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On the Structure of Arithmetically
Buchsbaum Curves in PI

By

Mutsumi AMASAKI*

Introduction

Let X be an equidimensional complete subscheme of P| of dimension one.
-Y will be called a curve throughout this paper. Let J be the sheaf of ideals
of A' and /: = 0 H°(PJ, <5(v))C# : = k[_xlf xz, XB, x4]. We know a kind of general

structure theorem for the ideal / and its free resolution [1], which enables us
to enter into a detailed study of some special classes of curves. As a first
attempt, we investigate arithmetically Buchsbaum curves, which are characterized
by the following property [13] :

Hi(c5) := 0 ffCPI, JM) is annihilated by m :=(xlt A-, .v . xJR .
yez

When Hi(<5)=0, the curve is arithmetically Cohen-Macaulay and Is studied thor-
oughly in [9]. So our concern is centered on the case where Hi(J)^0 and
mHi(c?)=0. We give structure theorems for the ideal I and for the free resolu-
tion of the ^-module H*(#x) : — 0 H°(P1, Ox(^\ then use them to consider small

v^O

deformations in P| of those curves.
Let us explain the content of each section.
Section 1. The results of [1 ; Section 3] are sometimes inconvenient, because

it involves unnecessary procedure, that is, we have to take beforehand an ideal
/ such that R/J is Cohen-Macaulay. We give up this procedure and make simple
modification of [1; Proposition 3.1] to define a numerical invariant "basic
sequence" of an arbitrary homogeneous ideal IdR such that dim R/I—2 and
depthm/?//^l (Proposition 1.3, Definition 1.4), which extend "caractere numerique"
of [9]. It is a sequence of integers (a; vlr • • - , va ', va+i, '" - ^c+&) consisting of
the degrees of the special generators of /.

Section 2. The structure of the module Hi(<5) is important in every case,
and we mentioned the relations between the matrix lz (see [1 ; Section 3]) and
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). In particular, we find that (va+i, •", ^a+&) a part of the basic sequence
of / reflects a certain property of H^(J) (Proposition 2.4). Then the free resolu-
tion for HJ(C>A-' is computed as an 7?-module in a simple case (Proposition 2.8
and 2.9).

Section 3. With the use of the results of Sections one and two we reach a
structure theorem for the ideals defining arithmetically Buchsbaum curves in Pf.
This theorem is stated in the language of Proposition 1.3 (Theorems 3.1, 3.2
and Corollary 3.3;.

Theorem. Let X be an arithmetically Buchsbaum curve with basic sequence
(a; vlf •- , va; y f l T l , • • - , ya+6). Then

2) There exist fi, • • • , izb (l^i^-^iM^a} such that (y t l, • • - , vl2b)~(va--i, ~m,
^a-b, Va-ri, '" T ^a-rb"' up to a permutation.

3) a^2bt that is, the minimal degree of the surfaces containing X is larger
than or equal iu 2-dimR/mH*(<3).

a b
4) /=/,,£(0 < ~ 0 f i k ( l ) © 0 fa^3k(2}y where

l\i Uoz 0 ) 0

0

l\ U2

L 21 ^3

and

ft/0!

A = '-l 7det

U21

Section 4. We know [14; (2.6) Theorem] that, for an arbitrary /^-module
M of finite length, there exists a nonsingular irreducible curve X such that
E^(J)=M up to a shift in grading. But the basic sequences or the detailed
structure of such curves is not known in general. In view of this we prove
the existence of integral arithmetically Buchsbaum curves with a special basic
sequence (a; n, •••, nm, n, •- , n) for arbitrary a, b, n satisfy ing n^a^2b (Theorem

a 6
4.4), to supply manageable examples of arithmetically Buchsbaum curves. They
are, however, not in general verified to be nonsingular as yet (see Remark 4.10).

Section 5. Finally, applying the results of the previous sections, we try to
find irreducible components of Hilb (Pf) whose general points correspond to arith-
metically Buchsbaum curves. It consists of computing flat deformations of the
ring R/I and of the /^-module H*(#,Y), so that the cases which cannot be treated
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by this method are left as problems. These irreducible components are ex-
pressed in terms of the basic sequences of the curves corresponding to the
general points of them (Theorem 5.11).

Notation

1. k denotes an infinite field with arbitrary characteristic except in Section
four.

2. Let A be a commutative ring and xlf x2, xs, x4 indeterminates over A.

We set

) = A[x2, x,} x J ,

3. Let U be an arbitrary matrix. We denote by U( -1 .p) the matrix
VI "'Jq'

obtained by deleting the z"i-th, z2-th, ••• , fp-th rows and ji-th, jVth, • • - , jq-th columns
from U.

4. Let U be a matrix of homogeneous polynomials with coefficients in a
ring A. We denote by A(U) the matrix of integers whose (/, j)-component is
deg(Wfj-), where ui3 is the (/, ./) -component of U.

5. For a matrix U=(ui, •••, un) in a ring B with n columns ul9 ••• , wn and
for a subring E' of 5, we make the following convention:

and we denote this set by U-(B')n if and only if the columns nlf ••• , un are
linearly independent over B'.

6. Let C=®Cy be a graded ring, n — (n1} ••• , ?zr) a sequence of integers,

and / an integer. We set

C[n]= £ CM , C[n+/]= ^ C[n?+/] ,1=1 *=i

where C[in~\ denotes the graded module such that C\jn~]v=Cv+m for an integer
m. See [1; Notation] for the symbol <$>.

7. For a coherent sheaf of modules EF on PI we will often write Hi (PI, 2")
or Hi(9") to denote the graded module 0 H*(PI, ffM).

vez

8. lp denotes the pxp identity matrix.
9. Z0=

§ 1. Definition of the Basic Sequence of a Homogeneous
Ideal in k\_Xi, x2, xs, xj

In this paper R always denotes the polynomial ring k\_x^ *2, x.,, xj and m
its maximal ideal (xlf x2, xs, xJR. For a graded module M, Mv denotes the set
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of homogeneous elements of M of degree y as usual. We begin with some
modification of the results of [1; Section 3].

Lemma 1.1. Let f, g^klx1} #2] (deg /^g deg g) be homogeneous polynomials
such that dim &[*!, Jt2]/(/, g)k[_Xi, %2]=0 and suppose

E(f, g) = {(a, 0)+Zi} U 0 {(a-', fr)+OxZ0} ,

where E(f, g) denotes the generical monoideal associated with the ideal (/, g)
•&[*!, *2] flftd fl, /3i (l^z'^a) erg positive integers (see [16; £. 282] and [4]). Then
a=deg/ and £/ze sequence of integers (a—l-t^, a— 2+/32, ••• , /U zs

, deg,g-+l, • • - , deg^+a— 1) up to a permutation.

Proof. Suppose

with deg/o=a, a^deg/^ ••• ̂ deg/a and (deg/i, deg/2, • • - , deg/0) = (a—
a— 2+/32, • • • , jSJ up to a permutation (see [1; Example 2.7]). The degree of

the (2, /)-component of the matrix of relations Lr01 among /<>, flf ••• , fa, computed

by [1; Theorem 1.6] is deg/,+l-deg/, (0^/^a, 1^'^a), so that

where the entries situated in * are all positive. It is therefore necessary and
a,

sufficient for the ideal fQk[_xlf *2]© 0/i&[*2] to be a complete intersection that
i=l .

deg/— a, degg=degf1 and that rankfe £// Vmodfe, x^k\_xl9 x2])— a— 1. This

is possible if and only if (deg/!, deg/2, • • - , deg fa) = (deg g, deg^+1, • • - , deg^
+a— 1), which proves our assertion. Q.E.D.

Lemma 1.2. Let J be a homogeneous ideal in k\_Xi, ;c2] such that dim k[xi, xz~]/J
—0 and /0, /i, ••• , fa be those generators of J described in [1; Example 2.7],
namely

deg/o=a, fl^deg/i^deg/2g ••• ̂ deg/a. Suppose
— 0 /or a homogeneous polynomial h^Jp (p^l). Then deg/a^+a— 1.

Let E(J) be the generical monoideal associated with / and E(f0, h]
the generical monoideal associated with the ideal (/„, h]k[_xly xz~]. We know
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E(J)={(a, 0)+Z5}UVJ{(a--i, £,)+OxZ0}

where a, /3L, ^ (1^/^a) are positive integers. Since E(f0, li)dE(J) by definition,
we have fa^fa and a—i+fa^a—i+fa for I^Z^G. The sequence of integers
(a—l+fa, a— 2+ fa, ••• , £i), on the other hand, coincides with (p, p+1, ••• , p+
a—Y) up to a permutation by Lemma 1.1, hence a—i-rfa^p+a—1 for l^i^a
and deg/ag/>+fl-l. Q.E.D.

The following proposition is a modification of [1 ; Section 3] which forms
the basis for this paper.

Proposition 1.3. Let I be a homogeneous ideal in R such that dim R/I=2
and depthm^//^l. After a suitable change of variables by a linear transforma-
tion, dim jf?//+fe, A'4)#=0 and there exist homogeneous polynomials fl (Q^i^a+b,
a=degfQ, fr^O) which have the following properties.

1) There exist positive integers a, fa (Ifgz'fga) such that /0— *?, fi—x"~lx\l

and fa+3 (l^j^b} are in (x3, x^NE, where

2) Put

I={f^k[xlf Xz]\f=f(xlt x2, 0, 0) for some

and fi=f\(x1} A'2, 0, 0) (0^/^a). Then

0 fa+Jk(2)
3)

where N2 is a graded submodule of NE as a k(3)-module.

b

4)
®/i*(2)®(

5) RJI has a free resolution described in [1; Corollary 3.5], where
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u01 u02 o -

tf«i U* U5 _

with U0i, U02 and Ut (l^z'^5) satisfying the conditions [1; Corollary 3.5.2)-3)-4)]
and with a matrix £721 of homogeneous polynomials of k(2).

Proof. After a change of variables by a linear transformation we may
assume that x4 is R//-regular and that dimR/I+(xs, Xt)R=Q. Observe that E(I)

= {(fl, 0)+Z§}U\J {(a-i, ^i)+OxZ0} with positive integers a, fa, ••• fia. Set NN

as in 1). By generalized Weierstrass preparation theorem applied to / there
exist homogeneous polynomials /*e/ (0^/^a) with deg/0 — G, degfl=a—2+j3i

(!<^'<^a) satisfying the condition f0—x", fi—xl^xfy^Ns (1^/^fl), and such that
we have 2) (see [7; Satz 4], [1 ; Theorem 2.3]). Suppose /J(*i, *2, 0, 0)=/, (Og
z'^fl) with homogeneous polynomials /{e/. Let / denote the subset

+ E /;&(!) of /. We see by the proof of [6; (1.2.7)] that this expression is in

fact a direct sum, namely we have /=/Jfc(0)® ©/;&(!) and R=I®NE. Then
<=i

the proof of [1 ; Proposition 3.3] goes well with / replaced by / which in general
is not an ideal. In this way there exist homogeneous polynomials /* (Q^i^a+b)
such that 2), 3) and 4) hold. The proof of 5) is the same as that of [1 ; Corol-
lary 3.5]. It remains to prove 1). Since fo—x*, f^—x(l~ix\i (l^z'^a), fa+j (l^J
^b)^NE is clear by the proof of [1; Proposition 3.3], we have only to show
f a + j ^ ( x 8 , xJR, that is fa+J=fa+J(x1) x2, 0, 0)=0 for l^j^b. This, however is
obvious, because, if /0+^0, we would have \exfa±j&E(I)r\(Z%\E(I)), which is
impossible. Q.E.D.

Let /, /, and f% (Q^i^a+b) be as in the proposition above and suppose / is
generated by 0 Iv over R. Then / is generated by 0 Iv over k[xlf x2~] and it

v^n v-s-n

follows from Lemma 1.2 that max deg/^n+0— -1. By changing the order if
l^iga

necessary, we may assume (deg/j, deg/2, • • - , deg/a) is an increasing sequence
of integers. Set ^=dQgfi (l^i^a). We find by the direct sum 1.3.2) that a
and this sequence of integers are uniquely determined by dim& Iv (i^O), or rather,
since max deg/^n+a— 1, it is uniquely determined by dim^ Iv (O^v^n+a— 1).

i^i^a

If the homogeneous coordinates xlf x2, xs, x4 are chosen generally, dim* /„ (O^v^
n+a— 1) are independent of the choice of coordinates for an ideal /, therefore
we can associate with each / uniquely a sequence of integers (a; i^, • • • , va)
such that a^Vi-i^Ui (2^i^a) where j^=deg/£. Next put ya4-;=deg/a+J- (l^j^b).
We may assume that (deg/a-^, • • • , deg/ff4-6) is an increasing sequence of in-
tegers by changing the order if necessary. Then b and the sequence (ya+i, • • - ,
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6

^a-b) are uniquely determined by /, a and (vlt ••• , ya), because dim*( {& fa+jk(2))v

o o a

=dim* Iv— dim*. Iv, where /=/0&(0)0 ©A&(1X Thus we are led to the following
i = i

definition.

Definition 1.4. Let / be a homogeneous ideal in R such that dim R/I=2
and depthm ./?//§: 1. We call the unique sequence of integers (a; i^, • • - , va ; ya+1,
••• , ^a+&) with 0 < a ^ v > i ^ v > 2 ^ = = ••• ̂ va, fr^O, a^Va+i^a+2^ •" ^« -6 described
above the basic sequence of /.

Remark 1.5. If dim 7?//=depthm #//=2, the basic sequence (a; i^, • • • , va)
defined above corresponds to the 'caractere numerique' (va, va-i, •" , ^i) used
in [9].

Lemma 1.6. Let I and fL (O^z^a+6) be as in Proposition 1.3 and let (a;
"•, Va°, va+i, • • ' , Va+b) be the basic sequence of /, where a=degf0, vt=t

). In the matrix of relations

f/oi £/os 0

£/! £7a /74

among /„, /i, • • • , /a^5 (see Proposition 1.3.5)), a// entries of Um, U2 and U{ are
zero mod(x3, xt)R.

of

When this equation is considered in the ring R/(x«, xi)R=k[fxll A'.J, we get
a _

^£gifi=Q, since fa+J^(x-]f x^R for l^j^b by Proposition 1.3.1). From this
l = U

follows gt=Q mod Us, x^R (0^/^a) by Proposition 1.3.2). The assertion for f/02,

Proof. Let J(^0, gi, • • • , ^G, /^, • • • , hi-lf Xi-\-hL, h^, ••• , h&) be the /-th column

l^i^b). By the very definition

L"2 is proved in this way and we find similarly that all entries of £74 are zero
modCA-,, xl)R. Q.E.D.

The following proposition is a minor modification of [1; Theorem 3.7.1)]
which is in fact a corollary of [2; Theorem 3.1].

Proposition 1.7. Let ^ (Q^i^a+b, l^j^a+2b), v, (Og/^fl-fW be integers

satisfying [1 ; (3.4)] and Q^i^ S (vt+t—a). Let
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U01 Uoz 0

I/i U2 Ut

usl u, u-0

be a matrix of homogeneous polynomials of R with ^U2) = (/^.7)05;i<a+& )i-.^a+2& which
satisfies the conditions [1; Corollary 3.5.2.a)-/3)-?')] and such that the entries of

U21 are in k(2). Suppose 222,=Q with 2, = \ ~ul . Then det Wi(z) (resp. det IF2Q)

js divisible by det £/3 (resp. det U5) for Q^i^a+b, where

UQ1 0

uz

L u21 u3

. The formulae (3), (4) and (5) in the proof of [1; Theorem 3.7.2)]
hold in the present case as well and the sequence

^3 ^2
Q _ > ftb _ > j^a+2& _ > fta+b^l

is exact. We then use [2; Theorem 3.1 (a)] with ;z=2, P2=Rb, Pi=Ra+2b, P0=
Ra"bn, fz=h and fi=Z2, and get the following commutative triangle:

where

The assertion follows from this immediately. Q.E.D.

Remark 1.8. In the situation of the previous proposition put /*=(—1)* det

1/FaQ/det U,=(-1Y det PF2Q/det ^75 up to units and suppose ht(f0, • • • , /tt+&)^^2.

Then the statement of [1; Theorem 3.7.2)] concerning the ideal I=(f0, • • • , fa-rb)R
certainly holds in the present case.

Remark 1.9. The Hilbert polynomial P(v) of Proj R/I is
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where (a; vlf ••• , pa ; v a _i , ••• , va+b) is the basic sequence of /.

§ 2. Free Resolution for the k[xi, :c2, JC3, jcJ-Module
of a Curve A" In PI

In this paper we mean by a curve an equidimensional complete scheme over
a field k of dimension one. Let X be a curve in Pf and <S its sheaf of ideals.
Set /=H£(PI, J)cfl. Then dim J?//=2, depth,,, J?//^ 1 and the basic sequence
of / is defined, which we call the basic sequence of X. Let X*, h be as in
Propositions 1.3 and 1.7. Since 0?,*— ̂ z.pjj/^.ps is Cohen-Macaulay for every

(2.1.1) /Us) contains an ^-sequence of length four or I(D=-R (see [1 ; (3.5.5)']).

A. P. Rao in [14] and E. Sernesi in [11] both describe a connection between
the free resolution of the module Hi(P*, 3) and that of R/I itself. We will
discuss the same subject in the spirit of [1; Section 2].

i
Let M be a graded module over R with finite length and let yj= S aljxl

( _/=3, 4) be two elements of Rl algebraically independent over k, where (a0)e&8.
M is then an S: = k[_y^ 3' J -module of finite length and has a free resolution of
length two

G H
(2. 1.2) 0 — > S[-sa] — > SE-s1] — > S[-£°] — > M — -> 0 ,

where £0=(s;, ••• , ej), s1=(£}, ••• , sj) and £2=(£f, ••• , £?) are sequences of integers,
by Auslander-Buchsbaum's theorem. By local duality [8] Ext|(M, S)=Hom^(A/.

], so taking the duals of (2.1.2) we get a free resolution of Hom^(M, k) :

1H 1G
(2.1.3) 0 — > S[e°-2] — > S[eJ-2] — > S[£2-2] — > Homft(M, &) — > 0 .

Lemma 2.2. Suppose the free resolution (2.1.2) of M is minimal. Then the

integers p, £° (l^z'^/0, q, £\ (1^^<?), ^ £? (1^'^r) are independent of y>, yL for
general (a^^k8.

Proof. Suppose (2.1.2) is a minimal free resolution. Since My=0 for all
but a finite number of v, dimA(My /©5«My_K) does not change for each p, when

^i
(atj}^ks varies in a certain Zarisky open set of ks. It follows from this that p
and £? (l^i^p) are uniquely determined by M and independent of y^, yL for
general (a^. Similarly, since (2.1.3) is minimal as well, r and e? (l^f^r) are
also uniquely determined by Hom^(M, k) or rather by M itself and independent
of V-, 3;4 for general (atj\ We have



802 MUTSUMI AMASAKI

whence the uniqueness of q, e\ (l^i^q) follows. Q.E.D.

Let X, 3 and / as before and (a; vl ; y2) its basic sequence, where we have
put v1=(i>1, ••• , va) and $z-=(va+i, • • - , va+b) for the sake of simplicity. S has a
resolution

0 — > 00p3(-^,;-2)-> ®0P3(-^-l
.7=1 * x=l * .7

^2 a+5 *i
— > Op(-a}@ © 0ps(-iO — > J — > 0

1=

by Proposition 1.2, and the long exact sequences arising from this yield the
exact sequence

i(Pi, J) — > © H
.7=1

We get by this and Serre's duality a resolution

%
(2.3.1) ^-SM^-S]2 — > 7?[y2-2] — > Hom,(Hi(J), « — > 0.

Let us look into Im*(%) in detail (see Notation 5). c£73— *i!6, ^5— JC21&, £^T
4

and *t/2i take their entries in k(2), and *£/!— ̂ ila, *^2 take their entries in
We have therefore by [1; Remark 4.1.1)]

(2.3.2) ^&=£

and by [1 ; Proposition 1.2]

f) Q QN Dtt+26 tTT tTT
\Li. u. O) 1\ — U 2 U 3

1

The equation Zzh— 0 implies 123

r V, <uei ~
£C/2 'U3 =0, so we see by (2.3.3)

(2.3.4) Imfl(%)

Recall ^ = [-^4 -J^5 ^3], and put U-3=x,lb~U5. Then, for v=
t

)a with i^a)e^(2)a, we have
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hence by (2.3.2) and (2.3.4)

(2.3.5) lmR(t*J = tUik(W®tU-MUb®N

where

(2.3.6) Ar-SIm^2)((^5) l^i).
l=-0

We finally obtain by (2.3.1) and (2.3.5)

(2.3.7) k(2)[j?-2]/N -Horn, (Hi(J), k)

as &(2)-modules.

Proposition 2.4. Let X be a curve in PL 3 the sheaf of ideals of X, /=
H*(J) and (a; y1 ; vz} = (a; v±, • • - , va ; va+1, • • • , ^a+&) /£s frasze sequence. Suppose
the minimal free resolution for Hi(J) oi'er &(2) is of the form

G H a'
(2.4.1) 0 — > &(2)[-s2] —> k(2)l-s1^ — > £(2)[-£°] — * Hi(J) — ̂  0

° = (£$, ••• , £JJ), s1 = (£}, ••• , £g), £2— (sf, • • • , £?). // £/i0 homogeneous coor-
dinates Xi, xz, xs, x± are chosen sufficiently general, we have r=b and vz=ez up to
a permutation. In addition, for the k(2)~module N defined by (2.3.6), CN~
Im*(B)(£G) with a suitable C^GUb, k(2)}.

Proof. Let

(2.4.2) 0 — > fc(2)[-c2] — > ^(2)[-c1] — >N — > 0

be a minimal free resolution of N, where cl=(c\, ••• , cJO and cz=(cl, •••
If the variables %i, z2, ^3, A'4 are chosen generally, all entries of £74 lie in (x3,
by Lemma 1.6, so that all entries of A^ are in (x3, x+)k(2)b. Consequently the
sequence (2.4.2) followed by

0 — > N — > /e(2)[yz-2] — > Horn/, (Hi(J), ^ — > 0

gives rise to a minimal free resolution of HomA (Hi(J), /e) as a &(2)-module.
Comparing this resolution with the one obtained by taking the duals of (2.4.1)
shows that r=b and £2=£2 up to a permutation. The last assertion is then
obvious. Q.E.D.

With the use of this proposition and Lemma 2.2, we can determine v2 of the
basic sequence of a given curve, if the structure of the module Hi(J) is known well.

Now let us proceed to a description of the free resolution for H^(OX}. We
can treat of this subject minutely only in a special case, and later a restriction
will be imposed on the structure of the module Hi(J). Suppose the homogeneous
coordinates are chosen sufficiently general so that Proposition 1.3 should hold
with basic sequence (a; v1 ; v2) — (a; v^ • • • , va ; va+1, • • - , va-&). Since HJ(e>x) is
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a Cohen-Macaulay ^-module of dimension 2 (See [11; (1.1)]), we may assume
*j, Xi is a H£(#2r)-regular sequence. The &(2)-module Hi(J) has a minimal free
resolution of the form

G H af

(2.5.1) 0 — > A(2)[-58] — > *(2)[-e1] — > *(2)[-e°] — > Hi(J) — > 0

by the previous proposition, where we assume e°5g ••• ^e£, s}^ ••• ^ej for con-
venience sake. Let

c o
(2.5.2) 0 — > Rfl — > HJ((5T) — > Hi(J) — > 0

be the exact sequence arising from the short exact sequence 0 — > 3 — -> Op* — > Ox

— >0. Put 0t=(0, • • • , 1, • • - , 0)e£(2)[— e°], a'(ei)=ei and let ^ denote a section
of H0(#z(e?)) such that a'(e^=d(^ for each l^i^p. Since ^, ^2, ••• , ^p generate
the ^(2)-module Hi(J), we can write

• - , ep)x1lp=(elt
(2.5.3)

where T^ (/=!, 2) are pxp matrices of homogeneous polynomials of k(2}. We
have

(2.5.4) R

(cf.(2.3.2)), and, since (elt • • - , ep)(xvlp—V^=Q (i=l, 2\ the kernel of the map

a : fl[-e°] — * Hi(J)

defined by a(e^ = ei coincides with

We have ^(2)pnKer(a)-Ker(aO=Im/2(2)(^), whence

(2.5.5)

Let A1 denote the matrix \_xllp—Vl x2lp—V2 If] and A] its j'-th column
(1^/^2^+g). We see (5((^i, ••• , 0PMJ)=0, so there exists a homogeneous poly-
nomial s^e^ such that — f(sj) = (0i, • • • , ^P)^ for each ; (l^;g2/>+g). These
polynomials are found in NE (see Proposition 1.3.3)) and we will always take
them from NE in our consideration. We have thus

(2.5.6)

and the columns of

for l^j^2p+q

p) = £5+l for l^j^

for l^j^q
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L ) 0- '<2)- |

f c ... c i r f ... r c ... cJ 0 ii, , ^>p f \ J 1, , J a op-i-i, , 52?

/" /•"

H 0

generate Ker(j0) over P, where /? is the surjection of degree zero

defined by p(h0, •••, Iip}=h0+ S h^t.

We will now look into lmR(0f), first without regard to the degrees of poly-
nomials, and then taking the degrees into account. Set

(2.5.7)

Consider the exact sequence of £(2)-modules

(2.5.8) 0 -—> Q/P —> Rp+1/P —> Rp+1/Q=H^(Ox} —> 0 .

by (2.5.4) and Proposition 1.3, so that RP+1/P is a finite
free module. H*(OX) is, on the other hand, &(2)-flat, since .TO, ZA is a HJ(OZ)-
regular sequence, therefore we find by (2.5.8) that H£(#A-) and Q/P are &(2)-free
and that

(2.5.9) 0/P ®k — > Rp+1/P ® &=A^ (g) /e ^ ^^

is injective. Recall that fa+J^(x3, x^NEfor l^j^b (see Proposition 1.3.1)). The
image of f(/a+j, 0) through the map (2.5.9) is zero by this fact, so H/a+j, 0) is
zero in Q/P®k for l^j^b. Furthermore we see by (2.5.7) that Q/P is

generated over R by the columns of cr / ( 2 ) , and the formula (2.5.5) and Proposi-
tion 1.2.3) imply that this Q/P is in fact generated over k(2) by the columns of

d / ( 2 ) . Consequently by Nakayama's lemma the columns of
H

generate Q/P over k(2). Since the sequence (2.5.1) is a minimal free resolution
by assumption, any column of H is not a linear combination of other columns

over k(2), so that the columns of - minimally generate Q/P
L H

over &(2). We therefore obtain

(2.5.10)

(2.5.11) Q = a'
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where
H

Corollary 2.6. Let G3 denote the j-th column of G (see (2.4.1)), and put
f'a+j=(s2P+i, • • - , s2p+q)Gj. Then we have

.7 = 1

Proof. By the discussion above there exists l(t\, • • - , tj
q)^k(2)q such that

H/a-j, 0) = <r" (2) f(H, • • • , H) for each l^j^zb- From this equation #*(#, • • - , tj
q)

=0, so that *(rt, • • - , ^)eIm* (2)(G) (1^,/^W by (2.5.1). We have therefore

®/a+Jfc(2)cS/a'+j&(2). We see, on the other hand, that l(fa+j, Q)=a"™Gj
j=l j=l

(l^j^W are linearly independent over k(2) and that deg/a+j=y0+J=deg/o+j

(1^'^W by (2.5.11), (2.5.1) and (2.5.6). Consequently the sum 2/^(2) is a
>

direct sum ©fi+3k(2) and coincides with ®/0+^(2). Q.E.D.

In the following we impose a restriction on the structure of the module
Hi(J). That is, we will assume from now on that V1} V2 defined by (2.5.3)
take the simplest form

\v t 01
V— "• — v 1 with ?; £=h(2} (i— 1 2}V i — I I U i^J- -n W 1111 l/i ^^ K\ti)j \L J., d) ,

L 0 vt J

This condition is satisfied for example by arithmetically Buchsbaum curves or
curves with b=l.

Remark 2.7. If Vi=Q (i=l, 2) and Hi(<5) has a minimal free resolution of
the form (2.4.1) for one system of homogeneous coordinates, then from the proof
of Lemma 2.2 follows that p, q, r, £?, e\, el are the unique integers stated in the
same lemma.

Proposition 2.8. Let the notation be as above. Suppose Vi=Vilp, i—l, 2.
Then q^a, and there exist integers ily ••• , iq (1^2i</2< ••• <2g^fl) satisfying e^H-
l = Vtj (l^j^^), and such that

JQ Si, "• , Sp

(2.8.1) Q =
0 (Xi—v^lp

- , f t ,
a~q "" ' " " " ~ | fe(l)a +

0 (

u7ier^ {z'l, • • - , z'i-g} = U, • • • , f l}\{/ i ,

Proof. Put
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Jo Si, ••' , Sp /i, ••' , J a Sp^-ii '" • $z

ff{1} =
0 (Xi-i'JlJ L 0 (A"2-r,)l,7

and denote the columns of al by ur (0^j^a+2/>+g). Then by 2.5.11)

P p + a <2

i=0 i = l i=l

We first compute the relations among w0, ulf ••• , ua-ii^n following [1;
Theorem 1.6]. Define P701, P7{, P721 by

(2.8.2) W(

q

where i) entries of WQl are in
ii) entries of T7J are in

iii) entries of W2l are in k(2),
and put

(2.8.3)

Observe that al

0

-^

0
is a (/> + l)x^ matrix of the form

Lq

0

with t^I (l^i^q). With the use of Corollary 2.6 and Proposition 1.3.3) we
define Tr,,2, T72, Za by the equation

CTl

' ° !
-^

0

,(„-„)!,,

= -0-1

in,
0

P72

0

(2.8.4) (7i =- f f l P72 | a,
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where i) entries of W02 are in
ii) entries of W2 are in k(T)

iii) entries of Zl are in &(2).

Finally

0

—H
6

with fje ©/^(2)©©/a^(2) by (2.5.6) and
0

Proposition 1.3. therefore we can define again Wif Z2 by the equation

(2.8.5)

where the entries of W4 and Z2 lie in k(2). Now the formulae (2,8.2;, (2.8.3),
(2.8.4), (2.8.5) and [1; Theorem 1.6] imply

(2.8.6)

where a2=lff?' (7(,1}1,

-H

VV2w,
0

W21 (x,
y ' •

a+p

0

W<

~H



ARITHMETICALLY BUCIISBAUM CURVES 809

H
Then we can prove <j^;=0 as in the proof

q

Q
of [] ; Corollary 3.5] and get a free resolution for HJ(OA-) of length three :

'2.8.7) 0

-> £®/?[-e°] — > H|(c^) — > 0 .

Here all maps are degree zero. depthmH^Oj:)^ and Pro], dim^ HJ(0a-)=2 by
Auslander-Buchsbaum's theorem, so that rank <73 (mod m)=#. This implies rank TF4

'modm)=tf because all the entries of 0S( ' ) h'e in m. In other words, we

have q^a and there exist ilf ••• iq (I^z'i<z2< ••• <iq^a) such that det W4rlj "" '
2 a"5J is a nonzero constant in k for /J, • • • , i'a-q defined b}^ {/;, ••• . /i-J = {1, • • • ,

}\{/i , • • - , / J . Hencewefindby(2.8.7)that£j+2=p l > ?+li.e. =^l = v I < ; for l^j^r
We next go on to the proof of (2.8.1). Set

^, •'• , J i'a-q
 Sp + l) "' ) S2p S2p + lj "• . S_ -

0 (xz-v2)lp H

Since <r1cr2
1) = 0 by (2.8.6), and since det W^1' '" ' !a~qj is a nonzero constant in

k, each lf/v 0 ) (l^j^q) is in fact a linear combination of the columns of^

a!l} over &(1). Consequently Q = awk(Q}p+1-+-awk(l}a+p by 2.5.11). It remains
to prove that this sum is direct. Suppose a^go, gi, • • • , ga-^=0 with gi^k(0)
for Q^i^p and gj^k(l) for p-rl^j^a+2p. Then clearly g1=^2= ••• =^=0.

Since the first row of ^(i)'(^i. •" , 5'a+2p) = o'(1)
£(0, • • • , 0, gu. , ••• . ^21,+a) is in

a &
0/ tHl)3®/a-«- i7&(2)0A/ / by Proposition 1.3, ^o is also zero. Thus a(1) l(gp-i,

' • - , g2p-a)=® and this can be rewritten [_a[1^ a[z}~Y(ti, ••• , tr. c; }^a-q-ri, '" , ga+2pj

where
for je {/!, • • • , jq] .
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It follows from this that '(f l f • • • , ta, gp+a-q+i, - , g a + z p ^ f f ^ k ( V q by (2.8.6),
namely \tlf ••• ,ta, gP+a-q+i, • • • , ga+*P)=0™ l(ci, ~-, cq) for some l(clf - • • , cg)e

&(l)e. This implies JF4(^' '" ' */a-ty(clf • • • , c3)=0, therefore '(d, • • • , cg)=0 and

£D+I= ••• =^a+2p=0. Q.E.D.

Proposition 2.9. Under the same notation and assumption as in the previous
proposition, let ~ denote the matrix of relations among the columns of a computed
by [1; Theorem 1.6]. Then r takes the following form:

(2.9.1)

r'=

_!_•—''

0

*,!„,„

—

0 0 0

0 (xi-vjlp H

0 0 0

0 Vllp 0

0 0 Vllq ^

a-q p q

_// ~~

W5

0

W6

\ '" I r J 0 IzL-»2)iJZ3+UJZjJ

}'
}"
1} f l-
h+r P +

where W5f W6 are matrices with entries in &(1), and Z% (resp. Z4) is a qX(a+p)
(resp. bX(a-i-p}) matrix with entries in k(l) (resp. k(2)}.

Proof. Let r' be the matrix defined by (2.9.1) and t one of its columns.

Since Sje=NE (l^j^2p±q), at=\f, 0) with f ^ f , k ( l } @ @ f l k ( T ) @ @ f a + j k ( 2 } by
i=l j=i

Proposition 1.3. We see therefore by (2.5.11) and Proposition 2.8 that at is in

the module generated by the columns of oY-, _ . J over k(l). This enables us
to put

a-q

} P+Q

where W5, W6 and II"7 are matrices with entries in ^(1). W7 must satisfy the
equation [U2—r2)lp /f]FT7=0, so each column of W7 is in the module of relations
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among the columns of [Oc2— i>2)lp H~\. This module of relations are easily com-
puted and are generated by the columns of the matrix

-H 0

z—vz)lq G

therefore W7 takes the form

~H ° Z4

where Z3 (resp. Z4) is a qX(a~\-p') (resp. bx(a+p)) matrix with entries in k(Y)
(resp. £(2)). Thus the formula (2.9.1) follows. Q.E.D.

We summarise below some results used in section five, most of which are
found in [11 ; Sections 3 and 4] or elsewhere. For a matrix U of polynomials
of R we will denote by /(£/) the ideal generated by the rXr minors of U where
r is the rank of U. Let X, 3 and / be as in the beginning of this section and let

(2.10.1) 0 — > .tf[-?2] -^ Ri-n — ̂  R@RL-n -^ Hi(0j) — > 0

be an arbitrary free resolution for HJ(O^), where f°=(?1, ••• , 7?), f^fri, ••• , FmO
and fz=(rl, •-• , Tm). Let A denote the matrix corresponding to prz°(pi : #[— f1]
— > /?[— f°] and 5 the matrix corresponding to </>2. Then ?;z /=??z+/+l by [3;
Corollary 1] and

B A a
(2.10.2) 0 — > #[-f2] — > ^[-f] — > ^[-f°] — >iM — > 0

is a complex which is exact except at R[_— f1], where M=Hi(J). Since the
degree of the Hilbert polynomial of X is one, we deduce from (2.10.2)

I m + l + l in
(2.10.3) SrS- s r5+Sr!=o.

z=i i=i 1=1

Note that depth/(^)7?^4. Let e be the locally free sheaf of rank jn+l on P|
defined by the following exact sequence :

i *A m+i+i 6
(2.10.4) o— > 0oP3(r;)— > ® (?p»(rJ)— *<?— >o.1=1 ft t=i K

m m + i-t-1
We define a mapc£: <? -* ©Ops (7-?) by putting (f>(v) = LB(u} where we © 0p|(ri)

i=l * i=l *
m + l m

is such that $(u)=v. From (2.10.3) and (2.10.4) follows A ^v=Opj(— SrfX
m m + l

therefore using the isomorphism £~— > A < ? ® A <£", the exact sequence

© OPS (-7-?)
*
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m
is obtained. We see by the definitions of € and ^ that the image of A^ is the
sheaf of ideals in Op* defined by all the maximal minors of B, and hence coin-
cides with 3 itself by [11; (3.3) and (4.2)]. (Observe that the proposition of
[11] we have referred here are valid also for curves in our sense.) Hence we
get

(2.10.5)

(2.10.6) depth / (i,>/?=2.

Proposition 2.11. Conversely, suppose a given complex (2.10.2) with depth/ (A)R
^4 satisfy the conditions (2.10.3) and (2.10.6). Then by the procedure above we
obtain the exact sequence (2.10.5) and the sheaf of ideals J in £>p| which defines
the curve Proj R/I(B} in P|. For such curves the following holds:

(2.11.1) Hi(PjS, c*(iO) = M

m
(2.11.2) h0(0Y(^)=hn(Op*(^}+ 2 A0(0p?(v—rf))k l=1 k

~r S h°(Op* (v—/?))— S hQ(Ops (i>—rj)) .
7=1 * i = l /?

Proof. Formulae (2.11.1)-2) are deduced from the long exact sequences aris-
ing from (2.10.4) and (2.10.5).

§3. Structure Theorem for the Ideals Defining
Arithmetically Buchsbaum Curves in P|]

Let ZcPI be a curve with the property mHi(J) = mHiCR//)=0, where <3
and / denote the sheaf of ideals of X and H$(J) respectively. We know that
the ring R/I is Buchsbaum for such a curve (see for example [12; Korollar
1.2.3 or Korollar 4.1.3]), and in this case X is called an arithmetically Buchsbaum
curve. We will give a structure theorem for these curves in the language of
our Proposition 1.3. For an arithmetically Buchsbaum curve X we set i(X)=-
dimB/mHi(J) (see [5; p. 11]), and we denote by %A the number of elements of
a finite set A. In the following we abbreviate 'arithmetically Buchsbaum' to
'a.B.'.

Theorem 3.1. Let X be an a. B. curve in P| and (a; vlf • • • , ua; va+1, • • - ,
va+6) its basic sequence. Then we have

1) i(X)=b
2) For each integer v
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and hence a^2b.

Proof. Suppose the homogeneous coordinates xlf x2, *3, x± are sufficiently
generally chosen. Since iitHi(J)=0, Hi(J) has the following minimal free resolu-
tion as a &(2)-module:

G H

r~~*4ii(.Y)
where e° = (e°f • • • , s J ( A->)(£ i^£2^ ' " = e iM->) , 7/=[A'jll(.r) A'4l t (T)] and G —

Hence i(X}—b and

(3.1.4) £ j°^2=v a r j for 1^7

by Proposition 2.4. We see, on the other hand, there exist integers l^z'i< •••
<i86^fl satisfying ((ej+l) + l, (s?+l) + l, (eJ+D + l, (eS+D + 1, -, (eg+l) + l, (s?
+ l)+l) = (sS+2, eJ+2, eS+2, ei+2, ••• , sg+2, eg+2) = (^lf v,2, ••• , y igf t) by Proposi-
tion 2.8. Consequently (p a- i , va^i, ^ 0 4 2 , ^a+2, ••• , ^a+&, v a +&) = (^i1J 3^i2, •-, v726),
which proves 2). Q.E.D.

Theorem 3.2. Let

Proposition 1.7, a?irf suppose that -U3

UQ1 Uoz 0
£/! C78 f/4

LT81 C78 J7B

as

the entries of

U4 are in m. Suppose, in addition, that (2.1.1) is satisfied and that ht 7^2 /or

where fx (Q^i^a+b) are defined by the formula

in Remark 1.8. Le^ J^T denote the curve Proj /?// and <5 its sheaf of ideals. Then,
X is an a.B. curve whose basic sequence is (a] vlf • • • , va ; v a^i , • • • , ^a+&) // and
only if

1) TVzg entries of Us and U-, as well as those of £74 lie in m.
2)

Proof. Observe first that the argument concerning (2.3.1), (2.3.5), (2.3.7) or
Proposition 2.4 is valid in the present case where (a; vl ; Dz) = (a; v1} • • • , va ',
Va+iy '" 9 ^a+&) is not necessarily known in advance to be the basic sequence of
X. We have thus

f ;?[>2-2]/Im*(%) as ^-modules
(3.2.3) Hom*(Hi(c*), fc)=^

( k(2)[F-Z]/N as ^(2)-modules

where N= S ImH2)((^5)1 ^4), and A^C(,T3, ^4)^(2)[y2—2], because all the entries
l iO

of f/4 are in m by hypothesis. Suppose X is a. B.. Then H*(J) has a free
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resolution of the form (3.1.3), so that i(X)=b and N=]mk™(tG)=(x3, x,}k(2}b by
Proposition 2.4. Furthermore, since mHi(«5)=0 and H^(J) is minimally generated
over Rbyb elements, the J?-module /?VIm*(%)^Hom*(Hi(J), &)^ExtJz(Hi(J), J?)
(see (2.3.1) and [8]) has its minimal free resolution

[Jilft *21& *slft *J&]
— >Rib -- > j?& — >Rb/lmR(tM — >0

by taking the dual of the minimal free resolution for Hi(J) over R. We have
therefore lmR(t23) — mRb and find that the entries of 1U3 and *£/5 are in m.
Since (xa, x4)k(2)»=N= 2 Im*(2)(C^5)' 1UJ and since the entries of C&5)<'£/4 lie

i^Q

in U3, *4)
2£(2) for z'^1, we have Im*(8>(*£74) = (A:3, x,}k(2}\

Conversely, suppose the conditions 1) and 2) are satisfied. In this case (3.2.3)
becomes

f #[£2-2]/m#[i;2-2] as ^-modules
(3.2.4) Hom*(Hi(cfl, k} = \

8-2] as £(2)-modules ,

since JV=fe, *4)&(2)[£2-2] by 2) and ImB(%) = m/?6 by 1) and 2). This implies
mHi(J)=0, hence Z is an a. B. curve with i(X)=b. It remains to prove that
the basic sequence of X is in fact (a; v1 ; £2) if A" is a. B.. Let (a; y'1 ; p/2) =
(a; v{, • • • , y^; ^a+i, • • • , vi-rftO be the basic sequence of Z. We have i(X)=b
and (3.2.4) implies that ej in (3.1.3) coincides with va+J— 2 for l<j^b. Hence ^
=£/ and v'2=y2 by Proposition 2.4. Counting dim^/v(v^0) then shows vn=D\

Q.E.D.

Corollary 3.3. Le^ the notation be as in the previous theorem and suppose X
is a.B.. Then there exists a matrix L^GL(a+b, k(2)) of homogeneous polynomials
such that for (f(, ••• , f'a+b) = (fi, • • - , fa+*)L the following holds.

1) f( (l^i^a+b) are homogeneous polynomials and

86+1, ••• , f'a)

2) /=
I— 1 j—1

3) T/ze matrix of relations among /0, /i, ••• , /a+& computed by [1 ; Theorem
1.6]

f/Ii t/J, 0

0

t/i ' f / j x.i
} a-26
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where the entries of X2 of course satisfy the conditions of Proposition 1.3.

Proof. We see by Theorem 3.2 that there exists a matrix

0
11 ? leGL(fl+ft , k(2}} such that iJf/
Zi l&J LL/sJ

We set L=L1
1. Since J(^2) satisfies the condition [1; (3.4)], each f( (l^i^a+b

becomes homogeneous and
0

(3.3.4)

Hence we obtain 1) by changing the order if necessary. In fact we can take
LI so that J(/!, ••• , fa+b)=d(f{, ••• , /a+&) should be satisfied up to a permutation.
Note that the formula (3.3.4) can be rewritten as

0
(3.3.4)'

To prove the assertion 2) we first show that / is contained in the set /' : =

WQ)+ S /{*(!)+ S/i+^(2). Let /
* = 1 J=-l

be an element of /. Then

Observe that L21
l(gl9 ••• , ^a) is in £(1)6, hence

(3.3.5) L^(glt •- , ga)=x^(ha+lt

with ha+j^k(l) and ra+J^k(2) for l^j^b. Using (3.3.4)' and (3.3.5) we obtain

f=fogo
0
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This implies /e/' and /c/', therefore /=/' by obvious inclusion 7'c/. Com-
paring dim* /„ with dim^ l'v for i^O then shows / is the direct sum /0/?(0)

Ji % 0
6

9 0 fik (1) © © fl+Jk(Z). Let ^J=
- v; m

I7J be the matrix of relations

'5 }

among /0, f{, • • • , fa+b computed by [1; Theorem 1.6], then we find by (3.3.4)
0

r77'~i
1 4| - ' - '^° Q.E.D.that , must be

Let ^¥cPi be an a. B. curve with basic sequence (a; PI, ••• , va ; va+i, ••• ,
va+6). In view of the corollary above, it seems convenient to use (/<,, /L ••• , /a+&)
instead of (/0, /i, • • - , / a +6) . And we will always assume from now on that
(/o, /i, -• , /o+&) itself satisfies the conditions 1), 2) and 3) of Corollary 3.3 when
we deal with a.B. curves. We set J(/1? • • • , fa-2b) = (m1} • • - , ma-sb)=m, (va+i,
• • - , Va-&) = (^i, •-, n^ = n and call (a; m; n)=(a; m^ ••• , 77i a_ 2 6 ; ni, • • • , n&) the
short basic sequence of Z. Note that J(/0, /i, ••• , fa+b) = (a, mlf ••• , m a_2 & , HJ,
••• , n6, 72i, ••• , 72fl, n1} ••• , TIB). a^m^ ••• ^ma_26 and a^n^ ••• ̂ n6.

We have (3.1.3) and (3.1.4) for Z, therefore by the results of Section two
the ^-module HJ(Ox) has a free resolution of the following form (see Proposi-
tion 2.8 and (2.9.1)):

0 — > #[-m

(3.4.1) -^^[-fl]

where

/ 0 slj "' j S6 flit "' , J i'a-2
a = \

0 A'il6 0

f 0 P75

0

W6 } a-26

^31&

a-i-6
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And

(3.4.2) Hi(c<0 = fl[-n+2]/m#[-7l+2] .

It should be noted that d(fl'1, ••• , /i'a_2&) —(7»i» "' > ma-^ by Proposition 2.8.

§ 4. Examples of Integral Arithmetically Buchsbaum Curves with
Basic Sequence (a; n, • • • , n ; n, •••

Let us begin by giving a solution to the equation 22h=Q in the case where
r o i

integers and set m = (mlj ••• , m a_ 2 & ) , n = (nlf ••• , ?7&)7 (i^, • • • , ya-r&) — O T Z , n, n, n).
Define Az: =(^o)(0^/^fl+^, l^j^a+25) as in [1; (3.4)]. Set

(4.1.1)

where Us is a matrix with entries in in, Jy2) = J2, and >^2 satisfies the conditions
of Proposition 1.3.5). Put

o
(4.1.2)

'C/01 ^02 0

0
JJ JJ -v- 1Cvi L>2 -'i-3-i-&

0

-*31»

-It

where F(0 are matrices of homogeneous polynomials in £(2). Then ^j— 0 is
equivalent to

=0
*3i& y " "/

f4.1.3)

(see [1; Remark 4.1]J The solution of this equation is given by the following
formula:

0

^

' 0

-l]/Cr)L

— Q , f/o!

' 0 ^
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a-2bj
rl

W8

Ltf.iJ o UB

(4.1.4)

-2b 2b
U02

rF(0)i
=-

L£ /«J

0

0

0

0

Us 0

0 #a

0

where T'Fg, Z5, F
(r) (r^l) and U3 are arbitrary matrices of homogeneous polyno-

mials of k(2) (of (xs, x^)k(2) for (73) whose degrees are determined by (a ; m ; n).
Since the degree of each entry of W8, Z5, U3 and F(r) (r^l) is fixed for the

given (a ; m ; n), all the entries of these matrices are parameterized by a finite
dimensional affine space. Let S(a ; m ; n) denote this affine space. That is

(4.1.5) S(a; m; ?1)=

where the set of parameters {^t\l^i^p} corresponds to all the coefficients of

the entries of Ws, Z5, U3 and F(r) (r^l) as homogeneous polynomials in Xi, x2, xs, x4

of the fixed degrees determined by (a; m, n). Let W8, Z5, #3, F(r) (r^l) denote

the corresponding family of matrices over S(a; in, n), and, using these instead
of W8, Z5, Cls, V(r) (r^l), define^, 38 by the formulae (4.1.4), (4.1.2) and (4.1.1).

Denote the ring £[£,; l^i^p] by jfe[5]. Since 323S=0,

is indeed a homogeneous polynomial in A'I, J2, x3, x± with coefficients in &[S] by
Proposition 1.7. Put

- : 3?' —> S(a; 772, ri) the natural projection.

The set

is Zarisky open and by Remarks 1.8-1.9 the Hilbert polynomial of K~I(S) is in-

dependent of seS(a; ?n, ?1), so that the family -3f ' i§ ( a ;m,n) — > S ( a ; m ; n) is a
flat family of curves (see [10; Chap. Ill Theorem 9.9]). We denote 3C'\s(a,m,n)

simply by T. In this way
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S(a; ffi ; ?1)

Lemma 4.2. S(a ; ?7z ; n) is not empty for an arbitrary (a ; ??i ; n) such that

Proof. Let P be a matrix representing the permutation of vlt ••• , ya such
that for (v{, ••• , ^) = (^, ••• , v^P the inequality v^v^ ••• ^a holds. We set

t/di r o i
H

£/i J Ul J

ri oi
•+- 0 P\

'x|1

0

n

0
c|2+1~"i

X^1-1-^-!

n

and define 12, Z3 by (4.1.1). Then J(/L2)=/f2, ^3=0 and the ideal defined by /U
satisfies /if 7^2. Q.E.D.

We will assume in the rest of this section that k is an algebraically closed
field of characteristic zero and under this assumption prove the existence of an
integral a. B. curve with basic sequence (a\ n, ••• , n; n, • • • , n) where n^

"
and b^l. We fix such a, b, n and put m=(n, ••• , n), n — (n, ••• , «). In this case

the matrix /12 takes the following form:

n — a + 1 n —a + 1 ?2

1 1 1

Put n—a+l=e and let ^ (l^/^6), w, z1, M; be parameters.

(4.3.1) When b^2 we set
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WX4

~KX2

r\
0

11X 2 X i — U) X 4 1JO X o

U X 2 X i W X 4 — 1) X 3 U l^ AT 3

o MAs * i~u^~ iai ' ; .
• M^JCg

W,T2 *i — X2 0

M^2 '^1 -~^^S

UXv X i V X 3

0 0 ux, Xl

UX2-^_ > ^ _

{ i^ if a—2b^Q

wxe
2~

l if a-2b=Q.
f/o.l

} a--2bjrl

0 '^ 2 3 f 5

~u
-u 0 0

-M 0

u 0
w 0

0 • - 0 o ••,
^3

H 0 -1
u 0

0 0 "

0

" • - . 0

• • - . o
o '••..

u,=
• • 0

0
t/,i=0.
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and define 22, /U by (4.1.1).
(4.3.2) When b=l and a^3 we set

1/01

WXl tiX2 tzX
e
2

*l WX4 t±X2 t5X2 t6X2

— UXZ Xi

r o
o

-u 0

— ux2 Xi —x2 0
— UX2 Xl—WX4i WX

UX2 Xl }

i—0

U0

t xe~l t xe~l

t, t.

— u 0 -1
-H ~"0

u

t X6'1'atl

0
0
0 ,

' 0 '

• 6
^0

^40

and define A2, %3 by (4.1.1).
It is easy to check /i2^3=0 in both cases. Denote the ring k\Ji(l^i^&), u}

v, w] by B and Spec B by T. We see B is a factor ring of &[S], so that T is
a closed subscheme of S(a; m; n). Put f=Tr\S(a] m\ n). The family of

curves X^ — >T induced from 3? — >S(a; m ; n) by the embedding Tc^S(a;
m ; n) coincides with the family of curves obtained by the family of ideals
determined by 22 set in (4.3.1) or (4.3.2). For this family we have the following
theorem.

Theorem 4.4. Suppose k is an algebraically closed field of characteristic zero.
In the notation above, there exists a Zarisky open set Ddt such that for every
point s^D, n~l(s) is an integral a. B. curve with short basic sequence ( a ; n , ••• , n]
n, ••• , n). a—2b

The proof is divided into several lemmas. We give its full detail only in
the case b^2, leaving the proof for the case b=l to the interested reader. Put

' t foi Un]

L=ProjR/(x1> x2)R and H=Pro']R/xzR. We will denote (-l)J'det U, U, \

0 [/, }
det U5 at a point seT simply by fl} without indicating the point s explicitly.
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Lemma 4.5. There exists a Zarisky open set D^f such that /tt+&(0, 0, x3, #4)
^0 for every point of Dlf

Proof. It is enough to prove the existence of a point seT such that fa+b

(0, 0, A'3, *4)=£0 at s. For this purpose we set u=Q and ^=0 for l^z'^6. Then

/a+6fe, 0, x8f x,}=vb-lxl-lx,xlwa-zMxrzb+e(w

up to a sign. Hence /a+&(0, 0, *8, *J^O if tw^O. Q.E.D.

Lemma 4.6. Any irreducible component of n~l(s) is not contained in H and
--l(s)r\H=K~l(s}r\L for every

Proof. If *2= 0, then fQ(x1} 0, x3, x^)—xl for a point seDj, so that all points
of n~l(s}r\H must be contained in L. But LHTT'^S) has its dimension less than
one for s^D± by the previous lemma. Consequently any irreducible component
of TT-^S) cannot lie in H for se^. Q.E.D.

Lemma 4.7. 77zere em^s a Zarisky open set D2c:f such that for every se J92,
Proj R/fQR is an irreducible surface with singularity L.

Proof. Fix (u, v, w)^kz(ui^Q, v^Q) arbitrarily (abuse of notation). Then

(4.7.1) /o=det£7!

where gQ is the determinant of Ui in the case ^=^—^—0. Note that
x2}

2R and hence f0^(xlf xz)
2R for all points of f . (4.7.1) can be taken for a

linear system on P| generated by ua~1Xz, ua~zxlx"~l, ua~^x^~z(x\+uvx2xz) and by
go. Let @! denote this linear system and (Pi : Pf— »Pf the rational map asso-
ciated with ©!.

Claim, i) 0A /ZGS no jted components and its base locus is L.
ii) dim (?>1(Pi)^2.

Proof of i). The equations M a - 1^f=M a~
imply ^i=^2=0.

Proof of ii). Put Zi=xt/x2 for z'=l, 3, 4, and consider the map (^ restricted
on Pl\//=Spec

(Pi : A! — > Pi

is given by
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from which follows immediately dim $i(PI)^2. Q.E.D.

We can therefore conclude that Proj R/fQR is an irreducible surface with
singularity L by Bertini's theorem (see [15; Theorem 4.21] for example).

Q.E.D.

Lemma 4.8. There exists a Zarisky open set D3dT such that for seJ93, /0

(ua, 1, u(p—az)/v, Zi) is a nonconstant polynomial in the variable 2^ where, a, $
are general elements of k.

Proof. Put tl=Q (l^z ^6). Then we find by a direct computation that

/ofo, .T,, 0, *4)=det £/i

=x'i+x"'1 {(a—2b)uwx2x^+(b—l)uwx2X^uxj} —.'V'

=#1+*?"1 {(a—b—Y)uwx2x4+uxl} +/o1}

where /0
(1) denote the sum of terms of degree less than a—2 with respect to A.

Since a—b—1^2b—b—l^b—1^1 by hypothesis, f0(ua, 1, 0, zj is a nonconstant
polynomial of k\_z^] of degree at least one for a general a^k. Hence the asser-
tion follows. Q.E.D.

Let T! denote the subspace of T defined by the equation ti=t_=tA=Q and T2

the subspace of t defined by u=0. By the proofs of the previous lemmas we
see Dir\Dir\DAr\TT\T*z^(j), so take and fix a point sf^Dl^\D2^^D^^^fl\fz. Let
Y denote the hyper surf ace of P| defined by the equation /0=0 where /0 is the
polynomial determined by lz corresponding to the point s'. We then consider
fi corresponding to the point s'+Ui, tz, ts, 0, • • • , 0)eT with parameters tlt tz, t^.
Note that /„ is independent of tlt tz, ts.

Lemma 4.9. Under the notation above the affine curve
Y\H is irreducible and nonsingular for a general (tlt tz, t^t

Proof. By a direct computation

(4.9.1) A=d
Lt

= ±tsu
a-1xe

2
+a-1±t2u

a-zx1xl+a-*

where gi denotes det 01 ( ) in the case ^1 = ^2=^3=0. We take 4.9.1) for a
Lc/i J\ / ^

linear system on Y and denote it by 02. Let F—>Y be a desingularization
of Y, ©2—ft>*®2 and (P2: ?"—> PI the rational map associated with (92.

Claim, i) All fixed components and base points are contained ;/? o}~l(L}.
ii)
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Proof of i), Since u±Q, ua-1xe
2
+a~1=ua-2x1xl+a~2=ua-Bxl+a-5(x2

1+uvx2x3)=f2

=Q on Y implies A-2=0 and /0—0, so that Xi=x2=Qf which proves i).

Proof of ii\ As before we consider the map @2 restricted on Y': =Y\(o~l

02: Y'-*P*k is given by

Let a, /3 be general elements of k and consider the equations

(4.9.2)

This is equivalent to

(4.9.3)

Since f0(ua, 1, u(j—a2)/v, z4) is a nonconstant polynomial in z4 by Lemma 4.8,
(4.9.3) certainly has a solution. This means that dim02(F)==2. Q.E.D.

We can therefore conclude by Bertini's theorem that general members of the
variable part of the linear system 02 on Y are irreducible and nonsingular,
from which our assertion follows. Q.E.D.

In the situation of Lemma 4.9, put X=x~1(s') for s—(s', tlf t2, £3)eT where
/O 1 \

(t1} tz, t3)^kj is general. Since u^Q and det/U ' , T )=(—I)"-25-1

\a, a+1, - • • , a+b/
Ua-ixa+b-i9 tne reiation (fQj f1} ...} fa+b)X2=Q implies ft^(f0f /i)0A| on Al=Pl\H

for /^2, so that X\H=Proj R/(f0, fJ^H. Now we have
i) No irreducible component of X is contained in H (Lemma 4.6).

ii) X\L=X\H is a nonsingular irreducible curve (Lemma 4.9).
Consequently X is an integral curve which is nonsingular except at the points
of Xr\L. Finally X is in fact a. B. with short basic sequence (a; n, • • • , n;

n, • • • , n) by Theorem 3.2, and the proof of Theorem 4.4 is completed in the

case b^2. Q.E.D.

Remark 4.10. Since T is a thin subspace of S(a; m, n), it may well be
hoped that the curves K~I(S) for s^S(a; in, n) general are nonsingular and
irreducible, however we have not confirmed it as yet.

4.11. The monomial curve Proj&tY72, s2n+lt2n~l, S
2n-^2n+1, tin~\ is a.

B. by [5] and its short basic sequence is (2; — ; 2n+l). It therefore coincides
with TT~I(S) for a certain point seS(2; —; 2n+l).
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g 5. Some Irreducible Components of Hilb (PI) Whose General
Points Correspond to Arithmetically Buchsbaum Curves

We denote the universal flat family of subschemes of PI over Hilb (PI) by

>PJxHilb(PJ)

Definition 5.2. Let (a; m ; ri) = (a\ mit • • • , m a _ 2 & ; nit • • • . nn) be a sequence
of integers such that a^m^ ••• ^ma_2&, a^n^ ••• ̂ nb, where a^2b. We say
that (a; m; n) represents an irreducible component of Hilb (PI) if and only if
there exists an irreducible component H of Hilb (PI) such that oj~l(h} is an a.B.
curve with short basic sequence (a; m ; n) for every general h~H.

Remark 5.3. Since all a.B. curve with short basic sequence (a; m ; n) are
parametrized by an irreducible variety S(a; m', n) (see (4.1.6)) for a given
(a; m ; n\ (a; m ; ?1) can represent only one irreducible component of Hilb (Pi).

Our main concern in this section is to find, as far as possible by the methods
developped so far, the conditions in order that (a; M ; ?!) should actually repre-
sent an irreducible component of Hilb (PI). Let us seek for a necessary condition
first. In the following lemmas, we let (a; m; n)=(a; m l t • • • , 7 n a _ 2 & ; n l f • • • , n&)
be the short basic sequence of an a.B. curve X.

Lemma 5.4. // nj+1=n^+1 for some l^j^b—1, then (a; m] n) does not
represent any irreducible components of Hilb (PI).

Proof. H#(0_r) has the free resolution (3.4). Let t be a parameter and set

y
: U for /=3, 4
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0

0 -A-216 -Qs -Q,

W5

0

W6

We have J f* c l ' j = /f(<7c l )), J(r)=J(r) and check easily tf(1)r=0, so that a

*flat family of curves X : =Proj R®kk[f]/I(r) — > Spec k[f] is obtained by Pro-
position 2.11. p~1(Q)=X and for each 37 e& we know by the same proposition
Hi(Jj)^Coker a™(i)), where 3^ denotes the sheaf of ideals of the curve p~l(r]}
and d(l}(r]} the matrix obtained by putting t=7] in cr(1). Hence, if jy^O, Hi(J,)
cannot be annihilated by tn. We see, in addition, the basic sequence of p~\7j)
is in fact different from that of A" if 57^0, since the &(2)-module structures of
Hi(J7) and Hi(J0) are different (see Remark 2.7). This implies there exists a
curve whose basic sequence is different from that of X and which is not a. B.
in an arbitrary small neighborhood of the point of Hilb(Pf) corresponding to X.
Consequently (a] m ; n) does not represent any irreducible components of
Hilb(Pl). Q.E.D.

Lemma 5.5. Suppose for some l^j^b
1) a=rij-2 and %{i\mi=a}+l>3%{i\nt=a} or
2) a^rij—2, {i\mi= HJ— 2} ̂ <p and

Then (a; m ; n does not represent any irreducible components of Hilb(P/J.

Proof. Consider first the case 2). Suppose

'^ i—Wj—3 for a0+l=z^s<2i

and a2—<*i>3(pi—poJ + Cofi—ao). H*(#j) has the free resolution (3.4). We have

, f , T T - /I, '•• , #1, «2 + l, "• , 0 2&V1 G\ /;

where Ji=[ * 0 * ], and the entries of * are all positive or negative
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integers, rank W6(^' '" > ai> a*+l> '" ' G"2&)(mod m) is therefore [.less than

a2— «i by hypothesis, and there exists a nonzero vector r— (0, ••• , 0, r«1+1, ••• ,
rav 0, — , 0)e£a-2& such that "~^T"

a^2b^a2

(5.5.3) rW'6=0(modni).

Let t be a parameter and set

cf (1) = [0 Xilb tr---j-th row *21& x«lb .\'il&].

Then J(cr(1))-J(^(1)) and we see by (5.5.3)

a™T=tP

where P is a matrix of homogeneous polynomials in in. This P can be written

where Q =
a-2b

for suitable matrices Qt (i=l, 2, 5, 6) of homogeneous

Q5

Oe

a+b
polynomials such that J(Q)=J(r). Set r=-c—tQ. Then J(r)=J(r) and awT=Q.

In this way we get a flat family of curves X=Pro]kLti R®kk\t~]/I(r} —> Spec k[f]
such that p~l(fy—X by Proposition 2.11. As in the previous lemma H*(J7) =
Coker a(1)(^) for 3?e&, so that, if 57^0, ^"X^) is an a.B. curve with i(p~l(r]})
<i(X}=-b. This implies that, in an arbitrary small neighborhood of the point
of Hilb(Pi) corresponding to X, there is an a.B. curve with short basic
sequence different from (aim; n), and hence (a; in; n) does not represent any
irreducible components of Hilb(Pl). The proof for the case 1) is similar.

Q.E.D.

Lemma 5.6. Suppose ni+1=ni or ni+1—ni^2 for every l^i^b—1. If

for some l^j^b, then (a; m; n) does not represent any irreducible components
o/Hilb(P|).

Proof. Let
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oi C/o, 0

0

Ul be the matrix of relations among /0, A, • • • , / 0 + & ( s e e the

end of Section three). As is described in the beginning of Section four the
equation 22/£3=0 is equivalent to (4.1.3). By hypothesis we may assume

for

for

for

with «i—aoXaz—aiJ+SC^!—j30). Since J(/0, /lf • • • , /a+&)=(a, m, w, n, n), each
entry of J(f/0i) is positive and

Oil

a—2b—a2

where Jo^

}
j- PI—/30 and the entries of * are either positive or negative.

In view of this,

rF(o)i/ \
rank (-, ... a a-\-l ••• a)(modnO

is less than a^—aQ by hypothesis, so that there exists a nonzero vector c=
J(0, - , 0, cffo,ls - , c«lf 0, .- , 0)e^a-26 such that c-0(modfe,>—v—, v_^—,

aQ a—2b—a1

Let f be a parameter and put
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0.=

' 0

•^3-1-6

\

tc

X J, J

••"—•"then J(#4)=

so that any entry of J(t/3) is not zero. We therefore get

(5.6.1)

where P^ and P2 are matrices of homogeneous polynomials of fe, ,T4)^(2). These
PI and P2 can be written

fl+1 0

with matrices (57, Qs of homogeneous polynomials of k(2) such that J( ^7 )
(0) ^s

and set

'#<.!] [ 0 1
rzr ~hF (0)-4~ ^ JC rF ( ? )

o1\ UiiJ
'^01 t/o» 0 - 1.= - -0. -

For these matrices the equations

r o
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hold by (5.6.1) and (4.1.3), hence ^8=0 (see [1; Remark 4.1]). Now we get a
flat family of curves

X=ProjkLt, R®kkm/(f0, A, ••• , fa+b)R — > Spec &[*]

where /*=(—!)* detl8(* , , , , , 01Vdet U3 for Og/^a+ft (see Remark\a+0+l • • • a+£0/, , , ,
\a+0+l,

1.7). As in Section two Im^(%()7))^£^(0)®i'2l^(l)®ImH2)(^4(^))(c.f. (2.3.5))
for every 57 e& where ^3(37) and *£/4(3?) denote the matrices obtained by putting
f=9 in tlS}

tU4 respectively. This implies Homfc (Hi(J^), fe)s#VlmB(*28(37)) is
annihilated by m for all gyefc, but since c^O, /(/)"1(7/))=dim&(Hi(J3?X k}<i(X}=b
for 7?^0. Consequently an arbitrary neighborhood of the point of Hilb(Pf) cor-
responding to X contains an a. B. curve whose short basic sequence is different
from (a; in; n), whence our assertion follows. Q.E.D.

We summarize the results obtained so far in a theorem.

Theorem 5.7. In order that a sequence of integers (a', in ; n)~(a; m1} • • • ,
?«a-26, nlf •" , nb) with a~^2b, a^m^ ••• ̂ ma-zb, a^n^ ••• ^nb should represent
an irreducible component of Hilb(PJ), it must satisfy the following conditions.

1) nt+i—ni or ni+1—ni'^:2 for every 1^/^6—1.
2) // a—Uj—2 for some j, then

3) For each l^j^b such that a^n3—2, we have

4) #{f 7n i=nJ+l}g#{/|7n i=nJ+2}+3#{/ ni=n./+2} /o

Our next problem is whether (a ; m ; n) satisfying the conditions of this
theorem actually represents an irreducible component of Hilb(P|) or not. In
any case an a. B. curve with short basic sequence (a ; in ; n) exists by Lemma
4.2, though it may not be even reduced. And if ni+1=ni or ni+1— w* ̂ 3 for every
l<;z'<^— 1, we can prove that the conditions of Theorem 5.7 are indeed sufficient
for (a; m ; n) to represent an irreducible component of Hilb(PI). In other cases
we do not have any answers yet.

To describe the answer in the case mentioned just now we need some
lemmas. They may be found somewhere in the literature available, nevertheless
we give the proofs for the convenience of the reader.

Lemma 5.8. Let (A, n) be a local ring with residue field k such that
and let /0, flf ••• , /a+&e^4(0) be homogeneous polynomials with coefficients in A of
degrees a, vlf ••• , va+b respectively. Suppose /, : — fi(modn)^k(ty=R (Q^i^
satisfy the condition
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(5.8.1) R= {/0^(0) 0 © f , k ( l ) © © fa+Jk(2)\ ©L1=1 j=i

(direct sum as k-vector spaces) luhere L= © Ly (LvdRv) is a graded k-vector sub-

space of R. Then we have

~ (i ~ & ~

(direct sum as A-modules}.

Proof. We take a tensor product of (5.8.1) and A over k to obtain

(direct sum as .4-modules)

where A/(1)=/0A(0)©®/l,4(l)e®/fl+^(2) and A/ (a) = L®AA L e t 0 : A / ( 1 ' ®1=1 .7=1
MC2J=A;0)-+ A;0) be the map defined by 0(2£iA, ')= S^Jt+r with (£0, &,

i=o i=o

-, ^«, ̂ 1, • • - , ̂ a+&)e^(0)©yl(l)a©/l(2)&. Since /, (Ogiga+6) are homo-
geneous, 0 gives a map #j, : -A(0)v -> ^4(0)y from a finite free ^4-module into itself
for each peZ0. 6V becomes an identity when considered (modtt), therefore 6^
itself is an isomorphism for every if. Q.E.D.

Lemma 5.9. In the situation of the previous lemma, suppose, in addition,

that I\=fQA(ty©@fiA(Y}@®fa+jA(2) is an ideal. Then there exists a homo-

geneous polynomial f% for each Q^i^a+b such that
1) ft-fi^I, fi-fi^L®kA and deg/^deg/,

/ = ^ 0 l
2)

Proof. We can write fl-fl=f[+ff^ with fi<=lr\nA(ty and /;f

by (5.8.2). Set fi=fi+f'l
f. Then /* (O^i^a+fe) satisfy 1) and /i=/4-/J e7.

Since /i(modn)=/1+/i/(modu)— /^, (5.8.2) holdes for /0, -• , fa+b and 2) follows
easily. Q.E.D.

Lemma 5.10. Le^ (.4, it) 6e a /oca/ integral domain with A/n=k~->A, o the
closed point of Spec A Let p : ZcPi — >• Spec A be a flat family of curves and 3
the sheaf of ideals of X. Suppose the ideal H|(J0)C^ is generated by homo-
geneous polynomials ft (l^i^l) with dQgft=di, where 3y denotes the sheaf of
ideals of the curve p~l(y] for ;yeSpec A // H^PI, J0Wi))=0 for all l^/^/,
then H°(PI, J(iO) « a free A-module for every y^O, and ,4(0)/H|(PI, J) is a fiat
A-module.

Proof. As A is local, we have /?*/>*( J(v))=Hf(PI, J(iO) for all yeZ and
z'^0. Consider the natural maps
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(see [10; Chap. III. Theorem 12.11]). The assumption H^PJ, <?0(di))=0 implies
H^Pl, J(di))=0 and the surjectivity of c/>2-(0)(loc. cit.), so that there exists /»e
H°(PI, J(d<)) such that /,(modn)=/i for each l^i^l. Since (A, •••,/J^(0)c
HJ(PI, J), $!(0) turns out to be surjective for all peZ. ^°-1(0)=0j1(0) is trivially
surjective hence by the same theorem (loc. cit.) H°(P1, 3(v)) is ^4-free and <j>l(y)
is an isomorphism for all y e Spec A and v e Z. From the commutative diagram

c
H°(P1, JM)<8>^(0) — > A(Q)v®Ak(o)

III \\l
0 — > H°(PJ(0), J0(y)) — ̂  H°(PJ(0), 0pJ(0)M)

follows the inj'ectivity of C and we find Torf((>l(0)/HJ(PI, J))v, ̂ )=0.
(PI, J))v is therefore y4-free for every v^O and ^(0)/HKP1, J) is .4-flat.

Q.E.D.

Theorem 5.11. L<?f (a; m ; «)=(«; ?7Z1; ••• , ??? a -2&; ?^i, • • • , MS) be a sequence
of integers such that a^m^ ••• ̂ ma_2&, a^n^ ••• ^nb where a^2b. Suppose

1) ni+i=ni or ni+1~-ni^3 for every l^i^b—l.
2) ai-nj—2 and %{i mi=nJ—2}^{i\mi=nJ—Z} for each 1^'gfr.
3) #{/|m i=nJ+l}g#{/|7Wi=^+2} /or eac/z lg;^&.

(a; m ; n) represents an irreducible component of Hilb(PI).

Remark 5.12. In the case where nM=ni or nl+i-~ n^3 for every l^/^5
— 1, the conditions of Theorem 5.7 reduce to those of the present theorem.

Proof of Theorem 5.11. Let X be an a. B. curve with short basic sequence
(a; m\ n\ J its sheaf of ideals and /=H£(c£)C#. We can write

(5.11.4)

by Proposition 1.3.3), and the matrix of relations is of the form

ft/01 C/02 0

0

ul (see the end of Section three). Suppose {nlf

TJ TJ
LJ 21 U 3

Q with n[<nf
2< ••• <ni and
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L=n'u-3 for a% + l^i^a*t
(5.11.5)

for

{ m^n'u + l for #}+lg*^j8?
(5.11.6) j

where I fgwfgr . We see by the condition 1) and [1; (3.4)]

(5.11.7)

I/o

(l, - ,aS, a?+l, . . . ,

((5.11.8)
0

*
-v—

/3?—/3o

where the entries of * are either positive or negative integers. Note that a\—
cC^oi\—a?{ and $\—ffi1^$\—$\ by the conditions 2) and 3) respectively. Since

f 0 1

UB )

and ;ts(
fl~~2/;+1' ""J fl+2/?)-0, the relation ^3=0 still holds if the

entries of ^z(a_2bj-l ••• a ' 2b) are var^e<^ freely- We may therefore assume

from the first that

~u01-
(5.11.9) rank&

(5.11.10) rank*

for every l^u^v.
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All the columns of U^ are relations among /„, flt • • • , fa+b by its definition,

so that (5.11.9) implies that, for each l^u^v, we have f t ^ ( f 0 , --, fa^, fa^i,
•" , fa+b)R for a"+l^^«2. It follows from this that / is generated by /<,,

V

fa-2b+i, • • • , / a + 6 and by all ft such that l^i^a~2b, i&\J {wla^+l^w^a^}.

Write these generators, say glt • • • , gt. Then we see by 1), 2) and (5.11.5)

(5.11.11) deg^i^ni—2 for any l^i^l and l^u^v.

Let // be an arbitrary irreducible component of red (Hilb (Pf )) containing the k-
rational point o corresponding to X, and let (A, n) be the local ring at this point.
Denote by p: X-*SpecA the family induced from the universal family (5.1)
through the natural inclusion Spec A Q> Hc+ Hilb (Pf ), and denote the sheaf of
ideals of l(resp. p~l(h\ /ieSpec A) by J(resp. 3h\ Since HJ(PI, c?0(degg<))=
H\Pl J(deggi)}=Q by (3.4.2) and (5.11.11), we find by Lemma 5.10 that A(ty/
HJ(Pi, J) is A-ftat and that there exist homogeneous polynomials /^H^Pl, 3)

such that ft (mod m)=fi. This, combined with Lemma 5.8, implies

(5.11.12) /=
1=1 j=l

where 7=H*(P1, J), and we may assume by Lemma 5.9 fi—fi^Nj®kA (see
(5.11.4)). Denote the quotient field of A by K. We will then consider the curve

JO, where

Denote by 22—

0

A u* the matrix of relations among /0, /j, • • • , /a+& com-

puted by [1; Theorem 1.6] and ^3 = -0, as usual.

t?J
Claim. !8=0(modm).

o/ C/ann. Since J(58)=JW8), J(f73)=J(f73) and J^1' '" ' G~2^) are

matrices of nonzero integers by the condition 1). On the other hand

/a-2b+l, • • - , a
(5.11.13) Jl""'

1
' fri

for
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where * consists of nonzero integers. The entries of lz are in fact in ,4(0) by
(5.11.12) and ^(niodn)^^, so that

(5.11.14) rank*

_02

for

From the relation ^3=0,

(5.11.15) ;;2( '
- ,y-i , y+i,

for y, M such that nj=n'u .

In the equation above, we see by (5.11.13) and (5.11.8) that the left hand side
is a vector of homogeneous polynomials of degree zero, hence

rtV
0! r ' x"2 ' 'a W ' °'/ x ' ' GL0.

, - , f l / u,- ,y-i , y + i , - , & /

From this and (5.11.14) follows immediately 04f . . . / )^

(mod m). This holds for all l^j^b and we obtain I3=0(mod m). Q.E.D.

Now we go back to the proof of the theorem. Since X is a.B., we have
lm.R(tX5)=\nRb. We deduce therefore from the Claim combined with the fact 13

(modn)=2s that ImK(0\tAs) = \nK(Q)b, and consequently XK is an a.B. curve over
the field K with short basic sequence (a; m ; n)(see Theorem 3.2, with k being
replaced by K). We may thus assume by Corollary 3.3 that L2 is of the form

f f l i [/02 Q n

* n~ °i , 7 , ^-, -/^ \/, -.i Uz Xalb and fl=(—1Y det ;,2( , . , , , n. )/dett/3
A-4]_6 j \a+o+l, ••• , fl+2o/

for 0^/^fl + &. Comparing the matrix 12 with 32 we obtain a morphism

12 : Spec K —> S(a ; m ; n)

such that XK = 7:~\Q(r/}) where 97 is the unique point of Spec /^(see (4.1.6)). Let

Z: S(a; ?n ; n)—>Hilb(PJ)

be the unique natural morphism such that T:<(2)=^:(see (5.1)). Then the diagram
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Q .
Spec K - > S(a ; m ; ri)

H ci ___ > Hilb(Pi)

commutes by the universality of the family 2,, therefore the generic point of
H is in the image of I. This means that (a ; Wi\ ?1) represents an irreducible
component of Hilb(Pf). Q.E.D.

Corollary 5.12. Let a, b and n be integers such that n^a^2b. Then
(a; n, ••• , n; n, ••• , n) represents an irreducible component of Hilb(PI) if and

^2b ""IT"
only if a^n—2. Furthermore, if a=n—2, the points of Hilb(P}) corresponding
to a.B. curves with short basic sequence (n—2; n, ••• , n; n, ••• , n) are contained

n^T^b "T~"
in the irreducible component represented by the short basic sequence (n— 1; n— 1,
n — 1, n— 1, n, ••• , n ; n, ••• , n).

Proof. The first half is clear by Theorems 5.7 and 5.11. We see by
Theorem 5.11 (n— 1; n— 1, n— 1, n— 1, n, • • - , n; n, ••• , n) indeed represents an

n^2^2 T^T
irreducible component of Hilb(PI). The detail of the proof of the latter half is
left to the reader.

Remark 5.13. In the case where ni+i=ni+2 for some l^i^b, the methods
we have developped so far may not be applicable. The crucial point is that we
cannot tell in advance whether or not an arbitrary flat deformation of X in P|
comes from a flat deformation either of the ring #/H|(J) or of the module
H*(#x), if ni+l=ni+2 for some i.
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