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Piecewise Linearization of Real Analytic Functions

By

Masahiro SHIOTA*

§ 1. Introduction

Many mathematicians considered the problem of triangulations of algebraic
sets, analytic sets, semi-algebraic sets, etc. [2], [4], [7], [8], [9]. [10], [14] and
[19]. We want to consider more generally a global piecewise linearization of
real analytic functions. For this, we need simultaneous triangulations of all
levels of the functions.

A function on a polyhedron is called piecewise linear (=PL, if we have a
triangulation of the polyhedron such that the restriction of the function on each
simplex is linear. A C°° triangulation of a real analytic manifold M is a pair
of a simplicial complex K and a homeomorphism g : \K\—*My ,A"| meaning the
underlying polyhedron of K, such that the restriction of g on each simplex is
a C°° diffeomorphism onto the image. The existence of C°° triangulation is well-
known (e.g. [12]). In this paper manifolds have not boundary unless otherwise
specified.

Theorem I. Let MdRn, (K, g) be a real analytic manifold of dimension
^4, 5 and its C°° triangulation respectively, let e be a positive continuous function
on | A" |, and let f be an analytic function on M. Then there exists, a homeomor-
phism -: \K\—>M such that f°r is PL and that \T(x)—g(x)\<S'.\.> for x^\K\.

Theorem II. Let M be an analytic manifold of dimension 4. and let f be a
proper analytic function on M. Then there exist a PL manifold Mr and a homeo-
morphism T: M'—>M such that f°r is PL.

We call a set X(ZRn subanalytic, (see [3]), if for any point :'^Rn, there
exist an open neighborhood U of x in Rn and a finite number of proper analytic
maps ftj from real analytic manifolds to U, j=l, 2, such that

A continuous map /: X1 — > X2 of subanalytic sets, XidR1Ll
t A^nfl"1-, is called

subanalytic if the graph is subanalytic in RHlxR1lz. We remark that a polyhedron
X closed in Rn is subanalytic and that a PL function on A' is sjbanalytic. We
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define the subanalyticness of a map or a subset of polyhedrons or of analytic
manifolds after imbedding the spaces closedly in Euclidean spaces. It does not
depend on the choice of imbeddings. Subanalytic versions of the above theorems
are the following.

Theorem I', Let MaRn be a PL manifold of dimension ^4, 5, let 3 be a
positive continuous function on M, and f be a proper subanalytic function on M.
Then there exists a homeomorphism r of M such that f°T is PL and that \T(X) —
x\<e(x) for x^M.

Theorem II'. Let M be a PL manifold of dimension 4, and f be a proper
subanalytic function on M. There exists a PL manifold M' and a homeomorphism
T: M'-*M such that f°T is PL.

As the existence of analytic triangulation follows from the C°° triangulation
(Proposition 6.11\ these are generalizations of Theorems I, II in the case of
proper /. The reason why we will treat the subanalytic case too is that it is
convenient for the most part to consider our problem in the subanalytic category.

The process of the proof of Theorem I is the following. At first we divide
M to semi-analytic X1} X2 so that Xl contains all critical points of / and that /
is locally constant on Xi. Secondly / is piecewise linearized on a large domain
of X2, using Lemma 6.15 which is a consequence of the C°° triangulation theory
of C°° manifolds. Thirdly we triangulate Xi by Proposition 3.1, and then we
piecewise linearize / on a neighborhood of Xi by Proposition 5.1. Lastly, apply-
ing Concordance Implies Isotopy Theorem of Kirby-Siebenmann [6], we piecewise
linearize / globally. Proposition 3.1 shows a fine triangulation of subanalytic
sets. A triangulation of subanalytic sets is known [4]. But if we had only
that triangulation, we might not apply Concordance Implies Isotopy Theorem,
because the polyhedron treated might be not a PL manifold. Proposition 5.1 is
a subanalytic generalization of a result in [16] that if two analytic function
germs vanish at the origin and have the same sign at each point near the origin,
they are topologically equivalent (namely a local homeomorphism transfers one
to the other).

The reason why we assume / to be proper in Theorem II is that wTe can
not apply Concordance Implies Isotopy Theorem but apply the Hauptvermutung
theorem for 3-manifolds of Moise instead.

Two functions flf f2 on a manifold M is called topologically R-L equivalent
if there exist homeomorphisms TI} r2 of M, R respectively such that r2°/1°rJ=/2.
An application of the theorems is the following.

Corollary III. Let M be a real compact analytic (or compact PL) manifold
of dimension =5. Then the topological R-L equivalence classes of all subanalytic
functions on AI are countable.
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In §9 we show necessary conditions for real (or complex; analytic maps to
be piecewise linearizable. In this paper we use confusedly the differential of a
function on Rn and the gradient by the usual Riemannian metric.

§ 2. Subanalytic Sets

Let us show some fundamental properties of subanalytic sets which we will
need later. The results below without proof were proved in 13].

(2.1) The property of being subanalytic is closed under the following operations :

(2.1.1) finite union,

(2.1.2) finite Intersection,

(2.1.3) difference of any two.

(2.2) Let AdRn be a subanalytic set. Then the interior A in Rl, the closure
A in Rn and every connected component of A are subanalytic. Besides, dim^4>
dim (A—A), and the family of all connected components of A is locally finite.

(2.3) Any semi-analytic subset of Rn is subanalytic.

(2.4) Let AdRn be closed, subanalytic and of dimension r. Then there exist
an analytic manifold M and a proper analytic map f: M—> Rn such that f(M) =
A. Moreover, for these M and f, there exist an r-dimensional analytic manifold
N and a proper analytic map g: N—> M such that f°g(N)=f(M..

(2.5) Let f: X—* Y be a proper subanalytic map of analytic manifolds.

(2.5.1) // B is a subanalytic subset of Y, then so is f~l(B} in A".

(2.5.2) // A is a subanalytic subset of X, then so is f ( A ) in Y.

(2.6) Let AdR'1, f: Rn—> Rm be subanalytic. Assume thai the -cstriction of
f to A is proper (e.g. A is bounded}. Then f(A] is subanalytic.

(2.7) Let Ac.Rn be subanalytic. Then there exists a subanal} tic subset A' of
A with dim A'<dim .4. such that A—A' is an analytic manifold.

Definition 2.8. Let M, NdRn be C°° manifolds. Assume that Mr\N=0.
Let 3>eAT. We say that (M, N) satisfies the Whitney condition at y if the fol-
lowing is satisfied.

(2.8.1) If {A-J, {yt} are sequences in M, N respectively, both converging to y\
if the sequence of tangent spaces {TXjM} converges to a subspace TdRn (in
the Grassmannian of ^-dimensional subspaces of Rn where q=dlmM), and if
the sequence {xiyi} of lines containing Xi—yt converges to a line LdRn (in
the Grassmannian of 1-dimensional subspaces of Rn), then LdT.
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We say that (Jl/, N) satisfies the Whitney condition when it does so at every
point in N.

Definition 2.9. A stratification of a subset X of Rn is a partition {Xb} of
X into bounded connected analytic submanifolds of Rn such that

(2.9.1) {Xl} is locally finite in Rn, and that

(2.9.2) Xir,X,^0 implies A^IDA^.

If {Xi} satisfies moreover

(2.9.3) for any Ar
z, Z,, (A^, A^) satisfies the Whitney condition,

then we call it a Whitney stratification. The stratification is called subanalytic,
if all strata are subanalytic. In Section 4 we weaken the above conditions on
strata, we only assume they are C°° manifolds and satisfy (2.9.1).

Definition 2.10. Let {Av}, {B,t} be families of subsets of Rn. We say that
{Av} is compatible with {B/t} if for each v, pt.

AvdBr or Avr\Br = 0.

(2.11) For a locally finite family {AJ of subanalytic sets in Rn, there exists
a Whitney subanalytic stratification of Rn compatible with {Av}.

In the case in which {Av} consists of one set, it is shown in [3]. The fol-
lowing is the key to the proof.

(2.12) Let M, NdRn be subanalytic analytic manifolds with Mr\N=0. Then
there exists a closed subanalytic subset Ar/ of N such that dim A^<dim A' and that
(My N—N') satisfies the Whitney condition.

Proof of (2.11). We may add Rn to {AJ. We proceed by downward in-
duction. Induction hypothesis : There exists a Whitney subanalytic stratification
{Xi} of a subanalytic subset Yk+1 of Rn compatible with {Av} such that Zk =
Rn—Yk+l is closed and of dimension^ k and that each Xi is of dimension>&
(the case k = n is trivial). Put {A'v} = {A»r\Zk}. For each A'v we have a
subanalytic partition Bv and Cv of A'v by (2.7.12) such that Bv is an analytic
manifold of dimension k, that Cv is of dimension <k and that (Xif BO satisfies
the Whitney condition for any Xt. Let Zk-I be the union of all BV—B» Cv and
connected components of dimension<^ of the sets in the form Bvr\B»>. Then
Zk-l is closed, subanalytic and of dimension<& by (2.1.2) and the locally finite
assumption of {.4J. It follows also that the union of Bv—Zk-l is Zk—Zk-l

because of Rn^{Aj}} and it is also a subanalytic analytic manifold. Let {Xj\
be all connected components of Zk—Zk-i. Then each X'3 is a subanalytic ana-
lytic manifold contained in some Bv, and moreover Xjr\Bv>^£0 implies Bv>1)Xj.
Namely {X^} is compatible with {AJ. Hence {A"J \J {Xj} is a Whitney subana-
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lytic stratification of Yk=Rn— Zk-i compatible with {Av\ whose strata are of
dimension^ k. Therefore (2.11) follows.

(2.13) Let XdRm be a closed subanalytic set.

(2.13.1) A map /=(/i, ••• , fn) : X -+ Rn is subanalytic if and only if so are all ft.

(2.13.2) The set of all subanalytic functions on X is a ring.

(2.13.3) Let f: X-»Rn, g: Rn -> Rl be subanalytic. Then g * f : X-+R1 is sub-
analytic.

Proof. (2.13.1). Put

F=graph/, lr
t=graph/i, /=!, • • - , n.

Let Tit: RmXRn-+RmxR, Tt: R
mxRn-*RmxRn be defined by

tffU], • • - , xm, y l f • • - , yn)=(xlf • • - , xm, yt) and

?i(xi, ••• , xm, yl9 ••- , yn)=(xlt ••• , xm, y*, ••• , yit yl9 v,+i , ••• , y^ •

Then we have

Since Z is closed in Rm, so is Y in RmxRn. Hence, by (2.6) and the above
former equality, if Y is subanalytic. then so is Yt. The converse follows from
(2.1.2) and the latter equality.

(2.13.2). Let /!, /2 be subanalytic functions on X. Put

Yi=graphft, /=!, 2,

Let - : RmxR3-*RmxR, T: RmxR3-*RmxR* be defined by

K(XI, • • • , x^ 3^1, 3/2, ̂ 3)=(xi, •-, xm, 3^3),

7(^1, • • • , xm, 3/1, 3»2, ̂ 3)=(xi, • • - , xm, y-2, ylt y J .

Then we have

1 x z/)n(r ! x j?2)nr(

Hence it follows from the closedness of X, (2.1.2) and (2.6) that Y-, Fx are
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subanalytic.
As (2.13.3) follows in the same way as above, we omit its proof „

(2.14) Let MdRn be a connected subanalytic analytic manifold of dimension
r, and f : Rn -> Rm be an analytic map. Then there exists a closed subanalytic
set AdM of dimension <r such that the differential d(f\M} of f\M has constant
rank on M—A.

Proof. Let rf be the maximal rank of d(f\M}. Since M is connected, and
since / is analytic, the set

is an analytic subset of M of dimension <r. Now by (2.2), dim(M— M)<r and
dimM^?'. Hence there exist by (2.4) an analytic manifold N of dimension r
and a proper analytic map g: N-*Rn such that g(N)=*M. Put

Then X, X' are analytic subsets of N. Let NI be the union of all connected
components of N being contained in X, and let Nz—N—N^ We see NtdX' by
reduction to absurdity. Assume N^—Xf^0. Then g(Nl—X/) has inner points
in M. Hence it follows that (M—Y^g(N1—Xf)^0. This means that there
exists a point y^Ni such that g(y)^M, that g is an imbedding on a neighbor-
hood of y and that rank d (/];»/) ̂ ^r', and hence rankd(f°g)y=r'. This con-
tradicts the definitions of X and Nlf Thus NtdX'. Hence we have dim g(N^
<r, which together with the inequality dim (N2r^X)<r implies dim g(X)<r. Put
A=Mr\g(X}, then the lemma follows from (2.2.6).

(2.15) Let f:Rn-+Rnbe analytic, and X, Xt, /=!, 2, ••• be locally finite
subanalytic sets in Rn with XlDXi. Then there exists a Whitney subanalytic strat-
ification {Yl} of X compatible with {Xt} such that f\Yi for each i has constant
rank.

Proof. We prove it by induction on r=dimX. The case r=0 is trivial.
Hence we assume it for dimZ<r. By (2.11) there exists a subanalytic strati-
fication {Xi}i=li... of X compatible with {Xt}. Let dim Jf{=r for i^Alf AiClN,
and dimJ^<r for i^A^ Apply (2.14) to each X(9 i^A^ Then we have a
subanalytic set Zt in Xi of dimension <r such that f \x\-Zi has constant rank.
Apply once more (2.11) to {X'i-Z*, Zif X^i^A^ J&AJ, and let {7{}i=al... be
the resulting Whitney subanalytic stratification of X compatible with {Z-— Zi9

Zi, Xj\i^Al9 j&Aj} with dim7i=r for i^A^ A2aN, and dimF^<r for i&Az.
It clearly follows that {Yi} is compatible with {Xt}. By induction hypothesis
there exists a Whitney subanalytic stratification {Y'j} of \J Y( compatible with
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$Az such that f\Y" for each j has constant rank. Then (Yi, Y'j) for any
and any / satisfies the Whitney condition, because Y'- is contained in some

Y'v, i'&At, and (F-, Y'v) satisfies the Whitney condition. Hence {F-h^U {F;}
satisfies the required properties.

§ 3. Triangulation of Subanalytic Sets

The purpose of this section is to prove the following refinement of a result
in [4].

Proposition 3.1. Let K be a triangulation of Rn. Let {At} be a locally
finite family of subanalytic subsets of Rn. Then there exist a subdivision K' of
K and a homeomorphism T of Rn such that

(3.1.1) T is subanalytic,

(3.1.2) T(ff) = ff for any a^K,

(3.1.3) for any a^Kf, r(a) is on analytic submanifold of Rn and r\%\ d —> r(<j)
is an analytic diffeomorphism and that

(3.1.4) {r(ff)\a^Kr} is compatible with {A^}.

A simplex (or a cell) is understood to be a closed one, and a is the interior
of a simplex or a cell o. By da we denote the boundary. In this paper we
always consider the usual polyhedron structure on Rn.

The condition (3.1.2) was not under consideration in [4], and it will play an
important part in our application (see Remark 6.23). We proceed with the proof
in a similar way to [10].

Let AC.R71 be subanalytic, and c^Rn be a point. A line 2. through c is
called non-singular for A at c if /lr\A=c or =0 in a neighborhood of c. In
the other case, namely when dim(^nA)=l in any neighborhood of c, 1 is called
singular for A at c. If X is non-singular for A at any point of 2, we call 1 non-
singular for A. In the other case 1 is called singular for A.

Let a^Rn be a point, and S%~1dRn denote the sphere centered at a with
radius 1. Let qa : R

n-a^Sl~\ qf
a : R

n-a-+ S^XR be defined by

qa(x)=a+(x—a)/\x—a\ ,

q'aW = (qaW, \x—a\).

Let Xlf X2dRn and TcSS"1 be subsets with a^Xlf X2. Assume the exis-
tence of functions 61} (p2 on Y such that q'a(Xl)=graph(pl, /=!, 2. Then we
write

Xi<X2 with respect to (Rn, a) if c/>i<<^2 ,

X^X2 with respect to (Rn, a) if 6^^2.
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In either case we denote by (Xlf X2} and [_Xl9 X>] the sets

)} and

respectively.
An analytic submanifold FciRn is called topographic with respect to (Rn, a)

if a&F, if qa(T) is an analytic manifold and if qa\r' r-*qa(T) is an analytic
diffeomorphism. Let p: RnxRm^Rn be the projection. An analytic submani-
fold Fc:RnXRm is called topographic with respect to Rm if p(F) is an analytic
manifold and if p\r: r~^p(F} is an analytic diffeomorphism. We remark that
an analytic submanifold Fc.Rn is topographic with respect to (Rn, a] if and only
if fl^.Tand if q'a(r}c.RnxR is topographic with respect to R.

We say that a subset XdRn— a has property (P) with respect to (Rn, a) if
the restriction qa\x is an open map. If Xc.RnXRm, we define the property
(P) of X with respect to Rm in the same way as above. We also remark that X
dRn has property (P) with respect to (Rn, a) if and only if a&F and if q'a(X)
dRnxR has property (P) with respect to R.

Lemma 3.2. Let AdRn be subanalytic and of dimension <n. Then the union
of all points on lines singular for A is meager in Rn (a countable union of no-
where dense sets).

Proof (Compare with Lemma 3 in [10]). Let {At} be a subanalytic strati-
fication of A (2.11). Since {At} is locally finite, any singular line for A is
singular for some At. Hence we can assume A to be an analytic submanifold
of R11. Then there exist an open set UdRn and an analytic function / on U
such that AdU, A=f~l(0\ Put

9={(x, y)^UxRn\y=£Q, the line through x

and x+y is singular for A at x} ,

n(x, y) = x+y for (x, y)^UxRn.

Then 0 is a semi-analytic subset of UxR71 [7], because of

If a line 2 is singular for A at a point x, f vanishes identically on the con-
nected component of lr\U containing x. This implies that for any point x^U,
there exist neighborhoods F, V of x, 0 respectively such that n(8r\(VxV')) is
contained in /"^(O). Hence n(0r\(VxV')) is of dimension<n. On the other
hand we have

(3.2.1) 8n(VxRn)={(x', t y ) \ ( x ' ,
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Choose as V a closed small ball centered at x. Then 6r\(VxRn) is semi-ana-
lytic in RnxRn and hence subanalytic by (2.3). Apply (2.11) to 0n(Fx5r1), and
choose a finite stratification of the set. Then, by (3.2.1) there exists a finite
stratification {MJ of Or\(VxRn) such that for each /, if (x', y}^Mt, t>0, then
(xf, ty)^Mt. Therefore the rank of the restriction x\Mi for each i is smaller
than n in a neighborhood of (x, 0) and hence on AIt. This implies that ~(0) is
meager in Rn. As the set in question is contained in 7r(@)W.4, Lemma 3.2
follows.

Lemma 3.2'. Let A be the same as Lemma 3.2. Let B be the subset of the
projective space Pn~1(R) consisting of lines L such that a+L—{a+x\x^L] are
singular for A at a for some a^A. Then B is meager in Pn~l(K).

Proof. We reduce in the same way as the proof of Lemma 3.2 the problem
to the case in which A is an analytic submanifold of Rn and hence in which .4
is the zero set of an analytic function on an open set. Then the lemma is a
special case of Lemma 3, [10].

Lemma 3.3. Let A^R71, i=l, 2, ••• be subanalytic sets of dimension<n, and
a^Rn be a point. Then there exist a point b^Rn arbitrarily close to a such that
any line through b is non-singular simultaneously for all At.

Proof. Trivial from Lemma 3.2.

Lemma 3.3'. Let A, be the same as Lemma 3.3, and let L^Pn~l(R}. Then
there exists L'^Pll~l(R} arbitrarily close to L such that for any a^Rn, a-^L' is
non-singular simultaneously for all AL.

Proof. It follows from Lemma 3.2'.

Lemma 3.4. Let {A,} be a finite family of compact subanalytic sets in Rn

XJ?. Assume that for any x<^Rn, the line xXR is non-singular for \J AI. Then
there exists a subanalytic stratification {XL} of \jAt compatible with {.-1J such
that each Xt is topographic with respect to R.

Proof. Let r be the dimension of A = \jAt. We prove the lemma by in-
duction on r. The case r=0 is trivial. Assume the lemma for dimension<r.
Let p: RnxR-+Rn be the projection. By the non-singularity assumption on AI
we have dimp(A)=r. Apply (2.7) to {p(A)} and (2.11) to {At}. Then there
exist a subanalytic stratification {BJ «=!,...,« of .4 compatible with {At} and a
subanalytic partition d, C2 of p(A) such that the dimensions of Bt and Q are
equal to r for i=l, • • • , s', j=l and smaller than r for i=s'+l, • • • , s, j=2 and
that Ci is an analytic manifold. Now apply (2.14) to p and each Bit i=l, • • • , s'.
Then we have subanalytic subsets DidBi of dimension<r closed in B, such
that d(p\B) has rank r on Bi—Di by the non-singularity assumption.

Put
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U Bt)
i = 8'+l /

Then (i) M, N are /--dimensional subanalytic analytic manifolds by (2.5), (ii)
p(N)=M, (iii) p\N is an immersion and (iv) dim(A— N)=dim(p(A)~- M)<r. Let
{^Jz=i,...,* be the connected components of N. Then each p(Xt) is an analytic
manifold, moreover it follows from the compactness of A that (Xt, p\xv P(X^f)
is an analytic covering. The covering is 1-fold. Indeed, if not so, we have a
subset X'idXi homeomorphic to S' such that (X(, p\x't, p(X'i)} is a non-onefold
covering. We easily see that to be impossible by the inclusion X/

ic.p(X/
t)xR.

Thus Xi are topographic with respect to R. We remark that {Xt} is compatible
with {Bt} and hence with {At}.

If a connected subset Y of ,4— JVis compatible with {A't} — {Dif Bj\i=l, ••• ,
s'f /=s'+l, ••• , s} , then we see easily YdBj for some /, hence Y is compatible
with {At}. Hence for the proof we only need a subanalytic stratification
{Xi}i=k+i,...,k' of A— N compatible with {A$\J{A— N} such that each Xt is
topographic with respect to R. Since A— N is compact and of dimension <r,
and since A'tc.A—N, it follows from the induction hypothesis, hence the lemma
is proved.

Lemma 3.5. Let Ac.RnxR be a compact subanalytic set. Assume that Oe_4
and that for any x^Rn, the line xXR is non-singular for A. Then there exists
a compact subanalytic set BdRnxR such that AdB, that xXR for any x^Rn

is non-singular for B and that Br\U has property (P) with respect to R for some
open subset U of RnxR containing 0.

Proof. We prove the lemma by induction on n. If n=Q, the lemma is
trivial. Hence we assume it for n — 1. Let p : RnxR-^Rn be the projection.
By Lemma 3.4, there exists a subanalytic partition Alt A2 of A such that AI
(may be empty) is an analytic manifold of dimension n, that A2 is compact and
of dimension <n and that p\Al is open. We clearly have A2^0. We assume
moreover Oe^42, otherwise we have nothing to do. Since dimp(A2}<n, there
exists by Lemma 3.3' a line L^Pn~l(R) such that for any a^Rn, a-{-L is non-
singular for p(A2). Hence, without loss of generality we can assume that for
any s'eJR*-1 the line x'xRdRn-1xR=Rn is non-singular for p(A2). This
means that for any x'^R71'1, xfxRxRr\A2 is of dimension 0 and hence con-
sists of finite points.

Let p2: RnxR-^Rn-1xR be the projection defined by

Pz(xif •-, xn, 3>)=(*i, • • • , xn-l9 y).

Then it follows that p2(Az) is a compact subanalytic set containing 0 and that
for any xf^Rn'lt the line x'xR is non-singular for p2(Az}. So by induction
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hypothesis we have a compact subanalytic set B.>c:Rn~1xR such that p2(Az)c:B2,
that j t 'X jRfo r any x' ' ̂ Rn~l is non-singular for B.2 and that B has property (P)
with respect to R in a neighborhood of 0. Hence B/ = p^1(Bz)r\(si large closed
ball centered at 0) is a compact subanalytic set in RnxR such that A%c:B', that
x ,<R for any x^Rn is non-singular for B' and that Bf has property (P) with
respect to R in a neighborhood of 0. Therefore B^A^B'—A^JB' satisfies the
required properties in Lemma 3.5.

Using q'a, we immediately obtain from Lemmas 3.4, 5 the following.

Lemma 3.4'. Let {Al} be a finite family of compact subanalytic subsets of
Rn, and a^Rn be a point outside of A=\JAt. Assume that any line through a
is non-singular for A. Then there exists a subanalytic stratification {X3} of A
compatible with (A^ such that each Xj is topographic with respect to (Rn, a).

Lemma 3.5'. Let AdRn be a compact subanalytic set, and let a^Rn—A,
b^A. Assume that any line through a is non-singular for A. Then there exists
a compact subanalytic set BdRn such that AdB and a&B, that any line
through a is non-singular for B and that Br\U has property (P) with respect to
(Rn, a) for some open neighborhood U of b.

Lemma 3.6. Under the same assumption as Lemma 3.5', there exist a compact
subanalytic set BdRn and a subanalytic stratification {Bt} of B such that AC\U
is a union of some B%'s for a neighborhood U of b, that each Bt is topographic
with respect to (Rn, a] and that B has property (P) with respect to (Rn, a}.

Proof. Assume a=(0, ••• , 0), b=(Q, ••• , 0, 1\ Let on, o>0 be small numbers.
Put

Then Q is a small neighborhood of b. It is easy to find an analytic diffeomor-
phism TT of Ra— 0 such that

x(x) = x if h(x)=Q.

/2(7rU))>0 if /2UKO,

if 7z(A-)>0,

and that x carries each half-line with end point 0 to some such half-line.
Apply Lemma 3.5' to A, let Al be the intersection of Q and the resulting

subanalytic set, and put
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B=A1\JAS.

Then A^aB, and any line through 0 is non-singular for A1} A3 and hence for
B. Choose dn, d small enough. Then B—A2 has property (F) with respect to
(Rn, 0), and we have QxR^\A1=b. Furthermore, we lessenning dn so that

B comes to have property (P) with respect to (Rn, 0). Now apply Lemma 3.4'
to MJf=i,....4. Then the resulting subanalytic stratification {Bt} of B satisfies
the required properties.

Let GdRn be an n-simplex, and a^a. We define poa- Rn—a->da by
paa(x) — the intersection of da and the half -line through x with end point a.

For cell complexes Kly K2, KiXK2 denotes the product cell complex {<7iX
a 2 GI^KI, d2<=K2}. For a point a} a simplex a and a complex K, we write as
a * a the cone with vertex a and base a, and as a * K the complex generated
by a* a', a'^K, if they are well-defined.

Let a be a simplex, and ce<7. For any homeomorphism 0 of da, we define
the conic extension homeomorphism a * ̂  of 0- by

for x =
where

t(paa(x}—a)=x — a .
Then we have

Lemma 3.7. // (p is subanalytic, so is a * ^.

Let R11 be the affine space spanned by a. Assume a— 0. By (2.4)
there exist a compact analytic manifold M and an analytic map /: M-*RnxR11

such that /(M)^graph^. Let F: Mx[0, !']->RnxRn be defined by F(x, 0=
f/(*). Then F(Mx[0, l])=graph(0*^), and it is a subanalytic set. Clearly
0 * (b is continuous. Hence a * <^> is subanalytic.

Proposition 3.1'. Let K be a simplicial complex, in Rn. Assume \K\ to be
closed in Rn. Let {At} be a locally finite family of subanalytic subsets of Rn

contained in \K\. Then there exist a subdivision Kf of K and a homeomorphism
T of \K\ such that the conditions (3.1.1), ••• , (3.1.4) in Proposition 3.1 are satisfied.

Proof of Proposition 3.1. Trivial if we assume Proposition 3.T.

Proof of Proposition 3.1'. Let m be the dimension of K. We will prove
the proposition by induction on m. The case m=Q is trivial. Assume the prop-
osition for dimension ̂ 772—1. Since a simplex is a subanalytic set, we assume

1, where Km~l is the (m — l)-skeleton of K. Considering At^a for
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each AI and a^K, we may suppose that each At is contained in some
Moreover we can assume that At are closed. Indeed, if At is not closed,

we replace At by a finite system of closed subanalytic sets as follows. Let
AiQ=Ai, and AiJ+1=Aij—AiJ} j=Q, 1, ••• . Then, by (2.2), dim ^u+1<dim A%J so
long as Atj^0. Replace AL by {AtJ} .

We may assume also dimAL<m for each i. In fact, if dimAi=m and A,,
is contained in a^K, then we consider At— Int(At) in place of At. Here Int^J
means the interior of At in the affine space spanned by a. Then a partition of
\K compatible with the new family is automatically compatible with {A%} .

( I ) Let a be an m-simplex of K, and 2* denote the affine space spanned by
a. We regard I as a Euclidean space too. Then there exist a point aff of a
and a finite family £ff of subanalytic analytic submanifolds of £ such that

(I.I) each F^Ca is contained in a, topographic with respect to (I, a0},

(1.2) the union Sa of all F^Ca is closed and has property (P) with respect to
(I, da), and that

(1.3) any connected subset of a compatible with Ca is also compatible with [AJ .

Before proving this, we remark that (1.3) is equivalent to the following. Let
A be the index set of Ca. Let C'a be the family of all connected components
of sets in the form H Ftr\ H F\, ^o being subsets of A and T\ denoting the

complement in a. Then C'a is compatible with {/I,}.
Another remark is that if (1.3) is satisfied for any m -simplex of K, then the

condition (3.1.4) can be replaced by

(3.1.4)' {-c(S)\a^K'\ is compatible with

U CG\J\A%\ALd K"-*\}.
aeA'-jfTO-i

Proof of ( I ) . Apply Lemma 3.3 to all At contained in a. Then there
exists a point aa^a such that aa^Ai for any i and that any line through aa

is non-singular simultaneously for all Alda. Now for each Aida and each
b^Ai, apply Lemma 3.6 to Alf aa and b. Then we have a compact subanalytic
set BdS and a subanalytic stratification {Bj} of B such that At is a union of
some 5/s in a neighborhood Uib of b, that each Bj is topographic with respect
to (I, aff) and that B has property (P) with respect to (I, ag\

Since AI is compact, we can choose finite &'s so that £7i6's cover ^4j. Gather
5^ for those b, and let the family be denoted by Cffi. Let Cff be the union of
Cat for all Aida. Then ^ clearly is finite and satisfies the properties (I.I, 2)
except that Fda, Moreover, if we replace {At} in (1.3) by {At\Aida}, then
(1.3) is satisfied. If r<£.a, we consider Fr\a in place of F. Then the inclusion

ff is satisfied and the other properties remain valid because of {A
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In addition to that, (1.3) in its former condition follows from Fda. Hence (I)
is proved.

(II) Put {Bi} = {pG

Then {#J is a locally finite family of subanalytic subsets of \Km~l\. Hence
there exist by induction hypothesis a subdivision Km~1' of Km~l and a homeo-
morphism TT of \Km~1\ such that

(II. 1) TC is subanalytic,

(II.2) n(a) = a for any a^Km~l
y

(II. 3) for any a^Km~1', x(a) is an analytic submanifold of Rn and TT °a'.d— >7r(a)
is an analytic diffeomorphism and that

(II.4) M^lae/f™-1 '} is compatible with {BL}.

We remark that n\da, for any a^K, is a homeomorphism of 9cr because of
(II. 2), Let TT be an extension of TT to \K\ defined by

^*(7r|aJ on

: on \Km~1\ .

Then the following are trivial.

(11.5) TT is a subanalytic homeomorphism of K\ by Lemma 3.7.

(11.6) £(00 = 0" for any a^K.

(II. 7) Let K( be the subdivision of K

where

Then for any a^Ki, n(d) is an analytic submanifold of Rn and n\%\ d-*K(a) is
an analytic diffeomorphism.

For each a^K—Km-1, put

ffLb.ci={t(x—aa}+aa

ffi = 0Lo.;i, ^2 — ̂ ^,^ for

and fix £>0 so small that G^r^tf) for any F^Ca. After adding some sets
to {At} and Ca, we assume that

(II.8) a^ffz is at once an element of {At} and a union of elements of Ca, and
GI does not intersect with any F^Ca.

(Ill) Let a be an 7?z-simplex of K, and S denote the aflfine space spanned
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by a. Put

J7ff= {connected components of rr\paaG(fi)\r^CG,

For any /3e <Xa, denote by s(/3) the image under x of the set of vertexes of af

such that n(a')=fa Then the following properties hold.

(III.l) Each f^-£a is a subanalytic analytic submanifold of 2 with paaa(Y)^<Xa,
topographic with respect to (S, aG}.

(III. 2) XG is a finite family of disjoint sets.

(III. 3) The union of all /'^J7 f f coincides with Sa, hence closed in I and has
property (P).

(III. 4) Any connected subset of a compatible with X G is also compatible with
{A*}.

(III. 5) For any y^£G, the restriction of paaa to the closure f is a homeomor-
phism onto paaff(T\ f is a union of elements of XG, and we have
Xa for any fi^JCG contained in paaa(T}.

Proof. If j is a connected component of Fr\paaa(fa for
then we have by (II. 4) fiC.pffaG(r) which, together with (I.I) and (II. 1, 3), implies
the first half of (III.l). As to (III.2), the finiteness of XG is trivial by (2.2). If
ft, z=l, 2, are respective connected components of rtr\paaa(fa) with jiC\r^0f

then fanfar\pffaa(rir\r2)^0, hence fa-=fadpffaa(rir\r2) by (II.4), which gives
ft=ft. The property (III. 3) is trivial by (1.2), and (III.4) is an easy consequence
of (1.3) since any F^CG is a union of some elements of JCa.

To prove (III. 5), let j^£G, ^=PaaG(r}^^a. We have paaG(?)=P because
of Jda2, and fC.Sa by (III. 3). For any x^jl— /5, the subanalytic set 7C\pGia(x)
has dimension 0 by (I.I) and hence is discrete. This easily implies that pffaff\f'
f -» / J is a homeomorphism (the first part of III.5). Let ^i^JC^ with /3id£i.
Then fr\poaa(j$i) is homeomorphic to ^j under ^ f f a ( 7 , and it is contained in
Sffr^paa,G(fii), which is a finite union of disjoint elements of ~CG, each being
homeomorphic to fa under pffaa- Hence fr\pGka(fa} must be one of those ele-
ments. This establishes the second and third parts of (III. 5).

Considering the barycentric subdivision Sd(/fm~1 /) of Km~lf in place of
fcm-i' if necessary, we can assume

(HI. 6) Let ft, r^XG with pGa<j(?l}-=pGaa(?z} = fa Assume ft<ft with respect
to (I, a a). Then ft^f2 with respect to (I7, aff) and

The reason is the following. It is clear that ft^f2 with respect to (.F, a f f) .
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Let ftcr* with T^C09 i=l, 2, p=n(d') with a'eScK/^-1') and d'C.a' with
cr'e/fj1-1'. Let fif i=l, 2, be the connected components of FiC^pak ff(^(^0) con-
taining ft. Then, using (II. 3) we see in the same way as the above proof that
fi are diffeomorphic to n(0') under paaff and that f i<f 2 . As 7r((l') contains a
point of s(/3), that implies the required inequality.

Let ft, fte J7ff.
 We cal1 n> T* a consecutive couple of £a if paa,a(rd=Paa,a(r£>

Ti<Tz with respect to (J, a f f ) and if (ft, ft) does not contain any element of
~Ca. Then we have

(III.7) Let ft, ft be a consecutive couple of Xa. For each /3e JCff contained in

Paaa(Ti\ fir\paaff(^ and f ^ p 7 a a ( f t ) are identical or consecutive.

In fact r'i=fi^P™a(fi> i=l> 1, are elements of J7ff (III.5). Hence Ti=Ti or
Ti<Tf2 with respect to (J?, a f f). Assume that an element of Xa is contained in
(ri, T*)- Then, since Sa has property (P) (III. 3), we have 5ffn(ft, ft)^0. As
Sar\p7aa(Paaa(Ti}} is a union of some elements of J7ff, that implies ftC(^i, ft)
for some fteJ7ff, which is a contradiction.

Denote by J7| the family of all sets (ft, ft) where ft, 7-2 are consecutive
couples of JCa. Put

Then we have

(III. 8) X* is a finite family of disjoint subanalytic analytic submanifolds of I,
whose union is equal to a2 (in II).

Indeed the first half follows from (III.l, 2), and the latter half does from
(I.I), (II.8), (IIII.3) and the inclusion {A

By (III.4)

(III. 9) £% is compatible with {A,}.

Finally it follows from (111.2,5,7) that

(III. 10) For any T^-£$, f is a union of some elements of J7?. If f=(ft, ft)e
£*, any element of J7? contained in f is in the form ftn/w1^), ftH/w1^)
or (fir\pat,(fr, ?2np7i($) with 3e J{

(IV) We use the same notations as (III). For any y^£a, we define a
simplex p(r)C.a as follows. Put fi=paaa(r}. Consider 7r~1(fn^a<7(s(j8))). It
consists of indepentdent (dim?'+l)-points by (III. 5) (see [13] for the definition
of independence), because the image of the set under pa(La is 7r~1(s(^)). Let
p(f] be the simplex spanned by the set, and p(f} be the open simplex. Then
we have

(IV. 1) Pa
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since
V-**7to<}>(x, 0 = (7r(x), 0 for (x, Oe^fr)

where the subanalytic homeomorphism $: 9crX(0, 1] -> a— aa is defined by

(IV.2) If Y<Tf with respect to (S, aa\ then p(?}<p(f} with respect to (I, aa^
by (IIL6),

(IV.3) If r'cf then ^fr') is a face of p(r) by (III.5), and

(IV. 4) If '{^Ju<j is contained in 9 a or 3crl7 then P(Y) = TC~I(Y} by III.8), where o^
is defined in (II).

Put

= {[_p(Y\ j0(r')]|r, f : consecutive couples of ~f,J .

Then, by (III.8, 10) and (IV. 1, 2, 3, 4)

(IV. 5) L* is a finite cell complex whose underlying polyhedron Is equal to a.

Let rff be a homeomorphism of a defined so that

on

and that for any (i'l} ;'2)eJ7^ and any ,te9<7, rtf is linear on the segment (^6(;'i),
p(Y*))r\pff£a(x). Then rff is uniquely well-defined and equal to ~ on 9^ by the
definition of fr, (III. 8, 10) and (IV. 4).

Hence we have a homeomorphism r of \K\ whose restriction to each a
coincides with ra. Letting K' be a simplicial subdivision of ' J L*\jKm~\

a = K - K ?i -^

we want to see that r, /£x satisfy (3. 1. 1, 2, 3, 4). First note that (3. 1. 1 Is equivalent to

(IV. 6) T a \ a ' is subanalytic for each a'^Lf.

Proof of (IV. 6). If cr'dcTi it follows from (II. 5) and from r- = ;r on a' .
Assume a'~p(?} with j^Xa. Then

"• I - f h - V 1 O T O h~a\a' — \Paaa i ) ^ P a a a a •

Hence (2.13.3) shows that ta\a' is subanalytic. Let a' = \_p(?), a ]•' ~_ with /', f
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Then, by the above statement and (2.4) we have compact analytic mani-
folds M, M' and analytic maps f = ( f l 9 /2) : M-xrXa, /'=(/!, /J) : M'-+0Xa
such that /(A/) = graphr a] / ? ( ? ) 7 / (MO^graphr^l^c-) . Define an analytic map
F: MxM'X[0, 1] — aXa by

Put

Then M" is a compact analytic set, and we have

F(M"X[0, l])=graphr f fL. .

Hence, by (2,3) and (2.5.2), graph rj^ is subanalytic which proves (IV.6).
(3.1.2, 3) are trivial, and (3.1.4) follows from (II. 8) and (III. 9). Hence we

complete the proof of Proposition 3.1'.

Remark 3.8. We can refine Propositions 3.1, 1' as follows. Let L be a
subcomplex of A". Assume {a\G<=K— L] is compatible with {Al} . Then r can
satisfy moreover, for any a^K with ar\\L\ = 0,

(3.1.5) r=iden: on a, and

(3.1.6) <7eA",

It is clear by the method of construction of r in the proof of Proposition 3.1'.
The condition (3.1.5) will be important when we will enlarge the domain

where / is piecewise linearized in the proof of Theorem I, § 7. This is one of
the reasons why we refined a result of [4].

We will show a semi-algebraic version of Propositions 3.1, V . A subset of
Rn is called semi -algebraic if it is a finite union of sets in the form

where /* are polynomials on Rn. A continuous map between semi-algebraic
sets is called semi-algebraic if the graph is semi-algebraic. We remark that the
semi-algebraic versions of the results in Section 2 hold true, in which the locally
finite condition must be replaced by the finite one (see [1], [4], [10]). Since the
stereographic projection Rn -» Sn is semi-algebraic, in most problems of semi-
algebraic sets we can restrict the sets to being bounded.

Proposition 3,9. Let K and L be a finite simplicial complex in Rn and a
subcomplex respectively. Let {At} be a finite family of bounded semi-algebraic
subsets of Rn contained in \K\ such that {a\a^K—L} is compatible with {Ai}.
Then there exist a subdivision K' of K and a homeomorphism r of Rn such that
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(3.9.1) T- is semi-algebraic,

(3.9.2) ~(a} = a for any a*=K,

(3.9.3) for any cre/v', ~(a) is an analytic submanifold of Rn a^u 7 ' ^ : a—*r(6)is
an analytic diffeomorphism,

(3.9.4) {r((j)|<7e/n is compatible with {A,},

(3.9.5) T—ident on any a^K with aC\\L\ = 0 and that

(3.9.6) any ae/v, with aC\\L\=0, is a simplex of K'.

This is a refinement of a theorem of [4] and Theorem 3, III)]. As we can
prove it in the same way as Proposition 3.1', we omit the proof,

Remark 3.10. In propositions 3.1 and 3.1' or 3.9, T is subanalytically or
semi-algebraically isotopic to the identity respectively. Namely there exists an
isotopy 7f: \K\-*\K\, O^^l, such that TQ=T, r^ident and that the map T:
\K\ x/~* \K\ X/, /=[0, 1], defined by T(x, t)=(rt(x\ t) is subanalytic or semi-
algebraic respectively. Moreover we can choose the isotopy so that for any
a^K1', the restriction of T'1 to r(a)Xl is an analytic diffeomorphism. This is
also clear by the method of construction of r.

§ 4. Whitney Stratifications and Vector Fields

In this section, we prepare for the proof of Proposition 5.1. All results are
derived from the Thorn-Mather theory of Whitney stratification. The result
which will be applied is only Lemma 4.14, and the others need for its proof.
Manifolds, vector bundles and maps are of class C°°, and we do not necessarily
assume the frontier condition (2.9.2), the connectedness of strata, nor the bounded-
ness for the definition of stratification. Let us recall some definitions (see [1]).

Definition 4.1. Let XdRn be a submanifold. A tube at A" is a quadruple
T~(E, ;r, p, e} where rr: E —> X is a vector bundle of dimension^codim X, p:
E —>R is the quadratic function of a Riemannian metric on E. and e: E0—*R71

is an imbedding, commuting with the zero section £: X -* E so that e ° £ is the
inclusion XdRn, EQ being an open neighborhood of £(X). We set \T\=e(En}.
By identifying EQ with |T|, we use TT, p also as the map r r ° f ~ J and the function
p°e~l on \T\ respectively. For any open subset X' of X, T ,r means (^(X1},
7rL-ia"), ^U-ic-T')* e\x-nx')\ and for two tubes at X, T=(E} ~, /?, o] and T'=
(Ef, xf, pf, ef), we write as T=T' if we have a neighborhood U of X in R'1

such that Uc.\T\C\\Tf , n\u=x' u and p\u=pf\u-

Definition 4.2. Let {Xt} be a Whitney stratification of a subset X of R'\
A tube system for {Xt} consists of one tube Tl—(Ei) TTZ-, pl} cj at each Xt. The
tube system is called weakly controlled if
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(4.2.1) ff1-^W=7r iU), xel

We call it controlled if furthermore

(4.2.2) ^--TJU)=p iU), x e l T M n l T j I r X T 1 T, .

Definition 4.3. Let {XJ , (Y 3} be Whitney stratifications of subsets X, Y
of Rn, Rm respectively. We call a C°° map / from Rn to J£m a T/MWZ map with
respect to {Xl} . {Yj} when for any Xi} Xv the following are satisfied.

(4.3.1) / maps A"t, X^ submersively into some strata (not necessarily onto).

(4.3.2) Let {A- 4 be a sequence of points in Xt converging to x^X^ such that
{ker d ( f \ X i ) x k \ k converges, in the appropriate Grassmann bundle, to a plane
LdRn. Then ker d(f\Xi,}xd.L.

Definition 4.4. Let {Xt\ , {Y 3] be Whitney stratifications of subsets X, Y
of Rn, Rm respectively, and / : Rn -> Rm be a Thorn map with respect to {Xz} ,
{Yj}. A tube system {TJ for {ZJ is controlled over a tube system [R3] for
{Yj} if [Ti] satisfies (4.2.1) and (4.4.1) below and if (4.2.2) holds for any strata
Xir Xi> with f(Xt)\Jf(Xr)c:Yj for some /.

(4.4.1) For any Xlr Yj with

Definition 4,5. Let M, NdRn be C°° manifolds with Mr\N=0. We say
that (M, AO satisfies the Whitney condition (a) if the following is satisfied.

(4.5.1) Let {.vz} be a sequence of points in M converging to x^N. If the
sequence of tangent spaces {TXiM} converges to a subspace LdRn, then LI^TXN.

Remark 4,6. If (M, N) satisfies the Whitney condition, then it does the
Whitney condition (a) (see [11]).

Lemma 4.7, Let {Xt} , {Y 3] be Whitney stratifications of subsets X, Y of
Rn, Rm respectively, and f: Rn -> Rm be a Thorn map with respect to {Xt} , {Yj}.
Then for any weakly controlled tube system {R3} for {Yj} there exists a tube
system {T2-} for {Xz} which is controlled over {R3}. Moreover, if {Tl} is a tube
system for {X^JJ} controlled over {Rj}, U being an open set in Rn, then {TJ
can be chosen so that T^u-^x^T^u'^x^ for any given open set U'dRn with Ur

-UdX-X.

Proof. The first half coincides with Theorem 2.6, Chapter II, [1], and the
latter half is clear from the construction of {TJ in its proof. So we omit the
proof.

Corollary 4.8. Let {Xt} t=liZ,... be a Whitney stratification of a subset X of
Rn. Let V be an open neighborhood of X1 in R71, and n : V — > X1 be a submersion
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with x\x1=zdent. Then there exist an open neighborhood V'dV of Xl and a
controlled tube system {Tt=(Eir rci} pt, et)} for {X'l=Xlr\V} such that T^CLV
and TTj — TT on \Ti\. Moreover if {Ti = (E°l} TT?, p°lt el)} is a controlled tube system
for {X^U} such that n\=n on \T\\C\V, U being an open set in Rn, then {TJ
can be chosen so that Ti\v>^u>rtxl=T<l\v>nU'nxi for any given open set Ur with
vTW-uaX.-x,.

Proof. As (Rn—X, Xl) satisfies the Whitney condition for any /, we can
add Rn—X to (X^ . Hence we may assume X=Rn. By Remark 4.6 there exists
an open neighborhood V'dV of Xl such that for any x^Xlr

(4.8.1) K~I(X] and X( are transversal, i=l, 2, ••• .

Put {Yj} — {¥} = {XJ, Rm=Rn, and let / be any C°° extension of TT : V -> Y
to Rn-*Rn. Then if tube systems {Ti=(Eif xt, pl} et}} for {Xi} and {R} for
{Y} satisfy (4.4.1), then we have TT^TT on [7^1 because of X=Rn, and if {Tt}
is controlled over {R} , {TJ itself is controlled. Hence Corollary 4.8 follows
from Lemma 4.7 if we see that / is a Thorn map with respect to {Xi} and {Y} .

Let Xi, Xi> be any strata. It is clear by (4.8.1) that TC\X\, K\X\' are sub-
mersions into Y (4.3.1). Let {xj} be a sequence of points in Xi converging to
x^X(> such that {ker d(n\x$x3}j converges to a plane LdRn. We want to
see ker d(n\ x'^xdL. This follows from the following facts.

(4.8.2) We can assume that {TX]X$ j converges to a plane in Rn.

(4.8.3) We have ker d (TT | x$ x =T x ,X(r\T x p-\K(x ,)\

(4.8.4) Let {Kj} {L3} be sequences of linear subspaces of Rn converging to K,
L respectively such that K, L are transversal. Then, for sufficiently large /, Kj
and Lj are transversal, and {K3r\Lj} converges to Kr\L.

Thus we saw that / is a Thorn map with respect to {Xf
t} and {Y} , which

proves the lemma.

We regard R1, 1=1, ••• , n, as linear subspaces

of Rn, and we put

x+Rl= {x + y\y ^R1} for

Lemma 4.9. Let {X^} be a Whitney stratification of a subset X of Rn, and
Ul be an open neighborhood of each Xi in Rn. Assume that for each Xi and x
^Rn, x+R1 and Xi are transversal where /=codimy^. Then there exists a con-
trolled tube system {Tt} for {Xl} such that for each i

(4.9.1) \T.\dU, and
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(4.9.2) ^(x)c:x+Rn^m for x^Xtr\( \J Uj- \J £/,-),
je/m je/m_!

??i=Q, • • • , dim Xt,

/,, ;=0, • • - , 71, are £/i0 zndex subsets consisting of i with dimX^j, and

Proof. Considering { \J Xt} J=Q x ... in place of {Xt} , we can assume
dim Xi=j ' ' .

{Xi\ = {Xt} i=Q ... and dim Xt=i. Put Y<= \J Xt. We prove the lemma inductively
i-O

as follows; assume that we have already a controlled tube system {T{=(E{, K(,
p(, &i)} for {XtC\Vj-^ which satisfy (4.9.1, 2) where F/-I is an open neighbor-

j-i
hood of YJ-I contained in \JU"^(the case /=0 is trivial). Here we remark that

&=0

Uj, Uj+i,-" are not necessary when we see (4.9.2). Later we will replace Ulf ••• ,
Uj-i, Vj-i by smaller ones. Hence the induction hypothesis is settled for any
Ui, -•• , UJ-L After defining VJt we want to extend {T(} to a controlled tube
system for {Z^nF,}.

Let Tj1=(EJ1, TTj!, pji, e^ be a tube at Xj such that

n-jtWCLx+R*-* for x^Xj.

The existence of T/i is clear by the definition of tube. We choose \T3l so
small that

for some open neighborhood Vj-i of F^-i with Vfj-i—Vj-lCLYj-l—Yj-l. Let ^
be a C°° function on ^ such that <f>=l on Xj—V'j-i and —0 on X/nV^-i for
an open neighborhood F^ of Y^ with F^-F^iCF^i-F,--!. Put

for

for

As 7Tj2|2r ;=ident, this is well-defined in a neighborhood of Xjf and we find an
open neighborhood Uj such that f/JC^n|Tyi |, Ujr^Yj-^Xj—Xj, and ^ : £7^
-> Zj is a C°° fiber bundle. Let Wit i=Q, • • • , ; — !, be open neighborhoods of Xt

such that Ui—WidXi—Xi. Then by the definition of njz we can choose U'3 so
small that

(4.9.3) n^(x)^.x+Rn-m for

Now replace Wt by Uif z—0, • • • , j—1, and £7* by some smaller open neighborhoods
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Ui of Xi such that U'i—UldXi—Xi, and regard the induction hypothesis as
considered for U(. Then we can assume by (4.9.3)

for x^X3r\(Um-UQ ----- £/m-i), m=Q,

It is clear that TT^— ̂ - on ^(Xjf^Vj-i). Therefore, considering {T't z.nT-J-J in
place of {T(}, and shrinking \T(\, i=Q, • • • , /, we may suppose

rr j2=7Tj on |Tj| and

Then {T*} continues to be a controlled tube system for {^nVj-i} which satis-
fies (4.9.1, 2).

Now apply Corollary 4.8 to {X,r\Uj} l=j>J+1,..} x=nj2: U',^XJ9 t/=V7_i and
a tube system {T§} = {TJj jr^^y,,}^.... for {^H^nF^J^- .... Then we have
a controlled tube system {Tj3 = (£j3, 7Ti3, ]0t3, ̂ i3)}i=j,... for {A^nU7h=/,..., t/^ being
an open neighborhood of X3 contained in Uj such that 7ZiB=njz on \Tj3\dUj
and that

where VJ-i is any given open neighborhood of YJ-l so that
YJ-I. We remark that the last inclusion implies

because of U'^Y^aXj-X,. Shrink V^ and £/;', and put F^y^^C/;.
Then, since each T{, i=j, j+l, • • • , is defined at ^nyj-i, Tl3 can be easily
extended to a tube at Xtr\Vj. Here we can not necessarily extend so that

j extension j = ] T£ | U | Tis . We use the same Ti3 for the extension. Shrink
|T{|, f=0, ••-,7-1, lT i s | , /=7, • • • . Then it is easy to see that {T-h^.^-iU
{TiS}i=j,... is a controlled tube system for {Xi^Vj} which satisfies (4.9.1, 2), since
Xj2=xjs satisfies (4.9.2). Hence Lemma 4.9 follows from the induction.

Definition 4.10. Let {Xt} be a Whitney stratification of a subset X of RIL,
and {TJ be a controlled tube system for {X^ . A vector field ? on {(Zt, TJ}
(or (ZJ) consists of one C°° vector field f?- on each X,. We call f controlled
if for any yY;, yY^

(4.10.1) d
(4.10.2) d(

where Uld\Tl\ is some neighborhood of Xi inRn. We call f continuous if for
any sequence {xj\ of points in A^' converging to x of Z7-, {£i'Xj} converges to
£ix as vectors in Rn.
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Lemma 4.11. Let {XJ , {TJ be the same as the above definition. Assume
the index set contains 1. Let $( be a C°° vector field on Xi. Then there exists a
continuous controlled vector field f — {?J on {(XiC\U, Tl\x^u)}, U being an open
neighborhood of X1 in Rn, such that £i=?J.

Proof. Since TLI : T^— > Xlt Tl=(El) xlt plf e^, is the restriction of a Thorn
map between Rn with respect to {X'i= X^rMJ} f {XJ for an open neighborhood
U of Xi (as shown in the proof of Corollary 4.8), the existence of f is a con-
sequence of Theorem 3.2, Chapter II, [1], if we do not require ? to be continuous.
For the continuity we need a careful reconsideration of the proof as follows.
Using a CTO partition of unity, we can reduce the problem to the case in which

[Xt} = {Xlf X2},

and :TI : Rn — > Xi is the projection, and we only have to define £2
 m a neigh-

borhood of OeJK".
Moreover we can assume

(4.11.1) pM

Indeed, by the property of plt we can suppose

PI(XI, ••• , xk, 0, ••• , 0) = -tf

Then it follows that

as germs at 0 for some C°° function germs aijL. Let us consider the ring of C°°
function germs at 0 in Rn, let m be the maximal ideal, and let / be the ideal

generated by -^-, i=l, • • • , k. Then it is easy to see that / is generated by
OXi

xlr ••• , xk. Hence pi(x)—xl— ••• -~xl is an element of m/2. Then, by a refine-
ment of a result of Tougeron and Mather (Lemma 2, [15]), there exists a local
diffeomorphism r at 0 in Rn such that

T(X)=(TI(X), • • - , rk(x\ xk+l, • • - , xn).

As -I'T^TTi, considering 7r1? ̂ o^r in place of TT^ ^i, we may assume (4.11.1).
For any y^X2, the vector y — Ki(y} is vertical to the tangent space Typ~^

(pi(y)) because of (4.11.1). Hence, by the Whitney condition, the tangent spaces.
TyX2 and Typ^p^y)) are transversal if y is near to X^B, B= [x^Rn\ \ x \ ̂ 1} .
We set
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Now the following statement is sufficient for the proof.

(4.11.2) Let {x1} be a sequence of points in X2 converging to x^X^r\B. If
the sequence {Vxi} converges to a subspace LdRn, then Ll)TxXl—Xl.

The reason is the following. Let y^Xz be a point near to X^C\B. (4.11.2)
means that we have a basis (vlf ••• , vk>] of the linear space Vy with k-rk'^n
such that

where ^ = (0, ••• , 0, 1, 0, ••• , 0) and if 3' converges to a point of ^ then aLJ\
are chosen to converge to 0. Clearly we can assume alJ=Q for j=k+l, • • • , / ! . If

then put
71-7?

&„= Sf t i t ' i -

Then f22/ satisfies (4.10.1, 2). On the other hand, by the transversality of TyX2

and Typil(pi(yy)t \J Vy comes out a C°° vector subbundle of the tangent bundle

of X2, and the restriction of dn^ to \J Vy is a submersion into the tangent
yeA'2

bundle of J^. Hence £2y can be extended to a small neighborhood of y holding
(4.10.1, 2). Using once more a partition of unity, we easily obtain f2 on X2 so
that (&, f 2) is a continuous controlled vector field on {(Xlf Tx), (^2, T2)} .

We want to prove (4.11.2). Without loss of generality, we may suppose

that sequence {je^Cx*)} of lines containing 0 and xi—7i1(x
i) converges to a line

71 and that the sequence of tangent spaces {TxiX2} converges to a subspace
Then, by the Whitney condition and Remark 4.6, we have

LidLt, XidL.2.

Here we must remark that the Whitney condition is invariant under a diffeomor-

phism of Rn. Let Llxi be a unit vector contained in xiizl(x
i) and L2 x i be a

unit vector in T^Zg such that {Llxt} and {L2a;x} converge to LI. Then {Lla;i
— L2a?i} converges to 0, and it follows from (4.11.1) that Llj:i is vertical to Vxi
and to T^iX^iU7")). Hence if LZxi=atLixi+Lixi, at^R, Lzxi^.Txip-l

l(pl(x
i}},

is the orthogonal decomposition, then {aj and {L3.ri} converge to 1 and 0 re-
spectively.

For (4.11.2), we only need to see that for a unit vector v^Xlf there exist
vl^Vxiy i—lt •-• , such that {v*} converges to v. By the inclusion J^cLg, we
have v't^TztXz, i=l, ••• , such that {vfi} converges to v. Since TxiX2 is the
direct sum of RLzxi and Vxt, there exist uniquely vi^.Vxt and bt^R such that
r/i=vi+biLZxi. The sequence {ftj converges to 0. In fact



752 MASAIIIRO SIIIOTA

Is the orthogonal decomposition of vfi to the Txip~^1(p1(x
l)}-f actor and its normal

factor. Since Txip^1(p1(x
i))1)X1 as linear spaces, the convergence of {vfi} to v

implies that of {v^biL^xi} to v, which shows that {aibl} converges to 0. There-
fore bi-^0 as 2~>oo. Hence we prove the convergence of {v*} to v and hence
the lemma.

Let {Xi} be a Whitney stratification of a subset X of Rn, and £= {fJ be a
vector field on (Xt). Integrating each vector field & on Xt we obtain C°° flows

6^: Dt-^Xi where 0l are given by 6t(x, ty=x, -^-6t(x, t}=^&i(Xit} and Dtd

are the maximal domains containing XiXQ. Let D be the union of D19

and define 0: D-+X by Q\Di=Qit

Definition 4.12. We call 0 : D -»Z the yZou; 0/ f £ is called /0ca//;y wte-
grable if Z) is open in XxR and if 0 is continuous (see Lemma 4.4, Chapter
II, Li])-

Lemma 4.13 (Corollary 4.7, Chapter II, [1]). Let {Xz} be a Whitney stra-
tification of a subset X of Rn, {TJ be a controlled tube system for {Xi}, and f
be a controlled vector field on {(X^ Tx)}. If X is locally closed, ? is locally in-
tegrable.

Lemma 4.14. Let {Xt} be a Whitney stratification of a locally closed subset
X of Rn, let /!, fz be C°° functions on Rn, let f — {fl} be a vector field on {Xt},
and let {^^O.-.TI-I, {V]\j=o,-,n-i be open coverings of X in Rn with Vj—Vjd
X—X for each j. Assume for each i, j

(4.14.1) &(/il *>),&(

(4.14.2) x-^rR1 and XL are transversal for any x^R11 where Z=codim^, and

(4.14.3) ^^Rn~] for xt=V3r\Xi.

Then there exists a locally integrable vector field $*= {£ J} on {Xt} which satisfies
(4.14.1) and (4.14.3) for x^Vjr\Xt.

Proof. By the same reason as the proof of Lemma 4.9 we assume {XJ =
{Xl}l=1,2,...,n and dimXi=i. Here we remark that X0 does not exist because of
(4.14.1). By (4.14.2, 3), the property Vjr^Xt^0 implies j<i, hence Vjr\Xl=0
for j^/, and for each i {Vj} j=Qi...,i--L is a covering of Xt. Let {Vj}j=0,...,n-i, k=
2, — ,n, be open coverings of X such that Vj-VjdX-X and F^-FJc
X-X, k=2, ••• , n, j=0, ••• , n-1. Then we have F*n^=0, *=1, - , n, if
j^f. Let f/i be an open neighborhood of each Xt such that

(4.14.4) Uld\JVl
J,
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Then, by Lemma 4.9 we have a controlled tube system {Tx=(Et, T:L, pt, eL}\ for
{Xl} such that for each i

(4.14.5) IT i l c f / i

(4.14.6) TT^OOc.r+fl*-* for x^

We will show the existence of a controlled vector field f1 on {(Xt, T t)f
which satisfies (4.14.1) and (4.14.3) for x^V]r\Xt. We prove it by induction.
Assume we have already constructed a vector field qm+1={$f+1} on {(Xh Tt)}
satisfying (4.14.1) and (4.14.3) for x<^Vf+lr\Xi such that {ff+1}ism-,i is con-
trolled on {(Xit Tl)}izm+1. In the case m=n—l, it is trivial, so we want to find
qw . Now Lemma 4.11 implies the existences of an open neighborhood TFof Xm

and a continuous controlled vector field £'={&} on {(T.nTF, TJA-riTr)} such
that fm=fS+1- Choose TF so small that

, m-1 , Wd\Tm ,

\ j=0, »- ,77 i - l , and

for 1=771, -,; = !, 2.

The last inequality follows from the continuity of f '.
It is easy to find a positive C°° function 0 on Zm such that W'={x^W\0°

~mW-pm(x}<l} satisfies W'—WtlXm— Xm. Let 0 be a C°° function on J? such
that 0=0 on [1, oo), =1 on (-00, 1/2] and 0<^<1 on (1/2, 1). Put

<I>(8onm(x)-pm(xfi for

for x^R"-W-(Xm-Xm).

Then ?P* is a C°° function on Rn— (Xm— Xm} such that ¥=1 in a neighborhood
of Xn, =0 outside 1>F, O^f^l and

(4.14.7) W(x)=W*ni(x) for xt= \Tt\, i^

by (4.2.1, 2). Here we have to shrink |7\], 2^771+ 1, in order to assure that if
x^Wfr\\Ti\, then ^l(x')^\Tm\ and conversely that if xe ;T f | , ^(^e^, then
A-- |T m [ . Put

l for i^77z

•f+1 for i<m.

Then fm={<?f} is a vector field on {(Xif Tt)\ satisfying (4.14.1) and (4.14.3) for
x~Vfr\Xi and {ff}^m is controlled on {(Xi} TOh^m as follows.

Indeed (4.14.1) is clear. For (4.14.3) it is sufficient to see

(4.14.8) sixGR"-' for
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because of the assumption on £m+1. By the property ZifW=0, i=l, ••• , m— 1,
Xi in (4.14.8) is of dimension ̂ m. Since £' is controlled, we see

(4.14.9) £'lx^Rn-minv-k> for xs=W with 7um(x)eXmr\

(Uk-Ul ----- Uk

by (4.10.1), (4.14.6), the assumption on fm=fm + 1 and by easy basic calculations.
For any x<=W with nm(x)^Xmr\(Uk — U^ ----- Uk-dr\V?^, let jx denote the
maximum of such j. Since Ukr\Vf+l<^.Xk—Xk for k^jx (4.14.4), and since
l^k^m, the property Xmr\Ukr\V™+li-0 means that k>jx. Hence we have
by (4.14.9)

£*e«B-> for %EE^ with xm(x)eV?+1nXm.

Therefore, shrinking |Tm| and hence W, IF', we obtain (4.14.8).
It rests to see that the vector field {ffh^m on {(Xif T4)}^m is controlled.

For any Xif Xt>, if>i^m and x^Xt> near to Xit we have if

IOffi1, by (4.14.7),

), by the controlledness

of r and {e+1K,™+i,

and if .r^PF, by (4.14.7) and the controlledness of

Hence (4.10.1) holds true. (4.10.2) is shown in the same way by the controlled-
ness of fr and {?r+1hsm+i. We omit the proof. Hence, by induction we have
a controlled vector field I1 on {(Xir T<)} which satisfies (4.14.1) and (4.14.3) for
x^V]r\Xi} which, together with Lemma 4.13, proves Lemma 4.14.

§ 5. Topological Equivalence of Subanalytic Functions

In this section we prove the following.

Proposition 5.1. Let X be a closed subanalytic subset of Rn. Let flf fz be
subanalytic functions on X such that for each point x^X, both f i ( x ) and /2(x")
have the same sign. Put Z=f~^1(Q). Then there exist neighborhoods Wlf W2 of
Z in X and a homeomorphism r: Wi-*Wz such that f2°^=fi on Wi and r\z—
ident.

The case of analytic function germs is Theorem 4.3 in [16]. There I gave
a sketch of proof, whose idea is the main tool also in the proof below. Two
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functions flf f2 on a manifold M is called topologically equivalent if there exists
a homeomorphism r of M such that /i°r=/2. Another version of Proposition
5.1 is Corollary 4.4, [16], which should be amended to the following.

Proposition 5.2. Let /1? /2 &£ analytic functions on a compact analytic mani-
fold M. Put

S= {x^A4\a1dflx+a2df2z=0 for some alf a2^0 with fli+<22>0} .

Assume f ^ 1 f i ( S ) = f ^ 1 f 2 ( S ) and fi=fz on /iV^S). Then fi and fz are topolog-
ically equivalent, and the homeomorphism of equivalence can be the identity on
/iViC-S) and analytic outside it.

The proof of Proposition 5.1 consists of 5 steps, (5.3), • • • , (5.7).

(5.3) Let {Xi}i=li... be a subanalytic stratification of X compatible with
Z (2.11). We can reduce the problem to the case in which (5.3.1, ••• , 5) below
hold true.

(5.3.1) /!, f2 are restrictions to X of analytic functions on Rn.

(5.3.2) {X,} is a Whitney stratification of X.

(5.3.3) There exist compact analytic manifolds Mt, /= ! , • • - , subanalytic open
subsets Mi of Mt and analytic maps <v^ : ML—>Rn such that <bl\ 3/; are diffeomor-
phisms onto X{.

Put

Rk={(xl9 -, xn)s=R»\xk+1=
and

for

(5.3.4) For each i, k and x^Rn, Xl and x+Rk are transversal if
and X%r\(x~\-Rk) is empty or of dimension 0 if dimXi

J
rk<n.

Let iVc^ be a subanalytic analytic submanifold in Rn, and let l^k^n with
dim .¥+&>??. Assume that for any x<^Rn, N and x+Rk are transversal. Put

for some a^ a2^0 with

(5.3.5) For each XtdZ, XL^Z and l^^^n with dimX. + k^n and

t', k) is empty in a neighborhood of Xlm

The reduction to (5.3.1) is trivial if we consider the graph of (f1} /2) in
place of X. Hence we assume (5.3.1). Before beginning the proof, we remark
some facts.

Let NdRn be a subanalytic analytic manifold, M be a compact analytic
manifold, M1 be a subanalytic open subset of M, and <p : M -+ Rn bean analytic
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map such that $\M' is a diffeomorphism onto N and that <p(M)C.X. Let l^k
^n with dim N+k>n. Assume that for any x^Rn, N and x+Rk are trans-
versal. Then
(5.3.6) S(N, k] is closed in N and subanalytic.

Proof of (5.3.6). The closedness is clear. For the subanalyticness, consider

Then V is an analytic subset of the tangent bundle TM of M since d(f) :
TRn is analytic. Put

V'={ve=V\\v\=l}

for some analytic Riemannian metric on TM,

Then V is an analytic subset of TM, and V" is a well-defined semi-analytic
subset of TM by (5.3.1). It is easy to see that

N-S(N, k)=p*d<f>(V'nVffr\TM')

where p : TRn — > Rn be the projection to the base space. As the closure of
V'r\V"r\TMf in TM is compact, and as p°d(j)\ TM-*Rn is analytic, it follows
from (2.3) and (2.6) that p • d<l>(V' r\V" C\T M') is subanalytic. Hence (2.1.3) im-
plies that S(N, k} is subanalytic.

(5.3.7) Let NdX—Z be a subanalytic analytic submanifold in Rn. Assume S(N, n)
is subanalytic. Then S(N, n) is empty in a neighborhood of Z.

Proof of (5.3.7). Assume S(N9 n}C\Z^ 0. Apply Proposition 3.1 to S(N, n}.
Then we have a 1-dimensional subanalytic analytic submanifold N'dS(N, n) so
that N'r\Z±0. Since n+A\mN'>n9 S(N', n) is well-defined. This is the reason
why we assumed k = n. Now it is easy to see that

S(N', n}=S(N, n)nN'=N'.

Applying (2.4) to N', we obtain a compact 1-dimensional analytic manifold M and
an analytic map 9$: M-+Rn such that 0(M)=N'. We remark that f^(J)(x\

have the same sign for each point ;teM, that

for some x0^M and that

for each x^M and some a1} G2^0 with ai+az>Q. The third property implies
that if one of ft°(f> is monotone increasing on a subset of M diffeomorphic to
an interval, then the other is monotone decreasing. This contradicts the first
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and second properties. Hence S(N, n)r\Z=0, which proves (5.3.7).

We will prove (5.3) by induction. Let 0^/^/z be an integer. If l=n, the
next statement coincides with (5.3).

(5. 3) i We can reduce the problem to the case in which (5.3.3) for codim XL

^l, (5.3.2), below and (5.3.4, 5) for k^l hold true.

(5.3.2), {Xi\codim Xt^l} is a Whitney stratification of the union of such X^s.

Proof of (5.3), If />0, assume (5.3), _i. Let {Xi\ be a subanalytic strati-
fication of X compatible with Z such that (5.3.3) for codim X(<1, (5.3.2), _x and
(5.3.4, 5) for k<l hold true. Here Xt in (5.3.3, 4, 5) and (5.3.2), _x are replaced
by Xi. Let /i, 72 be the index subsets of all i with codim X[=l, ^l respectively,
and Y be the union of X(, /e/2.

At first we want to change the z,-axis fixing the xlf • • - , ,rj_i-axes so that
Yr\(x+Rl) is empty or of dimension 0 for any x^Rn. This condition is equiv-
alent to that Xir\(x+RL) is a finite set for any z'e/2 and x^Rn, since a
bounded subanalytic set of dimension 0 consists of finite points. Let

r ,_ i : Rn-*Rl-^={x^Rn\x = (Q, • • - , 0, xlf -, *„)}

be the projection. Then, since ri-i(Xi) is a subanalytic set of dimension ̂ n—l
for any fe/2, we can apply Lemma 3.2' to rt-i(Xi). Hence there exists a 1-
dimensional linear subspace L of Rl~lL such that for any a^Rl~1L, a + L is non-
singular for each ri-i(Xi), z'e/2. This means that (a+L)r\ri-i(X() is a finite
set for each z'e/2. Changing the #raxis, we assume that L is the ,t,-axis. Let
x^Rn,i^I2. Put a=ri-i(x). Let (fl + L)Hr,_i(ZO consists of alf -• , ai>&
Rl-1±dRn

f and let X(r\(aj+R1-1} consist of at most I" points for any j (5.3),-^
Then we have

Hence X^x+R1) is a finite set.

Let r, : Rn-*Rl±= {x = (Q, • • - , 0, xt+lf • • • , xn)} be the projection. Since
X^^x+R1) is a finite set for any fe/! and ^ei?71, rf(r, U;) has the maximal
rank n—L By (2.4) there exist compact analytic manifolds Mi9 i^h, of dimen-
sion n—l and analytic maps <^ : Mi-^Rn such that ^^M^^XJ. Let Zf be the
images under <f>t of the sets of critical points of r,°9^, and XldX't be subanalytic
subsets closed in Xi of codimension >/ in R11 such that (Z^ X ( — X \ } satisfies
the Whitney condition for any j<£lz (2.12). Here we put Xl=0 if /=0. Then
X\ are of codimension >/, and ^TJ— X\ and ,\-+^z are transversal for any ,VE
E71 since r, : Z^— Xl-^Rl± are immersions.
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For each z'e/j with X(dZ, put

Here S means the closure of S in Rn, and S is well-defined because the trans-
versality of X'j and x+Rl~l implies that of X'j and x-rR1. By (5.3.6), S(X'j, I) is
closed in X'j and subanalytic. Hence (2.1.2) imply that X\ is subanalytic.

Moreover X\ is of codimension >l in Rn. We will prove this by reduction
to absurdity. Assume codim X\=L Then (2.2) implies that \J S(X',, I) is codi-

mension </ as germ at XJ. Apply Proposition 3. 1 to {S(X'jt /)}^/2, X{. There
exist then a triangulation K of 1271 and a subanalytic homeomorphism r of Rn

such that two properties corresponding to (3.1.3, 4) are satisfied. Hence we have
a simplex a^K of codimension <l so that r(a) is a subanalytic analytic manifold
contained in S(X'j} 1} for some j<£lz and that an open face df of a of codimen-
sion / is analytically imbedded by r into X{. By (2. 12) there is an inner point x
of r(a'} such that (T(O), r(a'}r\ a neighborhood of x) satisfies the Whitney condi-
tion. Choosing moreover x&X2

l} we assume r(0-') and x+R1 are transversal at
x. Then it follows from the definition of the Whitney condition that r(<r) and x+
Rl are transversal in a neighborhood of x, and hence r(<;)r\ (*+#*) is a sub-
analytic analytic submanifold of R™ in a neighborhood of x whose closure contains
x. We see easily that

S(r(<7), l) =

in a neighborhood of x. Hence it follows that

in a neighborhood of * for each y^r(d)r\(x+R1} and some flj, G2^0 with
^2>0. These imply that

S(r(c7)n(jc+/2l), /x)=r(a)n(x-l-JR
t) in a neighborhood of

These contradict (5.3.7), hence codim X\>L
If Xf

t(£.Z, put Xi=0. Let {ZJ£ be a subanalytic stratification of Y com-
patible with \Xf

l} XinXl, XI Xt}i&IlU{Z}. By Proposition 3. 1 we may assume
that each XL is simply connected. Put

Then {A'J is a subanalytic stratification of X compatible with Z and satisfying
(5.3.3) for codim X^ly (5.3.2)z and (5.3.4, 5) for k^l.

Indeed, for any Xt with codim Xi—l we have X i d X j — X j — X j — X j for some
It is easy to see that for any connected component A of (ftj^X'j—X*
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^ : .4 _> X',-X>-X'-X<

Is an analytic covering because of the compactness of M3. Hence if we let M(
be any connected component of ^lXi7 then M£ is a subanalylic open subset of
Mi by (2.2), (2.5.1), and ^ : Mi-»Zi is an analytic diffeomorphism since Xt is
simply connected. Hence (5.3.3) holds true for codim^=/ and obviously for
codim Xi<l. Now, since each X% of codimension I is contained in Xf

} — X] for
some ye/j, (5. 3. 2) i is clear.

Consider (5.3.4) for k^L We have five cases; (i) codim A~ ( </ and k<L
{11} codim A^<;/ and k=l, (iii) codim AT t=/ and k=l, (iv) codim A~ t=^/ and k<!
and (v) codim ATi>/ and k=L In the case of (i), (5.3.4) is contained in the
assumption. If (ii), we have dimXi+k>n. Hence, by the assumption, Xt and
x-\-Rk~l are transversal for any x^Rn, which implies also the transversality of
Xl and x+Rk. (5.3.4) in the case of (iii) follows from the fact already seen
that X'j—X* and x+R1 are transversal for any x^Rn, ye/3. In the case of
(iv) we have X'3> j^I2, so that XtdXj. Hence it is sufficient to see that Xf

3r,
(x+Rk) is empty or of dimension 0. But it is a part of the assumption because
of k<l, dim X'i+k<n. We have chosen the xraxis so that Y ~ (x—R1) is empty
or of dimension 0 for any x^Rn. That proves the case of (v).

For (5.3.5), let XldZ} Xt.£Z, l^k^l such that timXt+k^n. A\OX,. If
S(Xl't k} is empty in a neighborhood of Xl} then so is S(Xt>. k — l) because of
the inclusion

S(X'lf

Hence we only have to prove the case dim Xl
jrk = n. There are then two cases

k<l or k=l. If k<l, then Xl=X'J, Xt>=X'j' for some /, ./'. Hence, by the
assumption, S(AV, k) is empty in a neighborhood of X%. If k — l, the same
statement follows from the facts that Xt is contained in Xj—X", for some j and
that Xl' coincides with some X'3>.

Thus we have proved (5.3)0 and (5.3),, />0, assuming (5.3j^-!. Hence (5.3)7i

= (5.3) follows.

(5.4) Let {XL\ be the stratification which appeared in (5.3;, A"t be a stratum
with X^Z, and / be an integer bigger than codim Xx. Let Y Ll denote the
union of Z/s such that XJdZr\Xl and codim X3—L Then there exists an
analytic vector field qit on the intersection UlL of Xl and an open neighborhood
of YU in Xl\JYli such that

(5.4.1) for any x^UlL, $lLx is contained in Rl, and
(5.4.2) Siifk, k = l, 2, are positive on UlL.

Here q u f k are well-defined because of (5.3.1).

Proof. Put
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Then, by (5.3.4-, vkll are well-defined analytic vector fields on Uit. On the
other hand the definition of S(Xt, /) shows that \vkii\ do not vanish and that
vnix and v^iix, x~UU} do not point the opposite directions each other, Hence
f n also is a well-defined non-singular analytic vector field. By (5.3.5), Ult is the
intersection of A\ and a neighborhood of Yit in Xi\jYli. Clearly (5.4.1, 2)
follow from the above definition of qlL- Hence (5.4) is proved.

(5.5) Under the same notations as (5.4), let Ud and Ud be open subsets
of Xi having the same property as Uu, namely being the intersections of Xt

and neighborhoods of Yu in Xl\JYiif and moreover satisfying

Put Ui— U Ud- Then there exists a C°° vector field <-, on Xt such that
Z>codim A 2

(5.5.1) for any x^Ud, ^x is contained in Rl, and

(5.5.2) gtfk* k = l, 2, are positive on Ut.

Proof. Let gL be C°° functions on Xt such that gL=l on Ud, =0 on XL—
U"i and 0<o-<l on Uti—Ud. Then, putting gi^ix=Q on Xl~Ull, we extend
gigu to Zi as C"J vector fields. Put

&x= 2

Then f^ is a C - vector field on Zj. We will see that ft satisfies (5.5.1, 2).
For (5.5.1\ let x be a point of Uur Since 1— gZl(*)=0, we have

for any /2>^. Hence

By (5.4.1), g£iU is contained in 12zi for any l^llm Hence (5.5.1) follows.
For (5.5.2), consider a point x^U^r\Urur AVe can assume x^Ud for any

/</L Since giziifk(x) and 1— ̂ (A:) are non-negative for any /, k, it is sufficient
to see

(5.5.3) Ild-gteifriJkW,
i<ii

k—l, 2, ?re positive. By the above assumption on x and the property of git

we have

for
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and

These inequalities together with (5.4.2) imply that (5.5.3) are positive. Hence
(5.5) is proved.

(5.6) For any Xl of codimension / contained in Z, let Vt be an open neigh-
borhood of Xt in X such that Vlr\XJc:Uji for any Xj with Xj~Z and Xj"DX,.
We denote by V the union of all Vt. Then V is an open neighborhood of Z
in X. Considering Xr\V, {Xlr\V} in place of X, {Xl} respectively, we reduce
Proposition 5.1 to the next proposition.

Proposition 5.T. Let X be a locally closed subset of Rn, \X,} be a Whitney
stratification of X, fl and /2 be the restrictions to X of C" functions j\ and /2

on Rn respectively, {f J be a vector field on {Xx} , and V,- be an open neighborhood
of each Xt in X such that

(5.6.1) /T1(0)=/I1(0),

(5.6.2) Z=f~1
1(Q) is closed in Rn,

(5.6.3) {Xt} is compatible with Z}

(5.6.4) for each i} Xtr\Zi=0}

(5.6.5) for each i, k and x^Rn, XL and x,+Rk are transversal ij /c^

(5.6.6) for each /, j and x^Xlr\VJ with X^Z, XjdZ and .Y t^-V. *ix is con-
tained in Rl where /=codim Xj, and

(5.6.7) ^(/fcLi-jX for any i, k with Xl<tZ, is positive.

Then there exist neighborhoods W1} Wz of Z in X and a humvumorphism i :
TFi-MFg such that /2«>r=/1 on Wlt ~\z=ident, and T(W1r\Xl} = W, ' X, for each i.

(5.7) Proof of Proposition 5.1'. For the sake of simplicity we assume f1}

/2^0. The general case requires no more than complicated notations. For each
XidZ, there obviously exists an open neighborhood V( of XL in A" such that
Vi—V.dX.—XidZ. Let / be the index subset consisting of / with Xt^Z.
Apply Lemma 4.14 to { X t } i e j , X*=X~Z, f1} /8, f= {f J i s r . [ \J V^XJ ,

dim A%=j
t ^ J

and { U Vi—X^j. Then we can modify <? so that it is locally integrable.
dim^

Here we have to replace X by Xr\ U V'L and the belonging .v^A"t ~\Vj in (5.6.6)
i$j

by x^X.r\Vj. But the replacement does not influence the conclusion of Prop-
osition 5.1'. So we add the assumption that f is locally integrable to the as-
sumptions of Proposition 5.T. Put

Ci= inf
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If Xi— X=0 ^ve see later this is not the case), then we put CL = CO. Then d
are positive by (5.6.2), the local closedness of X and by the boundedness of Xt,
Let 0 : D-^X*=X-Z, DdX*xR, be the flow of f (4.12). Then D is open, 9
is continuous, and for any x^X* we have fe<0<£j (may be infinity) such that

It follows from (5.6.7) that f j ° 9 \ X Q , »- lt+ ) is strictly increasing for each A'OX Q X Q

eZj, z'e/, and each /.
Moreover if fj(x0)<cif then f j ° 8 ( x 0 , t) converges to 0, a number larger or

equal to CL as t-^t^^-rO, fJ0— 0 respectively. In fact, if not so, we have by
(5.6.7) and by the boundedness of Xt a sequence {tk} of numbers in (£~0, £J0)
such that {®(.YO, £*)} converges to a point j/ of (Xl—Xi)—Z—(Xl—X)ciX*—Xi.
Since J9 is open, we have a neighborhood Oy of y m X and s>0 such that
DlDOyXl— s, s]. This means that for sufficiently large &, 0(x0, tk}^0y and
hence (*0, [** — £. J& + e])dD. Hence £ / e — >co or — oo as k—>oo. By the con-
tinuity of 6, {9(x0,tk±e)}k converges to 8(y, ±e). Hence {/^©(.TO, ^*±e)} fe

converges to f j ° 0 ( y , ± e ) i ^ f j ( y } . This contradicts the fact that f j ° 0 \ x 0 < ( t - , tj )
is increasing. Since f3 is bounded on Xz, we have seen also Xl— X—0 and
hence c*=£co.

The above property of f j o 9 ( x Q , t) shows that for each A'o^A'j, /e/, and
each j with fj(x0)<clf f,°@ maps diffeomorphically (^0X(^0, ̂ nC/j-e)-^^, ^J)
onto (0, O. Hence we uniquely obtain a C°° diffeomorphism rXo from 0((xQX
fc0, ftoMnC/i-ej-m cO)) to 0((i'0Xte0, ^0))n(/2°0)-1((0, cj)) such that /8-r,0

=/! on the domain of definition of riro. We remark that r.r0=Tvo if both A-O

and XQ are contained in one integral curve of qlm Put

V'Jl={xt=Xt\flW<ct} for 7 = 1,2 and ;e/,

Then P^ is the union of Z and the domains of definition of T.£O for all xn^Xlt

ze/, with /'i(A'o)<Ci, T^ is the union of Z and all the images of r^'s, and they
are both neighborhoods of Z in X We define a map r : Wl — > T^r

2 by

-^U) for

for ,T e Z .

Then clearly T is well-defined and one-to-one, we have f-2°^—fi on W± and
r^ident on Z, and for any / T w^xx is a C°° diffeomorphism onto W2r\Xim

We only need to see that r is a homeomorphism. Let {xk} be a sequence
of points in W1i^\Xl converging to y^Wi^Xi'. We want to see that {r(xk)}
converges to r fvj . If i=i' or i&J, it is trivial by the continuity of r\wlnxi and
by the definition of T\Z. Hence we assume i^i' and /e/. The case i'&J
clearly follows from the next statement.
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(5.7.1) For each /€/ and for any £>0 there exists a neighborhood Q3 of Xj

in X such that

(5.7.1)' dist(z, 9(x, f))^e for x<=Q,-Z, tt=(t*, 0).

We prove (5.7.1) by induction on codimension of X3. (5.7.1) is trivial if
codim Xj=0. Hence, assume (5.7.1) for codimZJ</. Let £>0, and for each
/'<$/ with codim ,¥;'</, let Q3> be a neighborhood of Xf in ^Y such that

(5.7.2) dist(x, 9(x, f))^e/3 for x<=Qy-Z, t<=(ti, 0) .

Put Q= \J Qy. Let Z,, j&J, be of codimension /. By (5.6.5, 6) we have
codim X3'<1

an open neighborhood Q'3 of Xj in 72"- and a Cro fiber bundle TT; : Q'j~>Xj such
that

(5.7.3) rc7X;y)c(;y+JR')nBe,3(;y) for ^eX,, and

f^e/2' for ^
where

We remark that

(5.7.4) if Jo^Y* and t,<t.2^R satisfy 0(.r0, (tlt t2))cQ;, then 7r,o0(,t0, fe,
=a point.

If necessary, shrink Q so small that for any y^Xj, %(y}=n^l(y)—Q'3—Q is
not empty. Put

d(y)= inf AU),

Then we see easily d(;y)>0 and that Q5 is a neighborhood of X3 in X
Moreover Q3 satisfies (5.7.1)'. In fact, let x^Qj—Z. Then there are two

cases,

( i ) 9(x, (t~, 0))cO; and

(ID 9(x, te, O))^Q;.
If ( i ) , we have by (5.7.3, 4)

distU, 9(x, 0)^2e/3 for any fe(

which proves (5.7.1). Now consider the case of (ii). Let t0 be the inferior of t
with 9(x, (f, 0))cC?;. Then we see by (5.7.3, 4)

9(x, (t0, 0))C7rj1(^(^)) and

9(x, to^nj^n^x^—Qj hence



764 MASAHIRO SHIOTA

(5.7.5) dist(*, 9(x, 0)^2e/3 for t^\J0, 0) .

Moreover
9(x,

Indeed, if not so, then

9(x, tj

Hence, by the definition of d(y)

But, since f^xXd^Tc^x) and since f± is strictly increasing on 9(x, (tx, 0)), we
have

which is a contradiction. Hence 8(x, t0)^Q. This implies by (5.7.2)

, t0\ 6(x, 0)^e/3 for

which together with (5.7.5) proves that Qj satisfies (5.7. iy.
Now the case z'e/ remains in the proof of the convergence of {T(xk)} to

7(3^!). Let t^(ty1} ^i) satisfy ©(3;^ t^—T^i}, and let e be a small positive
number. Then, by the local integrability of $ there exist neighborhoods R'dR
of 3^1 in X and <5>0 such that

(5.7.6) A-eU, ti

=fi(yi)<f*°9(x,t1+d) for any

(5.7.7) |0(*, 0-r(3>i)!<£ for

By the definition of r there exists a number ok for each jfe such that

(5.7.8)

Since {xk} converges to y1} and since fz
o^(xk)=fi(xk\ (5.7.6, 8) show that for

sufficiently large k

which implies that \ok\<d. Therefore it follows from (5.7.7, 8) that

Namely {r(xk)} converges to r(yi). As the continuity of T~I is shown in the
same way, we complete the proof of Proposition 5.1'.

Remark 5.8. In Proposition 5.1, given a locally finite family {Yj} of sub-
analytic subsets of Rn, we can choose r: Wi-+W2 so that ^W^Y^Wz^Yj
for any j. In fact, using (2.11), we can construct the Whitney stratification
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{XJ of X in (5.3) so that it is compatible with (YJ . Then r denned in (5.7)
automatically satisfies T(VV1PiYj')=W2r^Yj for any /.

Remark 5.9. We can refine Proposition 5.1 as follows. For any small neigh-
borhood W5 of Z in X there exists moreover a homeomorphism r of X such
that T\WI=^ and rLr-T^— ident, here W^ and Wz are chosen to be contained
in TV*

Proof. (Continued from (5.7).) Let A be the quotient topological space of
Wi— Z under the equivalence relation x~0(x, f) for any t, and let 6± : W1—Z
— > A be the canonical sur jection, namely A is an orbit space. Then for any
finite subset /° of /, we have a positive number c° by the local integrability of
f such that cQ<d for any i'e/° and that the restriction of 0± to \J ^n/T^c0)

iej"0

is homeomorphic to the image ^(M^n U X^. Repeat this argument for a
ieJ°

sequence l/-7}^ of finite subsets of / such that { \J XT] j is a locally finite open
tGt/J

covering of X*. Then let {c3} be the consequent numbers, and let c(y} be a
positive continuous function on A such that c°dl(x}<ci for ^e^, z'e/-7'. Here
the existence of such c follows easily from the remarks that {ff^W^ U Xi)} 3i^jj
is a locally finite open covering of A and that A is a normal space. Then it
follows that the restriction of 6l to {x^Wl—Z\fi(x}=c°Ol(x}} is a homeomor-
phism onto A.

Choose c(y) so small that W3 contains

and let c'(;y) be a positive continuous function on A such that ^(jXc^) and
that r(W{) is contained in the interior of W's in X where

Put Wf
2=T(W(), 0 = (0lf A) : W'&-Z —^ .lx(0, oo)

Then ^ is a homeomorphism onto the image, and we have

0(Wt-Z)={(y, Oe

Since each integral curve of f is invariant under r, the homeomorphism 7' :
0(Wi-Z)->0(W'2-Z) defined by >c'.0 = 8<>T is in the form rx(;y, t}=(y, r"(y, t}}
for some continuous function T". Let ^e -4 be fixed. Then r"(y, t) is a homeo-
morphism from y X { t ^ ( Q , oo)\t^c'(y)} to 0(W2— Z}r\yXR. Hence we can
extend r"(y, f) to a homeomorphism of yX {t^c(y)} so that it is linear on the
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complement of yX { t ^ c ' ( y ) } . Let the extension be denoted by fjj . Then clearly

r'(y, V = (y, r;(0) for (y, t)t=0(W>-Z)

is a homeomorphism of 0(W'S—Z) such that

rf on 0(1^-Z)

ident on {(3;, t)^Ax(Q, oo)\t=c(y)} .

Hence the extension f of r induced by f' is a homeomorphism of Ws which is
the identity on the boundary of FFg in X. Therefore we can extend r moreover
to X so that it is the identity outside W'B. After replacing Wlt W2 by W(, Wi
respectively, we obtain the remark.

Remark 5.10. In Proposition 5.1, r is the identity on { x ^ W i \ f i ( x ) = fz(x)}.
In Remark 5.9, assume /i=/2 on a neighborhood of a closed subset C of X.
Then f can be chosen to be the identity on a neighborhood of C. These are
clear by the method of construction T and T.

Remark 5.11. In Proposition 5.1 and Remarks 5.9, 10, assume moreover that
X is an analytic manifold and that flf /2 are analytic. Then r and r can be
chosen to be analytic and C°° differentiate on X— Z respectively.

Proof. Come back to (5.3). The stratification {Xt} can be chosen so that
{Xl—Z} is the family of all connected components of X—Z. Then 6 : D-+X*
in (5.7) turns out to be of class C°°. Here the strata may fail to satisfy the
boundedness condition. But the condition is used only in the construction of Wt

in (5.7), namely of ct. In case in which X is an analytic manifold and fl and
/2 are analytic, it is clear that there exists a continuous function c(y) on A in
the proof of Remark 5.9, since & is differentiate. Replace Wt by W( of the
proof of Remark 5.9. Then the C°° differentiability of r is trivial by the defini-
tion of T. About f, it is not of class C°° at

0 - l { ( y , t)^Ax(Q, oo)\t=c(y) or =c'(y)} .

To make f differentiate, at first choose c(y\ c'(y) to be differentiate. It has
a meaning since A naturally has a C°° manifold structure induced by X. Nextly
we modify r to be differentiate. It is easy because of the differentiability of ©
and since we only need to consider r' on {(3;, t)^Ax(Q, <*>)\t^c(y)}. We omit
the details.

For an analytic modification of r, we apply Theorem 8.4 in [16] to f2°^i, fi
on Wl~Z where TI : Wl—Z-^W2i—Z is an analytic approximation diffeomor-
phism of T\WI-Z in the Whitney topology [5]. Then there exists an analytic
diffeomorphism r2: Wl—Z-^Wl—Z such that /i=/2

oTior2. Moreover T^TZ can
be chosen to be arbitrarily close to T\WI-Z in the Whitney topology by Remark
8.5 in [16]. Hence, if we extend T^T^ to Wi by putting r1°r2=ident on Z,
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then the extension is a homeomorphism from Wi to W.2 which satisfies the
requirement of Remark 5.11.

Problem. In Proposition 5.1, can T be subanalytic?

Proof of Proposition 5.2. Let MaRn, and let b be a number contained in
7/5). Put S/=/T1/i(5). By the definition, S is identical with S(M, n) defined
in (5.3). Clearly S(M, n} is closed, and (5.3.7) implies that S(M, ri)—f?(b) is
empty in a neighborhood of /iXW- Hence it follows that /i(S) is a discrete set
and hence that S' is an analytic set.

Let A be a connected component of M—S'. Then we have a1} a^A—A
such that /iG4) = (/i(0i), /i(02)) since A/ is compact. We, consequently, have
/1(^)=/2(y4). Hence, by the proofs of Proposition 5.1 and Remark 5.11, we
have neighborhoods Wlt W2 and U of Sf in M with Wlt WzdU, a C°° vector
field f on U1=U~Sf and a homeomorphism r: Wi— >W2 such that /2°r— /x on
II'i, r=ident on S' and <f(/ t #)>(), z — 1, 2 and that r is defined separately on
each integral curve of f, namely, r(curven^i)=curvefW2.

Let (p be a C°° function on M such that </>=0 on a neighborhood of S', =1
on a neighborhood of M—U and O^^^l. Put

Then £' is a C°° vector field on A/— S' satisfying f'(/tU-5 ')>0, /=!, 2, because
of (|rf/i|rf/8+|d/8 |rf/i)/<>0 on Af-S' and £'=£ on (a neighborhood of S')-S'.
In the same way as the construction of T, we obtain a one-to-one mapping T' :
M-+M using the integral curves of £' such that f^^'—fi on M. Then we
automatically have r'=r on a neighborhood of S', and the differentiability of
~' M-sr is clear. Hence r' is a homeomorphism of M. An analytic modification
of r' M_5 ' proceeds just in the same way as the proof of Remark 5.11, and
r' |S ' is the identity. Hence Proposition 5.2 is proved.

We will apply Proposition 5.1 and Remarks 5.9, 10 later in the following form.

Corollary 5.12. Let ZdXdRn be polyhedrons, and let f be a subanalytic
function on X. Assume that X and Z are closed in Rn and that for any x^Z,
f ~ 1 f ( x ) = Z as germs at x. Then there exists a homeomorphism r of X such that /°r
is PL on a neighborhood of Z and that T is the identity on Z and outside a given
neighborhood of Z. Moreover if there is a closed subset C of X such that f is
PL on a neighborhood of C, then r is chosen to be the identity on a neighborhood
of C.

Proof. Let Lc/f be simplicial complexes such that \K\=X and \L\=Z.
By subdividing K and by the assumption we can assume that L is full in K
(see [13] for the definition), hence that for any a^K, f(aC\L} consists of at
most one member and that f^f(ar\L)r\(j is a simplex of L. The last condi-
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tion means that if we define a linear function /j on a by putting J\=f on the
vertexes, then f—f(ar\L) and fl—f(ar\L] satisfy the conditions of Proposition
5.1 on a. Let fL be defined globally on X in this way separately on each
simplex. Then fl is a well-defined subanalytic function on X. Apply Proposi-
tion 5.1 and Remark 5.9 to / and f1 on a small neighborhood of each connected
component of Z. Then we have a homeomorphism r of X such that /°r=/i on
a neighborhood of Z and that T is the identity outside a given neighborhood of
Z. Since /x is PL, so is /°r on a neighborhood of Z. Thus the first half of
the corollary is proved.

For the latter half, subdivide K so that / is linear on any simplex which
intersects with C. Let Z' denote the union of such simplexes. Subdividing K
once more, we can assume moreover that / is linear on each simplex which
intersects with Z'. Then we automatically have f=fi on a neighborhood of Z''.
Hence, by Remark 5.10, r can be the identity on a neighborhood of Z' and hence
of C. Therefore Corollary 5.12 is proved.

Remark 5.13. Let s be a positive continuous function on X in Remarks 5.9,
10 and Corollary 5.12. Then 7 in Remarks 5.9, 10 and r in Corollary 5.12 can
be chosen so that

\?(x) — x\<e(x) and T(X)—X\ <e(x) for x^X.

It is clear by (5.7.1) and by the method of construction of r and T.

§ 6. Analytic Triangulations

At this stage, let us consider the problem of piecewise linearization of an
analytic function /: Rn-+R. For any point x^Rn, the pair (Rn, f~lf(x}} can
be triangulated by Proposition 3.1. Hence Corollary 5.12 shows the existence
of a homeomorphism T of Rn such that /°r is PL on a neighborhood of f ~ l f ( x ) .
In the extension of this argument to the global Rn there are two difficulties.
At first the domains where / is piecewise linearized are too narrow to cover
Rn. The other difficulty is that we can not say "r is subanalytic". If T were
subanalytic, then we would repeat the argument above even if the domains of
piecewise linearization of / intersect.

We need another method of piecewise linearization. Fortunately we can
obtain by Lemma 6.15 below a large domain of piecewise linearization where /
is C°° regular and r is subanalytic. We will show also an analytic triangulation of
an analytic manifold (Proposition 6.11). The results in this section are based
on [12].

Let K always denote a simplicial complex, J\ldRn an analytic manifold and
r=l, • • • , oo or a). For any subcomplex L of K, let N(L, K) denote the simpli-
cial neighborhood of L in K, namely the subcomplex generated by all
with
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Definition 6.0. A linear isomorphism g: K—>L of simplicial complexes is a
homeomorphism g : K \ — > L carrying each simplex of K linearly onto one of L.

Definition 6.1. A Cr map g : K—>M means a map g : \K\—>1\I such that
the restrictions g\a, a^K, are of class Cr. We say that g is analytic on a
subpolyhedron P of \K\ if we have a subcomplex K± of K with P=\Ki\ such
that g\Kl is of class C*". Let K' be another simplicial complex with \K' = |/v|,
and let gf : K'—*M be a Cr map. We write g=g' on Pif we have subcomplexes
A"j of K and K( of K' such that P= | /^ | = 1 7f 1 , K^K( and £|AY=£'|AV

Definition 6.2. For any fce|A~|, let st(fc, A') denote the union of simplexes
of AT which contain b. Let g: K-+MaRn be a Cr map, and let b^= K\. We
define dg* : st(6, K)-+Rn by

where 0- is a simplex containing b-i-e(%—b} for small s>0. Here A" is regarded
as to be contained in a Euclidean space, and x—b is regarded as a tangent
vector at b. The definition does not depend on the choice of imbedding of K in
a Euclidean space.

Definition 6.3. Let g : K-+MdRn be a Cr map. We call g an imbedding
if g and dgf are homeomorphic onto the images for any b^\K\. If g is also a
homeomorphism onto A/, it is called a Cr triangulaiion of A/.

Definition 6.4. Let g: K-*Rn be a Cr map. Fix an imbedding of K in a
Euclidean space. Let d be a positive continuous function on \K\. A map g' :
\K\ —>Rn is called a o-approximation of g if

(6.4.1) for some subdivision K' of AT, g' : K' -*Rn is a Cr map,

(6.4.2) i£(£)-£'(£) | <o(6) for any b<=\K\ and if

(6.4.3) \dgf(x)-dg'b*(x)\^d(b)\x-b\ for any ^e|A"|, A-est(^, A'').

We will use the above definitions in the cell complex case too.

Lemma 6.5 (Theorem 8,8, [12], see also the exercise (c) following it). Let
g : K-^Rn hi a Cr imbedding. Then there exists a positive continuous function d
on \K\ such that any o-approximation of g is an imbedding,

Definition 6.6. Let g : K—>Rn be a Cr map. The secant map induced by
g, gK : K-+R", is defined by gK=g on the vertex set of A" so that it is linear
on each simplex of K.

Lemina 6.7 (Theorem 9.69 [12]). Lei g: K-*Rn be a Cr map, K finite.
Given a cor slant function o>0 on \K\, there is a subdivision Kf of K such that
tlis secavt 711 cip gx, is a d -approximation of g,



770 MASAIIIRO SIIIOTA

Lemma 6.8. Let g: K-*Rn be a Cr map. Let /G be a finite subcomplex of
K. Given s>0, there is o>0 such that any ^-approximation h: K(-*Rn of g\Kl

can be extended to an ^-approximation h: K'-*Rn of g for some subdivision K'
of K with K'\iKll = K'1. Here we can choose h=g on \K\ — \N(K1} K)\ where

Proof. If r^oo, the lemma coincides with Lemma 9.8, [12], so assume r=
<o. In this case we have to modify the proof in [12].

Special case. Assume K is the complex generated by one simplex a, and

Proof of special case. Let a be the barycenter of a. Put

/ / / / / / j i I /
01 ^[0, l/2]> 02 0[l/2 1/22) 0%—0Ll/2,l1 and C?3— \_J 0$ .

ff'E:K'i

Let K' be the cell complex consisting of a, 0(, 02, 0% for all a'^K{ and K(.
Let p: K'iU{02, 0'z\ 0'^K(} ->80 be the map defined by p(t(x — a)+a)=x, x^da.
Then p is of class C™. Hence h°p can be an arbitrarily close approximation
of g° p. Hence if we put

a(t(x — a)+a)=2(t—l/2) for 1/2^^1, x^da and

„ f g+(h°p—g°p)'a on 0-3
h = \

( g on 0 — 0z,

then h can be an s-approximation of g such that h da = h. Since there is a
simplicial subdivision of K' fixed on K( (see e.g. [13]), the special case is
proved.

The general case proceeds in the same way as [12]. We prove it by induc-
tion. Assume a construction of a map hk: \ K± \ \J( | K\ — \ N(Klf K) | )U | Kk -»Rn

which is at once an approximation of the restriction of g to the domain and an
extension of h such that hk=g on \K\ — \N(K1, J i ) i , where Kk is the fc-skeleton
of K, (if k=Q, it is trivial since | K Q \ c | K I \ \ J ( \ K \ - \N(Kly K}\).} We want to
construct hk+l on \K1\U(\K\-(ff(Klf K)\)U\Kk+1\. For any 0£^(Kk+1-Kk)r\
(N(Klf K)—Ki\ hk is already defined on d0. Hence, by the special case, we
can extend h k \ d a onto 0 so that the extension is an approximation of g\ff.
Therefore hk has an extension hk+1 to \K1\^J(\K\-\^f(Kl9 K)\}\J\KM\ which
is an approximation of the restriction of g on the domain. Clearly hk+i=g on
!K\ — iN(K 1 } K) \. Thus we construct inductively h = hm which satisfies the
requirement in Lemma 6.8, where m is the dimension of N(Ki, K}. Here the
grades of approximation of hk, k=Q, • • • , m, to the restriction of g to the domains
are decided by downward induction so that h is an ^approximation of g. We
omit the details (see [12]).
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Lemma 6.9. Let g\ K-^M be a Cr map, r^co. Let K± be a finite sub-
complex, such that g( \ N(Ki, K) \) is contained in a coordinate neighborhood of M.
Let £>0. Then there exists an ^-approximation g' : K' —>M of g such that g' =
g on \K\ — \$(Klt K)\ and that gf \ K I \ is analytic. Moreover if g\\K2\ is analytic
for some subcomplex K2 of K, so is g'| u^u^i-

Proof. Since we have an analytic coordinate neighborhood of M containing
g(\N(Kl9 K } \ ] , and since g' is required to equal g on \K\ — \$(K1, K)\, the
problem is reduced to the case AI=Rn. In this case, the first half of the lemma
follows from Lemmas 6.7, 8, namely gr

 ]KI] is defined to be the secant map g^
for some subdivision K( of Klf and we let g' be its extension to \K\ constructed
in Lemma 6.8.

For the latter half, we have to check up the above extension of gK[. Return
to the proof of Lemma 6.8. In the special case, there are two cases KZ=K or
KzdKi. If K2=K, gf: Kf—>Rn is analytic because so are p : K(\J {(jf

z, a'3 a'^
K'^-^R11 and a: K(\J {a'z, a's a'^K'1\-+R. If K^Klt the latter half is trivial.
Since the general case is treated by stages, and since each stage is equivalent
to the special case, the latter half also in the general case is clear.

Lemma 6.10. Let g: K-+M be a Cr map, ri^a). Let e be a positive con-
tinuous function on \K\. Then there exists an analytic ^-approximation g': K''—>
M of g. Moreover, let I^aK* be subcomplexes of K such that N(Klf K)dK2.
If g is analytic on K2 , then we can choose gf=g on \K±\.

Proof. Let K3 be a subcomplex of K such that \Ks\r\ K^ = 0 and | K s \ U
\K2\ = \K\, for example K8=K— N(K1} K). Subdivide K so that for any
0-e/<3, g(\N(a, K ) \ ) is contained in some coordinate neighborhood of M and that
the restriction of the subdivision to | KI \ remains Klf We use the same notation
K for the subdivision. Let us order all simplexes of K-B as alt az, •••. We will
construct g' inductively.

Put g~1=g°=g. Let k be a non-negative integer. Assume an z/2k-approxi-
mation gk : K(k)-*M of gk~l: K(k-l)-*M such that gk^gk~1 on \K\ -\N(ak, K}\

k
and that gk is analytic on K2\\J\JaL, where K(k] is a subdivision of K(k — T)

1=1
such that K(—1) = K(Q) = K. Replacing e by smaller one, we can assume that the
ek-neighborhood of g(\N(ak, / v ) | ) in M for any k is contained in some coordinate
neighborhood of M where ek— sup s(x). Hence gk(\N(ak+i, K ) \ ) is contained

x^\N(<Tk A") I

in a coordinate neighborhood of M. Apply Lemma 6.9 to gk and the subcomplex
of K(k) whose underlying polyhedron is ak+l. Then we obtain a subdivision
K(k+l) of K(k) and an s/2^^approximation g^1: K(k+l)-+M of gk such that

gh+1=gk on \ K \ - \ t i ( f f k + 1 , K}\ and that gk+1 is analytic on \Kz\U
k\Jal. Since

{\N(am, /O |}m=i ,2 . - is locally finite in \K\, and since
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K(k)\\K\-\N(<rk+1.K)\> the limit of gk : K(k)—>M, as k-+co, is an e-approximation
of g. Let the limit be g' : Kf-*M. As \K\ is covered by \K2 and #1, ••• , it
follows from the definition of g' that gf is analytic on \K\. It is clear that
g'=g on \K!\ also by the definition. Hence we proved the lemma.

Proposition 6.11. A I has a C™ triangulation.

Proof. By Theorem 10.6, [12] we have a C°° triangulation g : K—*M.
There exists a positive continuous function s on \K\ such that any s-approxima-
tion of g is an imbedding (Lemma 6.5). Moreover we easily choose e so that
such an s-approximation is surjective on M, namely, a C°° triangulation of M.
Hence Proposition 6.11 follows from Lemma 6.10.

Remark 6.12. Let M may have boundary. Let gl : K^-^M and gz : K2-*M
be C1 triangulations. Then there are arbitrarily close approximations g[, g'z of
glf g.2 respectively such that g2'

log( is a linear isomorphism (Theorem 10.5, [12]).
Hence, if g: K-+M is a C1 triangulation, then \K\ is automatically a PL mani-
fold since we have at least one C1 triangulation gl\ K^-^M such that \Ki\ is
a PL manifold (Cairns- Whitehead).

Lemma 6.13. Let gl : K^-^M and g2 : K2—>M be Cr imbeddings whose images
are closed in M. Let s > 0 be a continuous function on the disjoint union of \Ki\
and \K2\. Let LI, L2 be subcomplexes of K1} K2 respectively such that

gl(\N(L1} Kl)\)C\g2(\Kz\)^0 and

Then there exist a complex K, linear isomorphisms ii and iz from K{ and K'2,
subdivisions of KI and K2 respectively, to subcomplexes of K and a Cr imbedding
g : K-^M such that g'i=g°ii, gi=g°i2 are ^-approximations of glf g2 respectively,
that il(\K{\}Uiz(\K'2\)=\K\ and that g[=g, on \Li\, g'2=g2 on \L2\.

Proof. If r^a), the lemma coincides with Theorem 10.4, [12] except the
last requirements, g(—g^ on |Li|, g'2=gz on L2\. But these conditions are easy
to see by the method of construction of g{, g2 in [12]. It follows moreover that
g(=gi on \N(Li, /d)|, g2=g2 on \N(L2) IQ\. We omit making sure of it.

If r=a), regard gl and g« as C°° imbeddings, and let K, ilt iz, K(, K2, g( and
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g'z be the results in the C°° case. We assume however that g{, g2 are e/2-ap-
proximations of g1} g2 respectively and that g(=gi on \N(Llf K^\, g2=g2 on

1 N(LZ, KZ} 1 . We want to modify g to be analytic. We remark that g is analytic
on /!|JV(Li, Ki)\\Jiz\N(Lz, Kz)\. Let d: \K\-*R be a positive continuous func-
tion such that for any ^-approximation h\ K'-*Rn of the zero map 0: K-*Rn,
h*ii and h°iz are e/2-approximations of the zero maps 0: K(-^Rn and 0: K'z-*
Rn respectively. Apply Lemma 6.10 to g: K->M and d. Let gr : K'-^M be
the resulting analytic ^-approximation of g such that g=g' on f1( |L1 | )U4(l^2l).
Let K", KZ be the subdivisions of K{, Kz respectively such that il on K'( and
i 2 on KZ are linear isomorphisms onto the images. Then K', ii : K" -» K', iz :
K'z-*K' and g' : K'-+M satisfy the requirements of Lemma 6.13. Hence the
lemma is proved.

Proposition 6.14. Even if M has boundary, it has a C" triangulation.

Proof. Let h : L-*dM, gl : K^M—dM be Cm triangulations (Lemma 6.11),
and <f>\ dMx[0, 1]-^M be an analytic collar such that <f>(x, 0)=x. Let K2 be a
simplicial subdivision of the cell complex Z,X[0, 1]. Then g2=({>°(h, ident) : Kz

— >M is a Cw imbedding whose image is a closed collar of M.
Subdivide KI finely enough, and assume that if we put

1/3])= 0} ,
we have

Put gz=gi A-3- Then g3 : K3-*M is a Cw imbedding whose image is closed in
M. Now we remark that Lemma 6.13 holds true even if M has boundary in
the case in which ^71(5M)c!L1| and g^1(dM)d\Lz\. Hence, by Lemma 6.13,
we have a complex K, linear isomorphisms il and z'2 from Kz and K'3, subdi-
visions of K2 and ^C3 respectively, to subcomplexes of K and a Cw imbedding
g: K-^M such that g'z=g°ii, gz=g°i2 are close approximations of ^2, ^3 respec-
tively and that gi=g2 on a polyhedral neighborhood of |ZJ XO in \KZ\. If the
above approximations are sufficiently close, we have

0, 3/4])

because of gf
2=g2 near ] L | x O , and

gJ(!/r,!)Z)M-^OMx[0, 3/4]),

namely ^ is surjective. Hence g can be a C^ triangulation of M.

Lemma 6.15. Let M± be an analytic manifold of dimension=&im M—l possibly
with boundary, let (/> : Mx X [0, 1] — » M fre an analytic imbedding whose image is
closed in M, let h\ L-^Ml be a C^ triangulation, let K± be a simplicial subdivi-
sion of the cell complex Lx[0, 1], and let K2 be a subcomplex of KI whose image
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under (h, ident) does not intersect with 3(MiX[0, 1]). Put

gz=(f>°(h, ident)\Kz.

Then there exists a C* triangulation g: K-+M and a subcomplex KB of K such
that

g(\K3\}=g2(\K2\)

and that gf°g: KS-*K2 is a linear isomorphism.

The proof proceeds just in the same way as Proposition 6.14, so we omit it.
We will apply Lemma 6.15 to the proof of Theorem I later in the following

situation. The analytic function / is C°° regular on 0(MiX[0, 1]), and for any
connected component C of MI there is a constant c such that f°<p(x, t}=t+c,
(x, f)^Cx[0, 1]. Then f°g is subanalytic on \K\ and PL on \K3\, namely /
can be piecewise linearized on an arbitrarily large subset of Int^(A/iX[0, 1])
closed in M.

Corollary 6.16. Let g: K—>M be a C™ triangulation. Given a locally finite
family {Xt} of subanalytic subsets of M, there exist a subdivision K' of K and a
subanalytic homeomorphism T : \K\-*M such that for any a^K, r(a}—g(a\ that
for any a^K', r(a) is an analytic submanifold of M and r\°a: <7—>r(<j) is an
analytic diffeomorphism and that {r(a)\ a^K'} is compatible with {Xi\.

Proof. Assume K is contained in Rm so that \K\ is closed in Rm. Since
g is of class C10, by (2.5.1) {g~1(Xi)} is a locally finite family of subanalytic
subsets of Rm. Hence the corollary follows from Proposition 3.1'.

Let us consider the semi-algebraic case of the above results. The proofs of
the results below proceed in the same way as the C" case, so we omit the
details of proofs.

Definition 6.17. If M is semi-algebraic in Rn, we call it a Nash manifold.
An analytic map between Nash manifolds is called a Nash map if the graph is
semi-algebraic. A C™ map g: K-*M, K being finite, is called of class Nash if
the graph is semi-algebraic.

If K is finite, Lemma 6.8 holds true in the case of Nash map too since p
and a in the proof of Lemma 6.8 are of class Nash. In Lemmas 6.9, 10, if M
is a Nash manifold, if K is finite and if g\\Kz\ is of class Nash, then g'\\KlvKz\
in Lemma 6.9 and g' in Lemma 6.10 can be of class Nash. We remark here
that any secant map on a finite complex is of class Nash. We obtain also
the Nash case of Lemma 6.13. As the replacement is clear, we omit the details.
By these facts, we have the following Nash case of Propositions 6.11, 14.

Proposition 6.18. // M is a compact Nash manifold possibly with boundary,
then it has a Nash triangulation, namely, there exist a finite complex K and a
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triangulation g: K—>M of class Nash.

For the case of non-compact Nash manifolds, we need the following

Lemma 6.19 (Theorem 1, [17]). // M is a non-compact Xash manifold, there
exists a compact Nash manifold Mf with boundary such that M is Nash diffeomor-
phic to M'-dM'.

Lemma 6.20. Let M be a non-compact Nash manifold. Then there exist a
complex K in Rm and a C(l) triangulation g: K-^M such that \K\ and g are
semi-algebraic.

Proof. Apply Proposition 6.18 to M' in Lemma 6.19. Let g' : Kf—> Mf,
KfdRm, be a Nash triangulation. Then \K'\ is a PL manifold with boundary
(Remark 6.12). Hence we have g'(d\K'\)=dM', so a triangulation K of \K' —
3IX" ' I compatible with K' and g—gf\\K\ satisfy the requirement of Lemma 6.20.

Corollary 6.21. Let M be a compact Nash manifold possibly uith boundary,
and let g: K—> M be a Nash triangulation. Given a finite family {Xi} of semi-
algebraic subsets of M, there exist a subdivision K' of K and a semi-algebraic
homeomorphism ~'. \K\-*M such that r(a}=g(a) for any cr^A", that for any
a^K', t(a} is a Nash submanifold of M and r ] # : a-^r(a) is a Xash diffeomor-
phism and that {r(<j)| a^K'} is compatible with {Xl}.

Proof. Clear by Proposition 3.9.

Corollary 6.22. Let AI be a non-compact Nash manifold. On en a finite
family [Xl] of semi-algebraic subsets of M, there exist a complex K in Rm, a
C* triangulation g: K-+M and a homeomorphism T: \K\-+M such that \K\ and
T are semi-algebraic, that for any a^K, r(a} is a Nash submanlfuld of M and
rU: a—>r(a} is a Nash diffeomorphism and that {r(a}\a^K} is compatible with
(x;\.

Proof. We only need to remark that for a compact Nash manifold M' with
boundary, any semi-algebraic subset of M'—dM' is also semi-algebraic in M'.

Corollaries 6.21, 22 are generalizations of Theorem 3, [10] which treated
only the case M—Rn.

Remark 6.23. |/i| in Corollaries 6.16, 21, 22 are PL manifolds by Remark
6.12. If it were not so, we could not apply Concordance Implies Isotopy Theorem
to the proof of Theorem I. This is one of the reasons why we refined a result
of [4] in Proposition 3.1. It is difficult to obtain the corollaries by ihe result
of [4].
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§ 7. Proof of Theorem I

The last but not least tool of the proof is Concordance Implies Isotopy
Theorem of Kirby-Siebenmann [6].

Let P, Q be polyhedrons. A map /: P-*Rn is called a PL map if there is
a simplicial complex K with \K\-P such that / is linear on each simplex of K.
A map /: P-+Q is called a PL map if Q is PL imbedded in some Rm so that
/: P-+Rm is a PL map. A homotopy <pt, O^f^l, between topological spaces
is called an isotopy if for each t, <pt is a homeomorphism.

Lemma 7.1 ([6]). Let M1} Mz be metrized PL manifolds, <p\ MiX[0, 1]— >
Mz be a homeomorphism, CCLM^ be a closed subset, and e be a positive continuous
function on MiX[0, 1]. Assume that dimM2^4, 5 and that $ is PL on a neigh-
borhood of MiXOuCx[0, 1]. Then there exists an isotopy <f>t: AfiX[0, 1]-*M2,
Ogf^l, of 0 such that
(7.1.1) (pi is a PL homeomorphism,
(7.1.2) 0t=0, O^^l, on a neighborhood of MiXOUCxEO, 1], and that
(7.1.3) dist(^U-), <I>(x))<e(x) for all jeM^O, 1], Or^rgl.

Now we have finished preparing for the proof of Theorem I. We begin to
prove it. The proof consists of seven steps (7.2), • • • , (7.8).

(7.2) We assume M to be non-compact, because the compact case is easier
to prove. There exist compact analytic submanifolds with boundary MI, M2, •••
and without boundary NQ—0, N1} Nz, ••• of M such that

Mlr\All+1=Ni, Mir\Mj=0 for any /, j with |f— /|:>2.

They are constructed for example as follows. Assume M is closed in Rn. Put
<p(x}=\x\2, jceM. Then <p is a positive proper analytic function on M. Let
aQ=— Ka1<a.2<"- be a sequence of C°° regular values of cp tending to
infinity such that <p(M)^di. Then

^/^^"'([fli-i, fli]) and N^p-^aJ, i=l, 2, •-

satisfy the conditions above.

Put N=\JNl. Then N is an analytic manifold closed in M. We remark
i=i

the fact that the set of critical values of an analytic function on a compact
manifold (may having boundary) is a finite set. Let Sly S2, ••• be a sequence of
finite subsets of R such that for each i, St contains all critical values of f \ M t ,
f \ N i - ! and /|,YI and that S^Si-^St+i for even i. We put S0=0 and M0— 0
for convenience. Put
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-Y=\J(Mtn/-1(S,))>

Then yY, }-\ and F2 are a closed semi-analytic set and analytic sets respectively.
We remark that X and Y2 contains all critical points of / and / ! .v respectively.

(7.3) Applying Lemma 6.15, we want to piecewise linearize / on a large
domain containing Y±. There exist an open neighborhood U of Y1U(M—X) in
M and a C°° vector field f on U such that ?/>0 on U and that fLvnff is a vector
field on Nr\U. Indeed, put £i=df, and let ?2 be an extension of d(/|#) to a
C°° vector field on M. Then we have an open neighborhood U± of N— Yz in M
such that ?i/>0 on U1\J(M—X) and £2/>0 on £/IB Let £/2 be another neigh-
borhood of N— Y2 with U2—UiC:Y2> and let ^ be a C°° function on M— Y2 such
that Ogpgl, p=Q on £72 and =1 outside U^ Then f=jO?1-^(l — 4<?)f2 and U=
U!\J(M—X) satisfy the required conditions.

Multiplying <~ by 1/f/, we assume moreover gf=l on U. Let © : D-» U be
the C°° flow of <~, namely, 0 is defined by

and DdU\R is the maximal open set containing £7x0. Then we have

(7.3.1) f°9(x, f)=f(x)+t for (x, t}^D because of £/=!,

(7.3.2) 6U, Oe^V for .teA^ (x, Oel>.

(7.3.3) 9(x, t}^Ml for .veMi, (x, t)<=D, /=!, ••• .

Let / be a positive odd integer. Let SI be the open ^-neighborhood of
in R for some small o^>0 such that

(7.3.4) Sr

Put

St=Sl+dl={t+oz\t^Sl} and

Then /"HS^n.V/i and /~1(5^)nMi are compact analytic manifolds with boundary
in Ni-iVNt. Under 0, /^(B-SJJnMi is C°° diffeomorphic to (/-'(S+JnAf^X
[0, 1]. We will enlarge f~1(R—S°z) a little, and it is on this set that we will
piecewise linearize / in (7.3).
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Put

for small #>0 where 95 is defined in (7.2). Choose <5J small enough. Then Lif

L( are compact analytic manifolds with boundary such that Li—dLl1)L'z, L^—
3L{=D/-1(S?)r,.l/l and that (x, t}^D for xeZ,,, 0^^min{se5r|s>/U)}-/U).
It means that we have a C°° imbedding (pi : L*X[0, !]->£/ such that ^O, 0)—
x, f°<l)i(x, l)^Sr for x^Li} that for each x^Lif ^(%X[0, 1]) is contained in
the integral curve of £ through * and that if 6(x, t0)=<f>i(x, 1), t^R then
^i(jc, 0=S(*. V), O^f^l. The last property together with (7.3.1) tells us that
/°^Uxco,i] is linear for each fixed x.

From the other properties and (7.3.3, 4) it follows that for each connected
component C of Ll} CXjRn£cCx(s1-/(C), s2—/(C)) where (s1} s2) is the
connected component of R-— St containing /(C). We see easily from (7.3.2) that
the set S(Cx {si— /(C), sz~f(C}} C\D] has a positive distance from A^-iUA^+i
if it is not empty. Hence, shrinking U near /"^({si, s2})n(A^_iUATi+i) if neces-
sary, we can assume Cx {si— /(C), s2— f(C)}C\D—0. Then we have

(7.3.5) CxEn£-Cx(Sl-/(C), sa-/(Q) ,

and hence Q\L R-,D: LxRC\D-*M is a C°° imbedding. Choose d'j for all odd /
so small that

(7.3.6) 8^lfxRr\D}r\6(LrxRr\D)=0 for odd j f^j" .

Before applying Lemma 6.15, we need to modify f to be analytic. Remem-
ber Md.Rn. Let us regard £x as a tangent vector of Rn at x, namely f is
regarded as a C°° map from U to 7271. Approximate £ by an analytic map £ x in
the Whitney topology [5]. Let px, jceM, be the orthogonal projection of the
tangent space TxR

n to TXM. Then {£;co?i|jceM} is an analytic vector field
on M close to |. We use the same notation f for the approximation. Choose
the approximation so close that ?/>0 on U. Assume ?/=! on ^7 by the same
reason as before. We then define the flow of new f too and use the same
notation 6 : D-» U for it. Consider the conditions (7.3.1, ••• , 6). Clearly (7.3.1)
remains true, and (7.3.6) can do so for some smaller d(, but (7.3.2, 3) fail in
general, (the fact is, we can continue them by using the analytic sheaf theory
in the same way as Chapter II, [16]). We assume in place of (7.3.2, 3) that

(7.3.7) e^Lj-dLfixR^D^Mj-f-^Sj) for any odd j, and

(7.3.8) 0(Li

which follows from (7.3.6, 7) for j=i—2, i and 2+2. The assumptions are clearly
possible if the approximation is close enough. By (7.3.8) and by the same reason
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as before, (7.3.5) can remain true. We remark that 6 and fa are analytic and
that the image of fa is closed in M.

Put
L= U Lif L'= U ^,

i: odd i: odd

and let <p : Lx[0, 1]-»M be defined by ^|z,ix:o,i:=^i. By Proposition 6.14, we
have a Cw triangulation A: W-+L. Subdivide W finely enough. Then we have
a subcomplex W of VF whose underlying polyhedron is a PL manifold with
boundary, is contained in Int \W\ and contains h~l(U) in its interior (see Chap-
ter 2, 3, [13]). Put L" = h(\W*\). Let fa: Ltx[-di', 1+3J']->M be a well-
defined analytic extension of (/>t which is an imbedding for small <5">0. Apply
Lemma 6.15 to {^J^odd and h: W— > L. Then we have a Cw triangulation g:
K-* M and a subcomplex KI of K such that

0, 1]), and that

(7.3.9) (h, ident)-1"^^: ]^| — -> |W|X[0, 1]

is a PL homeomorphism. Hence we can assume moreover that a subcomplex
KZ of /d has the underlying polyhedron which is carried by g onto <^(L"XO).
Then

(7.3.10) (/i, ident)-1'^-1'^: |/f2 | — > |PF" lxO

is a PL homeomorphism. Now, by the definition of <f>, f°<f>°(h, ident) is a PL
function on |TF|X[0, 1]. Hence (7.3.9) tells us that

(7.3.11) fog is PL on \K!\.

We can assume that g : K—> M given in Theorem I coincides with the above
g : K-»M. The reason is the following. Let g* : K* -> M be another C°° trian-
gulation. Then by Remark 6.12 there are C°° approximations g' : K'—>M, g*f :
K*f —. >M of g, g* respectively such that g'~log*' is a linear isomorphism. Hence
g°g'~l°g*' '. K*'-*M is an approximation of g*. As g*'~log'(\Ki\) is the un-
derlying polyhedron of a subcomplex /f?7 of K*', and since /°g is PL on | /id | ,
f°g°g'-l°g*f is PL on /i/TI. Hence we can replace g: K-+M, KI by g°gf~l°
g*' : K*f-+M, K*C respectively. Therefore the assumption above is admitted.

(7.4) For any subset A of M, let A* denote the inverse image of A under
g: \K\-+M. Put

Let 0*: D* -*!/*, 9^*: L*X[0, !]->[/*, A*: T^-^L*, /* : M*->« and #* : Lfx
[0, 1]-*M*, i : odd, be defined by e* = g-1*e*(g, ident), </>*=g-1'4>*(g, ident),
h*=g-1°h, /*— /°g and ^f=g~l°(pi°(gj ident). From now on we consider /* on
A/* in place of / on M and ident: /f->M* in place of g: K-+M in Theorem
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I. We summarize what we obtained.

(7.4.1) M*, Lff* are a PL manifold and one with boundary respectively by
Remark 6.12 and (7.3.10). L'*, X*, F?, and Ff are closed subanalytic subsets
of M*. We have

0, 1]).
Put

0> 1]), i = l,3, -.

(7.4.2) 0*, </>*, /z* are subanalytic maps. /* on X* is locally constant.

(7.4.3) /*°0*(*, 0=/*(*)+* for (*, f)e£* by (7.3.1).

(7.4.4) For any connected component C of Lf, z : odd,

CxRKD*=Cx(s1-f*(C), s2-/*(Q)

where (si, s2) is the connected component of R— St containing /*(C) by (7.3.5).

(7.4.5) $&*U"xco.i3 : L"*X[0, 1] — \K,\

is a PL homeomorphism by (7.3.9) and because h*\}W'\- \Wff\-+Lff* is a PL
homeomorphism by (7.3.10).

(7.4.6) The definition of </> shows that

<f>*(x,ty=x for

f*

^*(zX[0, l])c0*UxBnI>) for each *el/*, and

/*°^*U [0,1] is linear for each %eLx/*.

(7.4.7) /*!,^, is PL by (7.3.11).

(7.4.8) e*((L;*-3LJ*)X/2n/)*)lDM*-/*-1(Si), i: odd, by (7.3.7).

(7.4.9) 0^L*X^n^*)cM*W(M*_1-9Mf_1)U(M*+1-aM?+1), f: odd,

by (7.3.8).

<f>?(x, l)eSr for each odd / and

(7.4.10) 0* is one-to-one on L"*xR^D by (7.3.5, 6) and PL on
(I /id I) by (7.4.5,6).

The statement that 0* is PL and one-to-one on L^x/ZnS*"^!^!) is
equivalent to

(7.4.10)' 0* is a PL homeomorphism from 0*(C, c)X[— c, sa— Si— 23i— c] to the
connected component of \Ki\ containing C for any connected component C of
L'l* and any Q^c^s2—s1—2di where (sa, sa) is defined in (7.4.4).

(7.5) Here we triangulate X*. For each odd *>0, Zi=|/fi|tn/*-1((Si+iU
St-J— 5i) is a polyhedron by (7.4.7) and contains A"*r\|/£iU by the definition
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of X, Sl} Sl+l and S t_i. Put Z= \J Zt. Apply Proposition 3.1' to K and A"*
i:odd

\JZ. Then we have a subdivision K' of K and a subanalytic homeomorphism
TI of M* such that {r^d^a^K'} is compatible with Z*UZ. Since Z* and Z
are closed in M, it follows that T\1(X*\JZ} is a subpolyhedron of M*. Moreover
Remark 3.8 tells us that TI can be the identity outside an arbitrarily small neigh-
borhood of X*— Z — X*— \Ki\ since Z is a subpolyhedron and since X*\JZ
coincides with Z outside X*— Z. Hence the properties in (7.4) remain true
when we shrink \KZ\ and |/£i| a little and when we shift the problem by ri1,
namely, when we consider ri\X*)t /*°r1, etc. in place of X*, /*, etc., so we
can add the following to the properties in (7.4).

(7.5.1) X^JZ is a subpolyhedron of M*.

Since r in Theorem I is required to be a C° ^-approximation of g (=ident),
for the admission of replacement of X*, /*, etc. by r~{l(X*\ f*°T1} etc., TI must
be arbitrarily close to the identity in the C° fine topology. To be exact, let
M*CLRn*, and e' be a positive continuous function on M*. Then TI must be
chosen so that \TI(X) — X\<S'(X). It is possible by (3.1.2) if we subdivide K so
that the diameter of each a^K is smaller than any e'(x),

(7.6) We want to piecewise linearize /* on a neighborhood of X*. If
f-*f(x}=X* as germs at x for any #eZ*, then it would follow directly from
Corollary 5.12 and (7.5.1). But the equality above is not correct in general, so
we remove subsets from M* and X*. Let P2dLff*— dL"* be a PL manifold
with boundary closed in L"* and containing Z/* in its interior. Put P±=
^*(P2X[0, 1]). Then Pl is a PL manifold with boundary by (7.4.5), /* is PL
on a neighborhood of P^X* by (7.4.7), and it also follows from the definitions
of Si, L'i that /-Mz-intp^/M^^-IntPi as germs at x for any x^X*-lntP1.
Apply Corollary 5.12 to M*— Int PI, X*— hit PI and /*. Then we have a homeo-
morphism TZ of M*— IntPi such that /*°r2 is PL on a neighborhood of Z*— Int P±
in M*— Int PI and that TZ is the identity on dPl\J(X^—lntPl] and outside a small
neighborhood of X*— Int PI. Extend r2 to M* by putting r2=ident on Px. Con-
sider /*°r2, Pi, etc. in place of /*, Z/*, etc. respectively, and use the former
notations for them. Then we have

(7.6.1) /* is PL on a neighborhood of X*.

The replacement here is admitted because r2 can be arbitrarily close to the
identity in the C° fine topology by Remark 5.13. We remark that the first half
of (7.4.2) fails now and that 0*, ^*, h* are only a continuous flow, continuous
maps respectively. The other properties in (7.4) and (7.5.1) remain true.

(7.7) We will piecewise linearize /* on e*((L*ff-dLff*)xRnD*). Let C
be a connected component of L"*—dL"* contained in some Li'*. Put Q=@*(Cx

Let (si, s2) be the connected component of R—St containing /*(C).
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Then Cxfin/?*=Cx(s1-/*(C), s8-/*(Q) by (7.4.4). Hence we have

by (7.4.3) and by the definitions of L" and ^. Let d"l be a positive small
number such that/* is PL on /*-1([s1, Si+37]U[s2-3f, s2])n(M*WM*_1WM*+1)
and that

We want to find a homeomorphism rsc of <5 such that r3C=ident on (Q—Q)U
0*(Cx[<5f, s2-s1-23,-3f])U(a neighborhood of Z*n£ in 0) and that /*°r3C

is PL on Q. In (7.8) we will shorten 3? moreover. Put Oi=/*"1([si+5f, Sj+S*
+5?])nQ. Let % : Cx [0, 1] ->Qi be a homeomorphism defined by I(x, s) = 0*0c,
d'!—sdi). Then we have

/*°^Uxco,i: is linear, and the restriction of 1 to Cx[0, df/dj is a PL homeo-
morphism to \Ki\r\Qi by (7.4.3, 10). Let i: Cx[0, l]->0i be the continuous
extension of Z, whose existence is trivial.

Recall the following well-known facts. Let AdB be compact polyhedrons,
and let C be a PL function on B such that C~1(0) = A Then there exists a
positive number c such that for any 0<c7<c, C"1^— cx, c']) is a regular neigh-
borhood of A in 5. See [13] for the definition of regular neighborhood from
which the above fact follows easily. If B, moreover, is a PL manifold (with
boundary), then any regular neighborhood is a PL manifold with boundary (Corol-
lary 3.30, [13]).

Consider a compact polyhedron pair of a small closed neighborhood of Q in
M* which is a PL manifold with boundary and the intersection of the neigh-
borhood and /*~1(si)U/*"1(s1+^j). Then, by the above facts, the intersection
of the neighborhood and /*-1((s1, s1+3J]\J(s1+dl, s1+^l+^f]) is a PL manifold
with boundary for small 5%. Therefore, since

^+df, s2)) ,

we assume that Q± is a PL manifold with boundary. Hence we can apply
Lemma 7.1 to X: Cx[0, l]->d.

Let, accordingly, It : Cx[0, l]->(?i, O^^l, be an isotopy of I such that

(7.7.1) %i is a PL homeomorphism,

(7.7.2) Xt=X, Q^t^l, on CxO and that

(7.7.3) for all t, It are close approximations of % in the C° fine topology. Hence
the isotopy can be extended to an isotopy It : Cx[0, l]->Qi, Ogfgl, by putting
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~, \ «/ \ SL /^ /•y.t(x, s)=X(x, s) for % e C — c

Now we define TSC on Q2=/*~1([si+3f/2, Si+3l+3?])P\Q. Put

9*(X°Xr lo0*(A-, Si+37—/*(*)), f*(x) — Si—of) on Q2—Int d
where

We remark that Q2— Int Q1^x—>0*(x, Si+3?' —/*(*))£ A/* is a projection onto
ZfCxl^/^Ksi+^fOnQ, that 3Uca, O^f^l, are homeomorphisms onto X(Cxl)
and that /*°r3C(x)=/*(AO for xeQ2— Int Qi. Hence r3C |Q2- In tQ1 is a homeomor-
phism of Q2— IntQ^ coincides with 1°I\l on X(Cxl), equals the identity on Q2—
IntQ2— Qi— /*~Ksi+<5f/2)r>Q and is a close approximation of the identity in the
C° fine topology by (7.7.3). Consequently T3C is a homeomorphism of Qz close
to the identity. It trivially follows also that /*°rac is PL on Qz— Int Qlf Look
into TSC on Q! in detail. /^r^i^ is PL since so are /*"% and X71. From
(7.4.10)' and from the equality e*((e*(Cx5f))X[-oi, 0])=^ it follows that
%"1°0*!e*cc7x^')x:-5 i ,o: is a PL homeomorphism onto Cx[0, 1]. Hence r^°0* is
PL on 8*(Cx3?)X[-3t, 0]. We remark that r^°0*=r^°0*o(rJC, ident) on
0*(Cx3f)X[-o4, 0].

Define r3C also on f^~l([_sz—dl—di, s2— of/2])nQ in the same way as above,
and extend it to Q by putting r3C=ident on (/^([si, s1+^f/2)U(s1+oi+of, s2

-3,-af)W(s2-3f/2, s«])nO)U(5-0). Then /*-rac is PL on Q, r^-6*-^,
ident) is PL on @*(Cx5f)X[-^, sa-s1-S»-25r] by (7.4.10)', and rsc is a close
approximation of the identity in the C° (fine) topology. We remark that if we
put T3C= ident outside Q then we can extend T3C globally to M*.

Repeat this argument for each connected component of L"*— 9L/X*. Then
we have a homeomorphism r3 of M* close to the identity and equal to it outside
d*((Lff*-dLff*)xRKD*) such that /*°r3 is PL on 0*((L"*-3L"*)x/fr\D*)U
(a neighborhood of Z*). Replace /*, 0*, L7/*, |/^ , etc. by /*-r.,, rr^e*-^,
ident), \JS*(Cx5D, \je*(Cx[3f, s2-s1-23l-3f]), etc. respectively, and use

c
the former notations for them. Then we can assume

(7.7.4) /* is PL on 6*((Lff*-3Lff*)xRnD*), and

(7.7.5) ©* is PL on Cx[3J'— dt, s2—s1—dL—d'i''] for any connected component C
of L"*— 3LX/* where 5j, 5f, Si and s2 are given as before.

Clearly (7.7.5) is equivalent to

(7.7.6) 0* is PL on 0*(CXc)X[5r-di-c, s.-Si-^-of-c] for any c^[_d"L'-
3,, s2— Si— 5*— 3f].

(7.8) Finally we piecewise linearize /* globally. For it we only need to
do so on M*-Z*-@*(L'*x/2nD*) because of (7.6.1) and (7.7.4). Let U be a
connected component of A'I*—X*—6*(L'*xRr\D*). Then it is contained in
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some Mf, j: even, because for each odd ?', Mf— X* is contained in 0*((L'* —
3L'*)x#nL>*) by (7.4.8). Put f*(U) = (slf s2). Let x<=U. Then

by (7.4.8), and slf sz<=S3. Hence, by (7.4.3),

xXRr\D*^x X ($!-/*(*), s2-/*(*)) ,

which is equivalent to

9*(xXRnD*)rMJ=(some connected component of 0*(xxRnD*)—X*)

Hence we obtain the following. Let se(sj, s2) and put C=f*~1(s)r\U. Then
C is a topological manifold, Cx(si— s, s2— s)cD*, and 0*|c'(s1-*,*2-«) • Cx(si —
s, s2— -s)-*U is a homeomorphism. Let Ci be a closed subset of C such that
CiW(C—C) is a neighborhood of C— C in C and that

(7.8.1)

Then, by (7.6.1) and (7.7.4) we have 2,-X) such that

(7.8.2) f*\u is PL on a neighborhood of

Put s=s2-^;, and shorten o"^ and 3?+1 defined in (7.7) so that ^>^-i,
5J+i. Then C is a PL manifold, and it follows from (7.7.6), (7.8.1) and from the
inclusion Sj'DSj-l\jSJ+1 that

(7.8.3) 0* is PL on a neighborhood of C1X[-s2+51+2^, 0] in Cx[-s2+S!-f
24 0].

Put

Consider a compact polyhedron pair of a small closed neighborhood V of
1({s1, s2}) in M* which is a PL manifold with boundary and Vn/*"1

({5i, s2}). Then, by the facts about regular neighborhood stated in (7.7) and by
(7.6.1), y-/*-1((51+^-, 52-^-)) is a PL manifold with boundary for small Xj.
Moreover we have a PL homeomorphism // : (V/rV*~1(s2— ̂ ))X[0, 1)
/*~1([s2— /^-, s2)) for small ^- such that

xf V) = x and f**fjt(x, f)=s2-

for ^eyn/*-^-^), fe[0, 1),

which follows easily from the proof of the fact that Fn/*""1^^—%jt s2+^]) is
a regular neighborhood of Fn/*~1(s2) in F. These imply that
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(7.8.4) we can assume Ul and C are PL manifolds with boundary and without
boundary respectively

and that we can modify 0*\c,iQ,*j) fixing it on CxO so that (9* is PL there.
If we replace C by ©*(Cx^) for sufficiently small ^>0, the last statement
means that we can assume

(7.8.5) (9* is PL on a neighborhood of CxO in Cx[—ss+Si+2;i,, 0].

According to (7.8.3, 4, 5) we can apply Lemma 7.1. To be exact, let a
homeomorphism a): Cx[0, 1] -» Ui be defined by

<o(x, u) = 8*(x, M(-s2+S!+2^)).

Then o> is PL on a neighborhood of CxOUCiXEO, 1]. Hence, by Lemma 7.1
we have an isotopy a)t: Cx[0, 1] -> Ulf O^^l, of at such that

(7.8.6) ft>! is PL,

(7.8.7) ait^o), O^f^l, on a neighborhood of CxO\JCiX[0, 1] and that

(7.8.8) for all t, a)t are close approximations of w.

We define a homeomorphism ric of U2=f*~1([si+AJ/2, sz—/lj~]r\U in the
same way as ~zc, namely, put

f cyoft/T1^) for

for *e£/2— Int
where

Then, by the same reason as (7.7),

(7.8.9) r4C is well-defined, the identity on U2— Int i/2, and close to the identity
on Uz,

(7.8.10) /*or4C=/* on ^-^ and /*°r4C is PL on U,. Hence

(7.8.11) /*°r4C is PL on £72.
Moreover it follows from (7.8.7) that

(7.8.12) T4C is the identity on 0*(C1X[-s2+s1+3^-/2, 0]).

Extend r4C to U by putting ric=ident on U—U2. Then, by (7.8.2, 9, 11, 12)

(7.8.13) r4C is a homeomorphism of U, the identity outside a compact subset of
U and close to the identity, and /*°r4C- is PL on £7.

Repeating this argument for each connected component of M*— X*— 0*(Z/*
xRr\D*\ we obtain a homeomorphism r4 of M* close to the identity and equal
to it on a neighborhood of Z*U@*(Z/*X,Rn£>*) such that /*°r4 is PL on M*
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—X*-8*(L'*xRnD*) (7.8.13). Since /* is PL on a neighborhood of X^J
6*(L'*xRnD*) (7.6.1), (7.7.4), it follows that /*°r4 is globally PL. Hence we
complete the proof of Theorem I.

§ 8. Proofs of the Other Results

As Theorem II is a special case of Theorem IF (see Proposition 6.11), we
do not need to prove Theorem II.

(8.1) Proof of Theorem I'. Let M be closed in Rn, and let MdRnxR be
the graph of /. Then M is a closed subanalytic set in RnxR. Let f:M—>R
be the restriction of the projection RnxR->R. We remark thar / is proper,
since / is so. Recall the proof of Proposition 5.1. (5.3) tells us the following.
There exist a Whitney subanalytic stratification {MJi=1>... of M, compact analytic
manifolds Nit i=l, 2, ••• , subanalytic open subsets NidNi} i=l, ••• , and analytic
maps <bi : A^->M, z = l, ••• , such that

(8.1.1) for each i, ^U; is a diffeomorphism onto Mt.

Put for each i

Then 5, coincides with S(Mi9 n+l) for /1=:/2=/m (5.3). Hence, by (5.3.6), S,
is closed in Mt and subanalytic. Here the condition (8.1.1) is important. It
follows from (2.5) that /XSJ is a subanalytic set in R, which clearly is bounded
and of dimension 0, since Mt is bounded. Let R denote the union of all fi(Sl\
and put

Then the properness of / assures that R is a discrete set, hence S and S are
closed subanalytic sets in Rn, Rn+l respectively by (2.5). Adding Z to R if
necessary, we assume R to be unbounded from above and below..

Consider the vector field f={fi=d/l} on {M;-S} (see Definition 4.10).
Clearly {M— 3} is a Whitney stratification of a locally closed subsets M— S of
7Z"+1, and we have f t( / j ^.5) >0, i=l, 2, •- . Put /!=/,=/, y0=yj=B»+1, 7,=
F<=0 for Ig/gw. Then f, M-5, /lf /2, F,- and F;, 0^/^w, satisfy the con-
ditions in Lemma 4.14. Hence we have a locally integrable vector field £'={&}
on {ML-S} such that ftC/l^-s) >0, /=!, 2, ••• . After multiplying f< by !/£/,
we assume moreover

(8.1.2) f 1(71^-5) = !, /=!, 2, .-.

Let 0: D-~>M-S be the flow of f (see Definition 4.12). Then, since £' is
locally integrable, 5 is open in (M-S)xR, and 0 is continuous. (8.1.2) clearly
implies
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(8.1.3) f ( 0 ( x , f))=/U)+* for U , f ) e 5 .

Let /> : RnxR-*Rn be the projection. Put

£={(/>(*), *)!(*, Oe#},

6(x,t) = p*e(x, f(x\t) for (*, *)^D.

Then L> is open in (M— S)xR, and 0: D-^AI—S is a continuous flow such
that by (8.1.3)

(8.1.4) /(»(*, «)=/W-H for (*, f ) e f l .

Let £7 be a connected component of M—S. Put f(U) = (si, s2). Then Si, s2

Let se(si, s2), and put C=f~1(s)C\U. Then, since / is proper, U is
bounded, C is compact, hence we have CxRr\D—Cx(s1— s, s2— s), and
© I <7x («!-*, *2-*> : Cx(s1— s, s2— s)->/7 is a homeomorphism.

In the same way as (7.5, 6) we can reduce the problem to the case in which
S is a subpolyhedron of M and / is PL on a neighborhood of S. Here the
importance is that S is closed in M and that for any ,teS, f~lf(x}=S as germs
at x. We do not repeat the proof of reduction. For each above U, there exists
2>Q such that / is PL on a neighborhood of U— f~1((s1+2f s2— -2)), since U is
compact. Choose 1 so small that Ur\f~1(^s1+2f s2— ̂ ]) is a PL manifold (see
(7.7)), and put s=sa— ̂ . Then Ur\f~1(ls1+2f sz— >G) and C are compact PL
manifolds with boundary and without boundary respectively. It is easier than
(7.7) to find a homeomorphism TU of UC\f~1([_sl+/l/2, s2— A]) such that /Ty is
PL there and that r^ident on t/n/"1({si+^/2, s2— A}). We omit the details.
Extend TV to M by putting r^ident outside l7n/~1([si+^/2, s2— >Q). Then
f°Tu is a subanalytic function on M and PL on a neighborhood of U. Repeat-
ing this argument for each component of M—S, we obtain a homeomorphism T
of M such that /°r is PL on M. Here T can be chosen to be arbitrarily close
to the identity by the same reason as the proof of Theorem I. Hence Theorem
Y is proved.

Remark 8.2. The reason why I assumed the proper ness of / in Theorem
Y is that I could not modify (7.3) for the case of subanalytic /, nor I could
proceed with the proof without the modification in the non-proper case.

(8.3) Proof of Theorem IF. When we proceed with the proof in the same
way as (8.1), there is no problem except in the last step, so we assume the
following.

(8.3.1) RdR is a discrete set unbounded from above and below.

(8.3.2) S = f ~ l ( R ) is a subpolyhedron of M such that / is PL on a neighborhood
of S.

(8.3.3) 0 : D-+A4—S, Dc:(M—S)xR, is a continuous flow such that
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/•e(x, t)=f(x)+t for (x, t)^D

and that for any connected component U of M—S with f ( U ) = (slf s2) and for
any se(sl7 s2) we have CxRr\D=Cx(si—5, s2—s), and 6Mc^(Sl-s,s2-s) : ^X
(si—s, s 2 — s ) — > U is a homeomorphism where C=U(^f~1(s).

(8.3.4) 2 is a small positive number depending on U such that / is PL on a
neighborhood of L/-/-1((s1+2, s2-2)) and that C7n/-1([s1+^ s2-^]) is a PL
manifold.

For the above U, let 8=8,+!, Cf = U(^f-l(s^-l}. Then, by (8.3.4), M-Ur\
f~1((s1+2, s2—1}) is a PL manifold with boundary CUC'. As we can not apply
Lemma 7.1 in the same way as (7.7), we need the following result of Moise
(see p. 15, [6]). Let $: C->C' be a homeomorphism. Then, there exists an
isotopy <f)t, O^f^l, of <fj such that fa is PL. Consider the case in which fax)
= 0(x, Sz—Si—22.), x^C. By (8.3.3) ^ is a homeomorphism onto C'. Let <f>t be
the above isotopy of (p.

Let MU be the quotient space of M— Ur\f~l((si+%, s2—1)) by the identifica-
tion of x^C with fa(x)^C'. Then, since fa is a PL homeomorphism, M^ has
naturally a PL manifold structure. We want to find a homeomorphism TU : M^
->M such that

(8.3.5) r^ident on a neighborhood of M—U and that

(8.3.6) f°Tu is PL on Tyl(U).

If it is possible, then repeating the construction of Mn and TU for each connected
component U of M—S, we obtain a PL manifold M' and a homeomorphism r:
M7->M such that /°r is PL.

We define at first a map r^: M— Z7r\/"1((s1+^, s2—^))->M by

c for # e M

for

where

Then it is well-defined and continuous because of

(x, s,+}i~f(x))^D and 6(x, S!

for

r^r) = .r for

We also have, by (8.3.3),



LINEARIZATION OF REAL ANALYTIC FUNCTIONS 789

on M — (

on

Hence, by (8.3.4),

(8.3.7) fo^ is PL on U-f-l((Si+l, s2-

On the other hand

for

It is easy also to see that ^ is surjective, and the restriction to M—
([si-M, s2— /I]) is one-to-one. Hence r^ induces a homeomorphism r^ : MU— >M.
(8.3.5) is then clear by the definition of r^, and (8.3.6) follows from (8.3.7).
Hence Theorem IF is proved.

Remark 8.4. I do not know if Mf in Theorems II, IF can be a manifold of
C°° triangulation of M.

(8.5) Proof of Corollary III. For each positive integer 772, let Fm denote
the set of all simplicial complexes consisting of m simplexes. We identify two
complexes K, L of Fm if they are linearly isomorphic (see Definition 6.0). Then
Fm is a finite set.

For any complex K^Fm, let AK denote the set of all simplicial functions
on \K\, namely functions on \K\ whose restriction on each simplex of K is linear.
We give a equivalence relation to AK as follows. For /, g^AK, we define f~g
if there is a homeomorphism T of R such that f=T°g. Let 2K denote the
quotient set of AK under the equivalence relation. Then it is easy to see that
AK is a finite set.

Let Am and 2m denote the unions of AK and AK, K^Fm, respectively, and

pm : Am—>Am be the projection. Put A— \J Am, A= \J 2m, and let p: A—>A be
m=l m=l

defined by p=pm on Am. Then 2m are finite sets, since AK, Fm are finite sets,
consequently A is countable.

Let A denote the set of all subanalytic funcitons on M. For any f^A, we
have a simplical complex K and a homeomorphism r : \K\->M such that /°re
AK by Theorems F, IF. By putting q(f}—p(f°?)<^A, we define a map q\ A—* 2.
If /i, fz^A are carried by q to one element of 2, /i and /2 clearly are topologi-
cally R-L equivalent. Hence there are only countable topological R-L equi-
valence classes of A. That proves Corollary III.

Remark 8.6. Corollary III does not hold true if M is non-compact. In fact,
the set of topological R-L equivalence classes of all subanalytic (or analytic)
functions on noncompact AI is a continuum. As the proof is easy, we omit it.
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§ 9. Piecewise Linearization of Analytic Maps

Let /: M - f — > M a l be a real (or complex) analytic map between connected
real (or complex) analytic manifolds respectively. We call / piecewise linearizable
if there are C°° triangulations (Klf gj, (K2, g2) of Ml} M2 respectively and homeo-
morphisms TI : \Ki\ ->Mj, rz: M2-> \K2\ such that T2°f°Ti: |/fi| -> \K2\ is a PL
map (see the beginning of §7). Let g: X^X2 be a subanalytic map between
subanalytic sets. For each x^Xlf let dg(x) denote the dimension of the germ
of g~1g(x) at x. Let / be the maximal rank of df on ML

Proposition 9.1 (Real case). // / is piecewise linearizable, there exists an
analytic subset X of MI of codimension at least two such that

{ =n-l for
dff(x)\

( ^n—l for

Proof. At first we will prove df^n—l on ML Let (Klf gi), (K2, g2) be C°°
triangulations of Mlf M2 respectively, and rl\ \Ki\ ->Ml7 r2: M2-> \K2\ be homeo-
morphisms such that T2°f°T1 is a PL map. Imbed K2 in some Rm' so that g=
r2°/°r1: \K!\ -»jRm' is a PL map, and assume that for each simplex a of K, g\ff

is linear. Let a e K, 2 be the affine space spanned by <r, and G: 2! —»/2m ' be
the linear extension of g | f f . Then, for any x^a, G~1g(x) is an affine subspace
of I, and we have (g\a)~

1g(x)=G~1g(x)r\ff. Hence

(9.1.1) d(g\ff) is equal to dim a—dim^(a) on (7 and hence constant there,

(9.1.2) for any xt=a, d ( g l a } ( x ) ^ d ( g ] f f } ( a ) .

Let x^\Kj, . By the definition of dg, dg(x) is the maximum of d ( g l ^ ( x ) for
a^K with x^a. Here we can restrict a to n-simplexes, since |J^| is a PL
manifold. Hence, there is at least one a^K of dimension n such that x^a
and that dg(x)=d(gi^(x). Hence, by (9.1.2) we obtain

On the other hand, since the set of points x^M± where df has rank </ is an
analytic subset of Ml of codimension ^1, we have dg — n—l on an open dense
subset of Ki\. Hence it follows from (9.1.3) that df^n—l on ML

By Proposition 9.3, [16], for any xQ^Mlt f takes the following form in some
analytic local coordinate systems of M1} M2 around XQ, f(x0) respectively except
on an analytic subset X of Mj of codimension ^2.

f i
J p+i — m
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i "T" '" TJm-p-llXp+it

where l^Si^ ••• ^st-p are integers, f i3 are analytic functions in .•.,, • • - , xp^j.
Here /-y(0)= {*!= ••• xp+1=Q}. Hence df(0)=n-p-l. Since l^p+1 and

df^n—ly I must be equal to p+1. Hence we have df(Q) = n—L which proves
Proposition 9.1.

Proposition 9.2 (Complex case). // / is piecewise lineanzable, then df =
2(n-l] globally.

Proof. Proposition 9.1 tells us that df^2(n—l) and that df=2(n—l) on an
open dense subset of ML As the problem is local, we assume M, — Cm, and we
write /=(/i, ••• , /TO). For any jceMj, let O.r be the ring of analytic function
germs on MI at x, and $x be the ideal of Ox generated by /:— /iU), ••• , /m—
/m(je). By Proposition 1, Chapter 1, [18], the function M! = x — coheight $x is
upper semi-continuous. On the other hand, by Hilbert zero point theorem we
have

df(x}—2 coheight: £.0 x^Ml}

Hence df is an upper semi-continuous function on ML That proves Proposition 9.2.

Example 9.3. A simple example of map not piecewise linearizable is

/: (x, y)—>(xy, x) .
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