=> xw¥=
iz0

k(1)® with v =k(2)%, we have

o T o
Uw= D UL UpW+ 3 U xi- 1 U5 e U@ ,
7=1

120 121
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hence by (2.3.2) and (2.3.4)

(2.3.5) Im® (:2.,) =t U R0 D UL PN
where
(2.3.6) N= ) Im* (U, U)) .

We finally obtain by (2.3.1) and (2.3.5)
2.3.7) R@2)[£*—27/N =Hom, (HL(9), k)
as k(2)-modules.

Proposition 2.4. Let X be a curve in P}, I the sheaf of ideals of X, I=
Hi9) and (a; 9*; D)=(a; vy, =, Ya; Yat+1, =, Ya+s) (IS basic sequence. Suppose
the minimal free resolution for HL(9) over R(2) is of the form

G H a’
2.4.1) 00— kQ2)[—5&Y] — k@R[ —&"] — R(2)[—2"] —> Hi(9) — 0
with &°=(eY, -, ep), &'=(ei, -+, <), 2= (e}, -+, €}). If the homogeneous coor-
dinates xi, Xs, X3, x4 are chosen sufficiently general, we have r=b and P*=z* up to
a permutation. In addition, for the k(2)-module N defined by (2.3.6), CN=
Im*®(*G) with a suitable Ce GL(b, k{(2)).

Proof. Let
(2.4.2) 0 — RL—] — k@)[—] —> N—0
be a minimal free resolution of N, where ¢'=(c}, -, ¢i) and &*=(c}, -, c}).

If the variables x;, x,, x;, X, are chosen generally, all entries of U, lie in (x5, x,)k(2)
by Lemma 1.6, so that all entries of N are in (x;, x,)k(2)°. Consequently the
sequence (2.4.2) followed by

0 —> N — k2)["—2] —> Hom, (Hi(9), &) —> 0

gives rise to a minimal free resolution of Hom, (Hi(9), k) as a k(2)-module.
Comparing this resolution with the one obtained by taking the duals of (2.4.1)
shows that »—b and §2=5% up to a permutation. The last assertion is then
obvious. Q.E.D.

With the use of this proposition and Lemma 2.2, we can determine $* of the
basic sequence of a given curve, if the structure of the module Hi(9) is known well.

Now let us proceed to a description of the free resolution for H{(®y). We
can treat of this subject minutely only in a special case, and later a restriction
will be imposed on the structure of the module Hi(9). Suppose the homogeneous
coordinates are chosen sufficiently general so that Proposition 1.3 should hold
with basic sequence (a; o'; 2*)=(a; vy, -, Ya; Ya-1, **, Ya<p). Oince HY(Oy) is
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a Cohen-Macaulay R-module of dimension 2 (See [11; (1.1)]), we may assume
1, x, is a HY(Ox)-regular sequence. The k(2)-module Hi(9) has a minimal free
resolution of the form

~

G H a
(2.5.1) 00— k@)[—5*1 — k@)[—&'] — £k@2)[—2"] — Hi(¥) — 0

by the previous proposition, where we assume &{= --- <ej, s]< .- <¢; for con-
venience sake. Let

N

[4
(2.5.2) 0 —> R/I —> H{(Oyx) — Hi(Y) — 0
be the exact sequence arising from the short exact sequence 0—J—Opi—Ox

1

—0. Put e,=(0, -, I, -, 0)ek(@)[—E"], a’(e;)=2; and let ¢; denote a section
of H(Ox(e?)) such that a’(e,)=0(g;) for each 1=/=<p. Since ¢,, &, -, ¢, generate
the k(2)-module Hi(9), we can write

J (Eiy ) Ep>xllp:(§1: A Ep)V1
L@ ) eml,=(E, -, 2 Ve

where V,; (=1, 2) are pXp matrices of homogeneous polynomials of 2(2). We
have

(2.5.4) R?=(x,1,— V)k0)?D (x:1,— Vo) (1)? D k(2)?
(cf.(2.3.2)), and, since (&, -+, &p)(x,1,—V;)=0 (=1, 2), the kernel of the map
a: R[—&"] — Hi)
defined by afle;)=eé; coincides with
(111, — VDRO)? D (x,1,— Vo) k(1)? D (R(2)PNKer () .
We have k(@2)?NKer (a«)=Ker (a’)=Im*®(H), whence
(2.5.5) Ker (a)=(x;1,— V)kO)? D (x,1,— Vo) k(L) PIm* @ (H) .

Let A' denote the matrix [x,1,—V; x,1,—V, H] and A! its j-th column
(1=j=2p+q). We see d((¢y, ---, ) AH=0, so there exists a homogeneous poly-
nomial s,€R such that —(s;)=(gs, -+, ¢p)A} for each j (1=<j=<2p+q). These
polynomials are found in N (see Proposition 1.3.3)) and we will always take
them from Nz in our consideration. We have thus

s,eNg  for 1=j=<2p+gq
(2.5.6) deg(s,)=deg(s,sp)=e5+1  for 1<j<p
deg(82p+j):€} for lé]éq

and the columns of
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0_/:[0.’(0) 0./(1) 0.’(2):]

, fo S1, ', Sp , f], ...’fa Spe1, **, Sip
o/ 0= o/ W=
0 xllp_V1 0 XQ].Y)__V-Z

[ Sep+1, 77, Sapig fa+1, Tt fa+b }
0./(2):
H 0
generate Ker(p) over R, where p is the surjection of degree zero
o: ROR[—&"] — Hi(Oy)
defined by plho, -+, hp)=ho+ ﬁlhiqh.

We will now look into ImF(¢’), first without regard to the degrees of poly-
nomials, and then taking the degrees into account. Set

P=g' 0P Do’ W k(1) Q.

(2.5.7)

Consider the exact sequence of k(2)-modules
(2.5.8) 0— Q/P —> R?*'/P — RP*'/Q=H}(Oyx) —> 0.

R?*1/P=N;& k(2)? by (2.5.4) and Proposition 1.3, so that R?*!/P is a finite 2(2)-
free module. $(©x) is, on the other hand, k(2)-flat, since x., x, is a H}(Ox)-
regular sequence, therefore we find by (2.5.8) that Hi(®x) and Q/P are k(2)-free
and that
(2.5.9) Q/PQk—> RP*/PQRQ E=NgQ k& kP

k(2)

k(2) k(2)

is injective. Recall that f4.,&(xs5, x,)Ng for 1=;=<b (see Proposition 1.3.1)). The
image of !(fq+j, 0) through the map (2.5.9) is zero by this fact, so *(fqs,, 0) is
zero in Q/P®k for 1=<;<b. Furthermore we see by (2.5.7) that Q/P is

k(2)
generated over R by the columns of ¢’®, and the formula (2.5.5) and Proposi-
tion 1.2.3) imply that this Q/P is in fact generated over k(2) by the columns of

Sep+1, y Sap+q
o’®. Consequently by Nakayama’s lemma the columns of
H

generate Q/P over k(2). Since the sequence (2.5.1) is a minimal free resolution
by assumption, any column of H is not a linear combination of other columns

over k(2), so that the columns of -SMH’ ’ SEPWJ minimally generate Q/P
over 2(2). We therefore obtain i

(2.5.10) Q/P=o"®k(2)

(2.5.11) Q=0"k0)P* P’ PR T g f(2)
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h . { Sap+1y "7y 32p+q]
whnere o = .
H

Corollary 2.6. Let G, denote the j-th column of G (see (2.4.1)), and put
fa+i=Saps1, =+, S2p+g)G,.  Then we have

D fars k@)= D 11k D).

Proof. By the discussion above there exists (¢4, ---, t4)€k(2)? such that
fassp 0)=0"® t(t4, ---, t7) for each 1<j<b. From this equation H(#}, ---, %)
=0, so that ‘@, -, t))eIm*®P(G) (1=j<b) by (2.5.1). We have therefore

b b
Elalfu+]k(2)c _2)1f4+,k(2). We see, on the other hand, that ‘(fq.; 0)=0¢"®G;
Jj= Jj=
(1=5=b) are linearly independent over k(2) and that deg f;:,=v.:+,=deg fa+;
b
(1=5=b) by (2.5.11), (2.5.1) and (2.5.6). Consequently the sum Zlf;”-k(Z) is a
b =
direct sum @ f..,k(2) and coincides with D fursh(2). Q.E.D.
J=1 7=
In the following we impose a restriction on the structure of the module

+(9). That is, we will assume from now on that V), V, defined by (2.5.3)
take the simplest form

V; 0

Vi:[ }zvblp with v,€k(Q2), (=1, 2).
0 V;

This condition is satisfied for example by arithmetically Buchsbaum curves or

curves with b=1.

Remark 2.7. 1f V,=0 (=1, 2) and Hi(9) has a minimal free resolution of
the form (2.4.1) for one system of homogeneous coordinates, then from the proof
of Lemma 2.2 follows that p, g, 7, €%, ¢!, ¢? are the unique integers stated in the
same lemma.

Proposition 2.8. Let the notation be as above. Suppose V,=v;l,, i=1, 2.

Then q=a, and there exist integers i,, -+, i, 1=1,<i, < -+ <i,=a) satisfying &,+
1=y, (1=j=q), and such that

fo S1, **, Sp
(2.8.1) Q= R(0)7+

0 (x;—vly

[fl’l, o f“a—q» Sp+1, 75 Sep Seprn, S?‘Pﬂl‘ k(1)e+P

0 (xz_v2)1p

where {11, -+, ia-gt =11, -, a}\{iy, -, 1g}.

Proof. Put
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and denote the columns of ¢, by u, 0=i=<a+2p-+¢q). Then by 2.5.11)

@2.5.11) = iélgutk(O)@i_éélupﬂk(l)@iQi%lu“gm,k(Z) .
We first compute the relations among wu,, u, -+, Ug-sp-, following [1;
Theorem 1.6]. Define W, Wi, W, by
Wol p+1
2.8.2) (tpess s UsprdTily=—0s Wi [} atp
Wt } q

where i) entries of Wy, are in k(0)
ii) entries of W are in k(1)
iii) entries of W,, are in k(2),
and put

(2.8.3) Wy=x1lasp+ V1.

—H } ) ty o,
Observe that o, } is a (p+1)><¢g matrix of the form 0
L
J

(xl“b'x)lq

with ¢,=7 (1=/=q). With the use of Corollary 2.6 and Proposition 1.3.3) we
define 1, 1V,, Z, by the equation

1
We |V 1
{ o | J
—H
(2.8.4) 04 =—0a,| W, lay
0 |
[fv vl | O
AV 1 1/4q
/ GZ, ]r q
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where 1) entries of Wy, are in k(0)
ii) entries of W, are in k(1)
iii) entries of Z, are in %(2).
o |
. t{: Ty té . a b .
Finally ¢, —H =|- 0 with #, e E}Bl_fik(Z)@ @Ifaﬂk(l\ by (2.5.6" and
i= j=
(x,—1.M,

Proposition 1.3. therefore we can define again W,, Z, by the equation

o |} p1
0
W, } a
(2.8.5) o —H =g,
0 }» »
(xz“vznq
GZ: |} ¢

where the entries of W, and Z, lie in £(2). Now the formulae (2.8.2,, (2.8.3),
(2.8.4), (2.8.5) and [1l; Theorem 1.6] imply

(2.8.6) Ker (o) =Im%(g,)=0{"k(0)**? 1P ¥ k(1)

where g,=[c"* ¢{¥7,

W b1
Wos

.y } b

o= W, } a
W,

0 b

Wa (n-0)letGZ} g

— N R s

atp q
0 b pt1
o= W, } @
—H }p
(x2—p)1,+GZ, } q
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—W, } a

H

y
= Then we can prove o¢,s,=7 as in the proof
—(x:—15)1;—GZ, C]
_U1)1q+GZ1

q

Sy

2.

of [1; Corollary 3.5] an get a free resolution for HY(®y) of length three:
3
'2.8.7) 0 —> R[—&'—2] —> R[—0'—1]1PR[—"-2]OR[—z—1J*
2 R[—a]OR[—&—1]OR[—PIDR[—"—1]= R[—&']
AN RO R[—z"] 2, #0x) — 0.

Here all maps are degree zero. depth,, HY(©y)=2 and Proj. dimz; HY(©@x)=2 by
Auslander-Buchsbaum’s theorem, so that rank ¢; (mod m)=g¢. This implies rank 1V,

‘mod m)=q because all the entries of 03<1’ T a) lie in m. In other words, we

! e
have g=<a and there exist i,, - i, (1=4,<i,< - <i,=a) such that det W4(lh '

i,“"l) is a nonzero constant in k for if, -+, ig-, defined by i, . /g ={1, -+,
ai’\ i, -, it. Hence we find by (2.8.7) that 5}+2:”U+1 i.e. sf:—’l:;',Jfor 1=7=q.
We next go on to the proof of (2.8.1). Set
( 0-: (0) (1)1 0<0):G{0)
2.8.8) /! o Fu s Laoy Spen, =05 Sep Sapry, s__ﬂ]
|’ 0 (xs—v)l, H 1

Since g0, =0 by (2.8.6), and since det Wi(“’ T Z““1> is a nonzero constant in

k, each ‘(f,, 0 ) (1=j=¢) is in fact a linear combination of the columns of

D
P over k(1). Consequently Q=0 k0)? 1 +cPL(1)%+? by 2.5.11). It remains
to prove that this sum is direct. Suppose ¢'(go, g1, -+, Ga-2p'=0 with g;€ £{0)
for 0=/=<p and g,=k(l) for p+1=j=a-+2p. Then clearly g,=g,= - =g,=0.
Since the first row of o(;)(gy +, Zass)=0(1)0, =+, 0, g . Zapea) IS in
b

E‘t%fbk(l)%%faﬂk(Z)@NI by Proposition 1.3, g, is also zero. Thus o™ Y g,_,,
, Gap- a)—O and this can be rewritten To{® o1 (¢, == . t,. $hea-ger, 5 Qarap)
=0

b =gp+; for 1=j=<a—q
where

t,=0 for je{iy, -, i .
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It follows from this that (¢, -+, te, Qpra-g+1, > Qarep)E 0§V (1) by (2.8.6),
namely °*(t;, -+, tq, Spra-gi1y " Savsp) =057 ey, 0, ¢ for some ‘(cy, ---, CE
k(1). This implies 17,(* """ ié-q)t(cl, -+, ¢)=0, therefore “c,, -, c)=0 and
gp+17—= " :ga+2p:O- Q.E.D.

Proposition 2.9. Under the same notation and assumption as in the previous
proposition, let = denote the matrix of relations among the columns of o computed
by [1; Theorem 1.6]. Then ¢ takes the following form:

— ~ =N
v T

0 0 0o 1
0
0 (ro—v)l, H }p
o= —~l o 0 0 | a—g
Yilaey 0wl 0o o
0 0 ul, } g
2.9.1) ' — NS
a—q b q

p+q

—H 0
{ :l Zs T [ } Z,
(x2—vs)1, G

where Wi, W are matrices with entries in k(l), and Z; (resp. Z,) is a qX{a+p)
(resp. bX(a+pY) matrix with entries in k(1) (resp. k(2)).

Proof. Let ¢’ be the matrix defined by (2.9.1) and ¢ one of its columns.
a b

Since s;& Ny (1=/=2p-q), at=4f, 0) with f€/kD)D D fbDO D fassk(@) by
i= j=

Proposition 1.3. e see therefore by (2.5.11) and Proposition 2.8 that ¢ is in

the module generated by the columns of 0(1 p) over k(1). This enables us
to put

where Ws, 11 and 117, are matrices with entries in 2(1). W, must satisfy the
equation [(x,—4)1, H1W,=0, so each column of W; is in the module of relations
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among the columns of [(x,—v,)1, H]. This module of relations are easily com-
puted and are generated by the columns of the matrix

P
(x:—va)l, G
therefore W, takes the form

—H 0
P
(xs—va)lg G

where Z; (resp. Z,) is a ¢X(a-+p) (resp. bX(a+p)) matrix with entries in k(1)
(resp. k(2)). Thus the formula (2.9.1) follows. Q.E.D.

We summarise below some results used in section five, most of which are
found in [11; Sections 3 and 4] or elsewhere. For a matrix U of polynomials
of R we will denote by I(U) the ideal generated by the » X minors of U where
r is the rank of U. Let X, 4 and [ be as in the beginning of this section and let

N 0
2.10.1) 0— R[—7*]—> R[—7'] — ROR[—7"] —> Hi(Ox) — 0
be an arbitrary free resolution for H2(Oy), where 7°=@%, -+, 19, 7'=G}, =, k)
and 72=(% ---, r%). Let A denote the matrix corresponding to prse¢;: R[—7*]

—> R[—7°] and B the matrix corresponding to ¢,. Then m’=m-+I[-+1 by [3;
Corollary 17 and

B A a
(2.10.2) 00— R[—7*]—>R[—7]—>R[-7]—M—0

is a complex which is exact except at R[—7'], where M=HL.(J). Since the
degree of the Hilbert polynomial of X is one, we deduce from (2.10.2)

m+l+1

l m
(2.10.3) E.IT?— El TH—EIﬁZO.
Note that depth; 4, R=4. Let & be the locally free sheaf of rank m-+1 on P}
defined by the following exact sequence :
L PA mere ¢
2.10.4) 0—> orlh) — & opir) —>&—>0.
1= 1=1
m m+l+
We define a map¢: & — B Opy () by putting ¢(v)="'B(u) where us a}lopg(ﬂ)
i=1 i=1
is such that gG=v. From (210.3) and (2.10.4) follows A€ =0ps(— 379,

m m+1
therefore using the isomorphism £ = A&Q® A &7, the exact sequence

m

0— Gopy(—1) —> &

m Y m+l
> Op(ZTDQ N €7 =0p)
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is obtained. We see by the definitions of & and ¢ that the image of /ﬂ<¢v is the
sheaf of ideals in Opj defined by all the maximal minors of B, and hence coin-
cides with 4 itself by [11; (3.3) and (4.2)]. (Observe that the proposition of
[11] we have referred here are valid also for curves in our sense.) Hence we

get

[0—> Eom—7) e > —>0
(2.10.5) v=1

l Proj R/I(B)=X
(2.10.6) depth; s R=2.

Proposition 2.11. Conversely, suppose a given complex (2.10.2) with depth; 4R
=4 satisfy the conditions {2.10.3) and (2.10.6). Then by the procedure above we
obtain the exact sequence (2.10.5) and the sheaf of ideals $ in Opy which defines
the curve Proj R/I(B) in Pi. For such curves the following holds:

(2.11.1) Hi®Pi, 9)=M
(2.11.2) "0 x(W)=h"Oprs (v)+ 12: ROy (v—72))

4 m+l+1
+ X ROR == KOpy 7).

Proof. Formulae (2.11.1)-2) are deduced from the long exact sequences aris-
ing from (2.10.4) and (2.10.5).

§3. Structure Theorem for the Ideals Defining
Arithmetically Buchsbaum Curves in P}’

Let XCP} be a curve with the property mHi(9)=mHL(R/I)=0, where 4
and I denote the sheaf of ideals of X and H(JY) respectively. We know that
the ring R/I is Buchsbaum for such a curve (see for example [12; Korollar
1.2.3 or Korollar 4.1.3]), and in this case X is called an arithmetically Buchsbaum
curve. We will give a structure theorem for these curves in the language of
our Proposition 1.3. For an arithmetically Buchsbaum curve X we set 7(X)=
dimg;nHi(9) (see [5; p. 11]), and we denote by #A the number of elements of
a finite set A. In the following we abbreviate ‘arithmetically Buchsbaum’ to
‘a.B.".

Theorem 3.1. Let X be an a.B. curve in P} and (a; vy, -+, va; Yass,
Ve+o) 1S basic sequence. Then we have

1) i(X)=b

2) For each integer v
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Hilve=y 1=iZa} 22-3{jlves,=v 1=7=0b},
and hence a=2b.

Proof. Suppose the homogeneous coordinates xj, x,, x,, x, are sufficiently
generally chosen. Since mHL(9)=0, HL(Y) has the following minimal free resolu-
tion as a k(2)-module :

G H
(3.1.3) 0— k@2)[—3"—2] — k@)[—3"—11* —> k(2)[—&"] —> HL(I) —> 0

—xdun
where £°=(el, -+, s} ) (V= ed= - Zeliyy), H=[x,1,x) x1.xy] and G:l: ; }
Xalacxy
Hence #(X)=b and ’
(3.1.4) eSt2=y,., for 1=;=b

by Proposition 2.4. We see, on the other hand, there exist integers 1=;,< -
<ip=a satisfying ((}-+1+1, (3+1)+1, (e3+14+1, (3+1)+1, -, (ed+D+1, (e}
FD+D=(e3+2, 942, 542, e8-+2, -+, ed+2, ed+2)=(v,,, vy, -+, Yiy,) Dy Proposi-
tion 2.8. Consequently (Vo 1, Yas1, Yaiz, Yate, ", Yats, Yars) = Vi, Vi "5 Yigp)
which proves 2). Q.E.D.

(Un Us 0
Theorem 3.2. Let (u,,) vo=a, v (1=i=a-+b)and 4,=|U, U, U,| be as in
[_U«z Uy Uy Us
—U;| and that the entries of
v,
U, are in m. Suppose, in addition, that (2.1.1) is satisfied and that htI=2 [or

I=f.R0)DH élflk(l)@ éifa;]k(?.) where f, (0=i=a-0b) are defined by the formula
i= j=

in Remark 1.8. Let X denote the curve Proj R/I and 9 its sheaf of ideals. Then,
X is an a.B. curve whose basic sequence is (a; vi, ***, Ya; Yai1, ***, Yass) Lf and
only if

1) The entries of U, and U, as well as those of U, lie in m.

2) Im*®(U)=(x;, x)k(2).

Proposition 1.7, and suppose that 2,2,=0 with A=

Proof. Observe first that the argument concerning (2.3.1), (2.3.5), (2.3.7) or
Proposition 2.4 is valid in the present case where (a; o'; 9%)=(a; vy, -, Ya;
Vai1, ***, YVa+p) 1S DOt necessarily known in advance to be the basic sequence of
X. We have thus

[£2—21/ImE(*2,) as R-modules
(3.2.3) Hom ,(Hi{9), k)=
R(2)[v*—2]/N as  k(2)-modules
where N= %Imk‘z’((‘lj;)b tU,), and NC(xs, x)k(2)[D*—2], because all the entries

of U, are in m by hypothesis. Suppose X is a.B.. Then Hi(9) has a free
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resolution of the form (3.1.3), so that 7(X)=b and N=Im*®('G)=(x,, x,)k(2)° by
Proposition 2.4. Furthermore, since mHi(9)=0 and Hi(9) is minimally generated
over R by b elements, the R-module R®/ImZ(*A;)=Hom,(HL(9), k)=Exti(Hi(9), R)
(see (2.3.1) and [8]) has its minimal free resolution

w [x:1p x21p X315 x414]

— —> R’ —> R/Im®(A;) —> 0

by taking the dual of the minimal free resolution for Hi(J) over R. We have
therefore Im®(*A;)=mR® and find that the entries of ‘U, and ‘U; are in .
Since (xs, 2)k(2)’=N= % Im*®((U;)t *U,) and since the entries of (‘U ‘U, lie
in (x,, x)%k(2) for =1, we have Im*®(*U)=(x,, x.)k(2)’.

Conversely, suppose the conditions 1) and 2) are satisfied. In this case (3.2.3)
becomes

R[3*—2]/mR[1?*—2] as R-modules

(3.2.4) Hom,Hi(), k)z{
k2)[(P*—2]/(xs, x)R(2)[*—2] as k(2)-modules,

since N=(x;, x,)k(2)[¥*—2] by 2) and Im®(*4;)=mR® by 1) and 2). This implies
mHL(9)=0, hence X is an a.B. curve with 7(X)=b. It remains to prove that
the basic sequence of X is in fact (a; &'; p%) if X is a.B.. Let (a; ¥'*; v'¥)=
(@; vi, -+, Vo Ya+1, "+, Yarrr) be the basic sequence of X. We have /(X)=b
and (3.2.4) implies that &% in (3.1.3) coincides with v,.;—2 for 1=j<b. Hence b
=b’ and ©’?2=9* by Proposition 2.4. Counting dim,[,(v=0) then shows p'!=p'.
Q.E.D.

Corollary 3.3. Let the notation be asin the previous theorem and suppose X
is a. B.. Then there exists a matrix Le GL(a-+b, k(2)) of homogeneous polynomials
such that for (f1, -, fas0)=(f1, -+, fasrs)L the following holds.

1) f; (1=i=<a-+b) are homogeneous polynomials and

degfié édegf:z—zby A(f::.—zbﬂ; Tty f:z)
=Wa+1, ***, Ya+d, Ya+1, 5 Yatd) .

2) I=fokOB SO D fov @

3) The matrix of relations among f,, f1, -+, fa+s computed by [1; Theorem
1.6] takes the form

Uy U, 0
0 }a—Zb
=\Ul U x1,
c x4ly
Uy U; ) %215
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where the entries of A5 of course satisfy the conditions of Proposition 1.3.

Proof. We see by Theorem 3.2 that there exists a matrix

0
Ly 0] [Ui]_ x31bl
Ll—[Lm | |SCL@+b, k@) such that L)'= 77" .

leb

We set L=L7'. Since 4(4,) satisfies the condition [1; (3.4)], each f; (1<i=Za--b)
becomes homogeneous and
-0 1

x_;lb
x,lb

xz]-bj

Hence we obtain 1) by changing the order if necessary. In fact we can take
L, so that A(f,, -, fass)=4(f1, =+, fo+s) should be satisfied up to a permutation.
Note that the formula (3.3.4) can be rewritten as

(3.3.4) (f1, -, fas) =0.

0
(3.3.4) (fary, =5 farn)Xelo=—C(F1, -, fa) ,\‘slb}
xllb

To prove the assertion 2) we first show that [ is contained in the set [’: =
TR+ 3 FRD+ 3 Fansb@). Lot =3 £u8: ((gn -, 8au) SHO) B k(1 k@)
be an element of /. Then

f=for = faso) (G0, =+, Gaso)
= fogo ([, =, fara)La®(gy, ) Gaso)
=fogot(f1, -+, fO)Lu*(gs, =+, Ga)
+(fasn o, farod{Lai(8y, s o)+ (Gasrs =+, Gasa)} -
Observe that L,,‘(gy, ===, go) is in k(1)°, hence
(3.3.5) Ly b(gy, -, a)=x:1p(hasy, -+, Nass)
+ (rasy, =, Tavo)

with hes,€R(1) and r,4,=k(2) for 1=<7=<b. Using (3.3.4)" and (3.3.5) we obtain

f=rogo
0
+(f1 o, fa) {Lut(gl; v, Ga)— Xsly |Yhasy, ) haso)}
X4lb

+(fasn s faen) {(8ast, ) Gawo) T (Tass, =, Faso)l
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This implies f=I’ and ICIl’, therefore I=I' by obvious inclusion I’'CI. Com-
paring dim, I, with dim, I, for v=0 then shows [ is the direct sum j,%(0)
Uy Ui 0
U; U; U,|be the matrix of relations
Uy Us U;
among fo, f1, -+, fess computed by [1; Theorem 1.6], then we find by (3.3.4)

DO DO D FLh@. Let =

0 =
U,i:l ’Vx;;,lb
that [U muse be | 71 | QE.D.
-'_leb

Let XCP; be an a.B. curve with basic sequence (a; vi, -+, Yo} Yat1, = »
vesp). In view of the corollary above, it seems convenient to use (fo, f1, ==, fa+s)
instead of (fy, f1, =*-, fa+s). And we will always assume from now on that
(fo, [1, =+, fa+s) itself satisfies the conditions 1), 2) and 3) of Corollary 3.3 when
we deal with a.B. curves. We set A(fy, =, fa-2p)=0my, =+, Mg-sp) =T, Wai1,
v, Vaep)=(y, -+, np)="7 and call (a; 7 ; A)=(a; my, -+, Ma-sp; M1, ==+, Np) the
short basic sequence of X. Note that A(fo, fi, =, fars)=(a, My, ==+, Ma-2, Ny,
s, My, My, vy Ty My 0ty Bp).e ASTLS - SMgogp and a=m, < -+ =,

We have (3.1.3) and (3.1.4) for X, therefore by the results of Section two
the R-module HY(®y) has a free resolution of the following form (see Proposi-
tion 2.8 and (2.9.1)):

00— R[—m—1]®OR[—n]®

(3.4.1) —‘—>R[—(l]@R[-ﬁ+l]@R[—7ﬁ]@R[—ﬁ+l]g
[

—> ROER[—7+2] L Hi©@y) — 0

where
[ So Si, o, S f’LI]) S fl'a—zb Spr1, 7y Sap Sape1, v, 541)]
o=
0 xllz) 0 Xglb xglb .X’41b
0 Ws 1
0 —x.1, —x1; —x41, 0 b

x l —JC31[; —X4lb 0
“1ta-rd
Zyt| —x4ds |Z,

Xalap

}
i
W, } a—2b

x31p

a-t+b
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And
(3.4.2) I =R[—na+2]/mR[—ii+2].
It should be noted that A(fy, -, fu,_,,)=0ny, -, Mmq-s) by Proposition 2.8.

$4. Examples of Integral Arithmetically Buchsbaum Curves with
Basic Sequence (a; n, «--, n; n, ---, n)(n=a=2b)

a b
Let us begin by giving a solution to the equation 2,4,=0 in the case where
0
U,=| x5l | and Us=x,1,. Let a, b, aSm i Sn,= - Sillg_gp, A= =1,= - =n, be
%41y

integers and set m=(my, -+, Mq-sp), A=y, -+, Np), Wy, ==+, Yarp)=(M, 7, 1, 7).
Define 4,:=(p:,) (0=iZa+b, 1=5j=<a+2b) as in [1; (3.4)]. Set

U U 0 0
0 —x;lb
+.1.1) d=|U, U, x5l 1, 2= —x,1,
xily — X5l

Uy Us x5l U,

where U, is a matrix with entries in m, 4(2,)=.1,, and A, satisfies the conditions
of Proposition 1.3.5). Put

Ul [0 )
(+.1.2) = + 2 Ve, U;=x,1,—U,
U1 lea i20

where V® are matrices of homogeneous polynomials in 2(2). Then 1,4,=0 is
equivalent to

-0

0 0 0
o1 U4Vl x,1, =0, Uyl 251, [=0
540
(1.1.3) | x,1, x41p x.ly )
LU 2 TZ

(see [1; Remark 4.1].) The solution of this equation is given by the following
formula :
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0 0 |} a-2+1
Vo U, 0
=10 i I We Z[—x41y x518]
Ugl 0 U3
(4.1.4) 0 0 } b
— —_————— )
a—2b a—2b 2b
Uy,
[ E x;'lV(T)U,;-
U2 r21

where Wy, Z;, V0 (#=1) and U, are arbitrary matrices of homogeneous polyno-
mials of k(2) (of (xs, x)k(2) for U,;) whose degrees are determined by (a; 7 ; 7).
Since the degree of each entry of W, Z5, U; and V¢ (r=1) is fixed for the
given (a¢; 7 ; 7), all the entries of these matrices are parameterized by a finite
dimensional affine space. Let S(a; 7 ; fi) denote this affine space. That is

(4.1.5) Sla; m ; A)=Speck[&;; 1<i<p]

where the set of parameters {£;|1=i=<p} corresponds to all the coefficients of
the entries of W, Z;, Usand V™ (r=1) as homogeneous polynomials in x;, x,, x5, X,
of the fixed degrees determined by (a; 7, 7). Let Ws, Zs, Us, 7 (r=1) denote
the corresponding family of matrices over S(a; 7, #), and, using these instead
of Wy, Z;, Us, V' (r=1), define Z,, 4, by the formulae (4.1.4), (4.1.2) and (4.1.1).
Denote the ring k[&;; 1<i=<p] by £[S]. Since Z,4,=0,

/]

a+b+1, - a+2b>/det U3

F,=(—1)* det Z(

is indeed a homogeneous polynomial in x;, x,, x5, x, with coefficients in 2[S] by
Proposition 1.7. Put

[=(Fy, Fy, -, Fou)R®KLS]
%' =ProjicsiRQKLS)/
7. X" —> S(a; i, i) the natural projection.
The set
Sta; m, n):={s€Sa; m; 7#)|ht f®k(s)§2}
is Zarisky open and by Remarks 1.8-1.9 the Hilbert polynomial of =~(s) is in-

dependent of s€S(a; 7, ), so that the family %' \%: w5 2, Sta; m; A)is a
flat family of curves (see [10; Chap. lII Theorem 9.9]). We denote X' 3., 7. m
simply by %. In this way
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x5 P

S(a;m;7n)

(4.1.6) - N l
S(a

Lemma 4.2. S(a; m; 7) is not empty for an arbitrary (a; i ; f) such that
az2b, aSm; = - Shigogy, ASME 0 Sy

Proof. Let P be a matrix representing the permutation of vy, -+, v, such
that for (vj, ---, vp)=(vy, -+, vo)P the inequality vi=<y;< --- <y; holds. We set
xv’1+1 a
0
I:U01:| |: 0 ] |:l 0} xg,z*rlﬁv,l
= + 0 tp
U, x:1e] 0 P xyaT1 Va1

] U, =0, Us;=ux1,,

and define 2,, 4; by (4.1.1). Then 4(1,)=4,, 2.2,=0 and the ideal defined by 2,
satisfies ht 1=2. Q.E.D.

We will assume in the rest of this section that % is an algebraically closed
field of characteristic zero and under this assumption prove the existence of an
integral a. B. curve with basic sequence (¢; n, -+, n; n, ---, n) where n=a=2b

e )

a b
and b=1. We fix such q, b, n and put m=(n, ---, n), i=(n, ---, n). In this case
— —
a—2b b
the matrix A, takes the following form:
n—a+1 n—a-+1 - n—a-+1
[ 1 ) 1
d,= .
. 1 ) 1

Put n—a+1=e¢ and let ¢, (1=/=6), u, 1, w be parameters.

(4.3.1) When b=2 we set
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wxs tix§ taxbtsxs
X, WXy tiXs T5X516Xs
—UXy Xy 0
_‘uxg'
wx,
—UxXy, X1 —w'x, w'x,
UXy X1 —WX;—VXg 0 wx,
UXs Xy —WX—VX~
Wxs
UKy X1 —Xs 0
UXy X; —UXs
UXs X1 —UVXs
O O Ux, Xi
- —UVXg
UXs X;
a—2b b b
w if a—2b+0
where  w'=
wx§™?! if a—2b=0.
U02
=—VOU,— x5V O,
2
0 tixgt tax§Tt taxg?
0 t, ts tg
—u
Z4 0 0
—u 0
u 0
o 0 u 0 0
u 0 —1
u 0
0 O u 0
u 0
X1 —UXg

U?.: ° . Ugl:o.
—UX,

X1

a—2b+1

X3
0
0 -
X3
X4
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and define 2,, 4; by (4.1.1).
(4.3.2) When b=1 and a=3 we set

wxé tixs tax$ tsxs
X1 WX, t4Xs t5x, teXxs
—UXy; X .
[U(u} . . . Uz, =0
U1 * * wx, U:;:xl
—UXy Xy — X 0
0 —UXy X1 — WX, WXg
UXy X1
0 tixgt tox§t taxg?
0 t, ot t 0
—u 0 :
Uy
— 0
U,
—u 0 —1 0 X3
0 —u 0 0 x,
0

and define 4, 4; by (4.1.1).

It is easy to check 2,4;,=0 in both cases. Denote the ring k[#;(1=/=6), u,
v, w] by B and Spec B by T. We see B is a factor ring of £[S], so that T is
a closed subscheme of S(a; #; A). Put T=TNS(; m; #). The family of

curves X§ —f> T induced from % —ﬂ-) S‘(a ; 7 ; fi) by the embedding ’[o‘gg(a;
m ; n) coincides with the family of curves obtained by the family of ideals
determined by 2, set in (4.3.1) or (4.3.2). For this family we have the following
theorem.

Theorem 4.4. Suppose k is an algebraically closed field of characteristic zero.
In the notation above, there exists a Zarisky open set DCT such that for every
point s€D, n~Y(s) is an integral a.B. curve with short basic sequence (a;n, -, n;
v )
n, =+, N). a—2b
(R

b

The proof is divided into several lemmas. We give its full detail only in
the case b=2, leaving the proof for the case b=1 to the interested reader. Put

(Upy Uyy)

| 01 02 i .
L=Proj R/(x;, x;)R and H=Proj R/x,R. We will denote (~1)ideti U, U, ‘(l)/

0 U,

det U, at a point s T simply by f,, without indicating the point s explicicly.
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Lemma 4.5. There exists a Zarisky open set D, T such that fa450, 0, x5, x,)
#0 for every point of D,.

Proof. It is enough to prove the existence of a point s&T such that f,.,
©, 0, xs, x,)#+0 at s. For this purpose we set u=0 and #;=0 for 1=</<6. Then

fass(x1, 0, x5, x)=0""x] x,xdw® 20+ x g 20 e (x, uxg)® !/ 2}
=vb—1wa‘_2b+1(WX4+st)b"1xg'le"2b+e+1
up to a sign. Hence f;45(0, 0, x5, x,)#0 if vw=0. Q.E.D.

Lemma 4.6. Any irreducible component of n=(s) is not contained in H and
TS NH=r"Ys)N\L for every s=D,.

Proof. 1f x,=0, then fo(xy, 0, x5, x,)=x% for a point s€D,, so that all points
of z~%(s)"\H must be contained in L. But LNz~!(s) has its dimension less than
one for s€D; by the previous lemma. Consequently any irreducible component
of n7%(s) cannot lie in H for s€D,. Q.E.D.

Lemma 4.7. There exists a Zarisky open set Dy T such that for every s€D,,
Proj R/f,R is an irreducible surface with singularity L.

Proof. Fix (u, v, w)Ek*(u+0, v+0) arbitrarily (abuse of notation). Then
4.7.1) fo=det U,
=chteu® g e tu® Py xd T e b B x g A (xR uvxaxs) -+ Qo

where g, is the determinant of U, in the case t,=t¢,=t,=0. Note that g,=(x,,
x2)?R and hence f,&(x;, x,)?R for all points of 7. (4.7.1) can be taken for a
linear system on P} generated by u® 'x%, u®%x;x%7, u®3x% %(xi+uvx,x;) and by
Zo. Let O, denote this linear system and @,: P{—P} the rational map asso-
ciated with 6,.

Claim. i) O, has no fixed components and its base locus is L.
ii) dim @,(P3)=2.

Proof of /). The equations u® 'x%=u®%"%x,x% '=u® 2% 2 (xi+uvx,x;) = go=0
imply x;=x,=0.

Proof of ii). Put z,=x,/x, for i=1, 3, 4, and consider the map @, restricted
on Pj\H=Spec k[z,, z;, z,]= : A}.

D,: A} — P}
is given by

D (21, 7o, z2)={1: z/u: (B2+uvzs)/u?: go(zy, 1, 25, 20/u®™Y)
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from which follows immediately dim @,(P})=2. Q.E.D.

We can therefore conclude that Proj R/f,R is an irreducible surface with
singularity L by Bertini’s theorem (see [15; Theorem 4.217 for example).
Q.E.D.

Lemma 4.8. There exists a Zarisky open set DyCT such that jor s€Dy, f,
(ue, 1, u(f—a®/v, z,) is a nonconstant polynomial in the variable z,, where a, 3
are general elements of k.

Proof. Put t,=0 (1=/=<6). Then we find by a direct computation that
Folxy, X, 0, x)=det U,
=x¢+x¢ " {(a—2b)uwx,x, -+ (b—Duwxex +uxst — .
=x¢+xt " {la—b—Duwx,x,+uxi} +f§

where f§¥ denote the sum of terms of degree less than a—2 with respect to xi.
Since a—b—1=2b—b—1=b—1=1 by hypothesis, fy(ua, 1, 0, z,) is a2 nonconstant
polynomial of %{z,] of degree at least one for a general a=k. Hence the asser-
tion follows. Q.E.D.

Let T, denote the subspace of T defined by the equation ¢,=¢_=¢,=0 and T,
the subspace of T defined by u=0. By the proofs of the previous lemmas we
see DlﬂDzﬂDJO’f‘l\Tﬁm&, so take and fix a point s’€D,N\D, ~D,NT\T,. Let
Y denote the hypersurface of P} defined by the equation f,=0 where f, is the
polynomial determined by A4, corresponding to the point s’. e then consider
£, corresponding to the point '+, ts, t5, 0, -+, 0)eT with parameters t1, ts, s
Note that f, is independent of ¢y, ¢,, ?s.

Lemma 4.9. Under the notation above the affine curve Proj R f, f)R\HC
Y'\H is irreducible and nonsingular for a general (t,, t,, t3)E k"

Proof. By a direct computation

4.9.1) 1 :det[gj (1)

= fu® gt T e U R gt e R
+tu Ex§t e (atuvxa ;) gy
U,

linear system on Y and denote it by @,. Let ¥ —> Y he a desingularization
of ¥, O,=w*@, and @,: ¥ —> P} the rational map associated with @,.

where g, denotes det [U“](l) in the case t,=t,—=t,=0. We take 4.9.1) for a
@

Claim. 1) Al fixed components and base points are containcd n w™(L).
i) dim @,(¥)=2.
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Proof of 17;. Since u#0, u® 'x§ 1=y 2y, xft 0 t=u®3xgt 03 (a2t uvx,x;) =1,
=0 on Y implies x,=0 and f,=0, so that x,—=x,=0, which proves i).

Proof of ii). As before we consider the map @, restricted on Y”: =P \o!
(H)y=Y\HCA}. @,: Y —Pj}is given by

Dy(z,, z;, z)=(1: z1/u: (ZHuvz)/u*: gz, 1, 25, 2)/u™).
Let a, 8 be general elements of % and consider the equations
( z/u=a
(4.9.2) (23 +uvzs)/u*=
folz, 1, z;, 2)=0.

This is equivalent to

zi=ua, Z;=u(f—a®/v
(4.9.3) {

folua, 1, u(B—a*/v, z,)=0.

Since fo(ua, 1, u{5—a®/v, z,) is a nonconstant polynomial in z, by Lemma 4.8,
(4.9.3) certainly has a solution. This means that dim @,(Y")=2. Q.E.D.

We can therefore conclude by Bertini’s theorem that general members of the
variable part of the linear system @, on ¥ are irreducible and nonsingular,
from which our assertion follows. Q.E.D.

In the situation of Lemma 4.9, put X=x"%(s) for s=(s, ty, s, tyeT where
0,1 a—2b-
o il e, gpp) =D
u®lx§*", the relation (fo, f1, =+, fa+0)A.=0 implies fi€(fo, f)Oa3 on A}=P\H
for =2, so that X\H=Proj R/(f,, fi))R\H. Now we have

i) No irreducible component of X is contained in H (Lemma 4.6).

il) X\L=X\H is a nonsingular irreducible curve (Lemma 4.9).
Consequently X is an integral curve which is nonsingular except at the points
of XNL. Finally X is in fact a. B. with short basic sequence (a; n, -+, n;

a—2b
n, -+, n) by Theorem 3.2, and the proof of Theorem 4.4 is completed in the

b
case b=2. Q.E.D.

(ty, ty, t;) k> is general. Since u#0 and det 22(

Remark 1.10. Since T is a thin subspace of §(a; i, 7), it may well be
hoped that the curves z~%s) for seS(a; 7, 7) general are nonsingular and
irreducible, however we have not confirmed it as yet.

Example 4.11. The monomial curve Proj k[s'®, s?#t42n -1 s2n-{j2n+l pin] ig g,
B. by [5] and its short basic sequence is (2;—; 2n-+1). It therefore coincides
with 7~-%(s) for a certain point seS‘(Z;—; 2n+1).
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§5. Some Irreducible Components of Hilb (P}) Whose General
Points Correspond to Arithmetically Buchsbaum Curves

We denote the universal flat family of subschemes of P} over Hilb(P}) by Z:

gz P2>§Hilb (P

Hilb (P3)

Definition 5.2. Let (a; m; f)=(a; my, =+, Ma-2, Ny, -~ . /1,) DE 2 sequence
of integers such that a=m,< - <mg s, a=m = -+ =n,, where a=2b. We say
that (a; i ; ) represents an irreducible component of Hilb(P}) if and only if
there exists an irreducible component H of Hilb (P} such that & (k) is an a.B.
curve with short basic sequence (a; m ; 7) for every general h=H.

Remark 5.3. Since all a.B. curve with short basic sequence {a¢; 7 ; i) are
parametrized by an irreducible variety S(a; 7 ; 7) (see (4.1.6)) for a given
(a; m; n), (@a; m; n) can represent only one irreducible component of Hilb (P}).

Our main concern in this section is to find, as far as possible by the methods
developped so far, the conditions in order that {(a; # ; 7) should actually repre-
sent an irreducible component of Hilb (P§). Let us seek for a necessary condition
first. In the following lemmas, we let (a; i ; Ai)=(a; 1y, =, Maoap; Na, ==+, Np)
be the short basic sequence of an a.B. curve X.

Lemma 5.4. If n,,,=n,+1 for some 1=<j=<b—1, then (a; in; i) does not
represent any irreducible components of Hilb (P3).

Proof. HY(Oy) has the free resolution (3.4). Let ¢ be a parameter and set

;
X,
Q.= x 0 for =3, 1
S WRTPEPR FP 7+1

';_\1):[ 0 xllb 0 .\'glb Qa Q4]
—— ~—
1 a—2b



826 MuTstal AMASAKI

0 Ws
0 —\vlb ”‘Qs —Q4 0
. . W,
0
21 ) —Q; —Q,
Z3+ _Q4 Z1
Xolop
Qs

We have 4/5%)=4(c?), 4#)=4(z) and check easily ¢*#=0, so that a

flat family of curves X: :ProjR®kk[1]/](%')—p—>Spec k[t] is obtained by Pro-
position 2.11. »~'(0)=X and for each p€k we know by the same proposition
Hi(3,)=Coker (y), where J, denotes the sheaf of ideals of the curve p~*(%)
and é®(y) the matrix obtained by putting t=» in . Hence, if 0, HL(J,)
cannot be annihilated by m. We see, in addition, the basic sequence of p~*(%)
is in fact different from that of X if 5»+#0, since the k(2)-module structures of
Hi(,) and Hi(J,) are different (see Remark 2.7). This implies there exists a
curve whose basic sequence is different from that of X and which is not a.B.
in an arbitrary small neighborhood of the point of Hilb(P}) corresponding to X.
Consequently (a; 77 ; 7)) does not represent any irreducible components of
Hilb (P3). Q.E.D.

Lemma 5.5. Suppose for some 1=j=b
1) a=n,—2 and 2{{!m;=a} +1>34{/|n;=a} or
2) a#n,—2, {iimy=n;—2}+¢ and

z{itm,=n;—2} >38{|n,=n,—2} +&{{{m,=n,—3} .
Then (a; i ; 7 does not represent any irreducible components of Hilb (P}).
Proof. Consider first the case 2). Suppose
m,=n,—3 for ay+1=i=a,
my=n,—2 for oy F1l<Zi<Za,
{ n,=n,—2 for Bot+1=i=p5
and a,—a; > 35— So) - (a—ay). 3(Oy) has the free resolution (3.4). We have

J(II;.(L e e, ol a——2b))

=[ = 0 * 4, 4, 4,V a—ea
————
oy 01—y a-—2b—-a1
where 4,=[ = 0 % ], and the entries of = are all positive or negative
T?,_/\W__r
o P

180 b_‘81
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integers. rank W6<l’ e, el e a—2b>(mod m) is therefore less than
a,—a; by hypothesis, and there exists a nonzero vector 7=(0, -+, 0, ra 41, =
I
Tag 0, -+, 0)€k*"® such that a
——
(l——2b—a’g
(5.5.3) 7W,=0(mod m).

2

Let ¢ be a parameter and set
dP=[0 x.1p tF--j-th row x,1; x31, x,1,].

Then 4(6V)=4(¢V) and we see by (5.5.3)

G Pc=tP
where P is a matrix of homogeneous polynomials in w. This P can be written

P=0cYQ=5"Q

0
Qs
0
Q-
Qs
Qs

arb
a
polynomials such that 4(Q)=4(z). Set #=t—tQ. Then 4(%)=4(z) and &V 7z=0.

S

—2b

where Q= for suitable matrices @Q; (:=1, 2, 5, 6) of homogeneous

D BN

o T T
Q

In this way we get a flat family of curves X=Proj,r.; RQr2[t]/1(%) —i Spec k[ ¢]
such that p~%(0)=X by Proposition 2.11. As in the previous lemma H}(J,)=
Coker 6 (n) for pek, so that, if »=+0, p™(») is an a.B. curve with #(p (%))
<i(X)=b. This implies that, in an arbitrary small neighborhood of the point
of Hilb(P}) corresponding to X, there is an a.B. curve with short basic
sequence different from (a;  ; ), and hence (a; i ; ) does not represent any
irreducible components of Hilb(P}). The proof for the case 1) is similar.

Q.E.D.
Lemma 5.6. Suppose n,.,=n; or ni—n;=2 for every 1=i=b—1. If
B{i|m.=n,+1} >§{i|m;=n;+2} +38{{|n;=n,+2}

for some 1=<j=b, then (a; i ; 1) does not represent any irreducible components
of Hilb (P3).

Proof. Let
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U U 0
0
A=|U, U, =x5l, | be the matrix of relations among f,, fi, -, fa+s (S€€ the
X41b
Uz Us %21y

end of Section three). As is described in the beginning of Section four the
equation 2,4;=0 is equivalent to (4.1.3). By hypothesis we may assume

my=n;+1 for ay+1=i=a,
my=n;=+2 for a;+1=i=a,

n=n,+2 for B, t+1=i<8,

with a1_ao>(012"a1)+3(,81—‘/30)- Since A(fo, f1, =, fa+s)=(a, M, @, [, ), each
entry of A(U,;) is positive and

v
* } a
0 } ay—a;
J([Ul }(1 B )): |} a—2b—ay
U \L s o antl, e, a 4
4,
4,
« |} 8o
where 4,=| 0 } Bi— B, and the entries of * are either positive or negative.
s } b— 8

In view of this,
V(O)

rank [
U21

](1, oyl e a)(mod m)

is less than a;—a, by hypothesis, so that there exists a nonzero vector ¢=

)
YO, -+, 0, Cagets > Cap O =, 0)EE™® such that [V ]C’EO(mOd(xg, k().

U
@, a—2b—a, “

Let t be a parameter and put
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}a~2b
| e
U= x5l ’
x-L]-b
0
then 40U )=A4{| x.1, n,4y=n, or n,,,—n,=2 for 1</<b—1 by assumption,
X4lb

so that any entry of A(U,) is not zero. We therefore get

01. ~
([ Joeevn
U

4

(5.6.1)
l Uzlﬁ«x:th

where P; and P, are matrices of homogeneous polynomials of (x;, x,)k(2). These
P, and P, can be written

[Pl} a+1 )[
P, b {

with matrices Q;, Qs of homogeneous polynomials of %2(2) such that A([g 87])
V(O) s
#A([Um ]) We set

0 @
—
a—2b 2b

~

(VO=V©®—-tQ,, [721:U21_th

0] 707
N N AN P A
L 1 x11q -1

and set
[On Us 07 =
0o, v, U, Ae=| —x,1p |.
LOa U, ,\—zle L U,

/:-z:

For these matrices the equations

4

0. . ~
H:N }Us—i—V"”U;:O UaU,=0

Uy ~
J— E x;—lv‘(r)U.1
U, rz1
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hold by (5.6.1) and (4.1.3), hence 1,4,=0 (see [1; Remark 4.17). Now we geta
flat family of curves

~ - ~ P
X=Projicxy RQk[t]/(fo, f1, -+, Jars)R —> Spec k[ 1]

where fy=(—1)¢ det % (. b1 a L gp)/det Us for 0=i=atb(see Remark
1.7). As in Section two ImR(”ig(yj))DtUak(O)@lebk(l)@lm“g’(‘m(n)) (c.f.(2.3.5)
for every pek where ‘L(y) and ‘174(77) denote the matrices obtained by putting
t=7 in i, ¢, respectively. This implies Hom, (Hi(J,), k)= R*/Im®(*1(n)) is
annihilated by m for all <k, but since ¢+0, i(p~'(9)=dim,HL(T,), k) <i(X)=b
for 7=+0. Consequently an arbitrary neighborhood of the point of Hilb(P}) cor-
responding to X contains an a.B. curve whose short basic sequence is different
from (a; # ; 7#), whence our assertion follows. Q.E.D.

We summarize the results obtained so far in a theorem.

Theorem 5.7. In order that a sequence of integers (a; m; n)=(a; my, -,
Maspy Ny, =+, o) With a=2b, a<m < -+ SMig-gp, A=, = -+ =n, Should represent
an irreducible component of Hilb (P}), it must satisfy the following conditions.

1) nig=n; or ng—n;=2 for every 1=i<b—1.

2) If a=n;—2 for some j, then

#lilmi=a} +1=3%{i|ni=d}.
3) For each 1=j=b such that a#n,—2, we have
$ i [mo=n,—2} <3¢ {i|ni=n,—2} +4{i|m;=n;—3}
4) g{ilmi=n;+1} =#{i|mi=n, 12} +34{i [ni=n;+2} for every 1=j=b.

Our next problem is whether (a; 7 ; %) satisfying the conditions of this
theorem actually represents an irreducible component of Hilb(P3) or not. In
any case an a.B. curve with short basic sequence (a; i ; 71) exists by Lemma
4.2, though it may not be even reduced. And if n;,;,=n; or n;;,—n;=3 for every
1=</=<b—1, we can prove that the conditions of Theorem 5.7 are indeed sufficient
for (a; m ; @) to represent an irreducible component of Hilb(P}). In other cases
we do not have any answers yet.

To describe the answer in the case mentioned just now we need some
lemmas. They may be found somewhere in the literature available, nevertheless
we give the proofs for the convenience of the reader.

Lemma 5.8. Let (A, n) be a local ring with residue field k such that kG A,
and let fo, fl, T f,H,,EA(O) be homogeneous polynomials with coefficients in A of
degrees a, vy, -+, Vais respectively. Suppose f;:=Fimod n)ek0)=R (0<i<a-+b)
satisfy the condition
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G8.1) R={kO D G F DB & for @) DL

(direct sum as k-vector spaces) where L= L, (L.,CR,) is a graded k-vector sub-
v=0

space of R. Then we have

. a b~
(5.8.2) A0)= {foA(O)EBﬁ_BlfLA(l) @@IWA(Z)} DL, A
(direct sum as A-modules).

Proof. We take a tensor product of (5.8.1) and .l over % to obtain

AQ)=MVHM® (direct sum as .1-modules)

where AP =f,A0)D éfﬁl(l)@élfaﬂA(Z) and M®=LQ,A. Let : MVE
1= J=

M® = A(0) — A(0) be the map defined by 0(2?@/”” r)= i}:g’iffH with (g, &1,

o Bay Bavry 7y Barn)€A0)D AL D AQ)Y.  Since f; (0=i=<a-+b) are homo-

geneous, # gives a map 6,: A(0), — A(0), from a finite free A-module into itself

for each veZ,. @, becomes an identity when considered (modn), therefore 8,
itself is an isomorphism for every v. Q.E.D.

Lemma 5.9. In the situation of the previous lemma, suppose, in addition,
~ ~ a b o
that I::fo/—l(O)GBi@fiA(l)EBEBlf,HJ-A(Z) is an ideal. Then there exists a homo-
=1 7=

geneous polynomial f, for each 0=i<a-b such that
1) fimfiel, fi—fic LQ.A and deg f,=deg J,

{ I=/,A0)® @ F AL D ]é Fas AQ)
A0)=IDLR;A.

Proof. We can write ft—fL:fH—f{’ with 7. InnA(0) and f;’EL@)kAqIA(O)
by (5.8.2). Set fi=f;+F/. Then f;(0<i<a-+b) satisfy 1) and f,=f,—f.c].
Since f; (mod n)=f,+77 (mod n)=f;, (5.8.2) holdes for f,, ---, fas» and 2) Follows
easily. Q.E.D.

Lemma 5.10. Let (A, 1) be a local integral domain with A/n=Fk>.A, 0 the
ciosed point of Spec A. Let p: XCPi-»SpecA be a flat family of curves and J
the sheaf of ideals of X. Suppose the ideal HY(I,)CTR is generated by homo-
geneous polynomials f; (1=i=<[) with deg f,=d;, where J, denotes the sheaf of
ideals of the curve p~(y) for yeSpec A. If HYP}, J,(d:;)=0 for all 1=Zi=,
then H'(P3, J0)) is a free A-module for every v=0, and AQ)/HLP3, J) is a flat
A-module.

Proof. As A is local, we have Rip.(4(v))=H!P3i, J(v)) for all yv=Z and
1=0. Consider the natural maps
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Gily) : H(PL, J0) Q k(y) —> HiPiy, J,(v))

(see [10; Chap.IIl. Theorem 12.11]). The assumption H!(P}, J,(d;))=0 implies
H'(P, J(d:))=0 and the surjectivity of ¢J,(0)(loc. cit.), so that there exists F.e
H°(P3, J(d;)) such that fy(modn)=f; for each 1=</=</. Since (fi, ---, f)AO)C
HYPE, 9), ¢%0) turns out to be surjective for all veZ. ¢3~*(0)=¢;*(0) is trivially
surjective hence by the same theorem (loc. cit.) H'(P§, J(v)) is A-free and ¢3(y)
is an isomorphism for all y=Spec A and v=Z. From the commutative diagram

i} ¢
H' (P}, I(v) @ ak(0) —> A(0), Q) 4k(0)
IR R
0 —> H'(Pior, Jo(v)) —> H'(Piw, Op}(,, (M)

follows the injectivity of {, and we find Tor4((A(0)/HL(P3, J)),, £)=0. (A(0)/H2
(P4, 4)), is therefore A-free for every v=0 and A(0)/HL(P}, J) is A-flat.
Q.E.D.

Theorem 5.11. Let (a; i ; A)={(a; m,, -+, Ma_sp; My, ---, Ny) be a sequence
of integers such that a<m;=< -+ SMg-g, =M= - =1, where a=2b.  Suppose
1) ngi=n; or ng—n;=3 for every 1=i<b—1.
2) a#n;—2 and ${i|m;=n;—2} Z§{i|m;=n;—3} for each 1=j=b.
3 #{|my=n,+1} S§{i[m;=n;+2} for each 1=j=b.
Then (a; m; 7) represents an irreducible component of Hilb (P3).

Remark 5.12. In the case where n;,,=n; or n,,;—n,=3 for every 1=</<bH
—1, the conditions of Theorem 5.7 reduce to those of the present theorem.

Proof of Theorem 5.11. Let X be an a.B. curve with short basic sequence
la; m; @), J its sheaf of ideals and I=HY(J)CR. We can write

[ I=£oE O & FHDD S for @)

(5.11.4)
| R=1®N,
by Proposition 1.3.3), and the matrix of relations is of the form
Un U 0
0
L.=|U, U, =x31, |(see the end of Section three). Suppose {n,, -, ny} = {n3,
JC.;].(,
Usi Us 3,1,

-+, Nyt with ni<n;< --- <n, and
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my=n,—3  for af+l=i<at
(5.11.5)

m,=n,—2 for at+1=<i<a¥=<a—2b

7)l,:n;+l for u+1§1§ ”
(5.11.6) [ B3 Bt

lmy=n,+2 for Bi+l=<i=pr=a—2b

where 1=uy=<1. We see by the condition 1) and {1; (3.4)]

. !
( 01
(5.11.7) 4 LUI (L Lk bl e a) = 7 ]} “
U., 0 I at—a
* } at+b—at
——
at—al
UOl | } l
G118 4 LUI (i po pras, 0~ ; { g .
UZI_I ‘ 2 !
Tx_/u} a+b—p3
17 pPo

where the entries of = are either positive or negative integers. Note that a%—
a=za%—at and B1— BE=p4%—pY by the conditions 2) and 3) respectively. Since
0
—x3lp
7=|-x.L| and 2,(¢ 20T 0 @200 the relation 2,2,=0 still holds if the
— %1y
U,
entries of 22( a—2b--1, -, a+2b) are varied freely. We may therefore assume

from the first that
U]
(5.11.9) rank,| U, (1 o at, atl, a)(modm):ag‘—a'ﬁ‘

(5.11.10) rank,| U, (1 g guad o) (mod 10)= Bt — Bt

’

for every 1=u=v.
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UOl
U,
U21
so that (5.11.9) implies that, for each 1=u=<wv, we have f,e(f, -, fazf, fagfﬂ,
o, farn)R for a*+1=i=Za¥ It follows from this that I is generated by f,,

All the columns of are relations among f,, fi, =+, fa+s by its definition,

Facsvesy ) faso and by all f; such that 1=<i<a—2b, ic Ql wlat+1<w=a".
Write these generators, say gy, ---, g;. Then we see by 1), 2) and (5.11.5)
(5.11.11) deg g,#n,—2 for any 1<:</ and 1=Zu=zv.

Let H be an arbitrary irreducible component of red (Hilb (P3)) containing the k-
rational point o corresponding to X, and let (A4, n) be the local ring at this point.
Denote by p: X- Spec A the family induced from the universal family (5.1)
through the natural inclusion Spec A<, HC, Hilb(P3), and denote the sheaf of
ideals of X(resp. p~Y(h), heSpec A) by J(resp. J,). Since H'P}, J,(deg g:)=
HY(P3, 9 (deg g:))=0 by (3.4.2) and (5.11.11), we find by Lemma 5.10 that A(0)/

9(P3, J) is A-flat and that there exist homogeneous polynomials f;HL(PS, J)
(0=7/<a-+b) such that fi(mod m)=/f;. This, combined with Lemma 5.8, implies

(5.11.12) =7 AO® § 7. A0S § For ) AD)

where [=HL(P3, J), and we may assume by Lemma 5.9 /,—f;eN,RQ,A (see
(56.11.4)). Denote the quotient field of A by K. We will then consider the curve
.XK =Pr0]K(K(0)/f®AK), where

IQK=FoKO)® GFKDD D o K@),

Un Ue 0
Denote by Z,=|U, U, U,| the matrix of relations among fo, /1, -, fa+s cOM-
ﬁZl [js [75 —[74 ‘
puted by [1; Theorem 1.6] and Z,= —ﬁsJ as usual.
U,

Claim. Z,=0(mod m).
Proof of Claim. Since A(Z)=J(x), 40)=4(0,) and A(ﬁé(lr " “‘Zb)) are

matrices of nonzero integers by the condition 1). On the other hand

* }} 1975
L ja—2b+1, -, a 0 ||
5.11.13) J U;( =|: |t gr—pr if n=n,
1, e ]__1, ]+1’ TN b O )'[
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where * consists of nonzero integers. The entries of 1, are in fact in A(0) by
(5.11.12) and Z,(mod n)=21,, so that

[701

(5.11.14) rank,| U, )(mod m)=B%—f%
LN 1, -, 3%, Bt+1, -, a
U21

for 1=u=v.

From the relation 4,4;=0,

~ 0’ e ’ [la’llt’ ﬁ’{j—‘]_l’ e ) a+b ~
(5.11.15) 22 23(
1: Ty J_‘lr ]+1’ Tty b

for j, u such that n;=n,.

In the equation above, we see by (5.11.13) and (5.11.8) that the left hand side
is a vector of homogeneous polynomials of degree zero, hence

n 3u41 O\ (L, e, Y U

~ s T u’ ’1'_‘L y Tty @ \ ~ y T u,lu y s, @

0, ( 1 )U( . ):o.
~ ly Uy ‘1316, ﬁilt"i_l: e, a 1; T .7-'_1; ]+1y ) b

21

From this and (5.11.14) follows immediately [l( =0

1: ) ]_ly J+1: ) b)
(mod m). This holds for all 1<j<b and we obtain 1,=0(mod m). Q.E.D.

Now we go back to the proof of the theorem. Since X is a.B., we have
Im®(*A;)=mR?. We deduce therefore from the Claim combined with the fact 7,
(mod n)=A4, that Im¥®@(*Z;)=mK(0)®, and consequently X is an a.B. curve over
the field K with short basic sequence (a; i ; 7)(see Theorem 3.2, with % being
replaced by K). We may thus assume by Corollary 3.3 that i, is of the form

[701 [702 8

~ ~ ; = (1 ~
o, 0, Bl and fi= (1)t det B,y o opop)/det U
Un Us x:1,]

for 0<i{<a-b. Comparing the matrix 1, with 1, we obtain a morphism
Q:Spec K—> S(a; m; 7)

such that XYx=x""({2(7)) where 7 is the unique point of Spec K (see (4.1.6)). Let
%: Sla; m; 7)) —> Hilb(P})

be the unique natural morphism such that ¥*(Z)=% (see (5.1)). Then the diagram
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Q2 |
Spec K ———> S{a; i ; 7)
N
! K

H < _ . Hib®)

commutes by the universality of the family 2, therefore the generic point of
H is in the image of X. This means that (a; 7 ; 7) represents an irreducible
component of Hilb (Pg). Q.E.D.

Corollary 5.12. Let a, b and n be integers such that n=a=2b. Then
(@; n, =, n;n, -, n) represents an irreducible component of Hilb(P}) if and
2b b
a__
only if a#n—2. Furthermore, if a=n—2, the points of Hilb(P}) corresponding
to a. B. curves with short basic sequence (n—2; n, ---, n; n, -+, n) are contained
— —
n—2—2b b
in the irreducible component represented by the short basic sequence (n—1; n—1,
n—1, n—1,n, -, n; n, -, n.
S—— N——
n—2b—2 b—1

Proof. The first half is clear by Theorems 5.7 and 5.11. We see by
Theorem 5.11 (n—1; n—1, n—1, n—1, n, ---, n; n, ---, n) indeed represents an
T e
n—2b—2 b—1
irreducible component of Hilb(P3). The detail of the proof of the latter half is
left to the reader.

Remark 5.13. In the case where n;.,=n;+2 for some 1=/=<b, the methods
we have developped so far may not be applicable. The crucial point is that we
cannot tell in advance whether or not an arbitrary flat deformation of X in P3
comes from a flat deformation either of the ring R/H(J) or of the module
Hi(Oy), if n;.y=n;+2 for some 7.
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