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§1. Introduction

Let Z be the set of integers, and Z{a,, a,, -~-} denote a free abelian group
with basis {aj, as, ~-}. If h: G— H is a homomorphism between groups, then
we denote its image, its kernel and its cokernel by Imh, Ker i and Coker &
respectively.

Let HP" (resp. CP*) (0=n=oo) be the quaternionic (resp. complex) n-dimen-
sional projective space, and HP}=HP™/HP*-* (resp. CP?=CP*,CP*") (1=k=n)
be the stunted projective space. Then, as is well known,

H(HPE; Z)=Z1{B4, Brss, = » Bal

where p,=H, (HP}; Z) (k<i=n) are the standard generators.
Let

(1.1) ha, it win(HPR) —> HyW(HPR 5 Z)

be the stable Hurewicz homomorphism. Then we denote the order of Coker A,

by |hn. el. Thus, Imh, , is the subgroup generated by |/, ' 3. equivalently.

lh, ! is equal to the stable order of the attaching map of the top cell of HPP.
D.M. Segal [10] has shown that

[hp | =Cn)/am)  (n=1),

where a(n)=1 if n is even and a(n)=2 if n is odd. In this paper we investigate
the order |h, ..

Let v,(i) be the exponent of 2 in the prime power decomposition of an in-
teger 7. Then our main result is stated as follows:

Theorem A. Let n=2. Then
Yol | . 2| )=ve(a(n) ((2m) 1)/8)
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where a(n)=1 if n is even and a(n)=2 if n is odd.

Let p: HP,— HP}=S*" be the collapsing map, and ps: wi,(HP%)— x{.(5™)
be the induced homomorphism. Then by definition, |4, .| iS equal to the order
of Coker py.

Analogously, let ¢: CP2-}— CP2-1=S8%""% (1=<k<n) be the collapsing map,
and gy : w3,-o(CP22}) —> w3,-5(S®""%) be the induced homomorphism. Then, we
denote the order of Coker ¢« by U(n, k). For some (n, k), these numbers U(xn, k)
are investigated by various authors (cf. [3], [87, [9], [4], [13]).

As an application of Theorem A and its proof, we have the following :

Theorem B. Let n=2. Then
v (U2n-+1, 2n—2))=v,(2n)1/4) .

Remark. According to Knapp [4; (7.45)], the odd primary components of
[h,»] and U@n+1. 2n—2) are already known. U(2n, 2n—3) is also determined
by Walker [13].

In our forthcoming paper we shall investigate the analogous problems for
the quaternionic quasi-projective space, and apply to the complex projective space.

Throughout this paper we use the following notations :
(1.2) For a pointed space X, 2™X denotes the n fold iterated reduced suspension
of X. As we shall work only in the stable category, for a space X, its sus-
pension spectrum is also denoted by the same letter X, and, for spaces X and
Y, a map h: A — Y denotes the degree 0 map between their suspension spectra.
Moreover, we denote the stable homotopy class [Ale {X, Y} of a map h simply
by the same letter /.
(1.3) In the stable stems 7%(S°), we denote a generator of ImJ/,.-1 by Jur-1.
where J; is the stable J-homomorphism =,(SO)— n{(S°) (/=4k—1). For classes
a, B and 7 in =%(S°) satisfying af=87=0, we denote the Toda bracket [12] of
them by <«, B, 7,. We refer to [12] for various properties on the stable homo-
topy groups of spheres.
(1.4) We denote the Adams eg-invariant [1] of a class a=zi(S% by e(a), and
refer to [1] for its various properties.
(1.5) For the stunted projective spaces, p,.;: HP} — HP}? and 7,,,: HP% — HPY,
(1=m=k=[=<n=cc) denote the collapsing map and the inclusion map respectively.
Also d,: HP},,— 3YHP* (n=k) denotes the map which appears in the cofiber
sequence as follows:
it D1, k+1 0
HP* —> HP® ——> HP? , —> JHP*,
For the stunted complex projective spaces, we use the similar notations.
This paper is organized as follows:
In Section 2, we prepare a stable map between the quaternionic projective spaces,
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and state Theorem 3 which is essential in the proof of Theorem 5. In Section
3 we state and prove the main theorem (Theorem 5), and Sections 4 and 6 are
devoted to the proofs of Theorems A and B respectively. In Section 5, we
prove Theorem 3.

The authors thank H. Oshima for his valuable informations on the James
numbers.

§2. The Stable Map f

In [7], the second named author showed the existence of some stable maps
S HP*— HP> Using its result, we have the following

Theorem 1. ([7; Theorem 1]) There is a stable map
[ Y.HP* —> HP>
which satisfies
[(8n)=(@n+4)1/2n))Bnse  for nz=l.

Consider the restriction of f to X3HP™ for some n. Then, by the cellular
approximation, the range of f can be taken as HP™*? that is, we have a map
SSHP® — HP"2.  Especially, let

(2.1) fl s Sie_Vspgpt 5 [p3
be the restriction to Y*HP*. Then, by Theorem 1, we have

(2.2) f:*(ﬁx):360ﬁ3 .

Since HP; is the mapping cone of 2j; and the order of j; is equal to 24,
there is a unique map

(2.3) g: S* — HPj satisfying g..(:1.)=128;.

where ¢, H;,(S**) is a generator.

By an easy computation, we have the following lemma, which is an immediate
consequence of [5] or [6] for the 2-localized case. In its equality, 0,: HP}—
SHP'=S° denotes the map mentioned in (1.5).

Lemma 2. 0,8=8j.
Let 1/, be the mod ¢ Moore spectrum S"&tjel, and 7,: S"— 1/, and p,: M,—

S* be the inclusion and the projection respectively.
By (2.2) and (2.3), we have p, .f;=30g, where p, ,: HP*— HP} is the col-

lapsing map. Hence, there is a map h{l): "M, — S° such that the following
diagram is commutative up to sign:
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2 30 7y
DX VAN s st 2120y,
(2.4> ‘i’ h(l)i1 3 \‘/fl jbl 2 J/ g al \L ll(l)
S' ——— HP* ——> HP} s,

where horizontal sequences are cofiberings. Then, by Lemma 2 and (2.4), it
follows that

(2.5) h(1l) is an extension of 8j,.

Also the order of /(1) is a divisor of 30, because, by (2.5) and [12; Proposition
1.9, (3.10)], 30n1)= p*<30, 87, 30>=0. Thus, there is a coextension A(1): 3®My,
— My, of h(1). Then A(1) satisfies p; A(1)7,=8j.

Since the order of j; is equal to 24, we have an extension h(2): 2°M,,— S°
of j;. On the other hand, since <24, 10j,, 24>=0 by [12; (3.10)], there is a map
A(2): X8 M,,— M., which satisfies p; A(2)i,=107.

Now, let Afie =1/, if e=1 and M(s)=AM,, if ¢=2. Then, we have the
following

Theorem 3. Let ¢=1 or 2, and let k(e)=T (resp. 3) if =1 (resp. 2). Then

the following diagram is commutative :

h(e) f1

:’12+k(s)M(6) > 312 HP?
1A(5) Til, 3
Z4+k(E)M(€) h(s) Se.

We prove this theorem in Section 5, and in Sections 3 and 4, we assume it.

§3. The Main Theorem

Let M(e). i = and A(e) (e=1, 2) be the spaces and maps defined in the pre-

vious section.
Now, we define a class a(n)eri,-;(S°) (n=2) as follows :
ADAL)™ Y, if n=2m-+1m=1),
3.1 alin)=
hAR)™ Y,  if n=2m (m=1),

where 7,: S"— 3‘Al(s) are the respective inclusions. Note that a(2)=j, and
«a(3)=8j,. Then, from this definition, the following proposition follows imme-
diately, but we shall not use it in this paper :

Proposition 4. Let m=1.
(1) The order of a(@2m—+1) is equal to 30, and

a(2m-+3)=<8j,, 30, a(@m-+1),.
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(ii) The order of a(2m) is equal to 24, and
a@@m—+2)ela@m), 24, 107> .
Consider the following Atiyah-Hirzebruch spectral sequence :
(3.2) E% . =H,(HP*) @ z§(S°) = n}:(HP"),

and let d": E% ,— E_; qir-1 (r=2) be the differential in this spectral sequence.
If an element yeFE% , persists to E} , then we denote its class in E}, , simply
by 7.

Let t, (n=2) be the following integer :

(3.3) t,=02n)!/60 1if n is odd, and t,=(2n)!/24 if n is even.
Now, we can state the main theorem as follows :
Theorem 5. For n=2,
B €ERS and 4" (t.B.)=8.Qan).

The rest of this section is devoted to the proof of Theorem 5.
First, we prepare the following diagram (n=2):

i

S“‘H—‘:EBHP% > HP;;;(‘;%:S\‘H*'\
Dan HP3*® Da,n+e
i 1)2,4
(3.4) 2*HPY ! HP;’”%
01 0, L63 SHP;
fl y 342
S =3°Hp IHP
I1,3
S*=YHP!

Here, the maps f and f are defined from the map of Theorem 1 by restricting
to Y8SHP*¥ k=1, n—1, n), f; is the map in (2.1), the maps 7, ps and 9, are
mentioned in (1.5), and 8’=p, .0;. Then the squares and the triangles in (3.4)
are commutative, and the two sequences

D24 o’ 1.1,:; D12
HP?? —> HP?** —> YHP} and XYHP'—> YHP'—> YHP}
in (3.4) are cofiberings.

We prove Theorem 5 by induction on .
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When n=2, the theorem is clear, since HP? is the mapping cone of j,.
Also, when n=3, the theorem follows from Lemma 2.

By the definition of 4" in the spectral sequence (3.2), the assertion that
Theorem 5 holds for » is equivalent to that there is a map

(3.5), X(n): S*» — HP%

which satisfies that

and
(3.7 0:X(n)=a(n),

where h, . is the stable Hurewicz homomorphism (see (1.1)). Therefore, by
induction, we may assume the existence of such a map X(n) in (3.5), for n=2
that satisfies the properties in (3.6), and (3.7),, and under these assumptions it
is enough to prove that the assertion also holds for n-+2, that is, there exists
a map X(n+2) in (3.5)p+, satisfying (3.6),+2 and (3.7),+s.

By Theorem 3 and the definition of a(n) in (3.1), we have

3.8) fra(n) =i, ,a(n+2).

Then, using (3.7), and the commutativity of (3.4), we have 0’fX(n)=0. Hence,
there is a map X’ : S***8— HP%*? such that p, , X’=fX(n). Then, by (3.8) and
(3.4), we have i, 30, X' =0, f X(n)=fra(n)=1, sa(n+2). Thus 0, X' —a(n+2)sKer iy, s,
and so there is a mapy’: S*"*®*— HP} which satisfies that

(3.9) 0/ X +is, n12y")=a(n+2).
Now we define a map X(n+2) by

(3-5)n+2 X(n+2)=X"+i5,n427" .
Then, (3.9) yields that

B. N pss2 0, X(n+2)=a(n+2).

On the other hand, ps n4els, n+2y’=0, since 75,4,y iS a torsion element in
wines(HP2™®). Hence, we have

Da, a2 X(n+42) =ps, nr2 X :]?pz, 2X(n) .

This implies that hg.,s o X(n+2))=fuhn, o(X(n))=fshy,(X(n)). But, by Theorem 1
and the assumption (3.6),, we have fih,, (X(M)=(2n+4)!/@n) Nt,Br+2=tnr2Bn+2
Thus

(3.6)p+2 hn+2,2(X(n+2>):tn+2,3n+z ’

and we have completed the proof of Theorem 5.
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§4. Proof of Theorem A

We use the following notations: Let k, / be any integers. Then k|/ means
that & is a divisor of /, v,(k) is the exponent of 2 in the prime power decomposi-
tion of %, and

“4.1) a(k)=1 if k is even and a(k)=2 if k is odd.

Recall that |h, .| is the order of the cokernel of the stable Hurewicz homo-
morphism £, . (see (1.1)). Then, Theorem 5 yields that

4.2) lha,elltn.

Hence, we have
4.3) Vo | in, 2 | ) Swalt ) =va(a(n)((2n) 1)/8) .

Thus, in order to complete the proof of Theorem A, itis sufficient to show
the following proposition.

Proposition 6. vy(a(n)((2n))/8)=Zvy(1hy,sl) for n=2.

We shall prove this proposition by using standard arguments of K-theory
and Chern character. For this, we prepare some notations.

Let K, KO and KSp denote the complex, real and symplectic K-theory re-

spectively, and /{*(X) and KO*(X) denote the K- and KO-cohomology respectively.
Let & be the canonical quaternionic line bundle over HP™ (1=<n=<c0), and £é=¢£—1
< KSp(HP™)=KO'(HP™. Then, as is well known, p¥ , : KO*(HP})— KO*(HP™)
is monomorphic and ]?é*(HP}}) is a free module over m.(KO) with basis {&(s):
k<s=n} whose element &(s) satisfies p¥, ,(&(s))=E".

Let ¢: I?é*(X)—»[?*(X) be the complexification, and ch: K*(X)—»ﬁ*()(; Q)
be the Chern character. The composition che-c is called the Pontrjagin character
and we denote it by ph: ]’{\6*()()%}7*()(; Q).

Let x= H'(HP™) be the Euler class of & Then H*(HP™)=Z[x]/(x"*"). We
use the same letter x! to denote the element of H*¥(HPP?). Then it is well
known that

4.4) [711(5(5)):(6‘EnLe“’“E—Z)S:(E1 2/@27) D7) .
Let N(m, s) be the coefficient of x™ in (4.4), that is,
(4.5) 2 N(m, Sham=( 2 (2/@j)Nx7)*
Then we have
Lemma 7. For k=s,

lha w | N(n, s)ealn—s)Z .
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Proof. Let acxi,(HPY) be a class such that h, z{a)=|hg +|B.. We can
consider « to be a map S‘"—HP}? by the cellular approximation. Then, by
definition, we have

(4.6) a*(x™)=|hy, 4 |¢,, for a generator ¢, € H'*(S*"; Z).

By (4.4), (4.5) and (4.6), we have

4.7 p(a*E(s))=a*(N(n, s)x™)=|hq,, 1| N, $)tin .

On the other hand, as is well known, both R 45(S*™) and 1?6‘3(54") are isomorphic
to Z, and the complexification ¢: ]?JO“(S”)—J?“(S*") sends the generator of
.,735“(54") to the a(n—s) times of the one of K*(S*"). Moreover the Chern

character gives an isomorphism [?”(S*‘”)Hﬁ*(sm; Z). Since a*E(s)EI%“(S*"),
it follows that

(4.8) pha*&(s))Ean—s)H™MS™; Z),
and the result follows from (4.7) and (4.8). g.e.d.

Proof of Proposition 6. By an elementary arithmetic, we have that N(n, 2)
=8(4"'—1)/(2n)!. Hence, by Lemma 7, 8(4"*—1)|h,, 5| /(a(n)((2n)!)) is an integer.
Since a(n)((2n)!)/8 is an integer for n=2, we have the desired result. q.e.d.

§5. Proof of Theorem 3

Proof of Theorem 3 for e=1. Using the commutativity of the left and the
right squares of (2.4) and by that A(1) is a coextension of A(l), we have

fih(D)=fip1 A(D) =11, ,h(1) A1),
and the theorem holds in this case.

Proof of Theorem 3 for e=2. Recall that A(2)=M,, is the mod 24 Moore
spectrum, A(2) is any extension of j, and A(2) is a map which satisfies p,;A(2)s,
=10j;. In the following diagram, we explain notations which we shall use in
the proof :

2'2,3
Ste HP} <— S8=HP?
G.1) TPI f1h(2) Ti’w

2*M,, —— HP?

T 7y T i], 3
Sts St.
Lemma 8. The composition py,.f1h(2): XMy, — HP} is null homotopic.

Proof. We remark that HP} is a mapping cone of 2j, and that f.(5,)=
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3603, by (2.2). Then, using [12; Proposition 1.8] and [1; Theorem 11.1], we
have
D1, 2S1A(2)10E (15, 5)x<2]5, 360, j5>=0.

Thus there is a class aeni,(HP3}) such that
(5.2) D12 f1h@2)=ap, .
Now, we show that

(5.3) a=(.

Then, by (5.2), we have the lemma.
Let pex=i(S° be a generator. Then there is an extension 7: HP}—S7 of
71 S8—S7, and we have

(5-4) 7P, 2f1h(2):0 ’

because 7pi1,.f1€7i(S°)=0. Therefore, 7ap,=0. Since zi(S°)=0, a factors a
map a;: S**— S*=HP%, and we have

(5.5) 7]6(11)1:0 .

But »*: z§(S%—=3(S°) is monomorphic by the table of [12; Chapter XIV], and
p¥: {S%, S} — {35M,,, S7} is monomorphic by that 2z§(S®)=0. Thus a;=0 by
(5.5), and we have (5.3). g.e.d.

By the above lemma, there is a map ¢: 3"\, —S* which satisfies
(5.6) 11, s0=/11(2).

Lemma 9. e(pi,)=1/24,
where e(piy) is the Adams ep’-invariant of @i,.

Proof. Recall that ph: I/{\O/( )= H*( ; Q) is the Pontrjagin character and
£=KO(S*HP?) is the element corresponding to &—1c KSp(HP®) under the Bott
isomorphism (see Section 4). We denote the standard generator of I?é(SSi) by
gs.. As is well-known (cf. [1], [13]), Adams ep’-invariant is a functional Pon-
trjagin character. In our case we have

(®.7) e(@i0)=(phsv)pr,(s) 5

where phy, is the 20-dimensional component of pi and (phao)piy : 1?5(5“‘)—»
ﬁ*(S20 ; @)/Im phyy=Q/Z is the functional Pontrjagin character of ¢i,. We put
d=o¢i,. By (5.6) we have the following commutative diagram :

Sts f1 > SUHPs
AL .
l Js ¢ Th,-‘,
S > S8,
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Then the following diagram is commutative :

i*

KO(SHP® — 5 KO(S®)
5.8) st | @0y
~ (Ph2o)j,
KO(S™) —% goo(s™: 0)/Tm phas -

It is clear that i* .f=g,. On the other hand,
(59) fTézglﬁ .
In fact, f¥(x*)=360c;; by (2.2), and so ph(f¥E)=f*((2/(61))x*)=ty, where x=
HY(HP?®; Z)C H*(HP?; Q) is the Euler class of £&. Since ph: KO(S*®)— H'(S*¢; Z)
is isomorphic, we have (5.9).

Now, by the naturality of the functional operation, (5.8) and the ahove
equalities, we have

(5.10) (phao)(g6) =(phao) s (@, 35):(171120),3(](?5)
:(tho)ja(gls) .
But, (phso),(gi)=e(j;)=1/24. Thus (5.7) and (5.10) give the desired result.

g.e.d.

Now, 7$,(S®=Im J;; and the order of z$,(S°) is equal to 504 (cf. [1; Example
7.17]). Hence by the above lemma and [1], we have

(5.11) $02.0:21].11 .
On the other hand, using [12; Proposition 1.7] and [1; Theorem 11.1], we have
(5.12) hM2)A(2)i,=<Js, 24, 10j,>=21j,; .

But % {2"M,, S° — 7$,(S° is monomorphic, because =$,(S9)=0 (cf. [12]).
Hence (5.11) and (5.12) yield that

(5.13) e=h(2)AQ2).
Thus, by (5.6) and (5.13), we have
(5.14) 11,30(2) AQ2)=11h(2),

and this completes the proof of Theorem 3.

§6. Proof of Theorem B

For the homology of the complex projective space, we denote the standard
generators by b,€H,;(CP™; Z) (1=i=<m=oo). Then, ﬁ*(CP,’;‘; Z) is a free
abelian group with basis {bs, -, bn}.

By the definition of U(n, k) in Section 1, we have that U(n, k) is the stable
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order of the attaching map of the top cell in CPjZ}, or equivalently,

6.1) Im h(n—1, n—Fk) is generated by U(n, k)b,_:,
where
(6.2) h(m, 1) : wim(CPT) —> Han(CP*; Z)

is the stable Hurewicz homomorphism.

Now using K-theory for CP? and S*™ (m=n—1, [=n—k) just in the same
way as Lemma 7, we have immediately the following lemma, where B(n, s)
denotes the rational number which is the coefficient of v*~* in the formal power
series (eV—1)¢ (s=1):

Lemma 10. The number Un, n—k)B(n, s) is an integer for kR=s.

By an elementary arithmetic, we have that B(2n-+1, 3)=3(3***--1—2%")/(2n)!
and y,(327-1+1—-22")=2 for n=2. Thus we have

Corollary 11. v.((2n)!/4)<v,(U(2n-+1, 2n—2)) for n=2.

Remark. The lower estimation of U(mn, [) is studied by G. Walker {137 by
using KO-theory, and Lemma 10 may be a weaker condition than his result.
But, for our restricted purpose, Lemma 10 is sufficient.

q
Let S?*—CP~— HP* be the usual fibration, and let
(6.3) t: HPY — CP>

be the Becker-Gottlieb transfer [2] for this fibration. By the cellular approxima-
tion, a map

(6.4) t: HP} — CP3" for n=2

is induced from (6.3). Recall that the Euler characteristic of S® is equal to 2.
Hence according to [2; Theorem 5.5], we have gt.(8.)=28, for the standard
generator S, H,(HP”). Since ¢y : H,(CP*)— H,(HP>) is isomorphic, we have

(65) t:k(ﬁn)Zszn .

Let X(m)eni,(HP?) be the class of (3.5),. Then, by (3.6), and (6.3), we
have

Lemma 12. 1(2n, 3) (tx(X(n)=2t,bsn, where t, is the integer in (3.3).

By (6.1) this lemma implies that the number U@2n-+1, 2n—2) is a divisor of
2t,. Thus we have

Corollary 13. v(U@2n-+1, 2n—2))<v,(a(n) ((2n)1/4)), where an)=1 if n is
cven and a(n)=2 if n is odd.
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For even n=2, we have completed the proof of Theorem B by Corollaries

11 and 13.
To prove Theorem B for odd n, we need some notations.

According to [11], there is a stable map

(6.6) F: 3*CP* — CP*~
which satisfies

6.7 Fulbn)=+1)bys,  for nz=1.
Let

(6.8) F,: X*CP? — CP*

be the restriction of FoF: 3‘CP*—CP= to 2*CP% Then from (6.7), it follows
that
(6.9) Folbn)=n+1) (n+2)bn+y (n21).
Now we consider the composition
(6.10) G=p;, s Fpet : S*=2*HP* — Yi‘CP* — CP'—> CP%,
where t: HP'—CP? is the restriction of the transfer of (6.3). Then we have

Lemma 14. The composition Geoh(2): X' M,,— CP}% is null homotopic, where
h2): X1'M,,— S® is an extension of j, (see Section 2).

Proof. In the following diagram, we explain notations used in this proof :

St=CP}

SIZ
b 2
h(2) G

SUN,y ——> S8=3'HP' ——— > CP}

= o
3
s S'=CP3,

where 7, and 7;,, are the respective inclusions and p, and p. , are the respective

projections.
Now, by (6.5) and (6.9), we have Gu.(b,)=24b,. Hence, by using [12; Prop-

osition 1.9, (3.10)], we have

(6.11) Ds.4°Gh(2)EpT24, j;, 24>=0.

Thus, there is a map @: 2**M,,—S® such that G-h(2)=i, ,&. Moreover, since
w3(S°=0, @ factors a: S**—S°, that is, G-h(2)=1¢, ,ap;. Hence it is sufficient
to show that
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(6.12) a=0,
We remark that
(6.13) 7(S° is a group of order 2 and generated by (j;)* (cf. [12]).

Hence a=0 or (j,)%. Now we suppose that a=(j;)>. Then j,a=(j,)’*0 (cf.
[1271), and

(6.14) Jsapr#0,

because the homomorphism p¥: 78,(S%)— {¥**M,,, S° is monomorphic by (6.13).
However, since CP4 is a mapping cone of a generator 7 of z{(S° and since
jsn=0, there is an extension j,: CP{—S® of j;: CP{=S5°->S". But j;Gex(S?)
=0, and so j.ap,= j,Gh(2)=0. This contradicts (6.14), and we have (6.12).
g.e.d.

Let Y(2m) be the composition teX(2m): S3™*'— J*HP{™— 3*CP{™ (see the
definition of X(2m) to (3.5)). Then we have the following commutative diagram :

(6.15) Sem+i— J4Cpim FoF > CPimtz—Gsm+s
h ﬁs,unV
Ds.am CPim+2 5 Ds, am+2
3,5
Y (2m) FoF \
Sem+4 T 5 Z4cpgm > CP‘?,’"” Py
~
X(2m) ¢ & \4 2CP4
/7
a(Zm) = 31 pzm S5CPpe ____F_z__, SCP D13
sp, — 2, soppr — yipps

where the maps F and F are defined from the map in (6.6) by restricting it,
F, is the map in (6.8), and ¢ are the maps in (6.4) and (6.10)
By Lemma 14, we have

b1 Fata(@m)=0.
Moreover, the sequence

’

35
CPém.Tz I) ; CP;_HH-H! > ‘S‘CP3

in (6.15) is a cofibering. Therefore, by chasing the diagram (6.15), we have a
map

(6.16) Y@m+1): S — CPi™®
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which satisfies

(6.17) Ps.sYCm+1)=(F-F)Y(2m).
Then it follows that

(6.18) D3, sms2 Y @ 1)=(FoF)ps 1 Y(2m) .

By (3.6)sn and (6.5), Y(2m)x(tgm+s) =t X@Cm)x(tsm+s)=2tsmbsn for a generator ¢,
H,(S'; Z) (=8m+4). Also by (6.7), (FeF)s(bym)=(FoF)s(bm)={@m~+2) (dm-+1)
bym+s. Thus these equalities and (6.18) give

(6.19) h(2n, 3)(Y(n))=((2n)!/12)b, (n=2m-+1).
By (6.1), this implies that
(6.20) U2n+1, 2n—2)|((2n)1/12) (n=2m-+1),

and we have completed the proof of Theorem B by Corollary 11 and (6.20).
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