Publ. RIMS, Kyoto Univ.
20 (1984), 727-792

Piecewise Linearization of Real Analytic Functions

By

Masahiro SHIOTA*

§1. Introduction

Many mathematicians considered the problem of triangulations of algebraic
sets, analytic sets, semi-algebraic sets, etc. [2], [4], [7], [8], [97. "10], [14] and
[197. We want to consider more generally a global piecewise linearization of
real analytic functions. For this, we need simultaneous triangvlations of all
levels of the functions.

A function on a polyhedron is called piecewise linear (=PL, if we have a
triangulation of the polyhedron such that the restriction of the function on each
simplex is linear. A C> triangulation of a real analytic manifold \/ is a pair
of a simplicial complex K and a homeomorphism g: |K|—J)/, K| meaning the
underlying polyhedron of K, such that the restriction of g on each simplex is
a C= diffeomorphism onto the image. The existence of C> triangulation is well-
known (e.g. [12]). In this paper manifolds have not boundary unless otherwise
specified.

Theorem I. Let MCR" (K, g) be a real analytic manifold aj dimension
#4, 5 and its C= triangulation respectively, let € be a positive continuous function
on ||, and let f be an analytic function on M. Then there exists a homeomor-
phism = : |K|—AM such that fer is PL and that [t(x)—g(x)|<e x, for x€|K|.

Theorem II. Let M be an analytic manifold of dimension 1. aud let f be a
proper analytic function on M. Then there exist a PL manifold \I' and a homeo-
morphism ©: M'— M such that f-z is PL.

We call a set XCR" subanalytic, (see [3]), if for any point ~=R" there
exist an open neighborhood U of x in R® and a finite number of proper analytic
maps f;, from real analytic manifolds to U, j=1, 2, such that

.Yf-\»U:U(Im _/:LI”‘IITI _fL‘l) .

A continuous map J: X; — X, of subanalytic sets, X;CR™, \.Z”R™, is called
subanalytic if the graph is subanalytic in R*'X R"2. We remark that a polyhedron
X closed in R" is subanalytic and that a PL function on X is subanalvtic. We
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define the subanalyticness of a map or a subset of polyhedrons or of analytic
manifolds after imbedding the spaces closedly in Euclidean spaces. It does not
depend on the choice of imbeddings. Subanalytic versions of the above theorems
are the following.

Theorem I'. Let MCR"™ be a PL manifold of dimension +4,5, let = be a
positive continuous function on M, and f be a proper subanalytic function on M.

Then there exists a homeomorphism t of M such that fet is PL and that |z(x)—
x| <e(x) for x=1M.

Theorem 1I'. Let M be a PL manifold of dimension 4, and [ be a proper
subanalytic function on M. There exists a PL manifold M’ and a homeomorphism
©: M"—M such that fet is PL.

As the existence of analytic triangulation follows from the C= triangulation
(Proposition 6.11°, these are generalizations of Theorems I, I in the case of
proper f. The reason why we will treat the subanalytic case too is that it is
convenient for the most part to consider our problem in the subanalytic category.

The process of the proof of Theorem I is the following. At first we divide
M to semi-analytic X;, X, so that X, contains all critical points of f and that f
is locally constant on X;. Secondly f is piecewise linearized on a large domain
of X,, using Lemma 6.15 which is a consequence of the C* triangulation theory
of C> manifolds. Thirdly we triangulate X; by Proposition 3.1, and then we
pilecewise linearize f on a neighborhood of X; by Proposition 5.1. Lastly, apply-
ing Concordance Implies Isotopy Theorem of Kirby-Siebenmann [6], we piecewise
linearize f globally. Proposition 3.1 shows a fine triangulation of subanalytic
sets. A triangulation of subanalytic sets is known [4]. But if we had only
that triangulation, we might not apply Concordance Implies Isotopy Theorem,
because the polyhedron treated might be not a PL manifold. Proposition 5.1 is
a subanalytic generalization of a result in [16] that if two analytic function
germs vanish at the origin and have the same sign at each point near the origin,
they are topologically equivalent (namely a local homeomorphism transfers one
to the ocher).

The reason why we assume f to be proper in Theorem II is that we can
not applv Concordance Implies Isotopy Theorem but apply the Hauptvermutung
theorem for 3-manifolds of Moise instead.

Two functions fj, f, on a manifold A is called topologically R-L equivalent
if there exist homeomorphisms z,, 7, of A, R respectively such that c,efiez,=f,.
An application of the theorems is the following.

Corollary II1. Let M be a real compact analytic (or compact PL) manifold
of dimension =5. Then the topological R-L equivalence classes of all subanalytic
Sfunctions on A are countable.
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In §9 we show necessary conditions for real (or complex; analytic maps to
be piecewise linearizable. In this paper we use confusedly the differential of a
function on R™ and the gradient by the usual Riemannian metric.

§ 2. Subanalytic Sets

Let us show some fundamental properties of subanalytic sets which we will
need later. The results below without proof were proved in “37.

(2.1) The property of being subanalytic is closed under the rollowing operations :

(2.1.1) finite union,
(2.1.2) jinite intersection,

2.1.3) difference of any two.

(2.2) Let ACR" be a subanalytic set. Then the interior i R", the closure
A in R™ and every connected component of A are subanalytic. DBesides, dim A>
dim (A—_1), and the family of all connected components of - is locally finite.

(2.3) Any semi-analytic subset of R™ is subanalytic.

(2.4) Let ACR™ be closed, subanalytic and of dimension 1. Then there exist
an analytic manifold M and a proper analytic map f: M — R" such that f(M)=
A, Moreover, for these M and f, there exist an r-dimensional analvtic manifold
N and a proper analytic map g: N — M such that fog(N)=7(\.

(2.5) Let f: X— 1 be a proper subanalytic map of analvtic manifolds.
2.5.1) Iy B is a subanalytic subset of Y, then so is f~X(B) in X.
(2.5.2) If A is a subanalytic subset of X, then so is f(A) in 1.

(2.6) Let ACR", f: R*— R™ be subanalytic. Assume that thc ~estriction of
S to A is proper (e.g. A is bounded). Then f(A) is subanalyvtic.

(2.7) Let ACR" be subanalytic. Then there exists a subanal:tic subset A" of
A with dim A’ <dim 4 such that A—A’ is an analytic manifold.

Definition 2.8. Let M, NCR" be C* manifolds. Assume that AMNN=@.

Let yeN. We say that (M, N) satisfies the Whitney condition at y if the fol-
lowing is satisfied.

(2.8.1) If {x;}, {y.} are sequences in M, NN respectively, both converging to »,
if the sequence of tangent spaces {T';,M} converges to a subspace TCR" (in
the Grassmannian of g-dimensional subspaces of R™ where ¢=dim M), and if
the sequence {5:-} of lines containing x;—y; converges to a line LCR" (in
the Grassmannian of 1-dimensional subspaces of R"), then LCT.
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We say that (1, N) satisfies the Whitney condition when it does so at every
point in NN.

Definition 2.9. A stratification of a subset X of R" is a partition {X,} of

X into bounded connected analytic submanifolds of R™ such that
(2.9.1) {X,} is locally finite in R™, and that

(2.9.2) X X,=@ implies X;DX,.

If {X,} satisfies moreover

(2.9.3) for anv .\, X,, (X;, X;) satisfies the Whitney condition,

then we call it a TWhitney stratijication. The stratification is called subanalytic,
if all strata are subanalytic. In Section 4 we weaken the above conditions on
strata, we only assume they are C* manifolds and satisfy (2.9.1).

Definition 2.10. Let {A,}, {B,} be families of subsets of R". We say that
{4} is compatible with {B,} if for each v, p.

A,CB, or A, B, =@ .

(2.11) For a locally finite family {A.} of subanalytic sets in R”, there exists
a Whitney suhanalvtic stratification of R™ compatible with {A.}.

In the case in which {A,} consists of one set, it is shown in [3]. The fol-
lowing is the keyv to the proof.

(2.12) Let M, NCR™ be subanalytic analytic manifolds with MNN=@. Then
there exists a closed subanalytic subset N’ of N such that dim N’ <dim .\ and that
(M, N—N’) satisfies the Whitney condition.

Proof of 2.11). We may add R™ to {A,}. We proceed by downward in-
duction. Induction hypothesis: There exists a Whitney subanalytic stratification
{X;} of a subanalvtic subset Y ,,; of R" compatible with {A4,} such that Z,=
R*~Y ,,; is closed and of dimension<F/ and that each X; is of dimension> %
(the case k=n is trivial). Put {A}}={A.NZ,}. For each A we have a
subanalytic partition B, and C, of A] by (2.7.12) such that B, is an analytic
manifold of dimension %, that C, is of dimension<k and that (X;, B,) satisfies
the Whitney condition for any X;. Let Z,.; be the union of all B,—B,, C, and
connected components of dimension</% of the sets in the form B,NB,.. Then
Z -, is closed. subanalytic and of dimension</% by (2.1.2) and the locally finite
assumption of {1,}. It follows also that the union of B,—Z,.; is Z;,—Z ;-
because of R”< {4,}, and it is also a subanalytic analytic manifold. Let {X}}
be all connected components of Z,—Z,_;. Then each X; is a subanalytic ana-
lytic manifold contained in some B,, and moreover X;N\B, # @ implies B, DX}.
Namely {X}} is compatible with {A,}. Hence {X;}\U{X]} isa Whitney subana-
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Iytic stratification of Y ,=R"—Z,_, compatible with {A4,} whose strata are of
dimension=k. Therefore (2.11) follows.
(2.13) Let XCR™ be a closed subanalytic set.
(2.13.1) A map f=(f1, -+, [n): X— R™is subanalytic if and only if so are all f;.
(2.13.2) The set of all subanalytic functions on X is a ring.

(2.13.3) Let f: X— R g: R*— R' be subanalytic. Then gof: X— R is sub-
analytic.

Proof. (2.13.1). Put
Y =graph f, Y,=graph f;, i=1, -, n.
Let 7;: R®"XR* > R™"XR, r;: R"XR"— R™XR" be defined by
7%, s Xmy V1, s Yu)=(x1, =+, Xm, ¥:) and

Ti(l'}, s Xmy Y1, yn):(xh Tty Xmy Yo 7ty Vi M Vavn 77 ;V'n\

Then we have
Y =Y, =1, -, n,

Y= érL(YiXR"‘I) .
Since X is closed in R™, so is ¥ in R™XR". Hence, by (2.6) and the above

former equality, if ¥ is subanalytic. then so is Y;. The converse follows from
(2.1.2) and the latter equality.

(2.13.2). Let f,, f, be subanalytic functions on X. Put
Z-={(¥1, yo. Y)ER | ys=y1—y:}.
Zx={(yy, 2, y)ER[y:=y134},
Y;=graph f,;, i=1, 2,
Y_=graph(fi—/s), Y.=graph [.f..
Let 7: R®"XR*— R"XR, 7: R"XR?— R™X R’ be defined by
(X, ) Xmy Vi Vo Yo)=(Xy, ) Tms ¥s),
(X1, oy Xmy Vi Yoy ¥3)=(X1, 5 Xy Y2, Yo V) -

Then we have
Y _ =a((R™" X ZINY X R)Nz(Y . X RY),

Y, =x(R"XZ)NY X RON(Y . X R).

Hence it follows from the closedness of X, (2.1.2) and (2.6) that Y_, Y, are
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subanalytic.
As (2.13.3) follows in the same way as above, we omit its proof.

(2.14) Let MCR" be a connected subanalytic analytic manifold of dimension
r, and f: R®— R™ be an analytic map. Then there exists a closed subanalytic
set ACM of dimension<r such that the differential d(f|x) of flx has constant
rank on M—A.

Proof. Let v’ be the maximal rank of d(f|y). Since M is connected, and
since f is analytic, the set

Y={yeMirank d(f|x), <7’}

is an analytic subset of M of dimension<z. Now by (2.2), dim(M—M)<r and
dim M=r. Hence there exist by (2.4) an analytic manifold N of dimension r
and a proper analytic map g: N — R" such that g(N)=M. Put

X={xeN|rank d(f-g).<r'},
X' ={xeN|rankdg,<r} .

Then X, X’ are analytic subsets of N. Let N, be the union of all connected
components of N being contained in X, and let N,=N—N;. We see N;CX’ by
reduction to absurdity. Assume N,—X'#@. Then g(N,—X’) has inner points
in M. Hence it follows that M-=Y)Ng(N,—X")+@. This means that there
exists a point y=N, such that g(y)eM, that g is an imbedding on a neighbor-
hood of y and that rank d(f|s)g,» =7, and hence rank d(f-g),=r’. This con-
tradicts the definitions of X and N,. Thus N,CX’. Hence we have dim g(N,)
<7, which together with the inequality dim (N,N\X)<r implies dim g(X)<». Put
A=MnNg(X), then the lemma follows from (2.2.6).

(2.15) Let f: R*— R™ be analytic, and X, X;, i=1, 2, -+ be locally finite
subanalytic sets in R™ with XDX;. Then there exists a Whitney subanalytic strat-
ification {Y.} of X compatible with {X;} such that fly, for each i has constant
rank.

Proof. We prove it by induction on r=dim X. The case r=0 is trivial.
Hence we assume it for dim X<r. By (2.11) there exists a subanalytic strati-
fication {X7};-,.. of X compatible with {X;}. Let dim X}=r for i€ 4,, 4,CN,
and dim X[<r for ieA4,. Apply (2.14) to each Xi, icA,. Then we have a
subanalytic set Z; in X; of dimension<r such that f|x;-, has constant rank.
Apply once more (2.11) to {X{—Z,;, Z;, Xjli€d,, j& A}, and let {Yi};-.. be
the resulting Whitney subanalytic stratification of X compatible with {X;—Z,,
Z, Xjlied,, je ;) with dim Yi=r for i€4,, A,CN, and dim Y} <r for i< A,.
It clearly follows that {Yj} is compatible with {X;}. By induction hypothesis
there exists a Whitney subanalytic stratification {Y/} of g Y} compatible with

i 2
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{Y'i}s¢., such that f }y;’ for each ; has constant rank. Then (Y3, Y%) for any
i€ 4, and any j satisfies the Whitney condition, because 17} is contained in some
Yi, i€ d,, and (Y}, V) satisfies the Whitney condition. Hence {Y7};¢4,U {177}
satisfies the required properties.

§3. Triangulation of Subanalytic Sets

The purpose of this section is to prove the following refinement of a result
in [4].

Proposition 3.1. Let K be a triangulation of R". Let {A;} be a locallv
finite family of subanalytic subsets of R™ Then there exist a subdivision K’ of
K and a homeomorphism = of R™ such that

(3.1.1) t is subanalytic,
(3.1.2) z(o)=0 for any s<K,

(38.1.3) for any c=K’, ©(6) is an analytic submanifold of R" and t|s: ¢ — 7(0)
is an analytic diffeomorphism and that

(3.1.4) {z(@)|es K’} is compatible with {A;}.

A simplex (or a cell) is understood to be a closed one, and ¢ is the interior
of a simplex or a cell . By oo we denote the boundary. In this paper we
always consider the usual polyhedron structure on R".

The condition (3.1.2) was not under consideration in [4], and it will play an
important part in our application (see Remark 6.23). We proceed with the proof
in a similar way to [10].

Let ACR™ be subanalytic, and c=R" be a point. A line A through ¢ is
called non-singular for A at ¢ if ANA=c or =@ in a neighborhood of ¢. In
the other case, namely when dim (AN A)=1 in any neighborhood of ¢, 2 is called
singular for A at ¢. If 2 is non-singular for A at any point of 2, we call 2 non-
singular for A. In the other case 2 is called singular for A.

Let a=R" be a point, and S7;'CR" denote the sphere centered at ¢ with
radius 1. Let gqo: R"—a— S?7%, qo: R*™—a— S? !X R be defined by

ga(x)=a+(x—a)/|x—al,
ga(x)=(go(x), |x—al).

Let X;, X,CR" and Y CS?"* be subsets with aes X, .X,. Assume the exis-
tence of functions ¢, ¢, on 1 such that ¢o(X,)=graph ¢, i=1, 2. Then we
write

X, <X, with respect to (R", a) it ¢

<
Xi= X, with respect to (R", a) if &=
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In either case we denote by (X, X;) and [X;, X.] the sets
{ga' (v, Di(y, HEY X R, i(9)<t<¢(y)} and
{ga(y, DID(M=t= Do)}

respectively.

An analytic submanifold I'CR" is called topographic with respect to (R*, a)
if a1, if go(I") is an analytic manifold and if g.|;: I'— q.(I") is an analytic
diffeomorphism. Let p: R*XR™ — R" be the projection. An analytic submani-
fold I'CR*X R™ is called topographic with respect to R™ if p(I') is an analytic
manifold and if p|,: I'— p(I") is an analytic diffeomorphism. We remark that
an analytic submanifold I"CR™ is topographic with respect to (R", a) if and only
if a€I" and if go(I")CR"XR is topographic with respect to R.

We say that a subset XCR"—a has property (P) with respect to (R", a) if
the restriction ¢o|x is an open map. If XCR"XR™, we define the property
(P) of X with respect to R™ in the same way as above. We also remark that X
CR" has property (P) with respect to (R", a) if and only if ac¢ ] and if ¢,(X)
CR"XR has property (P) with respect to R.

Lemma 3.2. Let ACR" be subanalytic and of dimension<n. Then the union
of all points on lines singular for A is meager in R™ (a countable union of no-
where dense sets).

Proof (Compare with Lemma 3 in [10]). Let {4,} be a subanalytic strati-
fication of A (2.11). Since {A;} is locally finite, any singular line for A is
singular for some A;. Hence we can assume A to be an analytic submanifold
of R". Then there exist an open set UCR" and an analytic function f on U
such that AcU, A=f"*0). Put

O={(x, y)eUXR"|y+0, the line through x
and x4y is singular for A at x},
m(x, y)=x-+y for (x, yyeUXR".
Then @ is a semi-analytic subset of UXR" [7], because of

@:{(x, yyeUXR"| y+0, g{rf(x+ty)t=o:0; =1, 2, }

If a line 2 is singular for A at a point x, f vanishes identically on the con-
nected component of ANU containing x. This implies that for any point x€U,
there exist neighborhoods V, V’ of x, 0 respectively such that z(@N\(V XV")) is
contained in f~%0). Hence x(@N(VXV’)) is of dimension<n. On the other
hand we have

(3.2.1) ONVXRY={{x", ty)|(x’, ) €OV XV"), t+0=R} .
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Choose as V a closed small ball centered at x. Then @N\(V XR") is semi-ana-
lytic in R*X R™ and hence subanalytic by (2.3). Apply (2.11) to @N\(V X S™Y), and
choose a finite stratification of the set. Then, by (3.2.1) there exists a finite
stratification {M,} of @N\(V X R™) such that for each 7, if (x’, y)eM,, >0, then
(x’, ty)eM;. Therefore the rank of the restriction x|y, for each 7 is smaller
than n in a neighborhood of (x, 0) and hence on Af,. This implies that z(0) is
meager in R*. As the set in question is contained in z(@)UAd, Lemma 3.2
follows.

Lemma 3.2". Lot A be the same as Lemma 3.2. Let B be the subsel of the
projective space P" (R) consisting of lines L such that a+-L={a+x|x&L} are
singular for A at a for some acA. Then B is meager in P"*(R).

Proof. We reduce in the same way as the proof of Lemma 3.2 the problem
to the case in which A is an analytic submanifold of R™ and hence in which 4
is the zero set of an analytic function on an open set. Then the lemma is a
special case of Lemma 3, [10].

Lemma 3.3. Let A,.CR" i=1, 2, --- be subanalvtic sets of dimension<n, and
a=R" be a point. Then there exist a point beR™ arbitrarily close to a such that
any line through b is non-singular simultaneously for all A4,.

Proof. Trivial from Lemma 3.2.

Lemma 3.3’. Let A, be the same as Lemma 3.3, and let L=< P"Y(R). Then
there exists L’ P*~YR) arbitrarily close to L such that for any a=R™ a+L' is
non-singular simultaneously for all A;.

Proof. It follows from Lemma 3.2".

Lemma 3.4. Let {A,} be a finite family of compact subanalytic sets in R”
<R. Assume that for any x €R", the line x XR is non-singular for \JA;. Then
there exists a subanalytic stratification {X,} of \U.; compatible with {d,} such
that each X; is topographic with respect to R.

Proof. Let r be the dimension of A=UA,. We prove the lemma by in-
duction on ». The case r=0 is trivial. Assume the lemma for dimension<r.
Let p: R"XR — R"™ be the projection. By the non-singularity assumption on A4;
we have dim p(A)=r. Apply (2.7) to {p(A)} and (2.11) to {A;}. Then there
exist a subanalytic stratification {B;};-;,..s of A4 compatible with {4} and a
subanalytic partition Cy, C, of p(A) such that the dimensions of B, and C; are
equal to r for 7=1, ---, s/, j=1 and smaller than r for i=s"+1, ---, s, /=2 and
that C, is an analytic manifold. Now apply (2.14) to p and each B;, i=1, -+, s".
Then we have subanalytic subsets D;CB; of dimension<r closed in B, such
that d(p|z,) has rank r on B;—D; by the non-singularity assumption.

Put



736 MASAHIRO SHIOTA

M:Cr¢<g“LU ") B.)

N=p"ANNA.

Then (i) M, N are r-dimensional subanalytic analytic manifolds by (2.5), (ii)
p(N)=AM, (iii) p|» is an immersion and (iv) dim(A—N)=dim(p(A)—M)<r. Let
{Xi}i=1,...r be the connected components of N. Then each p(X;) is an analytic
manifold, moreover it follows from the compactness of A that (X;, plx, p(X))
is an analytic covering. The covering is 1-fold. Indeed, if not so, we have a
subset X;CX; homeomorphic to S’ such that (Xj, p|x;, p(X3) is a non-onefold
covering. We easily see that to be impossible by the inclusion X;Cp(X;)XR.
Thus X; are topographic with respect to R. We remark that {X;} is compatible
with {B;} and hence with {A4;}.

If a connected subset Y of A—N is compatible with {4} = {D,, E,-Iz':l, e,
s/, j=s'+1, .-+, s}, then we see easily Y CB; for some j, hence Y is compatible
with {4;}. Hence for the proof we only need a subanalytic stratification
{Xi}ik+1,. ir Of A—N compatible with {A;}\U{A—N} such that each X; is
topographic with respect to R. Since A—N is compact and of dimension<r,
and since A;CA—N, it follows from the induction hypothesis, hence the lemma
is proved.

Lemma 3.5. Let ACR"XR be a compact subanalytic set. Assume that 0= 4
and that for any x=R™, the line xXR is non-singular for A. Then there exists
a compact subanalytic set BCR"XR such that ACB, that xXR for any x€R"
is non-singular for B and that BNU has property (P) with respect to R for some
open subset U of R™*XR containing 0.

Proof. We prove the lemma by induction on n. If n=0, the lemma is
trivial. Hence we assume it for n—1. Let p: R*XR — R™ be the projection.
By Lemma 3.4, there exists a subanalytic partition A;, A, of A such that -4,
(may be empty) is an analytic manifold of dimension n, that A, is compact and
of dimension<n and that p|,, is open. We clearly have A,#@. We assume
moreover 0= A4, otherwise we have nothing to do. Since dim p(A4,)<n, there
exists by Lemma 3.3’ a line LeP" *(R) such that for any a=R", a-+L is non-
singular for p(A,). Hence, without loss of generality we can assume that for
any x'R"! the line x’XRCR"!XR=R" is non-singular for p(A4,). This
means that for any x'€R"', x’XRXRNA, is of dimension 0 and hence con-
sists of finite points.

Let p,: R"XR — R"*XR be the projection defined by

pZ(xlr ty Xny y):(xl: ty Xa-1n ,V)-

Then it follows that p,(A,) is a compact subanalytic set containing 0 and that
for any x’eR"™, the line x’XR is non-singular for p,(4,). So by induction
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hypothesis we have a compact subanalytic set B,C R"*X R such that p,(A4,)CB,,
that x’X R for any x"R"™! is non-singular for B, and that B has property (P)
with respect to R in a neighborhood of 0. Hence B’=p3'(B,)N\(a large closed
ball centered at 0) is a compact subanalytic set in R"X R such that A,CB’, that
x.<R for any x=R"™ is non-singular for B’ and that B’ has property (P) with
respect to R in a neighborhood of 0. Therefore B=A,\UB'=A\UB’ satisfies the
required properties in Lemma 3.5.

Using ¢,, we immediately obtain from Lemmas 3.4, 5 the following.

Lemma 3.4'. Let {A.} be a finite family of compact subanalytic subsets of
R", and a=R"™ be a point outside of A=\UA,. Assume that any line through a
s non-singular for A. Then there exists a subanalytic stratification {X,} of A
compatible with {A,} such that each X; is topographic with respect to (R", a).

Lemma 3.5. Let ACR™ be a compact subanalytic set, and let a=R"—/,
b=A. Assume that any line through a is non-singular for A. Then there exists
a compact subanalytic set BCR™ such that ACB and a< B, that any line
through a is non-singular for B and that BNU has property (P) with respect to
(R", a) for some open neighborhood U of b.

Lemma 3.6. Under the same assumption as Lemma 3.5, there exist a compact
subanalytic set BCR™ and a subanalytic stratification {B;} of B such that ANU
is a union of some B,’s for a neighborhood U of b, that each B; is topographic
with respect to (R™, a) and that B has property (P) with respect to (R™, a).

Proof. Assume a=(0, ---, 0), b=(0, ---, 0, 1). Let d,, >0 be small numbers.
Put

h(x)=(xi+ - +x3-1)""—0,X,,
Q={xeR"| h(x)=0, |[1—Ix]||=0}.

Then Q is a small neighborhood of b. It is easy to find an analytic diffeomor-
phism z of B*—0 such that

lz(x)i=|x],

n(x)=x if h(x)=0.
hm(x)>0 if £(x)<0,
hr(x)<0 if h(x)>0,

and that = carries each half-line with end point 0 to some such half-line.
Apply Lemma 3.5 to A, let A; be the intersection of Q and the resulting
subanalytic set, and put
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:ngAJ\aQ ’ Ay=n{A)),
."L;ZAHQ » B:A1U.43 .

Then .1,CB, and any line through 0 is non-singular for A,, .1; and hence for
B. Choose 6,, 0 small enough. Then B—A, has property (P) with respect to
(R", 0), and we have 0XRNA,=b. Furthermore, we lessenning d, so that

A, {xeR h(x)=0},

B comes to have property (P) with respect to (R®, 0). Now apply Lemma 3.4’
to {A;}i=1,..s. Then the resulting subanalytic stratification {B;} of B satisfies

the required properties.

Let ¢CR"” be an n-simplex, and acd. We define p,,: R"—a —do by
Dboa(x)=the intersection of do and the half-line through x with end point a.

For cell complexes I, K,, K;X K, denotes the product cell complex {g,X
g.l0,€K,, 0,€K,}. For a point a, a simplex ¢ and a complex K, we write as
a* ¢ the cone with vertex a and base ¢, and as a * K the complex generated
by a*¢’, 6’ K, if they are well-defined.

Let ¢ be a simplex, and a=é. For any homeomorphism ¢) of do, we define
the conic extension homeomorphism a * ¢ of ¢ by

Hepoal(x)—a)ta for x+a
a x g(x)=
x for x=a
where
Hpsolx)—a)=x—a.
Then we have

Lemma 3.7. If ¢ is subanalytic, so is a * .

Proof. Let R" be the affine space spanned by ¢. Assume a=0. By (2.4)
there exist a compact analytic manifold M and an analytic map f: M — R*XR"
such that f(M)=graph¢. Let F: MX[0, 1] — R*XR" be defined by F(x, t)=
tf(x). Then F(MXIO0, 1])=graph(0*¢), and it is a subanalytic set. Clearly
0= ¢ is continuous. Hence a % ¢ is subanalytic.

Proposition 3.1'. Let K be a simplicial complex in R". Assume |K| to be
closed in R™. Let {A;} be a locally finite family of subanalytic subsets of R"
contained in |K|. Then there exist a subdivision K’ of K and a homeomorphism
7 of | K| such that the conditions (3.1.1), ---, (3.1.4) in Proposition 3.1 are satisfied.

Proof of Proposition 3.1. Trivial if we assume Proposition 3.1'.

Proof of Proposition 3.1’. Let m be the dimension of K. We will prove
the proposition by induction on m. The case m=0 is trivial. Assume the prop-
osition for dimension=m—1. Since a simplex is a subanalytic set, we assume
{A) DK™, where K™! is the (m—1)-skeleton of K. Considering A; o for
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each A; and o= K, we may suppose that each A; is contained in some o< K.

Moreover we can assume that A, are closed. Indeed, if A; is not closed,
we replace A; by a finite system of closed subanalytic sets as follows. Let
A=A, and A“H:;li]—A”, 7=0, 1, ---. Then, by (2.2), dim 4,;;+,<dim A4,, so
long as A;,#@. Replace A, by {4;,}.

We may assume also dim A;<m for each 7. In fact, if dim A;=m and A,
is contained in o< K, then we consider A;—Int(A,) in place of A;. Here Int(A,)
means the interior of A; in the affine space spanned by ¢. Then a partition of

| K| compatible with the new family is automatically compatible with {A4,}.

(I) Let ¢ be an m-simplex of K, and 2 denote the affine space spanned by
o. We regard Y as a Euclidean space too. Then there exist a point a, of ¢
and a finite family €, of subanalytic analytic submanifolds of X such that

(L1) each I'ec, is contained in ¢, topographic with respect to (2, a,),

(I.2) the union S, of all I'e¢, is closed and has property (P) with respect to
(%, ay), and that

(.3) any connected subset of ¢ compatible with C, is also compatible with {.1,}.

Before proving this, we remark that (I.3) is equivalent to the following. Let
A be the index set of C,. Let ¢, be the family of all connected components
of sets in the form [\ I, N I'¢, 4, being subsets of 4 and I'§{ denoting the

i€dy 1¢4y
complement in ¢. Then C; is compatible with {A,}.
Another remark is that if (I.3) is satisfied for any m-simplex of K, then the
condition (3.1.4) can be replaced by

(3.1.4)" {z(6)le= K’} is compatible with

U CI{AJAC| K™}
gERK-Km-1

Proof of (I). Apply Lemma 3.3 to all A; contained in ¢. Then there
exists a point a,=¢ such that a,& A; for any 7 and that any line through a,
is non-singular simultaneously for all A,Co. Now for each A;Co¢ and each
be A;, apply Lemma 3.6 to A,, a, and b. Then we have a compact subanalytic
set BC X and a subanalytic stratification {B;} of B such that A; is a union of
some Bj's in a neighborhood U;, of b, that each B; is topographic with respect
to (2, a,) and that B has property (P) with respect to (2, a,).

Since A; is compact, we can choose finite b’s so that U,,’s cover 4;. Gather
B, for those b, and let the family be denoted by C,;. Let C, be the union of
Cq; for all A;Co. Then C, clearly is finite and satisfies the properties (I.1, 2)
except that I'Co. Moreover, if we replace {4;} in (I.3) by {4;|A;Co}, then
(L3) is satisfied. If I'¢ o, we consider '\ in place of I. Then the inclusion
I'Co is satisfied and the other properties remain valid because of {A4;} DK™ .
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In addition to that, (I.3) in its former condition follows from I'Coe. Hence (I)
is proved.

(D Put {Bg = {pea, NI, I"eC,, o€ K—RK™ 1 U{A;| A,C| K™},
Then {B;} is a locally finite family of subanalytic subsets of |K™"!|. Hence
there exist by induction hypothesis a subdivision K™~ of K™ ! and a homeo-
morphism = of |K™"!| such that

(II.1) =« is subanalytic,
(I1.2) =(o)=0¢ for any =KK™},

(I.3) for any oK™ ", =(d) is an analytic submanifold of R and r|;: ¢— =(6)
is an analytic diffeomorphism and that

(II.4) {n(6)|c= K™} is compatible with {B.}.

We remark that 7|, for any ¢< K, is a homeomorphism of do because of
(11.2). Let # be an extension of = to | K| defined by

[ asc*(zlas) on oceK—A™
F:{ T on [K™1].

Then the following are trivial.

(I.5) # is a subanalytic homeomorphism of |K| by Lemma 3.7.
(11.6) #(o)=0 for any oc=K.

(I.7) Let K be the subdivision of K

U @, x Kp-rUKm-Y

g=K-Km-1
where

KpV={c'e K™Y |o'Co} .

Then for any e K3, #(¢) is an analytic submanifold of R™ and #|s: 6 — 7(6) is
an analytic diffeomorphism.
For each = K— K™, put

o, a={{{x—a.)+a,|xdo, b=t=c}
01=0¢,:3 02=0¢:,13 for 0<e<1,

and fix e>0 so small that o.N\['=@ for any I'eC,. After adding some sets
to {4;} and C,, we assume that

(I.8) o:Mo, is at once an element of {A4;} and a union of elements of C,, and
6, does not intersect with any I'eC,.

(II) Let ¢ be an m-simplex of K, and 2 denote the affine space spanned
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by ¢. Put
Ko={n(d)| o’ € K3V}
L ;= {connected components of I'Npzt (B[ €C,, fE K} .

For any f€ X, denote by s(B) the image under « of the set of vertexes of ¢’
such that n(¢’)=pf. Then the following properties hold.

(Ill.1) Each ye.L, is a subanalytic analytic submanifold of X with p,a, (7)€ Ko,
topographic with respect to (X, a,).

(II.2) .£, is a finite family of disjoint sets.

(II.3) The union of all y=.L, coincides with S,, hence closed in 2 and has
property (P).

(Ill.4) Any connected subset of o compatible with .£, is also compatible with
{A}.

(I.5) For any y&€.L,, the restriction of p,., to the closure ¥ is a homeomor-
phism onto psq,(y), ¥ is a union of elements of .L,, and we have 7Nps, (B
L, for any f€ K, contained in peaq, (7).

Proof. If 7y is a connected component of I'"\p;i () for I'€C,, fE K,,
then we have by (IL4) SCpsq,([") which, together with (I.1) and (IL.1, 3), implies
the first half of (IIl.1). As to (IIL.2), the finiteness of ., is trivial by (2.2). If
71, 1=1, 2, are respective connected components of I;Npz2 (8:) with 71:N7.# @,
then BiNBaNpoa,l1NI3)# D, hence Bi=B,Cpsa,(IiNI3) by (I1.4), which gives
71=7s. The property (II1.3) is trivial by (I.2), and (IIl.4) is an easy consequence
of (I.3) since any I'C, is a union of some elements of .L,.

To prove (IIL.5), let 7€ Ly, B=poa,(7)EK,. We have p,q,(7)=pF because
of yCos, and 7CS, by (IIl.3). For any x=f—p, the subanalytic set 7N\pz2,(x)
has dimension 0 by (I.1) and hence is discrete. This easily implies that pgq,|7:
7 — B is a homeomorphism (the first part of IIL5). Let =X, with B,CH.
Then 7Npzi,(B1) is homeomorphic to B, under p,.,, and it is contained in
SesNpsa,(By), which is a finite union of disjoint elements of £,, each being
homeomorphic to B; under p,q,. Hence 7Np7i (B, must be one of those ele-
ments. This establishes the second and third parts of (IIL.5).

Considering the barycentric subdivision Sd(K™ ') of K™ ' in place of
K™= if necessary, we can assume

(IL6) Let 71, 7:€ Ly With poe,F)=poa,(y2)= 8. Assume y,<y, with respect
to (2, a,). Then 7,<7, with respect to (2, a,) and

71N paa,(S(BNFET N paa,(s(B) .

The reason is the following. It is clear that 7,=7, with respect to (2, a,).
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Let 7, with [,€C,, i=1, 2, f=n(¢") with ¢’€Sd(K ") and ¢C¢g’ with
'€ K. Let §i, i=1, 2, be the connected components of I;N\pyi, (z(6") con-
taining 7;. Then, using (IL.3) we see in the same way as the above proof that
7: are diffeomorphic to 7(§’) under p,., and that 7,<7.. As =(¢’) contains a
point of s(B), that implies the required inequality.

Let 7y, 72.€L,. We call 74, 7. a consecutive couple of L, if poa,(F1)=Doa,72),
7:<r. with respect to (2, a,) and if (7, 7,) does not contain any element of
L,. Then we have

(I1.7) Let 74, 72 be a consecutive couple of .£,. For each S X, contained in
Doa, (1), iNDsa,(B) and 7.Npsi (B) are identical or consecutive.

In fact yi=7:"\pss,(B), i=1, 2, are elements of .L, (IIL.5). Hence y;=7: or
71<7s with respect to (X, a,). Assume that an element of ., is contained in
(r, r2). Then, since S, has property (P) (IIL.3), we have S,N\(y, 72)#D. As
SeNpsd,(Poa,y:)) is a union of some elements of .L,, that implies 7;:C(ry, 72)
for some y;=.L,, which is a contradiction.

Denote by .£# the family of all sets (yy, 7,) where 7., 7, are consecutive
couples of .£,. Put

LIE=L,JLE.
Then we have

(II.8) .c¥ is a finite family of disjoint subanalytic analytic submanifolds of 2,
whose union is equal to ¢, (in II).

Indeed the first half follows from (III.1, 2), and the latter half does from
(I.1), (1L.8), (IIII.3) and the inclusion {A4;} DK™
By (III.4)

(IL9) _£¥ is compatible with {A,}.
Finally it follows from (III.2,5,7) that

(IlI.10) For any ye.L¥, 7 is a union of some elements of ¥ If r=(y, 7)<
L7, any element of ¥ contained in 7 is in the form 7.Npza, (B), ToN\pad,(B)
or (71N psa,(B), T2Npas,(B) with B€ K4, BCThoa, ().

(IV) We use the same notations as (IlI). For any ye.l,, we define a
simplex o(y)Co as follows. Put S=p,q, (7). Consider #*FNpsa,(s(B)). It
consists of indepentdent (dim y-+1)-points by (IIL.5) (see [13] for the definition
of independence), because the image of the set under Poa, is w7H(s(B)). Let
o(r) be the simplex spanned by the set, and §(y) be the open simplex. Then
we have

(I\Il) paag(@(r)):ﬂ_l(,bﬂa,(r))
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since
Oezedlx, D=(x(x), )  for (x, HEP()
where the subanalytic homeomorphism ¢ : do X (0, 1] — o—a, is defined by
olx, H=t(x—aq)+a,.

{IV.2) If y<y’ with respect to (X, a,), then o(y)<p(y’) with respect to (X, a,
by (II1.6),

(Iv.3) If 7’7 then p(y’) is a face of p(y) by (IL5), and

(IV.4) If y=.L, is contained in d¢ or do,, then p(7)=7"y) by lIL8), where o,
is defined in (II).
Put
L,={p(NlreL,},

Lo, ={oM|7E L, 7C04},

’

Li={lp@), oG )1l7, 7'+ consecutive couples of .C,}.
L¥=L,Uas#Lss \JL;.

Then, by (IIL.8, 10) and (IV.1, 2, 3, 4)

(IV.5) L¥ is a finite cell complex whose underlying polyhedron is equal to o.

Let 7, be a homeomorphism of ¢ defined so that
(pGN=r for reL,,
(80, pUN=Gw 72)  for (7y, 7)ELT,
Peoay°Te=7° Poa, on o.,

== on oy,

and that for any (7, 7.)€.L5 and any x&do, ©, is linear on the segment (o(7)),
07NN poa,(x). Then z, is uniquely well-defined and equal to = on do by the
definition of =, (III.8, 10) and {IV.4).

Hence we have a homeomorphism z of |K| whose restriction to each ¢
coincides with ©,. Letting K’ be a simplicial subdivision of L LRUK™ Y

gERK-K "-2

we want to see that =, {’ satisfy (3.1.1, 2, 3, 4). First note that(3.1.1 is equivalent to
(IV.6) z,|, is subanalytic for each ¢’ L}.

Proof of (IV.6). If ¢’Co, it follows from (IL.5) and from <.=% on ¢’.
Assume ¢’=p(y) with ye.L,. Then

Talv':(paagl;_)—1°7t°poag[0' .

Hence (2.13.3) shows that ©,|, is subanalytic. Let o'=[p{y). o ;" _ with 7, 7’
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e.L, Then. by the above statement and (2.4) we have compact analytic mani-
folds M, M’ and analytic maps f=(f, fs): M —aXo, f'=(f1, fi): M' > oXo
such that f(Af)=graphz,|,q), f(M’)=graphz,|,;. Define an analytic map
F: MXM' [0, 17— ocXo by

Fle v/, H=tf(x)+1—1)f"(x")

=(@tf(x)+A=F1(x"), tfo()+A—8fa(x").
Put

M'={(x, xYEMXM | poa,°f1(x)=Dsa,°fi(x")} .
Then M” is a compact analytic set, and we have
F(M”x[0, 1])=graphz,|, .

Hence, by (2.3) and (2.5.2), graph z,|,+ is subanalytic which proves (IV.6).
(3.1.2, 3) are trivial, and (3.1.4) follows from (IL.8) and (III.9). Hence we
complete the proof of Proposition 3.1’.

Remark 3.8. e can refine Propositions 3.1, 1’ as follows. Let L be a
subcomplex of \. Assume {¢|c=K—L} is compatible with {4,}. Then = can
satisfy moreover. for any ¢ K with N |L|=0Q,

(38.1.5) r=iden: on ¢, and
(3.1.6) o=k

It is clear by the method of construction of = in the proof of Proposition 3.1’.

The condition (3.1.5) will be important when we will enlarge the domain
where f is piecewise linearized in the proof of Theorem I, §7. This is one of
the reasons why we refined a result of [4].

We will show a semi-algebraic version of Propositions 3.1, 1’. A subset of
R™ is called seii/-algebraic if it is a finite union of sets in the form

xR fU(x)>0, -, f1(x)>0, fraa(x)=0, -+, fu(x)=0}

where f; are polvnomials on B®. A continuous map between semi-algebraic
sets is called semi-algebraic if the graph is semi-algebraic. We remark that the
semi-algebraic versions of the results in Section 2 hold true, in which the locally
finite condition must be replaced by the finite one (see [1], [4], [10]). Since the
stereographic projection R™ — S™ is semi-algebraic, in most problems of semi-
algebraic sets we can restrict the sets to being bounded.

Proposition 3.9. Let K and L be a finite simplicial complex in R™ and a
subcomplex respectively. Let {A;} be a finite family of bounded semi-algebraic
subsets of R™ contained in |K| such that {6|c=K—L} is compatible with {A;}.
Then there exist a subdivision I’ of K and a homeomorphism = of R™ such that
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3.9.1) = is semi-algebraic,
(3.9.2) <lo)=0 for any <R,

3.9.3) for any oK', =(¢) is an analytic submanifold of R" and <'3: ¢ — 7(9) s
an analvtic diffeomorphism,

3.9.49) {z(0)

o= K'} is compatible with {4.},
3.9.5) c=ident on any o =K with oN|L|=@ and that
(3.9.6) any ek, with oN|L|=@, is a simplex of K.

This is a refinement of a theorem of [4] and Theorem 3. “1u7. As we can
prove it in the same way as Proposition 3.1’, we omit the proor.

Remark 3.10. In propositions 3.1 and 3.1 or 3.9, z is subanalytically or
semi-algebraically isotopic to the identity respectively. Namelv there exists an
isotopy =;: 'K|—|K]|, 0=t<1, such that z,=t, r;=ident and that the map T :
|K|XI— |K|XxI, I=[0, 1], defined by T(x, t)=(z,(x), t) is subanalytic or semi-
algebraic respectively. Moreover we can choose the isotopy so that for any
g K’, the restriction of T to t(¢)XI is an analytic diffeomorphism. This is
also clear by the method of construction of z.

§4. Whitney Stratifications and Vector Fields

In this section, we prepare for the proof of Proposition 5.1. All results are
derived from the Thom-Mather theory of Whitney stratification. The result
which will be applied is only Lemma 4.14, and the others need for its proof.
Manifolds, vector bundles and maps are of class C*, and we do not necessarily
assume the frontier condition (2.9.2), the connectedness of strata, nor the bounded-
ness for the definition of stratification. Let us recall some definitions (see [1]).

Definition 4.1. Let XCR" be a submanifold. A fube al X is a quadruple
T=(E, @, p, e) where =: E— X is a vector bundle of dimension=codim X, p:
E — R is the quadratic function of a Riemannian metric on E. and ¢: E,— R”
is an imbedding, commuting with the zero section {: X — E so that e<( is the
inclusion XCR", E, being an open neighborhood of {(X). We set |T|=e(E..
By identifying E, with |T|, we use x, p also as the map =-¢"* and the function
pee t on |T| respectively. For any open subset X’ of X, T + means (z %X’}
Tlz-1x, 0)z-1xn), €|z-1x7), and for two tubes at X, T=(E, =. p. ¢) and T'=
(E', 7', p/, &), we write as T=T"' if we have a neighborhood U/ of X in R”®
such that UC|TINI|T’], mly=="ly and ply=p’lv.

Definition 4.2. Let {X;} be a Whitney stratification of a2 subset X of R"
A tube system for {X,} consists of one tube T,=(E;, =;, p,, ¢.)at each X;. The
tube system is called weakly controlled if
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(4.2.1) e, (x)=my(x), x| TN T, Na;* Tl .
We call it controlled if furthermore
(422) AO;"Z'J(I):‘O,;(X), xEITllmIT_;ImTE;lel .

Definition 4.3. Let {X;}, {Y,} be Whitney stratifications of subsets X, I
of R™, R™ respectively. We call a C*map f from R™ to R™ a Thom map with
respect to {X,}. {Y,} when for any X;, X, the following are satisfied.

(4.3.1) f maps Y,, X, submersively into some strata (not necessarily onto).

(4.3.2) Let {x.} be a sequence of points in X; converging to xe X, such that
{ker d(f|x;)z,} » converges, in the appropriate Grassmann bundle, to a plane
LcR". Then kerd(f|x,).CL.

Definition 4.4. Let {X;}, {}",} be Whitney stratifications of subsets X, ¥
of R, R™ respectively, and f: R — R™ be a Thom map with respect to {X,},
{Y;}. A tube system {T;} for {X;} is controlled over a tube system {R,} for
{Y;} if {T,} satisfies (4.2.1) and (4.4.1) below and if (4.2.2) holds for any strata
X;, X with fIX,)\Uf(X)CY; for some ;.

(4.4.1) For anv XY, ¥; with f(X)CY,
femix)=mpof(x),  xe!TNSR,|.

Definition 4.5. Let M, NCR" be C* manifolds with AMINN=@. We say
that (M, N) satisfies the Whitney condition (a) if the following is satisfied.

(4.5.1) Let {v,} be a sequence of points in A converging to x&N. If the
sequence of tangent spaces {T';,M} converges to a subspace LCR", then LDT,N.

Remark 4.6. If (M, N) satisfies the Whitney condition, then it does the
Whitney condition (a) (see [11]).

Lemma 4.7. Let {Xi}, {Y,} be Whitney stratifications of subsets X, Y of
R, R™ respectively, and f: R™— R™ be a Thom map with respect to {Xi}, {Y;}.
Then for any weakly controlled tube system {R;} for {Y,} there exists a tube
system {Ti} for {X,} which is controlled over {R;}. Moreover, if {T} is a tube
system for {X,~U} controlled over {R;}, U being an open set in R", then {T}
can be chosen so that T:ly ~x, =T\ v nx,; for any given open set U'CR"™ with U
—UcX—X.

Proof. The first half coincides with Theorem 2.6, Chapter I, [1], and the
latter half is clear from the construction of {T;} in its proof. So we omit the
proof.

Corollary 4.8. Let {Xi},o1,5.. be a Whitney stratification of a subset X of
R Let V be an open neighborhood of X, in R™, and n: V — X, be a submersion
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with w|x,=ident. Then there exist an open neighborhood V'CV of X, and a
controlled tube system {T,=(E;, ms, pi, e0)} for {(Xi=X,N\V'} such that |T,|CV
and w,=n on |Ti|. Moreover if {T{=(E}, =}, 0}, €D} isa controlled tube system
for {X;NU} such that nd=r on |TY NV, U being an open set in R", then {T;}
can be chosen so that Tilv: ny rx, =Tv rvnx, for any given open set U’ with
VU —-UcX,—X.

Proof. As (R"—X, X,) satisfies the Whitney condition for any [, we can
add R*—X to {X;}. Hence we may assume X=R". By Remark 4.6 there exists
an open neighborhood V’'CV of X; such that for any xe X,

(4.8.1) = %x) and X, are transversal, ;=1, 2, ---.

Put {Y )} ={Y}={X}, R*"=R", and let f be any C* extension of =: V' —Y
to R”— R" Then if tube systems {T;=(F;, m;, p., e;)} for {X;} and {R} for
{Y} satisfy (4.4.1), then we have ;== on |T,| because of X=R", and if {T';}
is controlled over {R}, {T;} itself is controlled. Hence Corollary 4.8 follows
from Lemma 4.7 if we see that f is a Thom map with respect to {X;} and {Y}.

Let X;, X;» be any strata. It is clear by (4.8.1) that =!y,, m|x/ are sub-
mersions into Y (4.3.1). Let {x;} be a sequence of points in X converging to
x€X; such that {kerd(x|x}),}; converges to a plane LCR". We want to
see ker d (zlx;).CL. This follows from the following facts.

(4.8.2) We can assume that {TIJX;} ; converges to a plane in R™.
(4.8.3) We have ker d(;z]X;.)x]:TIJX{f\Tan:"l(rc(xj)).

(4.8.4) Let {K;} {L,} be sequences of linear subspaces of R"™ converging to K,
L respectively such that K, L are transversal. Then, for sufficiently large 7, K;
and L; are transversal, and {K,N\L;} converges to ANL.

Thus we saw that f is a Thom map with respect to {X;} and {Y}, which
proves the lemma.

We regard RY, (=1, ---, n, as linear subspaces
{(xyy =5 xR ERM xp41= -+ =x,=0}
of R*, and we put
x+R'={x+ylyeRY for x<R”".

Lemma 4.9. Let {X;} be a Whitney stratification of a subset X of R", and
U, be an open neighborhood of each X; in R". Assume that for each X; and x
eR" x+R' and X; are transversal where [=codim X;. Then there exists a con-
trolled tube system {T;} for {X,} such that for each i

(4.9.1) |T.|cU, and
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4.9.2) N (x)Cx+R™  for xEXif\(E\IJ u— \JU Uy,
JEIm

JE€Im-1
m=0, ---, dim X;,

where 1;, j=0, ---, n, are the index subsets consisting of i with dim X;=j, and
I—1:®.
Proof. Considering {d_ k‘% Xi}j=0.1,. in place of {X;}, we can assume
im Xj=j

{Xit ={Xi} ico,.. and dim X;=7. Put V;= LJ) X,. We prove the lemma inductively
=0

as follows; assume that we have already a controlled tube system {Ti=(Ej, =,

pi, ed)} for {X;NV;_.;} which satisfy (4.9.1, 2) where V,.; is an open neighbor-
j—1

hood of Y;_, contained in ;U U, (the case j=0 is trivial). Here we remark that
=0

U, Uj4y, -+ are not necessary when we see (4.9.2). Later we will replace Uj, -+,

Uj-1, V-1 by smaller ones. Hence the induction hypothesis is settled for any

U, -+, Uj-;,. After defining V; we want to extend {77} to a controlled tube

system for {X;N\V,}.
Let T;=(E,i, 7, pji, ¢;1) be a tube at X; such that

nix)Cx+R for xeX;.
The existence of T, is clear by the definition of tube. We choose |T,,| so
small that
XNV )| T) NV,

for some open neighborhood V-, of Y;-, with Vj,—V, ,C¥,.;—Y;-.. Let ¢
be a C~ function on X; such that ¢=1 on X;—Vj.; and =0 on XNV, for
an open neighborhood V., of Y;, with V7 ,—V} ,cY, ,—Y;.. Put
(A —=@emp(xNmy(x)+omu(x)7 (%))
Tye(x)= for xer; M X,NV;i)
1 (%)

for xenii(X,—Vi).

As 75| x,=ident, this is well-defined in a neighborhood of X, and we find an
open neighborhood Uj such that UjcCU,N|Tjl, UiNY;..cX;—X;, and 7j5: U,
— X; is a C~ fiber bundle. Let W; /=0, ---, j—1, be open neighborhoods of X;
such that U,—W,CX,—X,. Then by the definition of r,, we can choose U} so
small that

(4.9.3) TR(x)Cx+R*™ for xeX, NWp—Wo— -+ —Wn-1),
m=0, ---, j—1.

Now replace W; by U, i=0, ---, j—1, and U, by some smaller open neighborhoods
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U, of X; such that U,—U,cX;—X; and regard the induction hypothesis as
considered for U,. Then we can assume by (4.9.3)

ﬂ;zl(x)c,\’—}-Rn—m for XEXJI/—\(UT,L—‘UO_ _Um—l) ’ 771:0) ) ]_1 .

It is clear that z,,==; on #;(X,NV)_;). Therefore, considering {T§|le-']gl} in
place of {T;}, and shrinking |T7|, i=0, ---, 7, we may suppose

IT) =72 (X,NV),
7,=n, on |T;] and
| T Vi, i=0, -, j—1.

Then {T;} continues to be a controlled tube system for {X;N\V/_} which satis-
fies (4.9.1, 2).

Now apply Corollary 4.8 to {X,N\U}} o= j41,., a=n,: U)— X;, U=V, and
a tube system {T'%} ={Ti| x ;v\ }i=j.. for {XinNU;NV7_}icy.. Then we have
a controlled tube system {T;;=(E;s, @33, P13, €is)} i=j,. fOr {X;NUF}i—y,.., U} being
an open neighborhood of X, contained in U} such that m;=n; on [T, CU;
and that

I L
Tlsl.vme'J’r\VJ"_lzTJleU'J'nV'J',p i=j, j+1, -

where VY, is any given open neighborhood of Y,_, so that V/ ,—V/,cY,.,—
Y;-.. We remark that the last inclusion implies

UNnvVi,—vr,cX,—X,

because of U/NY,,cX,—X,. Shrink V”, and U/, and put V;=Vi, UJ.
Then, since each T4, i=j, j+1, ---, is defined at X;N\V;.,, T,s can be easily
extended to a tube at X;N\V; Here we can not necessarily extend so that
extension|=|T;|\U|Ty|. We use the same T;; for the extension. Shrink
IT;l, i=0, -+, j—1, | Tysl, i=j, ---. Then it is easy to see that {Ti}ic,..,-:\J
{T.s} i—,,... is a controlled tube system for {X;N\V,} which satisfies (4.9.1, 2), since
mp=m,, satisfies (4.9.2). Hence Lemma 4.9 follows from the induction.

Definition 4.10. Let {X,;} be a Whitney stratification of a subset X of R*,
and {T;} be a controlled tube system for {X;}. A vector field & on {(X,, T.)}
‘or {X;}) consists of one C*= vector field & on each X,. We call & controlled
if for any X;, X,

(4.10.1) A7, ] x, )60 2=Eirymrs reX,NU;
(4.10.2) il x, )6 .=0, x€X,.NU,

where U,C|T,! is some neighborhood of X; in R". We call & continuous if for
any sequence {x;} of points in X;. converging to x of X;, {§;. ]} converges to
£,, as vectors in R™.
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Lemma 4.11. Let {X;}, {Ti} be the same as the above definition. Assume
the index set contains 1. Let & be a C* vector field on X,. Then there exisis a
continuous controlled vector field £={&;} on {(X;NU, Tulx,~v)}, U being an open
neighborhood of X, in R™, such that & =E&.

Proof. Since r,: |T,|—X,, Ti=(E,, 71, p1, €1), is the restriction of a Thom
map between R™ with respect to {X;=X,NU}, {X;} for an open neighborhood
U of X, (as shown in the proof of Corollary 4.8), the existence of & is a con-
sequence of Theorem 3.2, Chapter II, [1], if we do not require & to be continuous.
For the continuity we need a careful reconsideration of the proof as follows.
Using a C* partition of unity, we can reduce the problem to the case in which

{Xi}:{Xh X?.}) XZKWXIi @y |T1|_.___R‘n.
X1: {(xly T xn>ERnIx1: :.\'/‘,:0} :OXRn_k s

and 7,: R®— X, is the projection, and we only have to define & in a neigh-
borhood of 0=R™.
Moreover we can assume

(4.11.1) ox)=x}+ - +x}, x=(xy, =, Xa).
Indeed, by the property of p,, we can suppose

o:(xy, =+, X4, 0, -, O)=x3+4 - +x%.
Then it follows that

oi(x)=x{+ - +xi+ 12 kauz(x)xlx]xt
J "y

=1,
1=1,-,n

as germs at 0 for some C= function germs a;,;. Let us consider the ring of C*
function germs at 0 in R”, let m be the maximal ideal, and let I be the ideal

0 . .. .
generated by ai L i=1, -, k. Then it is easy to see that I is generated by
i
X3, =+, x5. Hence p(x)—x}— -~ —x} is an element of m/®%. Then, by a refine-

ment of a result of Tougeron and Mather (Lemma 2, [15]), there exists a local
diffeomorphism = at 0 in R™ such that

01°t(x)=x%+ --- +x%,
o(x)=(7o(x), -+, Tu(x), Xps1, ==, Xn).

As z,°t=mr,, considering x,, p,°r in place of x;, p,, we may assume (4.11.1).
For any yeX,, the vector y—m,(y) is vertical to the tangent space T,pi*
(01(y)) because of (4.11.1). Hence, by the Whitney condition, the tangent spaces
T, X, and T,p7*(p,(y)) are transversal if y is near to X;N\B, B={xeR"||x|<1}.
We set
V=T, XeNTyp7 (03N
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Now the following statement is sufficient for the proof.

(4.11.2) Let {x%} be a sequence of points in X, converging to x=X,N\B. If
the sequence {V..} converges to a subspace LCR", then LDT. X=X,

The reason is the following. Let y= X, be a point near to X;\B. (4.11.2)
means that we have a basis (v, -+, v,s) of the linear space V, with k+k'=n
such that

n
V,=Xpet 2 a,X,, =1, -, n—k, a;,€R,
J=1
J . .
where x,=(0, ---, 0,1, 0, ---, 0) and if y converges to a point of X; then |a,,|
are chosen to converge to 0. Clearly we can assume a,,=0 for j=Fk-1, ---, n. If

n-k
El:l(y):i;lblxk+u bLER!
then put

n—k
521/: 2 bLlYL .
i=1

Then &,, satisfies (4.10.1, 2). On the other hand, by the transversality of 7,X,
and Ty, 07%(0:()), yéj‘_ V, comes out a C* vector subbundle of the tangent bundle
42
of X,, and the restriction of dx, to EL{ V, is a submersion into the tangent
Y 2
bundle of X;. Hence &,, can be extended to a small neighborhood of y holding
(4.10.1, 2). Using once more a partition of unity, we easily obtain & on X, so
that (&, &) is a continuous controlled vector field on {(X;, Ty), (X,, T2)}.

We want to prove (4.11.2). Without loss of generality, we may suppose
that sequence {m")} of lines containing 0 and x*—m,(x%) converges to a line
L,CR™ and that the sequence of tangent spaces {T,:X,} converges to a subspace
L.,cR™ Then, by the Whitney condition and Remark 4.6, we have

L.cL,, X.CL,.

Here we must remark that the Whitney condition is invariant under a diffeomor-
phism of R®. Let L,,. be a unit vector contained in mi) and L,,, be a
unit vector in T.:X, such that {L,,:} and {L.,:s} converge to L,. Then {L,:
—L,,i} converges to 0, and it follows from (4.11.1) that L,.: is vertical to Vi
and to TLip7p(x"). Hence if Lyzi=a;Liyi+Lszi, a;ER, L3z € Toi07'(0:(xY),
is the orthogonal decomposition, then {a,} and {L..:} converge to 1 and 0 re-
spectively.

For (4.11.2), we only need to see that for a unit vector v=JX,, there exist
1'<=V g, 1=1, ---, such that {v¥} converges to v. By the inclusion .X;CL,, we
have v'*eT.:X,, i=1, ---, such that {v'} converges to ». Since T.:X, is the
direct sum of RL,,: and V,; there exist uniquely v’ V,: and b,R such that
1'=1"4+b;L,,+. The sequence {b;} converges to 0. In fact
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V=0 -b; Lyzi)+aibiLige
is the orthogonal decomposition of v’ to the T,ip7'(p.(x*))-factor and its normal
factor. Since T,ip7p:(x"))DX, as linear spaces, the convergence of {v'%} to v
implies that of {v®+b;Ls,:} to v, which shows that {a;b,} convergesto 0. There-
fore b;,—0 as /—oco. Hence we prove the convergence of {v’} to v and hence
the lemma.

Let {X;} be a Whitney stratification of a subset X of R", and £=1{&;} be a
vector field on {X;}. Integrating each vector field & on X, we obtain C* flows

O,: D;— X; where @, are given by O.(x, 0)=x, *gl‘—@b(.\', t)=Eo,(z,y and D,C

X;X R are the maximal domains containing X;x0. Let D be the union of D,
and define @: D— X by O|p,=0,.

Definition 4.12. We call ©: D— X the flow of & £ is called locally inte-
grable if D is open in XXR and if @ is continuous (see Lemma 4.4, Chapter
I, 1.

Lemma 4.13 (Corollary 4.7, Chapter II, [1]). Let {X,} be a Whitney stra-
tification of a subset X of R™ {Ty} be a controlled tube system for {X;}, and &
be a controlled vector field on {(X,, T\)}. If X is locally closed, & is locally in-
tegrable.

Lemma 4.14. Let {X;} be a Whitney stratification of a locally closed subset
X of R™, let i, f5 be C™ functions on R™, let E=1{§,} be a vector field on {X},
and let {V}jeo,n-1, {V2} joo,..n-1 be open coverings of X in R™ with Vi—V,C
X—X for each j. Assume for each i, j

4.14.1) Su(filx), Efelx)>0,

(4.14.2) x—+R' and X, are transversal for any xER" where |=codim X;, and
(4.14.3) s.eR* for xeV,NX,.

Then there exists a locally integrable vector fleld &'=1{&} on {X;} which satisiies
4.14.1) and (4.14.3) for x=V;NX..

Proof. By the same reason as the proof of Lemma 4.9 we assume {X,}=
{X.}1=1.2,...n and dim X;=i. Here we remark that X, does not exist because of
(4.14.1). By (4.14.2, 3), the property V;N\X;# @ implies j <7, hence V;NX, =@
for j=i, and for each ¢ {V,}j=,..:-1 is @ covering of X;. Let {V¥ ;o0,...n-1, k=
2, ---, n, be open coverings of X such that V?—V,cX—X and Vi'—ViC
X—X, k=2, -, n, j=0, --, n—1. Then we have V:N\X,=@, k=1, -, n, if
j=i. Let U; be an open neighborhood of each X; such that

(4.14.4) ve\ vy OnVicX—X it j=i.
\
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Then, by Lemma 4.9 we have a controlled tube system {7.,=(E;, =,, p.. e,)} for
{X.} such that for each ;

(4.14.5) | T U;
(4.14.6) w7 (x)CTx-+R™F for xeXN\U,—U,— -+ —Up-y)
k=1, -, 7.

We will show the existence of a controlled vector field & on {(.X,, T.)}
which satisfies (4.14.1) and (4.14.3) for x= VINX,. We prove it by induction.
Assume we have already constructed a vector field ™™= {£r*} on {(X;, Ty)}
satisfying (4.14.1) and (4.14.3) for x=VPI*NX,; such that {§I"*'};.,., iS con-
trolled on {(X;, T)}ism+:. In the case m=n—1, itis trivial, so we want to find
¢". Now Lemma 4.11 implies the existences of an open neighborhood TV of X,
and a continuous controlled vector field &'={&} on {(X.AT, T,!y -w)} such

that &,=&™*!. Choose TV so small that
XiNnW=g, =1, -, m—1, wc|Tal,
WNe(ViNXp)c Vet j=0, ---, m—1, and
Efilx,~w)>0  for i=m, -, j=1,2.

The last inequality follows from the continuity of &’.

It is easy to find a positive C* function # on X,, such that W ={xeW|f§-
=n(x)- pm(x)<1} satisfies W —WCXn—X,. Let ¢ be a C* function on R such
that ¢y=0 on [1, o), =1 on (—oo, 1/2] and 0<¢<1 on (1/2, 1). Put
{ HOomn(x): pm(x)) for xeW

for xR W—(X,—Xn).

U(x)=

Then ¥ is a C* function on R*—(X,—X,) such that ¥=1 in a neighborhood
of Xn, =0 outside W, 0¥ <1 and

(4.14.7) U(x)=Tem (x) for x€|Tyl, izm+1

by (4.2.1, 2). Here we have to shrink |7}, i=m-1, in order to assure that if
xeW’'NIT,|, then 7,(x)e|T,! and conversely that if x,T;|, =i(x)=W’, then
x=|Tn!. Put

N { Ve +-1-U)ep+ for 7=m
Sr=

Ep+l for 7<m.

Then £™={£*} is a vector field on {(X;, T:)} satisfying (4.14.1) and (4.14.3) for
x=VPENX; and {1} ;2m is controlled on {(X;, T:)}ism as follows.
Indeed (4.14.1) is clear. For (4.14.3) it is sufficient to see

(4.14.8) Si.eR™7  for xsVINXinW
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because of the assumption on &™*!. By the property X,"\W=@, i=1, ---, m—1,
X; in {4.14.8) is of dimension=m. Since £’ is controlled, we see
(4.14.9) I ERMMInG. B for xeW with z,(x)e XN
(U,—U,— - —U,Z_I)K\V}"“, 1=k=m, 0=7Sm—1

by (4.10.1), (4.14.6), the assumption on &, =&2*! and by easy basic calculations.
For any x€W with 7n(x)€ Xu\(U,—U,— - —U,_)NV™*!, let j, denote the
maximum of such j. Since ka\V}’;“C)—(k—Xk for k<7, (4.14.4), and since
1=k =<m, the property me\UkﬂV}"z“qﬁQ means that £>7,. Hence we have
by (4.14.9)

&R for x€W with z,(x)eVITNX,.

Therefore, shrinking |7,,| and hence W, W’, we obtain (4.14.8).
It rests to see that the vector field {7} ;.m on {(X;, T:)}ism is controlled.
For any X, X;., 7/>i=m and x= X, near to X;, we have if xeW,

d(mil 5, R =V (2)d(msl x 0 )0 o+ (L=T(x)d(m. | x, JETF
=Ven(x)d(zil x, i 2+ A—¥emy(x))d(ml x, ETT, by (4.14.7),
=W or,(x)¢ir; i+ (1—¥emi(x))E%" s, by the controlledness

of & and {7} 1ims1,
=&
and if x&W, by (4.14.7) and the controlledness of {£7"*"} ;sm+y
d(mil x, YT o=d(@i| x, 6P T =805 0 =810 -

Hence (4.10.1) holds true. (4.10.2) is shown in the same way by the controlled-
ness of & and {£7*Y};.n..:. We omit the proof. Hence, by induction we have
a controlled vector field &' on {(X;, T:)} which satisfies (4.14.1) and (4.14.3) for
xe VIiNX;, which, together with Lemma 4.13, proves Lemma 4.14.

§5. Topological Equivalence of Subanalytic Functions
In this section we prove the following.

Proposition 5.1. Let X be a closed subanalytic subset of R"™. Let f,, f: be
subanalytic functions on X such that for each point x= X, both fi(x) and f.(x)
have the same sign. Put Z=f7*0). Then there exist neighborhoods Wy, W, of
Z in X and a homeomorphism t: W,— W, such that fs,ev=f, on Wy and z|z=
ident.

The case of analytic function germs is Theorem 4.3 in [16]. There I gave
a sketch of proof, whose idea is the main tool also in the proof below. Two
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functions f;, f, on a manifold M is called topologically equivalent if there exists
a homeomorphism z of M such that f,.z=f,. Another version of Proposition
5.1 is Corollary 4.4, [16], which should be amended to the following.

Proposition 5.2. Let f,, f, be analytic functions on a compact analytic mani-
fold M. Put

S={xeM|adf,:+a,df,,=0 for some a,, a,=0 with a,+a,>0} .

Assume f11f(S)=Ff31fs(S) and f1=1, on f1*f(S). Then f, and f, are topolog-
ically equivalent, and the homeomorphism of equivalence can be the identity on
T «(S) and analytic outside it.

The proof of Proposition 5.1 consists of 5 steps, (5.3), ---, (5.7).

(5.3) Let {X;};—;.. be a subanalytic stratification of X compatible with
Z (2.11). We can reduce the problem to the case in which (5.3.1, ---, 5) below
hold true.

(5.3.1) fi, f. are restrictions to X of analytic functions on R™.
(5.3.2) {X,} is a Whitney stratification of X.

(5.3.3) There exist compact analytic manifolds M,, /=1, ---, subanalytic open
subsets M; of M, and analytic maps ¢,: M;— R™ such that ¢, are diffeomor-
phisms onto X;.

Put

Ri={(xy, ~, x)ER"| X pps1= - =x,=0}, 1<kZn,
and

y+R ={x+y|y=R*} for x=R".
(5.3.4) For each 7, £ and x=R", X, and x+R* are transversal if dim X, +k,k>=n,
and X,"\(x+R*) is empty or of dimension 0 if dim X;+k<mn.

Let N X be a subanalytic analytic submanifold in R", and let 1=k <n with
dim N+%&>n. Assume that for any x&R", N and x-+R* are transversal. Put

S(N, By={x&eNla,d(fi] yvaz+rt)z+a:d(fs]| vrz+rt)z=0
for some a,, a,=0 with a,+a,>0}.

(5.3.5) For each X,cZ, X, ¢ Z and 1<k<n with dim X,+F,=>n and X, DY,
S(X.,, k) is empty in a neighborhood of X,.

The reduction to (5.3.1) is trivial if we consider the graph of (f;, /.) in
place of X. Hence we assume (5.3.1). Before beginning the proof, we remark
some facts.

Let NCR™ be a subanalytic analytic manifold, M be a compact analytic
manifold, A/” be a subanalytic open subset of M, and ¢ : A/ — R" be an analytic
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map such that ¢]s is a diffeomorphism onto N and that ¢(M)CX. Let 1=k
<n with dim N+k£>n. Assume that for any x€R*, N and x-+R* are trans-
versal. Then

(5.3.6) S, k) is closed in NV and subanalytic.

Proof of (5.3.6). The closedness is clear. For the subanalyticness, consider
V={eT,M|xeM, dp,v=R*} .

Then V is an analytic subset of the tangent bundle TM of M since d¢p: TM—
TR™ is analytic. Put
V=peV||v|=1}

for some analytic Riemannian metric on T M,
V'=eT.M|xeM, d(fi1°)v-d(f2o)v>0} .

Then V’ is an analytic subset of TM, and V” is a well-defined semi-analytic
subset of TM by (5.3.1). It is easy to see that

N—=S(N, B)y=p-dp(V'N\NV'"N\TM")

where p: TR™— R™ be the projection to the base space. As the closure of
V'NV’NTM’ in TM is compact, and as ped¢: TM— R™ is analytic, it follows
from (2.3) and (2.6) that pod(V'NV"NTM’) is subanalytic. Hence (2.1.3) im-
plies that S(V, k) is subanalytic.

(5.3.7) Let NCX—Z be a subanalytic analytic submanifold in R*. Assume S(N, n)
is subanalytic. Then S(¥, n) is empty in a neighborhood of Z.

Proof of (6.3.7). Assume S(N, n)N\Z+ @. Apply Proposition 3.1 to S(N, n).
Then we have a l-dimensional subanalytic analytic submanifold N'CS(, n) so
that N'NZ+ @. Since n-+dim N’>n, SV, n) is well-defined. This is the reason
why we assumed £=n. Now it is easy to see that

SNV, n)=S(N, n)N\N'=N".

Applying (2.4) to N’, we obtain a compact 1-dimensional analytic manifold M and
an analytic map¢: M—R"™ such that ¢(M y=N’. We remark that fied(x),
feo¢b(x) have the same sign for each point x< M, that

f1°¢(xo):f2°¢(xo>:0
for some x,=M and that
(l1d(f1°¢)z+ azd(f2°¢).r:0

for each xeM and some a,, a,=0 with a,+a,>0. The third property implies
that if one of f;°¢ is monotone increasing on a subset of M diffeomorphic to
an interval, then the other is monotone decreasing. This contradicts the first
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and second properties. Hence SV, n)N\Z=@, which proves (5.3.7).

We will prove (5.3) by induction. Let 0=</=<n be an integer. If [=n, the
next statement coincides with (5.3).

(5.3); We can reduce the problem to the case in which (5.3.3) for codim X,
</, (56.3.2); below and (5.3.4, 5) for 2=/ hold true.

(5.3.2); {Xi|codim X;=<!I} is a Whitney stratification of the union of such X,’s.

Proof of (5.3); If />0, assume (5.3),;. Let {X;} be a subanalytic strati-
fication of X compatible with Z such that (5.3.3) for codim X;</, (5.3.2),-; and
(5.3.4, 5) for k<[ hold true. Here X; in (5.3.3, 4, 5) and (5.3.2),_, are replaced
by X;. Let I, I, be the index subsets of all 7 with codim X;=I[, =/ respectively,
and Y be the union of Xj, i1,

At first we want to change the x;-axis fixing the x,, ---, x,-;,-axes so that
YN(x-+RY) is empty or of dimension 0 for any x=R" This condition is equiv-
alent to that XiN(x+R% is a finite set for any s/, and x&R", since a
bounded subanalytic set of dimension 0 consists of finite points. Let

rie: RP—> Ry ={xeR"|x=(0, ---, 0, x;, -+, x,)}

be the projection. Then, since r;,-,(Xj) is a subanalytic set of dimension=n—/
for any /=1l,, we can apply Lemma 3.2" to »,_4(X:). Hence there exists a 1-
dimensional linear subspace L of R'"'* such that for any a=€R'**, a+ L is non-
singular for each 7,-,(X3), i€l,. This means that (a+L)Nr;-(X}) is a finite
set for each 7=l,. Changing the x;-axis, we assume that L is the x;-axis. Let
xeR™ iel,, Put a=r,_(x). Let (a+L)Nr,-(Xi) consists of a,, -, ayp €
R R" and let X;N\(a;+R'*) consist of at most {” points for any ; (5.3),_;.
Then we have

< max #OX N (0, +RI) - @+ Lo XD)=01".

Hence X.N(x+R?Y is a finite set.

Let 7;: R"—>R“ = {x=(0, -, 0, x;41, -=-, x,)} be the projection. Since
XiN(x+RY) is a finite set for any /€], and xE€R", d(r,|x,) has the maximal
rank n—/[. By (2.4) there exist compact analytic manifolds M;, i=I;, of dimen-
sion n—( and analytic maps ¢;: M;— R" such that ¢,(M;)=X,. Let X? be the
images under ¢; of the sets of critical points of 7,°¢);, and X3C X} be subanalytic
subsets closed in X; of codimension >/ in R"® such that (X, X;—X3) satisfies
the Whitney condition for any je/, (2.12). Here we put X:=¢@ if /[=0. Then
X? are of codimension >/, and X;—X? and x--&' are transversal for any x=

x7re

R™ since r;: Xj—Xi—>R'" are immersions.
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For each /=, with X;CZ, put
Xi=Xin U SX}, D).
JjéIy

Here S means the closure of S in R®, and S is well-defined because the trans-
versality of X} and x--R!"! implies that of X} and x+R" By (5.3.6), S(X}, [) is
closed in X} and subanalytic. Hence (2.1.2) imply that X% is subanalytic.

Moreover X* is of codimension >/ in R®. We will prove this by reduction
to absurdity. Assume codim X#=/. Then (2.2) implies that $klj S(X}, 1) is codi-

J€1lg

mension </ as germ at X;. Apply Proposition 3.1 to {S(X}, )} jer,, X3. There
exist then a triangulation K of R and a subanalytic homeomorphism z of R"
such that two properties corresponding to (3.1.3, 4) are satisfied. Hence we have
a simplex o< K of codimension </ so that z(¢) is a subanalytic analytic manifold
contained in S(XJ, [) for some je&I, and that an open face ¢’ of o of codimen-
sion [ is analytically imbedded by ¢ into X% By (2.12) there is an inner point x
of z(¢’) such that (z(¢), z(¢’)"\ a neighborhood of x) satisfies the Whitney condi-
tion. Choosing moreover x<& X? we assume 7(é¢’) and x+R' are transversal at
x. Then it follows from the definition of the Whitney condition that ¢(¢) and x-+
R! are transversal in a neighborhood of x, and hence z(&)N\(x-+R') is a sub-
analytic analytic submanifold of R™ in a neighborhood of x whose closure contains
x. We see easily that

S(z(d), N=S(Xj, HNt(d)=1(d)
in a neighborhood of x. Hence it follows that

(l1d(f1 |r(&>n(r+m))y+azd(f2 | r(&muml))yzo

in a neighborhood of x for each yez(é)\(x+RY) and some a,, a,=0 with a,+
a,>0. These imply that

S(z(a)N(x+RY), n)=7(d)"\(x-+R") in a neighborhood of x,
z(@)N(x+RY> x.
These contradict (5.3.7), hence codim X*>/.
If Xi¢&Z, put X¢=@. Let {Xy' be a subanalytic stratification of Y com-

patible with {X;, XiNX} X3}, Xi}ier,\U{Z}. By Proposition 3.1 we may assume
that each X; is simply connected. Put

(X} = { X3} e, U X}
Then {X;} is a subanalytic stratification of X compatible with Z and satisfying
(5.3.3) for codim X;=/, (5.3.2), and (5.3.4, 5) for k=I.
Indeed, for any X; with codim X;=/ we have X;CX;—X%—X3— X! for some

j€l,. It is easy to see that for any connected component A of ¢7%(X;—X>3
—X3- X
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¢, A—> X|—X:—X3— X!

is an analytic covering because of the compactness of M,. Hence if we let M,
be any connected component of ¢;'X;, then M; is a subanalylic open subset of
M; by (2.2), (2.5.1), and ¢;: M,— X; is an analytic diffeomorphism since X; is
simply connected. Hence (5.3.3) holds true for codim X;=/ and obviously for
codim X;</{. Now, since each X, of codimension [ is contained in Xj—X3 for
some j=1,, (5.3.2), is clear.

Consider (5.3.4) for k=l. We have five cases; (i) codim X,</ and k<.
(ii) codim X, </ and k=, (iii) codim X,=/ and k=/, (iv) codim X,=/ and k</
and (v) codim X;>/ and k=I[. In the case of (i), (5.3.4) is contained in the
assumption. If (ii), we have dim X;+%&k>n. Hence, by the assumption, X; and
x-+R* ' are transversal for any x€R"™ which implies also the transversality of
X, and x-+R* (5.3.4) in the case of (iii) follows from the fact already seen
that X;—X? and xR’ are transversal for any xeR", jel,. In the case of
(iv) we have X, j=l, so that X;C”X; Hence it is sufficient to see that X;N
(x+R¥) is empty or of dimension 0. But it is a part of the assumption because
of £<(, dim X;+k<n. We have chosen the x;-axis so that 1" ~(x—R") is empty
or of dimension 0 for any x=R" That proves the case of (v).

For (5.3.5), let X,cZ, X, ¢ Z, 1<k=<I such that dim X,+~k=». X, DX, If
S(X,, k) is empty in a neighborhood of X,, then so is S(X,.. —1) because of
the inclusion

S(X,, B)DS(X;, k-+1).

Hence we only have to prove the case dim X,+k=n. There are then two cases
k<l or k=l If k<l then X,=X; X, =X, for some j, ;. Hence, by the
assumption, S(X,.. k) is empty in a neighborhood of X,. If i=/, the same
statement follows from the facts that X; is contained in X;—.X\": for some ; and
that X,  coincides with some X;.

Thus we have proved (5.3), and (5.3);, />0, assuming (5.3);-,. Hence (5.3),
=(5.3) follows.

(5.4) Let {X,} be the stratification which appeared in (5.3), .\, be a stratum
with X, Z, and [ be an integer bigger than codim X,. Let }°,, denote the
union of X,’s such that X,CZNX, and codim X,=/. Then there exists an
analytic vector fleld &;; on the intersection U,; of X, and an open neighborhood
of ¥, in X,UY’,; such that

(5.4.1) for any x=U,, &, is contained in RY, and
5.4.2) ¢,.fr, k=1, 2, are positive on U,,.

Here &;;f, are well-defined because of (5.3.1).

Proof. Put
ULL:‘YIZ'—-S(‘YL; Z) )
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CVeuz=A(f el xinczirt)z R=1, 2, x€U 4,
Eilr‘—— ivzilz}v1i11+ ]vlil.tiv'?.lll‘; xEU‘Ll .

Then, by (5.3.4,. 14, are well-defined analytic vector fields on U,;. On the
other hand the definition of S(Xj;, /) shows that |v,;;| do not vanish and that
V112 and vy, ¥x=U;;, do not point the opposite directions each other. Hence
£;, also is a well-defined non-singular analytic vector field. By (5.3.5), U,; is the
intersection of X, and a neighborhood of Y, in X;UY,. Clearly (5.4.1, 2)
follow from the above definition of &,,. Hence (5.4) is proved.

(5.5) Under the same notations as (5.4), let U;, and U}; be open subsets
of X; having the same property as U;;, namely being the intersections of X;
and neighborhoods of Y;; in X,\UY,;, and moreover satisfying

UnnXxicUs, UnnX,cU, .

Put U;= U U;,. Then there exists a C~ vector field & on X, such that
{>codim 1,

(5.5.1) for anv x=U!, &, is contained in R', and
(5.5.2) &ifn k=1, 2, are positive on U,.

Proof. Llet g, be C= functions on X; such that g,=1 on Uj;, =0 on X,—
U7, and 0<g<1 on U},—Uj. Then, putting g,6,,,=0 on X,—U,,. we extend
g€ to X; as C~ vector flelds. Put

Eiz= > H(l_cl’)gZEilz .

I>codim X; I'<1

Then &; is a C - vector field on X;. We will see that &, satisfies (5.5.1, 2).
For (5.5.1%. let x be a point of Uf;,. Since 1—g; (x)=0, we have
l'1<_]l:2 (l—gz'>g125ugr:0
for any [,>/,. Hence
Eiz=2 11 (l—gz')ngn.c .

Isiy U<t

By (5.4.1), g:£.,. is contained in R’ for any /<[,. Hence (5.5.1) follows.
For (5.5.2), consider a point x&€ U,Uj;,. We can assume x< U], for any
[<!l,. Since g:5,f(x) and 1—g,(x) are non-negative for any /, %, it is sufficient

to see

(5.5.3) lgl(l—gz)gllsaulfk(x):

k=1, 2, ace posizive. By the above assumption on x and the property of
we have

gt.)

(I-=g,(x)>0 for 1<y,
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and

g,l(x)> 0 .
These inequalities together with {(5.4.2) imply that (5.5.3) are positive. Hence
(5.5) is proved.

(5.6) For any X, of codimension / contained in Z, let 1, be an open neigh-
borhood of X; in X such that V,NX,C U}, for any X; with \,=Z and X,DX,.
We denote by V the union of all V,. Then V is an open neighborhood of Z
in X. Considering XNV, {X,"N\V} in place of X, {X,} respectively. we reduce
Proposition 5.1 to the next proposition.

Propesition 5.1. Let X be a locally closed subset of R™. {X.! be a Whitney
stratification of X, fi and f, be the restrictions to X of C* functions [y and fo
on R™ respectively, {£.,} be a vector field on {X.}, and V; be an vpen neighborhood
of each X; in X such that

6.6.1) JTH0O)=s30),

(5.6.2) Z=/S7Y0) is closed in R",

(5.6.3) {Xi} is compatible with Z,

5.6.4) for each i, X;N\Z+ @,

5.6.5) for each i, k and x€R", X; and x-+R* are transversal i/ i =codim X,,

(5.6.6) for each i, j and x XNV, with X, & Z, X,CZ and _TLDX'. £,5 1s con-
tained in R* where [=codim X;, and

5B.6.7) Sfrlx), for any i, k with X, Z, is positive.

Then there exist neighborhoods Wy, W, of Z in X and a lomcomorphism < :
Wy — W, such that fs,et=f, on Wy, <|z=ident, and t((W NX,)=11," X, for each i.

(5.7) Proof of Proposition 5.1’. For the sake of simplicity we assume f,
f»=0. The general case requires no more than complicated notations. For each
X, Z, there obviously exists an open neighborhood V; of X, in X such that
Vi—V.cX,—X,cZ. Let J be the index subset consisting of ; with X;ZZ.
Apply Lemma 4.14 to {Xi}ies, X*=X—Z, [1, fo, E= {6} icr. | \J V.—X.t},

cm Yq=g
and {d' kg Vi—X., Then we can modify £ so that it is ]ocaﬁ? integrable.
m L=

Here we have to replace X by XN \J V, and the belonging x= 1\, "1/, in (5.6.6)
1&J

by x=X.,nV). But the replacement does not influence the conclusion of Prop-
osition 5.1”. So we add the assumption that & is locally integrable to the as-
sumptions of Proposition 5.1’. Put

c,= inf {fi(x), falx)}, i€].

zeXi-Y¥
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If X,—X=¢ (e see later this is not the case), then we put ¢,=oco. Then ¢;
are positive by (5.6.2), the local closedness of X and by the boundedness of X,.
Let @: D—X*=X—Z, DCX*XR, be the flow of £ (4.12). Then D is open, &
is continuous, and for any x< X* we have {7;<0<i! (may be infinity) such that

DN(x X R)=xX(t3, ti).

It follows from (5.6.7) that fjo@]‘ro,“;o,ﬁ;o) is strictly increasing for each x,
e X;, i€/, and each ;.

Moreover if f,(x,)<c;, then f,°O(x,, t) converges to 0, a number larger or
equal to ¢; as t—17,+0, t5,—0 respectively. In fact, if not so, we have by
(5.6.7) and bv the boundedness of X; a sequence {t} of numbers in (7, {3,
such that {O(x, ¢:)} converges toa point y of (X,—X;)—Z—(X,—X)cX*—X,.
Since D is open, we have a neighborhood O, of y in X and >0 such that
DDO,X[—e. ¢]. This means that for sufficiently large k, O(x,, t,)=0, and
hence (x,, [t:—s. t,+¢e])CD. Hence t,—oco or —co as k—oco. By the con-
tinuity of ©. {O(x,, t,+e)}, converges to O(y, £e). Hence {f,°O(x,, tr+e)ls
converges to 1,-0(y, ¢e)# f;(y). This contradicts the fact that f,o@},omzo, t;o)
is increasing. Since f, is bounded on X,, we have seen also X,—X=@ and
hence ¢;#co.

The above property of f,°@(x,, t) shows that for each x,=X, /=], and
each j with f,(x,)<c,, f,°0 maps diffeomorphically (x, Xz, tz DN(f;20)7(0, ¢;))
onto (0, ¢,). Hence we uniquely obtain a C* diffeomorphism 7., from ©((x,X
(tzg LENN(F 1200, ¢1)) to O(xoX(t7, tENN(f220) (0, ¢.))) such that fyety,
=f, on the domain of definition of .. We remark that ¢, =c, if both x,
and x; are contained in one integral curve of &,. Put

= {xeX,|f.(0<c} for j=1,2 and =/,
T=UWw,uz.
1=

Then W, is the union of Z and the domains of definition of 7., for all x,eX,,
i€/, with 7y(x,)<c,, W, is the union of Z and all the images of 7 s, and they
are both neighborhoods of Z in X. We define a map z: W,— W, by

T.(x) for xeW,—Z
t(x)=
x for x=Z.

Then clearly - is well-defined and one-to-one, we have f,oc=/f, on IV, and
t=ident on Z. and for any ¢ t|w,~y, is a C™ diffeomorphism onto W,NX;.

We only need to see that ¢ is a homeomorphism. Let {x,} be a sequence
of points in W ;NX, converging to y,=W;N\X;;. We want to see that {r(x.)}
converges to ©(y,). If /=i or 7€ ], it is trivial by the continuity of z|w,~x; and
by the definition of z|,;. Hence we assume i+:’ and /€/J. The case i'&J
clearly follows from the next statement.
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(5.7.1) For each je&J and for any e>0 there exists a neighborhood Q, of X;
in X such that

(5.7.1) dist (x, O(x, t)=e¢ for x€Q,—Z, te(lz, 0).

We prove (5.7.1) by induction on codimension of X, (5.7.1) is trivial if
codim X,=0. Hence, assume (5.7.1) for codim X,</. Let ¢>0, and for each
7'eJ with codim X, </, let @, be a neighborhood of X, in X such that
(5.7.2) dist(x, O(x, 1))<e/3 for x€Q,—Z,t=(t37, 0).

Put Q= » UX <LQ,:. Let X,, j&J, be of codimension /. By (5.6.5, 6) we have
codim ]’

an open neighborhood @Q; of X; in R and a C* fiber bundle #,: Q,— X, such
that

T, I ,\-J:ident,
(5.7.3) 77 (v +RYNB.5(y) for yeX,, and

&R} for xeX,NQ), is],
where

B.s(y)={y'eR"||y—y"|=e/3}.
We remark that

(6.74) if x,=X* and 4, <t,eR satisfy O(x,, (¢, £:))CQ;, then z,°O(x,, (1, 1))
=a point.

If necessary, shrink @ so small that for any y=X,, A(v)=z;1(y)—Q;—Q is
not empty. Put

d(y)=_inf [i(x),

rei(y)
Q,={xeXNQ;| fr(x)<dex,(x)} .

Then we see easily d(y)>0 and that @; is a neighborhood of X, in X.

Moreover @, satisfies (5.7.1)". In fact, let xe@,—Z. Then there are two
cases,

(1) O(x, (tz, ))CQ; and
(ii) O(x, (tz, 0)ZQ;.
If (i), we have by (5.7.3, 4)
dist (x, O(x, 1))=2¢/3 for any (=3, 0),

which proves (5.7.1). Now consider the case of (ii). Let ¢, be the infericr of ¢
with O(x, (¢, 0))CQ;. Then we see by (5.7.3, 4)

O(x, (t, 0))Cry (x,(x)) and

O(x, tyer;(x,(x))—Q; hence
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(5.7.5) dist(x, O(x, 1))=<2¢/3 for t€[t, 0).
Moreover
Oz, t)EQ.
Indeed, if not so, then
O(x, tyer; (z(x)—Q;—Q .
Hence, by the definition of d(y)
demy(x)=f120(x, to) .

But, since f,(x)<d-m,(x) and since f, is strictly increasing on O(x, (iz, 0)), we

have
f1°@<-x7 t0)<d°7r](-x) ’

which is a contradiction. Hence @(x, t,)=@Q. This implies by (5.7.2)
dist (O(x, t,), O(x, 1))<e/3 for te(tz, t),

which together with (5.7.5) proves that Q; satisfies (5.7.1)".

Now the case ;'] remains in the proof of the convergence of {z(x,)} to
w(y,). Let t,(ty, t},) satisfy O(y,, t;)=7(y,), and let ¢ be a small positive
number. Then, by the local integrability of & there exist neighborhoods R'CR
of y, in X and 6>0 such that

RXx[t,—o, t;+0]CD,
(5.7.6) f220(x, 1,—0)< f5°0(y1, t)=Ffsot(y1)
=f(y)< f220(x, t,+6) for any xER’,
(6.7.7) [O(x, )—t(y)l<e  for (x, )eRX[t;—0, t,+0].
By the definition of = there exists a number d, for each %2 such that
(5.7.8) O(xp, ti40x)=1(x4) .

Since {x,} converges to y;, and since f,ot(x;)=f,(x;), (5.7.6, 8) show that for
sufficiently large %

fz"@(xk, t1_5)<f2°@(xky t1+5k)<fz°@(xk; t+0),
which implies that [6,|<d. Therefore it follows from (5.7.7, 8) that
[z(x2)—7(y1)| <e.

Namely {z(x;)} converges to z{y,). As the continuity of z=' is shown in the
same way, we complete the proof of Proposition 5.1’.

Remark 5.8. In Proposition 5.1, given a locally finite family {Y;} of sub-
analytic subsets of R", we can choose 7: W,— W, so that «(W.N\Y,)=W,NY;
for any ;. In fact, using (2.11), we can construct the Whitney stratification
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{X,} of X in (5.3) so that it is compatible with {},}. Then ¢ defined in (5.7)
automatically satisfies ©(W,NY;)=W,NY; for any ;.

Remark 5.9. We can refine Proposition 5.1 as follows. For any small neigh-
borhood W; of Z in X there exists moreover a homeomorphism 7 of X such
that 7|w,=7 and Z|y.y,—ident, here W, and W, are chosen to be contained
in W,

Proof. (Continued from (5.7).) Let A be the quotient topological space of
W,—Z under the equivalence relation x~@O(x, t) for any ¢, and let 6,: W,—Z
— /A be the canonical surjection, namely A4 is an orbit space. Then for any
finite subset J° of /, we have a positive number ¢° by the local integrability of
& such that ¢°<¢; for any /= /J° and that the restriction of #, to igoXiﬂfI‘(c")

is homeomorphic to the image 01(WIK\_LJOXL). Repeat this argument for a
e
sequence {/’}; of finite subsets of J such that {L;JXI} , is a locally finite open
1€

covering of X* Then let {¢’} be the consequent numbers, and let ¢(y) be a

positive continuous function on 4 such that c¢-0,(x)<c’ for x€X;, i€ J?. Here

the existence of such ¢ follows easily from the remarks that {€,(W,N L%]Xi)} ;
&

is a locally finite open covering of A and that A is a normal space. Then it
follows that the restriction of #; to {xeW,—Z| fi(x)=c-0,(x)} is a homeomor-
phism onto .

Choose ¢(y) so small that M, contains

Wi=ZUlxsW,—Z| fi(x)=c-0.(x)},

and let ¢’(y) be a positive continuous function on A4 such that ¢'(y)<c(y) and
that (W) is contained in the interior of W3 in X where

Wi=ZU{x=W,—Z| fi(x)=<c"<0,(x)} .
Put Wi=t(W1), 0=(0,, [1): Wi—Z — .1>(0, o).
Then # is a homeomorphism onto the image, and we have
OWi—2Z)={(y, )& AX(0, o) [t=c(v)},
OWi—2)={t=c' ()},
OWi—2Z)TInt O(Wi—Z2).

Since each integral curve of £ is invariant under z, the homeomorphism <':
GWi—Z)— 0(W3;—Z) defined by z/-0=F-7 is in the form <'(y, )=(y, z”(y, t))
for some continuous function z”. Let y=4 be fixed. Then z”(y, ¢) is a homeo-
morphism from yX {t€{0, c0)[t=c'(y)} to O(Wi;—Z)NyXR. Hence we can
extend z”(y.?) to a homeomorphism of yX {{=c(y)} so that it is linear on the
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complement of yX {{=c’(y)}. Let the extension be denoted by #;. Then clearly
#(y, H=(y, )  for (y, Hed(W;—Z)

is a homeomorphism of #(W;—Z) such that

~7
T =

{ 7 on O(Wi,—2)
ident on {(y, t)e AX(0, oo)|t=c(y)} .

Hence the extension # of r induced by % is a homeomorphism of Wj; which is
the identity on the boundary of Wjin X. Therefore we can extend £ moreover
to X so that it is the identity outside Wj;. After replacing W, W, by Wi, W3
respectively, we obtain the remark.

Remark 5.10. In Proposition 5.1, 7 is the identity on {x& W,| fi(x)=f.(x)}.
In Remark 5.9, assume f;=f, on a neighborhood of a closed subset C of X.
Then ¥ can be chosen to be the identity on a neighborhood of C. These are
clear by the method of construction = and 7.

Remark 5.11. In Proposition 5.1 and Remarks 5.9, 10, assume moreover that
X is an analytic manifold and that f,, f, are analytic. Then z and 7 can be
chosen to be analytic and C> differentiable on X—Z respectively.

Proof. Come back to (5.3). The stratification {X;} can be chosen so that
{X,—Z} is the family of all connected components of X—Z. Then @: D— X*
in (5.7) turns out to be of class C*. Here the strata may fail to satisfy the
boundedness condition. But the condition is used only in the construction of W;
in (5.7), namely of c¢;. In case in which X is an analytic manifold and f, and
/. are analytic, it is clear that there exists a continuous function ¢(y) on 4 in
the proof of Remark 5.9, since @ is differentiable. Replace W; by W, of the
proof of Remark 5.9. Then the C= differentiability of 7 is trivial by the defini-
tion of z. About 7, it is not of class C* at

0-{(y, He AX(0, )|t=c(y) or =c'(y)}.

To make 7 differentiable, at first choose ¢(y), ¢’(y) to be differentiable. It has
a meaning since 4 naturally has a C* manifold structure induced by X. Nextly
we modify 7 to be differentiable. It is easy because of the differentiability of @
and since we only need to consider ¥’ on {(y, £)e AX(0, )|t<Zc(y)}. We omit
the details.

For an analytic modification of z, we apply Theorem 8.4 in [16] to fso7y, fi
on W,—Z where z,: W,—Z —-W,—Z is an analytic approximation diffeomor-
phism of z|w,-~ in the Whitney topology [5]. Then there exists an analytic
diffeomorphism z,: W,—Z —W,—Z such that f,=/f,et,°7,. Moreover 7,°7, can
be chosen to be arbitrarily close to z|,-, in the Whitney topology by Remark
8.5 in [16]. Hence, if we extend oz, to W, by putting r,°r,=ident on Z,
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then the extension is a homeomorphism from W, to W, which satisfies the
requirement of Remark 5.11.

Problem. In Proposition 5.1, can z be subanalytic?

Proof of Proposition 5.2. Let MCR", and let b be a number contained in
fiS). Put S’=f7f(S). By the definition, S is identical with S(M, n) defined
in (56.3). Clearly S(M, n) is closed, and (5.3.7) implies that S(M, n)— F7(b) is
empty in a neighborhood of f7'(b). Hence it follows that f,(S) is a discrete set
and hence that S’ is an analytic set.

Let A be a connected component of A/—S’. Then we have a,, a,e A—A
such that f,(A)=(f(a,), fi(as)) since M is compact. We, consequently, have
Fi(A)y=f,(A). Hence, by the proofs of Proposition 5.1 and Remark 5.11, we
have neighborhoods W, W, and U of S’ in M with W,, W,CU, a C> vector
field £ on U;=U—S’ and a homeomorphism z: W, —W, such that f,er=/f, on
11, =ident on S" and &(f.ly)>0, 7=1, 2 and that 7 is defined separately on
each integral curve of & namely, c(curveN\W,)=curveN\W,.

Let ¢ be a C~ function on M such that ¢=0 on a neighborhood of S’, =1
on a neighborhood of M—U and 0=¢=1. Put

§=(1—)E+gldfildfs+gldf.1df.

Then & is a C~ vector field on A[—S’ satisfying &'(f,|x-5)>0, i=1, 2, because
of (|df,ldfe+1dfs|df)f:i>0 on M—S’ and &=¢ on (a neighborhood of S’)—S’.
In the same way as the construction of z, we obtain a one-to-one mapping 7’ :
M — M using the integral curves of & such that f,ez’=f; on M. Then we
automatically have t’=t on a neighborhood of S’, and the differentiability of
t'|y-g is clear. Hence 7’ is a homeomorphism of M. An analytic modification
of 7/|y_g proceeds just in the same way as the proof of Remark 5.11, and
T'| s is the identity. Hence Proposition 5.2 is proved.

We will apply Proposition 5.1 and Remarks 5.9, 10 later in the following form.

Corollary 5.12. Let ZC XCTR™ be polyhedrons, and let f be a subanalytic
Junction on X. Assume that X and Z are closed in R™ and that for any x<Z,
FH(x)=Z as germs at x. Then there exists a homeomorphism < of X such that fot
is PL on a neighborhood of Z and that = is the identity on Z and outside a given
neighborhood of Z. Moreover if there is a closed subset C of X such that [ is
PL on a neighborhood of C, then tis chosen to be the identity on a neighborhood
of C.

Proof. Let LCK be simplicial complexes such that |K|=X and |L|=Z.
By subdividing K and by the assumption we can assume that L is full in K
(see [13] for the definition), hence that for any o€ K, f(¢\L) consists of at
most one member and that f~'f(eN\L)No is a simplex of L. The last condi-
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tion means that if we define a linear function f; on ¢ by putting j,=f on the
vertexes, then f—f(e¢N\L) and f,—f(6NL) satisfy the conditions of Proposition
5.1 on o. Let f, be defined globally on X in this way separately on each
simplex. Then f, is a well-defined subanalytic function on X. Apply Proposi-
tion 5.1 and Remark 5.9 to f and f; on a small neighborhood of each connected
component of Z. Then we have a homeomorphism ¢ of X such that fer=f; on
a neighborhood of Z and that 7z is the identity outside a given neighborhood of
Z. Since f, is PL, so is f-r on a neighborhood of Z. Thus the first half of
the corollary is proved.

For the latter half, subdivide K so that f is linear on any simplex which
intersects with C. Let Z’ denote the union of such simplexes. Subdividing K
once more, we can assume moreover that f is linear on each simplex which
intersects with Z’. Then we automatically have f=Jf; on a neighborhood of Z’.
Hence, by Remark 5.10, = can be the identity on a neighborhood of Z’ and hence
of C. Therefore Corollary 5.12 is proved.

Remark 5.13. Let ¢ be a positive continuous function on X in Remarks 5.9,
10 and Corollary 5.12. Then % in Remarks 5.9, 10 and 7 in Corollary 5.12 can
be chosen so that

[Z(x)—x]<e(x) and |r(x)—zx|<e(x) for x=X.

It is clear by (5.7.1) and by the method of construction of ¥ and <.

§6. Analytic Triangulations

At this stage, let us consider the problem of piecewise linearization of an
analytic function f: R*— R. For any point x€R", the pair (R*, f~'f(x)) can
be triangulated by Proposition 3.1. Hence Corollary 5.12 shows the existence
of a homeomorphism z of R™ such that f-z is PL on a neighborhood of f~!f(x).
In the extension of this argument to the global R™ there are two difficulties.
At first the domains where f is piecewise linearized are too narrow to cover
R™. The other difficulty is that we can not say ‘“z is subanalytic”. If ¢ were
subanalytic, then we would repeat the argument above even if the domains of
piecewise linearization of f intersect.

We need another method of piecewise linearization. Fortunately we can
obtain by Lemma 6.15 below a large domain of piecewise linearization where f
is C> regular and 7 is subanalytic. We will show also an analytic triangulation of
an analytic manifold (Proposition 6.11). The results in this section are based
on [12].

Let K always denote a simplicial complex, AM/CR" an analytic manifold and
=1, -+, 00 or w. For any subcomplex L of K, let N(L, K) denote the simpli-
cial neighborhood of L in K, namely the subcomplex generated by all e/
with eN|L|# @.
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Definition 6.0. A [inear isomorphism g: K— L of simplicial complexes is a
homeomorphism g: |A|— |L| carrying each simplex of A linearly onto one of L.

Definition 6.1. A C" map g: N— M means a map g: |K|—A such that
the restrictions gl,, o€ R, are of class C". We say that g is analytic on a
subpolyhedron P of |K| if we have a subcomplex A of A with P=|K;| such
that g|g, is of class C®. Let K’ be another simplicial complex with | K'|=]|K],
and let g’: K’— M Dbe a C” map. We write g=g’ on P if we have subcomplexes
K, of A and K of N’ such that P=|I(|=|K]|, K,.=A{ and g|x,=&"| x,.

Definition 6.2. For any be ||, let st(h, N) denote the union of simplexes
of K which contain b. Let g: K—~MCR" be a C™ map, and let be|K|. We
define dg¥: st(b, {)— R" by

dg¥(x)=d(gl)s(x—D),

where ¢ is a simplex containing b-+e(x—0b) for small ¢>0. Here A is regarded
as to be contained in a Euclidean space, and x—b is regarded as a tangent
vector at b. The definition does not depend on the choice of imbedding of K in
a Euclidean space.

Definition 6.3. Let g: A~ AMCR" be a C" map. We call g an imbedding
if g and dg¥ are homeomorphic onto the images for any b= |K|. If g is also a
homeomorphism onto A/, it is called a C* triangulation of M.

Definition 6.4. Let g: K—R" be a C” map. Fix an imbedding of K in a
Euclidean space. Let 6 be a positive continuous function on |K|. A map g’:
|| — R" is called a g-approximation of g if

(6.4.1) for some subdivision K’ of K, g’: N/ —R" is a C" map,

(6.4.2) {ab)y—g’'(b)| <o) for any be |A| and if

(6.4.3) |dg¥(x)—dgi*(x)| Z0(b)| x—Db| for any b |K!, xest(b, K).
We will use the above definitions in the cell complex case too.

Lemma 6.5 (Theorem 8.8, [12], see also the exercise (¢) following it). Le?
g: K—R" b2 a C" imbedding. Then there exists a positive continuous function 6
on |K| such that any d-approximation of g is an imbedding.

Definition 6.6, Let g: K—R" be a (" map. The secant map induced by
g, gx: A—R", is defined by gx=g on the vertex set of X so that it is linear
on each simplex of V.

Lemma 6.7 (Theorem 9.6, [12]). Lol g: K—RB" be a C" map, K finite.
Given a corsient function 6>0 on | K|, there is a subdivision X' of X such that
the secart map gz is a G-approximation of g.
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Lemma 6.8. Let g: K—R" be a C" map. Let K, be a finite subcomplex of
K. Given ¢>0, there is 6>0 such that any d-approximation h: K{—R" of glx,
can be extended to an e-approximation h: K'— R"™ of g for some subdivision K’
of K with K'| g, =Ki. Here we can choose ﬁ:g on iK]—}N(Kl, K)| where
N=N(K,, K)—{seK|oN|K,|=@}.

Proof. 1f r<oco, the lemma coincides with Lemma 9.8, [12], so assume r=
w. In this case we have to modify the proof in [12].

Special case. Assume K is the complex generated by one simplex o, and
K, =K—{a}.

Proof of special case. Let a be the barycenter of . Put

o a={l{x—a)+alxso’, b=t=c} for ¢’€K; and b, ceR.
01=000,1/23 02=0{1/2 1133, 03=0ljp.y; and o3= ,U;-
¢’ EK]
Let K’ be the cell complex consisting of a, ¢}, o4, g5 for all ¢'€Ki and K1
Let p: K{U{o}, aila’e K1} — 0o be the map defined by p({(x—a)+a)=x, xEda.
Then p is of class C*. Hence hep can be an arbitrarily close approximation

of gop. Hence if we put

a(t(x—a)+a)=2(t—1/2) for 1/2<t<1, x€0o and

7 {g+(/1°p~g°p)~a on o

g on o—oy,

then /i can be an e-approximation of g such that £|;;=h. Since there is a
simplicial subdivision of K’ fixed on K| (see e.g. [13]), the special case is
proved.

The general case proceeds in the same way as [12]. We prove it by induc-
tion. Assume a construction of a map £, : | K,|U(| K| —|N(K,, K))U|K*| —R"
which is at once an approximation of the restriction of g to the domain and an
extension of & such that z,=g on |K|—|N(K,, K)|, where K* is the k-skeleton
of K, (if k=0, it is trivial since |K°|C|K,|\U(]K|—|N(K;, K)|).) We want to
construct A,.; on |K;|U(|K|—(N(K,, K)|)U|K**|. For any o(K*'—K*)
(N(K,, K)—Ky), by is already defined on 0de¢. Hence, by the special case, we
can extend A,l;, onto ¢ so that the extension is an approximation of g|,.
Therefore £, has an extension £ .., to | K | \U(I K| — | N(K,, K)|)U|K**| which
is an approximation of the restriction of g on the domain. Clearly Rrsi=g on
[K|—|N(K,, K)]. Thus we construct inductively A=h, which satisfies the
requirement in Lemma 6.8, where m is the dimension of N(K;, K). Here the
grades of approximation of A, k=0, ---, m, to the restriction of g to the domains
are decided by downward induction so that / is an e-approximation of g. We
omit the details (see [127).
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Lemma 6.9. Let g: K— M be a C" map, r+w. Let K, be a finite sub-
complex such that g(|N(K;, K)|) is contained in a coordinate neighborhood of M.
Let ¢>0. Then there exists an e-approximation g’ : K'— M of g such that g’'=
g on |K|—|N(K,, K)| and that g'lixy 1s analytic. Moreover if glik, is analytic
for some subcomplex K, of K, so is g'| ik uks.

Proof. Since we have an analytic coordinate neighborhood of M containing
g(|N(K,, K)|), and since g’ is required to equal g on |K|—|N(K, K)|, the
problem is reduced to the case A/[=R". In this case, the first half of the lemma
follows from Lemmas 6.7, 8, namely g’|k, is defined to be the secant map gx;
for some subdivision Ki of A}, and we let g’ be its extension to | K| constructed
in Lemma 6.8.

For the latter half, we have to check up the above extension of gg;. Return
to the proof of Lemma 6.8. In the special case, there are two cases K,—K or
K,CK, 1If K,=K, g’: K’— R" is analytic because so are p: KiU{o;, oilo’<=
K} —-R" and a: K{U/{o;, 03]6’'€K{} > R. If K,CK,, the latter half is trivial.
Since the general case is treated by stages, and since each stage is equivalent
to the special case, the latter half also in the general case is clear.

Lemma 6.10. Let g: K— M be a C" map, r+w. Let ¢ be a positive con-
tinuous function on |K|. Then there exists an analytic e-approximation g’ : K' —
M of g. Moreover, let K, C K, be subcomplexes of K such that N(K,, K)C K,.
If g is analytic on |IG|, then we can choose g'=g on |K,|.

Proof. Let K; be a subcomplex of A such that |K;|N|A;|=¢@ and |A,|\U
|K,|=|K]|, for example 1(3:1(—1\7(1'(1, K). Subdivide K so that for any
o< K;, g(|N(o, K)]) is contained in some coordinate neighborhood of M and that
the restriction of the subdivision to |K;| remains K,. We use the same notation
K for the subdivision. Let us order all simplexes of N, as oy, 0,5, . We will
construct g’ inductively.

Put g-'=g°=g. Let % be a non-negative integer. Assume an e/2*-approxi-
mation g* : K(k)— M of g*~': K(k—1)— M such that gt=g*~'on |K|—|N(o,, K)]

k
and that g* is analytic on |K,|\U\UJ ¢,, where K(k) is a subdivision of K(k—1)
1=1

such that K(—1)=K(0)=K. Replacing ¢ by smaller one, we can assume that the
¢,-neighborhood of g(|N(co,, K)|) in A for any k is contained in some coordinate

neighborhood of M where ¢,= \§up R s(x). Hence g*(|N(o1+1, K)|) is contained
TEIN(gp K)I

in a coordinate neighborhood of M. Apply Lemma 6.9 to g* and the subcomplex

of K(k) whose underlying polyhedron is o,:;. Then we obtain a subdivision

K(k+1) of K(k) and an s/2* '-approximation g*: K(k+1)— M of g* such that
o k

g¥i=g* on |K|—|N(o.+;, K)| and that g**! is analytic on |K,|\U Q o,. Since

{IN(Gm, K)|} mey2, . is locally finite in | K|, and since Ke+D] k1180 psy 51—
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K(B)| i x1-1f (o 44y, 5001, the limit of g?: K(k)— M, as k— oo, is an e-approximation
of g. Let the limit be g’: K"— M. As |K| is covered by |K,| and oy, -, it
follows from the definition of g’ that g’ is analytic on |K|. It is clear that
g’=g on |K;| also by the definition. Hence we proved the lemma.

Propesition 6.11. A/ has a C° triangulation.

Proof. By Theorem 10.6, [12] we have a C* triangulation g: K— M.
There exists a positive continuous function ¢ on | K| such that any e-approxima-
tion of g is an imbedding (Lemma 6.5). Moreover we easily choose ¢ so that
such an e-approximation is surjective on M, namely, a C* triangulation of M.
Hence Proposition 6.11 follows from Lemma 6.10.

Remark 6.12. Let M may have boundary. Let g,: Ki— M and g,: K,— M
be C* triangulations. Then there are arbitrarily close approximations gj, gi of
g1, g, respectively such that g;'egi is a linear isomorphism (Theorem 10.5, [127).
Hence, if g: K— M isa C! triangulation, then |K]| is automatically a PL mani-
fold since we have at least one C! triangulation g,: K;— M such that |[K| is
a PL manifold (Cairns-Whitehead).

Lemma 6.13. Let g,: K, — M and g.: Ky,— M be C" imbeddings whose images
are closed in M. Let ¢>0 be a continuous function on the disjoint union of | K|
and |K,|. Let Ly, L; be subcomplexes of K,, K, respectively such that

&i(IN(Ly, K)DNgo(| KL= and
&o(|N(Le, ) DN (1G] =@ .

Then there exist a complex K, linear isomorphisms i, and i, from K, and K3,
subdivisions of K, and K, respectively, to subcomplexes of K and a CT imbedding
g: K—M such that gi=gei:, g83=g°t, are e-approximations of g, g» respectively,
that 1,(| K1)UL(|Ki)=|K| and that gi=g, on |L.|, g4=gs on |L,].

K;

Proof. 1f r+w, the lemma coincides with Theorem 10.4, [12] except the
last requirements, gi=g; on |L,|, gi=g, on |L,|. But these conditions are easy
to see by the method of construction of gf, g in [12]. It follows moreover that
gi=g, on |N(L,, Ky)|, gs=g, on |N(L,, I$;)|. We omit making sure of it.

If r=w, regard g, and g. as C* imbeddings, and let X, 7, 7,, K1, K3, gi and
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g4 be the results in the C~ case. We assume however that gj, g; are ¢/2-ap-
proximations of g, g. respectively and that gi=g, on |N(L,, K;)|, g5=g» on
IN(L;, K;)]. We want to modify g to be analytic. We remark that g is analytic
on 7;|N(L,, Ky)|\Uis|N(Ly, K3)|. Let 0: |K|— R be a positive continuous func-
tion such that for any d-approximation k: K’— R" of the zero map 0: K— R",
hei, and hei, are e¢/2-approximations of the zero maps 0: Ki—R" and 0: K;—
R™ respectively. Apply Lemma 6.10 to g: K— M and 4. Let g’: K'"—M be
the resulting analytic d-approximation of g such that g=g’ on 7,(| Ly|)\Uis(| Ls|).
Let K%, K% be the subdivisions of K}, K, respectively such that 7; on K and
i, on K% are linear isomorphisms onto the images. Then K’,i,: K{— K’, i,:
K{— K’ and g’: K’— M satisfy the requirements of Lemma 6.13. Hence the
lemma is proved.

Proposition 6.14. FEven if M has boundary, it has a C* triangulation.

Proof. Leth: L—0M, g,: K;— M—0M be C¢ triangulations (Lemma 6.11),
and ¢: dMX[0, 1]— M be an analytic collar such that ¢(x, 0)=x. Let K, be a
simplicial subdivision of the cell complex LX[0, 1]. Then g,=¢-(h, ident): K,
— M is a C® imbedding whose image is a closed collar of M.

Subdivide K finely enough, and assume that if we put

K;={ceK,|g.(a)NPOM X [0, 1/3])=g},
we have
(| Ks[)DM—¢p(0M < [0, 2/3]).

Put gs=gilx, Then g,: K;— M is a C* imbedding whose image is closed in
M. Now we remark that Lemma 6.13 holds true even if M has boundary in
the case in which g7*(0M)cC!L,| and g3z'(@M)C|L.|. Hence, by Lemma 6.13,
we have a complex I, linear isomorphisms 7; and 7, from K, and K3, subdi-
visions of K, and K, respectively, to subcomplexes of K and a C® imbedding
g: K— M such that g;=g-i,, gi=g-i, are close approximations of g,, g; respec-
tively and that g;=g, on a polyhedral neighborhood of |L|X0 in 'K,|. If the
above approximations are sufficiently close, we have

gi(| Kz ) D¢g(0M X [0, 3/47)
because of g;=g, near |L]Xx0, and
gi(| K| ) DM —¢@M X [0, 3/41),
namely g is surjective. Hence g can be a C* triangulation of M.

Lemma 6.15. Let M, be an analytic manifold of dimension=dim M—1 possibly
with boundary, let ¢: My X[0, 1]— M be an analytic imbedding whose image is
closed in M, let h: L— M, be a C® triangulation, let K, be a simplicial subdivi-
sion of the cell complex LXT0, 1], and let K, be a subcomplex of K, whose image
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under (h, ident) does not intersect with o(M,x[0, 1]). Put
go=¢e(h, ident)| g, .

Then there exists a C® triangulation g: K— M and a subcomplex K, of K such
that

g1 K1) =g:(| K:|)
and that g3'g: Ky;— K, is a linear isomorphism.

The proof proceeds just in the same way as Proposition 6.14, so we omit it.

We will apply Lemma 6.15 to the proof of Theorem I later in the following
situation. The analytic function f is C* regular on ¢(M,;X[0, 1]), and for any
connected component C of M, there is a constant ¢ such that fe¢(x, t)=t-c,
(x, )eCx[0, 1]. Then feg is subanalytic on |K| and PL on |K;|, namely f
can be piecewise linearized on an arbitrarily large subset of Int ¢(AM;X[0, 1])
closed in M.

Corollary 6.16. Let g: K— M be a C? triangulation. Given a locally finite
Jamily {X;} of subanalytic subsets of M, therve exist a subdivision K' of K and a
subanalytic homeomorphism z: |K|— M such that for any o< K, t(o)=g(o), that
for any o= K’, ©(¢) is an analytic submanifold of M and t|g: ¢ —7(d) is an
analytic diffeomorphism and that {z(¢)|e =K'} is compatible with {X;}.

Proof. Assume K is contained in R™ so that | K| is closed in R™. Since
g is of class C? by (2.5.1) {g X))} is a locally finite family of subanalytic
subsets of R™, Hence the corollary follows from Proposition 3.1’.

Let us consider the semi-algebraic case of the above results. The proofs of
the results below proceed in the same way as the C¢ case, so we omit the
details of proofs.

Definition 6.17. If M is semi-algebraic in R®, we call it a Nash manifold.
An analytic map between Nash manifolds is called a Nash map if the graph is
semi-algebraic. A C® map g: K— M, K being finite, is called of class Nash if
the graph is semi-algebraic.

If K is finite, Lemma 6.8 holds true in the case of Nash map too since p
and a in the proof of Lemma 6.8 are of class Nash. In Lemmas 6.9, 10, if M
is a Nash manifold, if K is finite and if g}k, is of class Nash, then g’| x vk,
in Lemma 6.9 and g’ in Lemma 6.10 can be of class Nash. We remark here
that any secant map on a finite complex is of class Nash. We obtain also
the Nash case of Lemma 6.13. As the replacement is clear, we omit the details.
By these facts, we have the following Nash case of Propositions 6.11, 14.

Proposition 6.18. If M is a compact Nash manifold possibly with boundary,
then il has a Nash triangulation, namely, there exist a finite complex K and a
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triangulation g: K— M of class Nash.

S

For the case of non-compact Nash manifolds, we need the following

Lemma 6.19 (Theorem 1, [17]). If M is a non-compact Nash manifold, there
exists a compact Nash manifold M’ with boundary such that \[ is Nash diffeomor-
phic to M'—aMl".

Lemma 6.20. Let M be a non-compact Nash manifold. Then there exist a
complex K in R™ and a C° triangulation g: K— M such that (K| and g are
semi-algebraic.

Proof. Apply Proposition 6.18 to M’ in Lemma 6.19. Let g': K/'— M,
IK’CR™, be a Nash triangulation. Then |K’| isa PL manifold with boundary
(Remark 6.12). Hence we have g’(0|K’|)=0dM’, so a triangulation A of |K'|—
0|K’| compatible with A’ and g=g’l g, satisfy the requirement of Lemma 6.20.

Corollary 6.21. Let M be a compact Nash manifold possibly with boundary,
and let g: K— M be a Nash triangulation. Given a finite family X} of semi-
algebraic subsets of M, there exist a subdivision K’ of K and a semi-algebraic
homeomorphism <: |K|—M such that =(oc)=g(e) for any o<=RK, that for any
oK', ©(d) is a Nash submanifold of M and t|s: ¢ —>(6) is a Nash diffeomor-
phism and that {c(¢)|e=K'} is compatible with {X.}.

Proof. Clear by Proposition 3.9.

Corollary 6.22. Let M be a non-compact Nash manifold. Guen a finite
Sfamily {X)} of semi-algebraic subsets of M, there exist a complex K in R™, a
C? triangulation g: K— M and a homeomorphism t: |K! — )M such that | K| and
T are semi-algebraic, that for any o< K, ©(¢) is a Nash submanitold of M and
tle: 6 —>c(d) 1s a Nash diffeomorphism and that {z(¢)|le= K} is compatible with
{Xi}.

Proof. We only need to remark that for a compact Nash manifold M’ with
boundary, any semi-algebraic subset of A’—dA{’ is also semi-algebraic in M’.

Corollaries 6.21, 22 are generalizations of Theorem 3, [107 which treated
only the case M/[=R™.

Remark 6.23. |K| in Corollaries 6.16, 21, 22 are PL manifolds by Remark
6.12. If it were not so, we could not apply Concordance Implies Isotopy Theorem
to the proof of Theorem I. This is one of the reasons why we refined a result
of [4] in Proposition 3.1. It is difficult to obtain the corollaries bx the result
of [4].
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§7. Proof of Theorem I

The last but not least tool of the proof is Concordance Implies Isotopy
Theorem of Kirby-Siebenmann [6].

Let P, Q be polyhedrons. A map f: P— R" is called a PL map if there is
a simplicial complex K with | K!=P such that f is linear on each simplex of K.
A map f: P—Q is called a PL map if Q is PL imbedded in some R™ so that
f:P—R™is a PL map. A homotopy ¢, 0=t=1, between topological spaces
is called an isotopy if for each ¢, ¢, is a homeomorphism.

Lemma 7.1 ([6]). Let My, M, be metrized PL manifolds, ¢: M,X[0, 11—
M, be a homeomorphism, CCM, be a closed subset, and ¢ be a positive continuous
Sfunction on M, X [0, 1]. Assume that dim M;+4, 5 and that ¢ is PL on a neigh-
borhood of M, XO0UCXI[O0, 11. Then there exists an isotopy ¢.: M;iX[0, 11— M,,
0=<t=1, of ¢ such that
(7.1.1) ¢: is a PL homeomorphism,
(7.1.2) ¢y=¢, 0=t=<1, on a neighborhood of M;X0UCXI[O, 1], and that
(7.1.3) dist(¢:(x), p(x))<e(x) for all xeM,;X[0, 1], 0=t<1.

Now we have finished preparing for the proof of Theorem 1. We begin to
prove it. The proof consists of seven steps (7.2), ---, (7.8).

(7.2) We assume M to be non-compact, because the compact case is easier
to prove. There exist compact analytic submanifolds with boundary Af,, M,, -
and without boundary Ny,=@, N;, N,, --- of M such that

(:Jl M,=M, 8M,=N,,UN;,

M,AM, =N,y MinM,=@ for any i, j with |i—j|=2.

They are constructed for example as follows. Assume A{ is closed in R*. Put
o(x)=|x|% x=M. Then ¢ is a positive proper analytic function on M. Let
a,=—1<a;<a,<-- be a sequence of C> regular values of ¢ tending to
infinity such that ¢(M)=>a;. Then

M,=¢p([a:1, a;]) and N;=¢ Y a,), i=1, 2, ---
satisfy the conditions above.

Put N= _le\}. Then N is an analytic manifold closed in Af. We remark

the fact that the set of critical values of an analytic function on a compact
manifold (may having boundary) is a finite set. Let S;, S,, --- be a sequence of
finite subsets of R such that for each ¢, S; contains all critical values of flu,,
flw,., and fly, and that S;DS;,\US;;, for even i. We put S;=¢ and M,=@
for convenience. Put



LINEARIZATION OF REAL ANALYTIC FuNcCTIONS 777

Y= Q (M,NFYS,)),
1= gNlﬂf—l((sb_siﬂ)u(sz+1_St))

Y. =XN\N—-Y,= QNif\f_l(SimSiﬂ) .

Then X, ¥, and Y, are a closed semi-analytic set and analytic sets respectively.
We remark that X and Y. contains all critical points of f and f!y respectively.

(7.3) Applying Lemma 6.15, we want to piecewise linearize f on a large
domain containing Y;. There exist an open neighborhood U of },\U(M—X) in
M and a C*= vector field & on U such that £&f>0 on U and that &| v,y is a vector
field on NNU. Indeed, put &,=df, and let &, be an extension of d(f|y) to a
C= vector field on M. Then we have an open neighborhood U; of N—Y, in M
such that &, />0 on U,\U(M—X) and &,f>0 on U,. Let U, be another neigh-
borhood of N—Y, with U,—U,CY,, and let e bea C= function on M—Y, such
that 0=p=1, p=0 on U, and =1 outside U,. Then &=p&,+(1—p)&, and U=
U, U(M—X) satisfy the required conditions.

Multiplying & by 1/&f, we assume moreover &f=1 on U. Let @:D—U be
the C= flow of &, namely, @ is defined by

0
O(x, 0)=x, —a—t-@(X, D=0zt

and DC U R is the maximal open set containing UX0. Then we have
(7.3.1)  f<O(x, H)=f(x)+t for (x, t)e D because of &f=1,

(7.3.2) O, )eN for xeN, (x, t)eD.

(7.3.3) O(x, t)yel, for xelM, (x, )eD, =1, ---.

Let 7 be a positive odd integer. Let S?% be the open ¢,-neighborhood of S,
in R for some small ¢;>0 such that
(7.3.4) §°~(S,..\US;_))=S;.
Put
S;=S,+0,= {t+4./teS,} and
S;=S,—0,={t—6;1t=S,} .

Then f~%S;)"\M; and f~(S;)N\M; are compact analytic manifolds with boundary
in N;-;\UN;. Under O, f~(R—S)HNM,; is C= diffeomorphic to (J"}(SHNM;)X
[0, 1]. We will enlarge f~*(R—S?) a little, and it is on this set that we will
piecewise linearize f in (7.3).
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Put
L= SHne([a;-1—0;, a,+3.]),

Li=fShne([as-1—0i/2, a:+07/2])

for small d;>0 where ¢ is defined in (7.2). Choose 4; small enough. Then L,
L are compact analytic manifolds with boundary such that L;,—dL,DL;, Li—
OLDf-Y(S$) A, and that (x, t)eD for x=L;, 0=t<=min{seS7|s> f(x)} —f(x).
1t means that we have a C* imbedding ¢;: L;X[0, 1] — U such that ¢;(x, 0)=
x, fedhi(x, 1)=S7 for xeL; that for each x& Ly, ¢.(xX[0, 1]) is contained in
the integral curve of £ through x and that if O(x, to)=¢;(x, 1), {,eR then
dilx, )=0(x. t,¢), 0=t=<1. The last property together with (7.3.1) tells us that
Se¢9| zx0, 11 is linear for each fixed x.

From the other properties and (7.3.3, 4) it follows that for each connected
component C of L,, CXRNDCCX(s;—f(C), s,—f(C)) where (s;, s;) is the
connected component of R—S; containing f(C). We see easily from (7.3.2) that
the set O(C:< {s,—f(C), s;— f(C)} N\D) has a positive distance from N;_;\UN;;;
if it is not empty. Hence, shrinking U near f ({s;, s:} )N(N;-:\UN,.,) if neces-
sary, we can assume CX {s;—f(C), s;—f(C)} "\D=¢@. Then we have

(7.3.5) CXRND=CX(s;—f(C), s;—f(C)),

and hence O|; z-p: LXRND— M is a C> imbedding. Choose d; for all odd ;
so small that

(7.3.6) 6L, <BAD)NO(L;XxRND)=@  for odd j'=j".

Before applying Lemma 6.15, we need to modify & to be analytic. Remem-
ber MCR"™. Let us regard &, as a tangent vector of R™ at x, namely & is
regarded as a C” map from U to R*. Approximate & by an analytic map & in
the Whitney topology [5]. Let p,, x=M, be the orthogonal projection of the
tangent space T,8" to T,M. Then {p,°&,|x=M} is an analytic vector field
on M close to ¢. We use the same notation & for the approximation. Choose
the approximation so close that £&f>0 on U. Assume &f=1 on U by the same
reason as before. We then define the flow of new & too and use the same
notation @ : D— U for it. Consider the conditions (7.3.1, -+, 6). Clearly (7.3.1)
remains true, and (7.3.6) can do so for some smaller d;, but (7.3.2, 3) fail in
general, (the fact is, we can continue them by using the analytic sheaf theory
in the same way as Chapter II, [16]). We assume in place of (7.3.2, 3) that

(7.3.7) O{L}—8L)XRNAD)DM,—f-(S,)  for any odd j, and
(7.3.8) 6L, <RND)YCM;J(M;-y—0M,_)\U(M1p1—0Misy)

which follows from (7.3.6, 7) for j=/—2, 7 and i+2. The assumptions are clearly
possible if the approximation is close enough. By (7.3.8) and by the same reason
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as before, (7.3.5) can remain true. We remark that @ and ¢; are analytic and
that the image of ¢; is closed in M.
Put
L=\ L, L=\ L,

it odd

and let ¢: LX[0, 11— M be defined by ¢|z,.0,n=¢):. By Proposition 6.14, we
have a C© triangulation A: W— L. Subdivide W finely enough. Then we have
a subcomplex W” of W whose underlying polyhedron is a PL manifold with
boundary, is contained in Int || and contains A~'(L’) in its interior (see Chap-
ter 2, 3, [13]). Put L”=h(|W”|). Let @;: L, X[—67, 14+87/1—M be a well-
defined analytic extension of ¢; which is an imbedding for small 67>0. Apply
Lemma 6.15 to {Ji}i:odd and A: W— L. Then we have a C“ triangulation g:
K— M and a subcomplex K, of K such that

g(| K )=¢(L”x[0, 1]), and that
(7.3.9) (h, ident) e¢p"teg: | K,| —> |W”| %[0, 1]

is a PL homeomorphism. Hence we can assume moreover that a subcomplex

K, of K; has the underlying polyhedron which is carried by g onto ¢(L”X0).
Then

(7.3.10) (h, ident) Yoy tog: | K,| —> |W”| X0

is a PL homeomorphism. Now, by the definition of ¢, fe¢)=(h, ident) is a PL
function on |W|X[0, 1]. Hence (7.3.9) tells us that

(7.3.11) feg is PL on |K|.

We can assume that g: K— M given in Theorem I coincides with the above
g: K— M. The reason is the following. Let g*: K*— M be another C* trian-
gulation. Then by Remark 6.12 there are C> approximations g’: K'— M, g*':
K* — M of g, g* respectively such that g’~'-g*’ is a linear isomorphism. Hence
geg'teg* i K*¥ - M is an approximation of g* As g* ~leg/(|K,}) is the un-
derlying polyhedron of a subcomplex K%’ of K*’, and since f-g is PL on |K,|,
fegeg’~teg* is PL on |K¥'|. Hence we can replace g: K— M, K; by geg’~te
g* 1 K* — M, K¥ respectively. Therefore the assumption above is admitted.

(7.4) For any subset A of A, let A* denote the inverse image of A under
g: |K|—-M. Put

D*={(x, ) e U*X R|(g(x), t)=D} .

Let ©@*: D¥—U*, ¢*: L*X[0, 11> U*, h*: W—L*, f*: M*>R and ¢¥: L¥x
[0, 11— M*,7: odd, be defined by O@*=g'-O:(g, ident), p*=g 'e¢h-(g, ident),
h¥*=g=teh, f*=f-g and ¢F=g to¢h;~(g, ident). From now on we consider f* on
A* in place of f on M and ident: K— M* in place of g: K— M in Theorem
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I. We summarize what we obtained.

(7.4.1) M* L"* are a PL manifold and one with boundary respectively by
Remark 6.12 and (7.3.10). L’*, X* Y% and Y% are closed subanalytic subsets
of M*. We have

[K|=M*, |K,|=L"*=¢*(L"*x0), |K,|=¢*L"*x[0, 1]).
Put
| Ky | =¢H(LI* X0, 1), i=1,3, --.

(7.4.2) O% ¢* h* are subanalytic maps. f* on X* is locally constant.

(7.4.3) f*O*x, )=r*x)+t for (x, t)eD* by (7.3.1).

(7.4.4) For any connected component C of L¥, 7: odd,
CXBND*=CX(s;—f*(C), ss—f*(C))

where (s;, s,) is the connected component of R—S; containing f*(C) by (7.3.5).

(7.4.5) &*| Loexro, i : L7*X[0, 1] —> | K, |

is a PL homeomorphism by (7.3.9) and because h*|y. : |W”|—L"* is a PL
homeomorphism by (7.3.10).

(7.4.6) The definition of ¢ shows that
*(x, 0)=x for xeL”*,

f*edF(x, 1)eS7 for each odd 7 and xeLj*,

d*(x X [0, 1])CO*(x X RND) for each x=L”*, and
f*e*|z ro.17 is linear for each xe L”*.
(7.4.7) f*hgy is PL by (7.3.11).
(7.4.8) O*(L*—0L*)X RND*DM¥—f*-%(S;), 7: odd, by (7.3.7).
(7.4.9) O LEXRBND*)CMFUME,—OME)IM ¥, —0M%,), i:odd,

by (7.3.8).

(7.4.10) O* is one-to-one on L”*XRND by (7.3.5, 6) and PL on L"*XRNO*-!

(|K:i|) by (7.4.5, 6).
The statement that ©* is PL and one-to-one on L”*XRNO*Y(|K,|) is

equivalent to

(7.4.10) ©* is a PL homeomorphism from O@*(C, ¢)X[—c, s,—s;—20;—c] to the
connected component of |K,| containing C for any connected component C of
L"* and any 0=c<s,—s,—20; where (s, s,) is defined in (7.4.4).

(7.5) Here we triangulate X*. For each odd i>0, Z;=|K;|:Nf**((Si+ v
S.-1)—S;) is a polyhedron by (7.4.7) and contains X*N|K;|; by the definition
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of X, S,, S,4; and S;_;. Put Z= \gdZi. Apply Proposition 3.1’ to K and X*
1: 0

UZ. Then we have a subdivision K’ of K and a subanalytic homeomorphism
7, of M* such that {r,(¢)]o=K’} is compatible with X*UZ. Since X* and Z
are closed in M, it follows that z7Y{X*UZ) is a subpolyhedron of M*. Moreover
Remark 3.8 tells us that z; can be the identity outside an arbitrarily small neigh-
borhood of X*—Z=X*—|K,| since Z is a subpolyhedron and since X*UZ
coincides with Z outsidle X*—Z. Hence the properties in (7.4) remain true
when we shrink |K,| and |K;| a little and when we shift the problem by 77,
namely, when we consider z7'(X*), f*-z,, etc. in place of X*, f* etc., so we
can add the following to the properties in (7.4).

(7.5.1) X*UZ is a subpolyhedron of M*,

Since 7 in Theorem I is required to be a C° e-approximation of g (=ident),
for the admission of replacement of X*, f*, etc. by z7(X*), f*.z,, etc., 7, must
be arbitrarily close to the identity in the C° fine topology. To be exact, let
M*CR™, and &’ be a positive continuous function on M*., Then r; must be
chosen so that |z,(x)—x]|<e’(x). It is possible by (3.1.2) if we subdivide K so
that the diameter of each g=K is smaller than any &'(x), xEo.

(7.6) We want to piecewise linearize f* on a neighborhood of X*. If
ff(x)=X* as germs at x for any x<X*, then it would follow directly from
Corollary 5.12 and (7.5.1). But the equality above is not correct in general, so
we remove subsets from AM* and X*. Let P,CL”*—0L”* be a PL manifold
with boundary closed in L”* and containing L’* in its interior. Put P,=
¢*(P,x[0, 11). Then P, is a PL manifold with boundary by (7.4.5), f* is PL
on a neighborhood of P,N\X* by (7.4.7), and it also follows from the definitions
of S;, Lithat /™! ye_ine p,(f(x))=X*—Int P, as germs at x for any x < X*—Int P,.
Apply Corollary 5.12 to M*—Int P;, X*—Int P, and f*. Then we have a homeo-
morphism 7z, of M*—Int P, such that f*ez, is PL on a neighborhood of X*—Int P,
in M*—Int P, and that z, is the identity on 0P;\U(X*—Int P;) and outside a small
neighborhood of X*—Int P,. Extend z,to M* by putting c,—ident on P,. Con-
sider f*ot, P;, etc. in place of f* L”* etc. respectively, and use the former
notations for them. Then we have

(7.6.1) f* is PL on a neighborhood of X*.

The replacement here is admitted because z, can be arbitrarily close to the
identity in the C° fine topology by Remark 5.13. We remark that the first half
of (7.4.2) fails now and that 6% ¢* h* are only a continuous flow, continuous
maps respectively. The other properties in (7.4) and (7.5.1) remain true.

(7.7) We will piecewise linearize f* on O*(L*"—oL"*)X RN\D*). Let C
be a connected component of L”*—0L”* contained in some LY*. Put Q=0*Cx
RND*). Let (s, s;) be the connected component of R—S; containing f*(C).
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Then CXRND*=CX(s;—*(C), s;—f*(C)) by (7.4.4). Hence we have
FHQ)=(s1, 83), [¥oF(CX0)=5,40;, f*pF(CX1)=5,—0;

by {7.4.3) and by the definitions of L; and ¢;. Let 67 be a positive small
number such that f*is PL on f* Y([s;, s;+071ULs:—07, s DNMFUMF \IMF,,)
and that

(51, 810, +0VTU[S3—0:—07, $2)N(S3:1USi-)=0 .

We want to find a homeomorphism 7z,; of § such that z,o=ident on (J—Q)U
O*(C X [0, sy—s,—20,—0%])U(a neighborhced of X*NQ in Q) and that f*ery
is PL on Q. In (7.8) we will shorten 67 moreover. Put Q,=/*"*([s;+067, s;+0;
+07DNQ. Let X: Cx[0, 11— @, be a homeomorphism defined by X(x, s)=0*(x,
07 —s0;). Then we have

XCXD)=/*"s:+0)NQs,
UCX0)=f*"(s1+0;+0)NQ1,
XCXLO0, 67/0: D= 1K:1NQs,

F*eX| zxr0,11 18 linear, and the restriction of X to CXx[0, 07/d;] is a PL homeo-
morphism to |K,|NQ; by (7.4.3, 10). Let #: Cx[0, 1J— @, be the continuous
extension of X, whose existence is trivial.

Recall the following well-known facts. Let ACB be compact polyhedrons,
and let { be a PL function on B such that {~*(0)=A. Then there exists a
positive number ¢ such that for any 0<c¢’<c¢, ¥ [—c’, ¢’]) is a regular neigh-
borhood of A in B. See [13] for the definition of regular neighborhood from
which the above fact follows easily. If B, moreover, is a PL manifold (with
boundary), then any regular neighborhood is a PL manifold with boundary (Corol-
lary 3.30, [13]).

Consider a compact polyhedron pair of a small closed neighborhood of @ in
M* which is a PL manifold with boundary and the intersection of the neigh-
borhood and f* (s)\Uf**(s;+0;). Then, by the above facts, the intersection
of the neighborhood and f*-((s;, s;+071\U(s1-+0,, s;+0,+07]) is a PL manifold
with boundary for small 7. Therefore, since

Qi=Q—*(s1, $:+07)\U(s:40,107, s2)),

we assume that @, is a PL manifold with boundary. Hence we can apply
Lemma 7.1 to X: Cx[0, 1]1—Q..
Let, accordingly, X,: Cx[0, 11— Q,, 0=t=1, be an isotopy of X such that

(7.7.1) X, is a PL homeomorphism,
(7.7.2) X,=% 0=<t=1, on CX0 and that

(7.7.3) for all ¢, X; are close approximations of X in the C° fine topology. Hence
the isotopy can be extended to an isotopy %,: CX[0, 11— Q,, 0<t<1, by putting
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T(x, )=%(x,s) for xeC—C, 0<s<1.
Now we define 7;¢ on Q.=f*"Y([s,+4d7/2, s;+0d,-+671)NQ. Put
XeXTH(x)  on Qi—[* s +d7),
{ O XA O (x, 5,+87—*(x)), f¥(x)—s,—6)) on Q.,—IntQ,

Toe(x)=

where
t=2(f*(x)—s,—067/2)/067 .

We remark that Q,—Int Q,>x— @*(x, s;+07—f*(x))eM* is a projection onto
UCKXD=f*"s;+07)NQ, that X,|¢.;, 0=t=1, are homeomorphisms onto %(Cx1)
and that f*eryc(x)=f*(x) for x€Q,—Int Q,. Hence 7s¢c|g,—int ¢, iS 2 homeomor-
phism of Q,—Int @,, coincides with X-X7' on X(CX1), equals the identity on Q,—
Int Q,—Q,=f*"%(s;+07/2)"Q and is a close approximation of the identity in the
C° fine topology by (7.7.3). Consequently z,; is a homeomorphism of @, close
to the identity. It trivially follows also that f*ez,; is PL on Q,—IntQ;. Look
into 75c on @, in detail. f*eryci,, is PL since so are f*-X and X7*. From
(7.4.10)" and from the equality @*(O*(CXd¥)X[—d; 01)=Q, it follows that
L7t @*|oucuoyyni-a;01 18 @ PL homeomorphism onto CX[0, 1]. Hence z34-0* is
PL on O*(CXd?")X[—d,, 01. We remark that t3d-@%*=1;4-O%s(r,,, ident) on
O*Cx o)X [—d;, 0].

Define 7, also on f* Y[s,—0,—07, s;—07/2])NQ in the same way as above,
and extend it to § by putting r;c=ident on (f* Y[sy, s:--67/2)\JU(s,+08,+87, ss
—6,—0N\U(s:—07/2, s; DNQ)U(@—Q).  Then f¥ozye is PL on Q, t5d0%o(ry,
ident) is PL on @*(CXdY)X[—08;, ss—S;—0,—207] by (7.4.10)’, and =, is a close
approximation of the identity in the C° (fine) topology. We remark that if we
put zyc=ident outside @ then we can extend 7, globally to M*.

Repeat this argument for each connected component of L”*—gL”*. Then
we have a homeomorphism z; of M* close to the identity and equal to it outside
OF((L"*—0L"*)Xx RN D*) such that f*er; is PL on O*((L"*—0L"*)X RN\D*)\JU
(a neighborhood of X*). Replace f*, O% L"* ||, etc. by f*et,, t71e@*-(z,,
ident), kcj@*(éx&”), \CJ@*(CXE&”, S;—5,—20,—08”7), etc. respectively, and use

the former notations for them. Then we can assume
(7.7.4) f*is PL on O*(L"*—0oL"*)X RN\D*), and

(7.7.5) ©* is PL on CX[0Y—&;, s;—s,—0,—0d%] for any connected component C
of L"*—0dL"* where d;, 67, s; and s, are given as before.

Clearly (7.7.5) is equivalent to
(7.7.6) O©* is PL on O*(Cxc¢)X[0/—0,—¢, s3—s,—08,—dy—c] for any c=[d/—
0s, Se—51—0;—07].

(7.8) Finally we piecewise linearize f* globally. For it we only need to
do so on M*—X*—@*(L'*X RND*) because of (7.6.1) and (7.7.4). Let U be a
connected component of AM*—X*—@*(L'*X RND*). Then it is contained in
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some M¥, j: even, because for each odd 7, Mf—X* is contained in O@*((L"*—
OL'"*)X RN\D*) by (7.4.8). Put f¥(U)=(sy, s;). Let xeU. Then
O*(x X RND*)CM*
by (7.4.8), and s;, s,=S,. Hence, by (7.4.3),
T XBRND*Dx X (s;—f*(x), ss—f*(x)),
which is equivalent to
O*(x x RND*)NU=(some connected component of @*(xXRND*)—X%*)
=0%(x X (5, —f*(x), sa—/*(x))).

Hence we obtain the following. Let s<(sy, s;) and put C=f*"(s)NU. Then
C is a topological manifold, CX(s;—s, s;—s$)CD*, and O*|c. ¢, 5 50-5: CX{5;—
s, $;—s)— U is a homeomorphism. Let C; be a closed subset of C such that
C,JU(C—C) is a neighborhood of C—C in C and that

(7.8.1) Ci,CO*((L"*—0L"*)X RN\D¥*) .

Then, by (7.6.1) and (7.7.4) we have 2,>0 such that

(7.8.2) f*|y is PL on a neighborhood of @*(C,X(s;—s, Sa—s))\J(U—f*((s:+2,,
Sa—4,)).

Put s=s,—A4,, and shorten ¢;-, and 07, defined in (7.7) so that 2,>0d7_,,
d7.,. Then C is a PL manifold, and it follows from (7.7.6), (7.8.1) and from the
inclusion S;DS;-,\US;;, that
(7.8.3) O* is PL on a neighborhood of C;X[—s,+s,+24, 0] in CX[—ss+s;+
22, 01.

Put
Ui=0*(CX[—sy+5,+22, 0)=UNS*[s:+4, s.—4,]).

Consider a compact polyhedron pair of a small closed neighborhood V of
UN/*({s;, s;}) in M* which is a PL manifold with boundary and VN f**
({s5, sz}). Then, by the facts about regular neighborhood stated in (7.7) and by
(7.6.1), V—f*Y(s;+2j, s,—2;) is a PL manifold with boundary for small 2,
Moreover we have a PL homeomorphism pg: (VNf* ' (s,—2,))X[0, ) — VN
f*[s.—24j, 85)) for small 2; such that

pwlx, 0)=x and [f*eu(x, t)=s,—2A,+t4;
for xeVNf*(s,—4y, t<[0, 1),

which follows easily from the proof of the fact that VNf**[s,—2a;, s;44,]) is
a regular neighborhood of VNf*-(s,) in V. These imply that
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(7.8.4) we can assume U, and C are PL manifolds with boundary and without
boundary respectively

and that we can modify @*|¢, .2 » fixing it on CX0 so that @* is PL there.
If we replace C by O*(CxJ1) for sufficiently small 2;>0, the last statement
means that we can assume

(7.8.5) @* is PL on a neighborhood of CXx0 in CX[—s.+s,+24,, 0].

According to (7.8.3, 4, 5) we can apply Lemma 7.1. To be exact, let a
homeomorphism w: CX[0, 11— U, be defined by

(x, u)=0%(x, u(—ss+s,1+24,) .

Then w is PL on a neighborhood of CxX0UC,;x[0, 1]. Hence, by Lemma 7.1
we have an isotopy w,: CX[0, 11— U;, 0=t=1, of w such that

(7.8.6) w, is PL,
(7.8.7) w,=w, 0=t=1, on a neighborhood of CxX0\UC,x[0, 1] and that
(7.8.8) for all t, w, are close approximations of w.

We define a homeomorphism 7,0 of U,=f*"*([s;+4,/2, s;—4;1N\U in the
same way as Ty, namely, put

( wewi*(x) for xeU,—f*(s;+4,)
Tie(x)=1 OFwow;'-O*(x, s;+2,—f*(x), f*(x)—s:—2,)
for x=U,—Int U,
where
t=2(f*(x)—51—2,/2)/2;.
Then, by the same reason as (7.7),

(7.8.9) 74 is well-defined, the identity on U,—Int U,, and close to the identity
on U,

(7.8.10) f*er,e=f* on U,—U,, and f*et,, is PL on U,. Hence

(7.8.11) f*orye is PL on U,.
Moreover it follows from (7.8.7) that

(7.8.12) 7, is the identity on @*(C,X[—s,+s,+34,/2, 0]).
Extend z, to U by putting 7,,=ident on U—U,. Then, by (7.8.2, 9, 11, 12)

(7.8.13) 74 is a homeomorphism of U, the identity outside a compact subset of
U and close to the identity, and f*.z,; is PL on U.

Repeating this argument for each connected component of M*— X*—@*(L'*
XRMND*), we obtain a homeomorphism z, of M* close to the identity and equal
to it on a neighborhood of X*\UO®*(L'*X RN\D*) such that f*e.r, is PL on M*
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—X*—@*(L'*XRND*) (7.8.13). Since f* is PL on a neighborhood of X*_
O*(L"*x RN\D*) (7.6.1), (7.7.4), it follows that f*.r, is globally PL. Hence we
complete the proof of Theorem I.

§8. Proofs of the Other Results

As Theorem II is a special case of Theorem II’ (see Proposition 6.11), we
do not need to prove Theorem II.

(8.1) Proof of Theorem I'. Let M be closed in R", and let MCR"XR be
the graph of f. Then M is a closed subanalytic set in R*"XR. Let f: M—R
be the restriction of the projection R*XR—R. We remark thar 7 is proper,
since f is so. Recall the proof of Proposition 5.1. (5.3) tells us the following.
There exist a Whitney subanalytic stratification {1\7&} i=1,.. Of ]\71, compact analytic
manifolds N,, =1, 2, ---, subanalytic open subsets N;CN;, i=1, ---, and analytic
maps ¢; : Ni—nﬁ, 7=1, -+, such that

8.1.1) for each 7, ¢;|y, is a diffeomorphism onto A7[1.

Put for each 7
Fo=Fla, Si={xeM.|df,=0} .

Then S; coincides with S(M;, n-+1) for fi=f,=fin (5.3). Hence, by (5.3.6), S,
is closed in ]\Zli and subanalytic. Here the condition (8.1.1) is important. It
follows from (2.5) that £,(S,) is a subanalytic set in R, which clearly is bounded
and of dimension 0, since ]\7[i is bounded. Let R denote the union of all f,-(Sl),
and put

S=F"R), S=/R).

Then the properness of f assures that R is a discrete set, hence S and S are
closed subanalytic sets in R™ R"*' respectively by (2.5). Adding Z to R if
necessary, we assume R to be unbounded from above and below..

Consider the vector field £={&,=df,} on {M;—S} (see Definition 4.10).
Clearly {ﬁi——g} is a Whitney stratification of a locally closed subsets M—5 of
R, and we have &,(f} 7,-5) >0, i=1, 2, ---. Put fi=f,=F, V,=V{=R"*, V,=
Vi=@ for 1<j<n. Then &, A7I—§, f1, fo, Vi and V5, 0=j<n, satisfy the con-
ditions in Lemma 4.14. Hence we have a locally integrable vector field &' = {£.}

on {M;—S} such that &(f|z,-5) >0, i=1, 2, --. After multiplying &} by 1/&,f,
We assume moreover
(8.1.2) Efln-0)=1,4=1,2, .

Let ©: D—M—S be the flow of &’ (see Definition 4.12). Then, since & is
locally integrable, D is open in (M—S8)XR, and O is continuous. (8.1.2) clearly
implies
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(8.1.3) J6(x, t)=fx)+t  for (x, yeD.
Let p: R"XR— R™ be the projection. Put
D={(p(x), Dl (x, D},
O(x, )=p-O(x, [(x), 1) for (x,t)eD.

Then D is open in (M—S)XR, and @: D—A—S is a continuous flow such
that by (8.1.3)

8.1.4) 1Ox, t)=[(x)+t for (x,)eD.

Let U be a connected component of M—S. Put f(U)=(s, s,). Then si, s,
eR. Let s€(sy, sy), and put C=f"Y(s)N\U. Then, since f is proper, U is
bounded, C 1is compact, hence we have CXRND=CX(s;—s, s;—s), and
Olcitsy-s.55-9 1 CX(s1—8, s,—s)— U is a homeomorphism.

In the same way as (7.5, 6) we can reduce the problem to the case in which
S is a subpolyhedron of M and f is PL on a neighborhood of S. Here the
importance is that S is closed in M and that for any x<S, f~1f(x)=S as germs
at x. We do not repeat the proof of reduction. For each above U, there exists
2>0 such that f is PL on a neighborhood of U—f~%((s,+2, s;—2A)), since U is
compact. Choose 2 so small that UNfY([s,+2, s,—21]) is a PL manifold (see
(7.7)), and put s=s,—A. Then UNfY[s;+4, sx—2]) and C are compact PL
manifolds with boundary and without boundary respectively. It is easier than
(7.7) to find a homeomorphism z; of UNf*([s;+4/2, s,—A4]) such that fery is
PL there and that zy=ident on UNf({s;+21/2, s,—1}). We omit the details.
Extend 7y to M by putting zy=ident outside UNf~*([s;+1/2, s,—A]). Then
foty is a subanalytic function on M and PL on a neighborhood of U. Repeat-
ing this argument for each component of M—S, we obtain a homeomorphism ¢
of M such that fer is PL on A. Here ¢ can be chosen to be arbitrarily close
to the identity by the same reason as the proof of Theorem I. Hence Theorem
I’ is proved.

Remark 8.2. The reason why I assumed the properness of / in Theorem
1" is that I could not modify (7.3) for the case of subanalytic f, nor I could
proceed with the proof without the modification in the non-proper case.

(8.3) Proof of Theorem II'’. When we proceed with the proof in the same
way as (8.1), there is no problem except in the last step, so we assume the
following.

(8.3.1) RCR is a discrete set unbounded from above and below.

8.3.2) S=f"Y(KR) is a subpolyhedron of A such that f is PL on a neighborhood
of S.

8.3.3) @: D— M-S, DC(M—S)XR, is a continuous flow such that
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feO(x, H=f(x)+t for (x,)ED

and that for any connected component U of M—S with f(U)=(s;, s;) and for
any s&(sy, s,) we have CXRND=CX(s;—s, s,—s), and Ol¢ (s;-5.5,-5: CX
(s1—s, S;—s)— U is a homeomorphism where C=UNf"(s).

(8.3.4) 1 is a small positive number depending on U such that f is PL on a
neighborhood of U—f Y((s;+2, s,—A)) and that UNf[s;+2, s,—A]) is a PL
manifold.

For the above U, let s=s,+1, C’'=UNf"*(sy—A). Then, by (8.3.4), M—UN
f~Y(s;+24, s;—A)) is a PL manifold with boundary C\UC’. As we can not apply
Lemma 7.1 in the same way as (7.7), we need the following result of Moise
(see p.15, [6]). Let ¢: C—C’ be a homeomorphism. Then, there exists an
isotopy ¢, 0=t=1, of ¢ such that ¢, is PL. Consider the case in which ¢(x)
=0(x, s;—s;—22), xC. By (8.3.3) ¢ is a homeomorphism onto C’. Let ¢, be
the above isotopy of ¢.

Let My be the quotient space of M—UNf*((s;+2, s,—A)) by the identifica-
tion of x=C with ¢,(x)=C’. Then, since ¢, is a PL homeomorphism, My has
naturally a PL manifold structure. We want to find a homeomorphism 7 : My
— M such that

(8.3.5) ry=ident on a neighborhood of AM—U and that
(8.3.6) fory is PL on zz'(U).

If it is possible, then repeating the construction of My and ¢y for each connected
component U of M—S, we obtain a PL manifold M’ and a homeomorphism z:
M’ — M such that fer is PL.

We define at first a map 7y : M—UNf(s;}+4, s,—2A)— M by

x for xeM—-UNfY[s;+2/2, s;—2))
Ty(0)=1 OP°O(x, s1+2—f(x)), —2(s:—5,—32/2)(s:+2—f(x))/2)
for xeUNf[s;+1/2, s;+2])
where
t=2(f(x)—s1—4/2)/ 2.
Then it is well-defined and continuous because of
(x, si+A—f(x))eD and O(x, s;+2—f(x)eC
for xeUNS([s;+2/2, s;+2]),
Fp(x)=x for xeUNfYs,+2/2).

We also have, by (8.3.3),
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flx) on M—UNfFY[s:+2/2, s.—2])
foTp(x)=1% $y—A—2(sy—s;—34/2)(s;+2—f(x))/2 on
UNS[s1+4/2, s:+2]) .
Hence, by (8.3.4),
8.3.7) foty is PL on U—f"((s;+2, s:—2).
On the other hand
Tp(0)=0(¢:°O(x, 0), 0)=¢y(x)  for xeUNS(s,+2).

It is easy also to see that =, is surjective, and the restriction to M—UNJ?
([s1+A4, s;—A]) is one-to-one. Hence %y induces a homeomorphism zy: My — M.
(8.3.5) is then clear by the definition of %y, and (8.3.6) follows from (8.3.7).
Hence Theorem II’ is proved.

Remark 8.4. 1 do not know if A’ in Theorems II, I’ can be a manifold of
C~ triangulation of M.

(8.5) Proof of Corollary III. For each positive integer m, let I, denote
the set of all simplicial complexes consisting of 7 simplexes. We identify two
complexes K, L of I, if they are linearly isomorphic (see Definition 6.0). Then
I, is a finite set.

For any complex K1, let 4x denote the set of all simplicial functions
on |K|, namely functions on | K| whose restriction on each simplex of K is linear.
We give a equivalence relation to 4x as follows. For f, g€dg, we define f~g
if there is a homeomorphism r of R such that f=reg. Let Jdx denote the
quotient set of dx under the equivalence relation. Then it is easy to see that
Ay is a finite set.

Let 4,, and 4, denote the unions of 4x and 4y, K&l respectively, and

Pt dpm— A be the projection. Put 4= C_jldm, A= Qﬂm, and let p: 4— 4 be

defined by p=pn, on Ad,. Then 4, are finite sets, since 4y, I', are finite sets,
consequently 4 is countable.

Let 4 denote the set of all subanalytic funcitons on M. For any fe 4, we
have a simplical complex K and a homeomorphism z: [/{| — M such that fere
Ay by Theorems I, II'. By putting ¢(f)=p(f-z)ed, we define a map ¢: A— 4.
If fi, frcA are carried by ¢ to one element of 4, f; and f, clearly are topologi-
cally R-L equivalent. Hence there are only countable topological R-L equi-
valence classes of 4. That proves Corollary IIL

Remark 8.6. Corollary III does not hold true if A{ is non-compact. In fact,
the set of topological R-L equivalence classes of all subanalytic (or analytic)
functions on noncompact A/ is a continuum. As the proof is easy, we omit it.



790 MASAHIRO SIIIOTA

§9. Piecewise Linearization of Analytic Maps

Let f: M?— M7 be a real (or complex) analytic map between connected
real (or complex) analytic manifolds respectively. We call f piecewise linearizable
if there are C= triangulations (K, g), (K,, g.) of M,, M, respectively and homeo-
morphisms z,: |K;| = M), 7,: M,— |K,| such that z,ofer,: |K;| > |K;| is a PL
map (see the beginning of §7). Let g: X;— X, be a subanalytic map between
subanalytic sets. For each xeX), let d,(x) denote the dimension of the germ
of g7'g(x) at x. Let / be the maximal rank of df on M,.

Proposition 9.1 (Real case). If f is piecewise linearizable, there exists an
analytic subset X of M, of codimension at least two such that

=n—I for xeM,—X

=n—I for x=X.

df(x){

Proof. At first we will prove d,<n—[ on M,. Let (K, g1), (K g») be C~
triangulations of M;, M, respectively, and z,: | K,| — M, 7,: M;— | K,| be homeo-
morphisms such that z,°fez; is a PL map. Imbed K, in some R™ so that g=
Tyofor,: | Kyl — R™ is a PL map, and assume that for each simplex ¢ of K, gi,
is linear. Let o= K, 3 be the affine space spanned by o, and G: ¥ —R™ be
the linear extension of g|,. Then, for any x=0, G-g(x) is an affine subspace
of X, and we have (g|,) 'g(x)=G'g(x)"No. Hence

(9.1.1) dg, is equal to dim ¢—dim g(¢) on ¢ and hence constant there,
9.1.2) for any x€o0, d(g,(x)=dg,)(6).

Let x=|K,|. By the definition of d,, d (x) is the maximum of d,(x) for
oK with x€o. Here we can restrict ¢ to n-simplexes, since |K| is a PL
manifold. Hence, there is at least one ¢=K of dimension n such that xco
and that d,(x)=d(x). Hence, by (9.1.2) we obtain

9.1.3) d(£)=d (g1,)(0)=dg(d).

On the other hand, since the set of points x=M,; where df has rank </ is an
analytic subset of M; of codimension =1, we have d,=n—/[ on an open dense
subset of |K;|. Hence it follows from (9.1.3) that d,<n—/ on M,.

By Proposition 9.3, {16], for any x,=M,, f takes the following form in some
analytic local coordinate systems of M,, M, around x,, f(x,) respectively except
on an analytic subset X of M, of codimension =2.

f(x):<fl(x), Ty f'm.(x)): x:(xly Ty xn)y x0:0:
Jix)=x1, -, fp(X)=x%p,

— 1 48
f1)+1_——’— J\p1+1
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./.Z)'V'Z:-;\‘]I+2’/\’;)2+l+f]lxspl~—1 ’
D . Sl=p-— .
fi=xixp 00 fioperi-por X1 ¥ p 2P T Ffiopmniie

- S1— ~S1
frar=S1-pr-pXiX 2P+ - o m X,

— : .2 Sl—p 1 ' -S1
fm—fm—p—ll—pl"l/\p—up"r "I'fm—p—ll}vp+l »

where 1<s;< -+ <s,_, are integers, f;, are analytic functions in .. -+, Xp.,
Here f~1f(0)= {x,= -+ xp+;=0}. Hence d;(0)=n—p—1. Since [=p+1 and
d;<n—[, [ must be equal to p--1. Hence we have d,(0)=n—:. which proves

Proposition 9.1.

Proposition 9.2 (Complex case). If f is piecewise linearizable, then d;=
2(n—1) globally.

Proof. Proposition 9.1 tells us that d,;<2(n—![) and that «,=2(n—/) on an
open dense subset of M,. As the problem is local, we assume \/,=C™, and we
write f=(fy, ***, fm). For any xM,, let O, be the ring of analytic function
germs on A, at x, and p, be the ideal of O, generated by f.—ji(x), =, fm—
fm(x). By Proposition 1, Chapter 1, [18], the function M,= x — coheight p, is
upper semi-continuous. On the other hand, by Hilbert zero point theorem we
have

d ;(x)=2 coheightp,, x=M,,

Hence d; is an upper semi-continuous function on M;. That proves Proposition 9.2.

Example 9.3. A simple example of map not piecewise linearizable is

[, y)—>(xy, x).
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