On the Stable Hurewicz Image of Some Stunted Projective Spaces, I

Dedicated to Professor N. Shimada on his 60th birthday

By

Mitsunori IMAOKA* and Kaoru MORISUGI*

§1. Introduction

Let Z be the set of integers, and $Z\{a_1, a_2, \dots\}$ denote a free abelian group with basis $\{a_1, a_2, \dots\}$. If $h: G \to H$ is a homomorphism between groups, then we denote its image, its kernel and its cokernel by Im h, Ker h and Coker h respectively.

Let HP^n (resp. CP^n) $(0 \le n \le \infty)$ be the quaternionic (resp. complex) *n*-dimensional projective space, and $HP_k^n = HP^n/HP^{k-1}$ (resp. $CP_k^n = CP^n, CP^{k-1}$) $(1 \le k \le n)$ be the stunted projective space. Then, as is well known,

$$\widetilde{H}_{*}(HP_{k}^{n}; Z) = Z\{\beta_{k}, \beta_{k+1}, \cdots, \beta_{n}\}$$

where $\beta_i \in H_{il}(HP_k^n; Z)$ $(k \leq i \leq n)$ are the standard generators.

Let

(1.1)
$$h_{n,k}: \pi_{4n}^{s}(HP_{k}^{\infty}) \longrightarrow H_{4n}(HP_{k}^{\infty}; Z)$$

be the stable Hurewicz homomorphism. Then we denote the order of Coker $h_{n,k}$ by $|h_{n,k}|$. Thus, Im $h_{n,k}$ is the subgroup generated by $|h_{n,k}|$, equivalently. $|h_{n,k}|$ is equal to the stable order of the attaching map of the top cell of HP_{k}^{n} .

D.M. Segal [10] has shown that

$$|h_{n,1}| = (2n)!/a(n)$$
 $(n \ge 1)$

where a(n)=1 if n is even and a(n)=2 if n is odd. In this paper we investigate the order $|h_{n,2}|$.

Let $\nu_2(i)$ be the exponent of 2 in the prime power decomposition of an integer *i*. Then our main result is stated as follows:

Theorem A. Let $n \ge 2$. Then

$$\nu_2(|h_{n,2}|) = \nu_2(a(n)((2n)!)/8)$$
,

Communicated by N. Shimada, June 24, 1983.

^{*} Department of Mathematics, Faculty of Education, Wakayama University, Wakayama 640, Japan

where a(n)=1 if n is even and a(n)=2 if n is odd.

Let $p: HP_2^r \to HP_n^n = S^{4n}$ be the collapsing map, and $p_*: \pi_{4n}^s(HP_2^n) \to \pi_{4n}^s(S^{4n})$ be the induced homomorphism. Then by definition, $|h_{n,2}|$ is equal to the order of Coker p_* .

Analogously, let $q: CP_{n-k}^{n-1} \rightarrow CP_{n-1}^{n-1} = S^{2n-2}$ $(1 \le k < n)$ be the collapsing map, and $q_*: \pi_{2n-2}^s(CP_{n-k}^{n-1}) \longrightarrow \pi_{2n-2}^s(S^{2n-2})$ be the induced homomorphism. Then, we denote the order of Coker q_* by U(n, k). For some (n, k), these numbers U(n, k)are investigated by various authors (cf. [3], [8], [9], [4], [13]).

As an application of Theorem A and its proof, we have the following:

Theorem B. Let $n \ge 2$. Then

$$\nu_2(U(2n+1, 2n-2)) = \nu_2((2n)!/4)$$
.

Remark. According to Knapp [4; (7.45)], the odd primary components of $|h_{n,2}|$ and U(2n+1, 2n-2) are already known. U(2n, 2n-3) is also determined by Walker [13].

In our forthcoming paper we shall investigate the analogous problems for the quaternionic quasi-projective space, and apply to the complex projective space.

Throughout this paper we use the following notations:

(1.2) For a pointed space X, $\Sigma^n X$ denotes the *n* fold iterated reduced suspension of X. As we shall work only in the stable category, for a space X, its suspension spectrum is also denoted by the same letter X, and, for spaces X and Y, a map $h: X \to Y$ denotes the degree 0 map between their suspension spectra. Moreover, we denote the stable homotopy class $[h] \in \{X, Y\}$ of a map h simply by the same letter h.

(1.3) In the stable stems $\pi_*^{s}(S^{\circ})$, we denote a generator of $\operatorname{Im} J_{i_{k-1}}$ by $j_{i_{k-1}}$, where J_i is the stable *J*-homomorphism $\pi_i(SO) \to \pi_i^{s}(S^{\circ})$ (l=4k-1). For classes α, β and γ in $\pi_*^{s}(S^{\circ})$ satisfying $\alpha\beta = \beta\gamma = 0$, we denote the Toda bracket [12] of them by $\langle \alpha, \beta, \gamma \rangle$. We refer to [12] for various properties on the stable homotopy groups of spheres.

(1.4) We denote the Adams e'_{R} -invariant [1] of a class $\alpha \in \pi^{s}_{*}(S^{0})$ by $e(\alpha)$, and refer to [1] for its various properties.

(1.5) For the stunted projective spaces, $p_{k,l}: HP_k^n \to HP_l^n$ and $i_{k,l}: HP_m^k \to HP_m^l$ $(1 \le m \le k \le l \le n \le \infty)$ denote the collapsing map and the inclusion map respectively. Also $\partial_k: HP_{k+1}^n \to \Sigma HP^k$ $(n \ge k)$ denotes the map which appears in the cofiber sequence as follows:

$$HP^{k} \xrightarrow{i_{k,n}} HP^{n} \xrightarrow{p_{1,k+1}} HP^{n}_{k+1} \xrightarrow{\partial_{k}} \Sigma HP^{k}$$

For the stunted complex projective spaces, we use the similar notations.

This paper is organized as follows:

In Section 2, we prepare a stable map between the quaternionic projective spaces,

and state Theorem 3 which is essential in the proof of Theorem 5. In Section 3 we state and prove the main theorem (Theorem 5), and Sections 4 and 6 are devoted to the proofs of Theorems A and B respectively. In Section 5, we prove Theorem 3.

The authors thank H. Oshima for his valuable informations on the James numbers.

\S 2. The Stable Map f

In [7], the second named author showed the existence of some stable maps $\Sigma^{in} HP^{\infty} \rightarrow HP^{\infty}$. Using its result, we have the following

Theorem 1. ([7; Theorem 1]) There is a stable map

$$f: \Sigma^{*} HP^{\infty} \longrightarrow HP^{\infty}$$

which satisfies

$$f_*(\beta_n) = ((2n+4)!/(2n)!)\beta_{n+2} \quad for \quad n \ge 1.$$

Consider the restriction of f to $\Sigma^{s}HP^{n}$ for some n. Then, by the cellular approximation, the range of f can be taken as HP^{n+2} , that is, we have a map $\Sigma^{s}HP^{n} \to HP^{n+2}$. Especially, let

$$(2.1) f_1: S^{12} = \Sigma^8 H P^1 \longrightarrow H P^3$$

be the restriction to $\Sigma^{*}HP^{1}$. Then, by Theorem 1, we have

(2.2)
$$f_{1*}(\beta_1) = 360 \beta_3$$

Since HP_2^{i} is the mapping cone of $2j_3$ and the order of j_5 is equal to 24, there is a unique map

(2.3)
$$g: S^{12} \longrightarrow HP_2^3$$
 satisfying $g_{**}(\mathfrak{c}_{12}) = 12\beta_3$.

where $\iota_{12} \in H_{12}(S^{12})$ is a generator.

By an easy computation, we have the following lemma, which is an immediate consequence of [5] or [6] for the 2-localized case. In its equality, $\partial_1: HP_2^3 \rightarrow \Sigma HP^1 = S^5$ denotes the map mentioned in (1.5).

Lemma 2. $\partial_1 g = 8j_7$.

Let M_t be the mod t Moore spectrum $S^{\circ} \bigcup_t e^i$, and $i_0: S^{\circ} \to M_t$ and $p_1: M_t \to S^1$ be the inclusion and the projection respectively.

By (2.2) and (2.3), we have $p_{1,2}f_1=30g$, where $p_{1,2}: HP^{\gamma} \to HP_2^{\gamma}$ is the collapsing map. Hence, there is a map $h(1): \Sigma^{\gamma}M_{s0} \to S^{\circ}$ such that the following diagram is commutative up to sign:

(2.4)
$$\begin{array}{c} \Sigma^{11}M_{30} \xrightarrow{p_1} S^{12} \xrightarrow{30} S^{12} \xrightarrow{i_0} \Sigma^{12}M_{30} \\ \downarrow h(1)_{i_{1,3}} & \downarrow f_1 & \downarrow g \\ S^1 \xrightarrow{p_{1,2}} HP^3 \xrightarrow{p_{1,2}} HP^3 \xrightarrow{q_0} S^5, \end{array}$$

where horizontal sequences are cofiberings. Then, by Lemma 2 and (2.4), it follows that

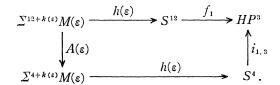
(2.5)
$$h(1)$$
 is an extension of $8j_{\tau}$.

Also the order of h(1) is a divisor of 30, because, by (2.5) and [12; Proposition 1.9, (3.10)], $30h(1) \equiv p_1^* \langle 30, 8j_7, 30 \rangle = 0$. Thus, there is a coextension $A(1) : \Sigma^* M_{so} \rightarrow M_{so}$ of h(1). Then A(1) satisfies $p_1 A(1)i_0 = 8j_7$.

Since the order of j_3 is equal to 24, we have an extension $h(2): \Sigma^3 M_{21} \to S^0$ of j_3 . On the other hand, since $\langle 24, 10j_7, 24 \rangle = 0$ by [12; (3.10)], there is a map $A(2): \Sigma^8 M_{24} \to M_{21}$ which satisfies $p_1 A(2)i_0 = 10j_7$.

Now, let $M(\varepsilon) = M_{30}$ if $\varepsilon = 1$ and $M(\varepsilon) = M_{21}$ if $\varepsilon = 2$. Then, we have the following

Theorem 3. Let $\varepsilon = 1$ or 2, and let $k(\varepsilon) = 7$ (resp. 3) if $\varepsilon = 1$ (resp. 2). Then the following diagram is commutative:



We prove this theorem in Section 5, and in Sections 3 and 4, we assume it.

§3. The Main Theorem

Let $M(\varepsilon)$, $h \varepsilon'$ and $A(\varepsilon)$ ($\varepsilon=1, 2$) be the spaces and maps defined in the previous section.

Now, we define a class $\alpha(n) \in \pi_{4n-5}^s(S^0)$ $(n \ge 2)$ as follows:

(3.1)
$$\alpha(n) = \begin{cases} h(1)A(1)^{m-1}i_0 & \text{if } n=2m+1 \ (m \ge 1), \\ h(2)A(2)^{m-1}i_0 & \text{if } n=2m \ (m \ge 1), \end{cases}$$

where $i_0: S' \to \Sigma^t M(z)$ are the respective inclusions. Note that $\alpha(2)=j_3$ and $\alpha(3)=8j_7$. Then, from this definition, the following proposition follows immediately, but we shall not use it in this paper:

Proposition 4. Let $m \ge 1$. (i) The order of $\alpha(2m+1)$ is equal to 30, and

$$\alpha(2m+3) \in \langle 8j_{\tau}, 30, \alpha(2m+1) \rangle$$

(ii) The order of $\alpha(2m)$ is equal to 24, and

$$\alpha(2m+2) \in \langle \alpha(2m), 24, 10j_7 \rangle$$
.

Consider the following Atiyah-Hirzebruch spectral sequence:

$$(3.2) E_{p,q}^{\mathfrak{s}} = \widetilde{H}_{p}(HP^{\infty}) \otimes \pi_{q}^{\mathfrak{s}}(S^{\mathfrak{0}}) \Longrightarrow \pi_{p+q}^{\mathfrak{s}}(HP^{\infty}),$$

and let $d^r: E_{p,q}^r \to E_{p,q+r-1}^r$ $(r \ge 2)$ be the differential in this spectral sequence. If an element $\gamma \in E_{p,q}^2$ persists to $E_{p,q}^r$, then we denote its class in $E_{p,q}^r$ simply by γ .

Let t_n $(n \ge 2)$ be the following integer:

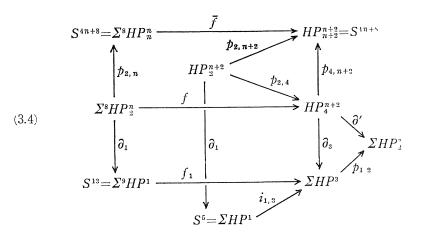
(3.3)
$$t_n = (2n)!/60$$
 if *n* is odd, and $t_n = (2n)!/24$ if *n* is even.

Now, we can state the main theorem as follows:

Theorem 5. For $n \ge 2$,

$$t_n\beta_n \in E_{4n,0}^{4n-4}$$
 and $d^{4n-4}(t_n\beta_n) = \beta_1 \otimes \alpha(n)$.

The rest of this section is devoted to the proof of Theorem 5. First, we prepare the following diagram $(n \ge 2)$:



Here, the maps f and \bar{f} are defined from the map of Theorem 1 by restricting to $\Sigma^{8}HP^{k}(k=1, n-1, n)$, f_{1} is the map in (2.1), the maps $i_{k,l}$, $p_{k,l}$ and ∂_{k} are mentioned in (1.5), and $\partial' = p_{1,2}\partial_{3}$. Then the squares and the triangles in (3.4) are commutative, and the two sequences

$$HP_{2}^{n-2} \xrightarrow{p_{2,4}} HP_{4}^{n+2} \xrightarrow{\partial'} \Sigma HP_{2}^{3} \text{ and } \Sigma HP^{1} \xrightarrow{i_{1,3}} \Sigma HP^{3} \xrightarrow{p_{1,2}} \Sigma HP_{2}^{3}$$

in (3.4) are cofiberings.

We prove Theorem 5 by induction on n.

When n=2, the theorem is clear, since HP^2 is the mapping cone of j_3 . Also, when n=3, the theorem follows from Lemma 2.

By the definition of d^r in the spectral sequence (3.2), the assertion that Theorem 5 holds for n is equivalent to that there is a map

$$(3.5)_n X(n): S^{4n} \longrightarrow HP_2^n$$

which satisfies that

 $(3.6)_n \qquad \qquad h_{n,2}(X(n)) = t_n \beta_n$

and

$$(3.7)_n$$
 $\partial_1 X(n) = \alpha(n)$,

where $h_{n,2}$ is the stable Hurewicz homomorphism (see (1.1)). Therefore, by induction, we may assume the existence of such a map X(n) in $(3.5)_n$ for $n \ge 2$ that satisfies the properties in $(3.6)_n$ and $(3.7)_n$, and under these assumptions it is enough to prove that the assertion also holds for n+2, that is, there exists a map X(n+2) in $(3.5)_{n+2}$ satisfying $(3.6)_{n+2}$ and $(3.7)_{n+2}$.

By Theorem 3 and the definition of $\alpha(n)$ in (3.1), we have

(3.8)
$$f_1 \alpha(n) = i_{1,3} \alpha(n+2)$$
.

Then, using $(3.7)_n$ and the commutativity of (3.4), we have $\partial' fX(n)=0$. Hence, there is a map $X': S^{4n+8} \to HP_2^{n+2}$ such that $p_{2,4}X'=fX(n)$. Then, by (3.8) and (3.4), we have $i_{1,3}\partial_1X'=\partial_3fX(n)=f_1\alpha(n)=i_{1,3}\alpha(n+2)$. Thus $\partial_1X'-\alpha(n+2)\in \text{Ker } i_{1,3}$, and so there is a map $y': S^{4n+8} \to HP_2^3$ which satisfies that

(3.9)
$$\partial_1(X'+i_{3,n+2}y') = \alpha(n+2)$$

Now we define a map X(n+2) by

$$(3.5)_{n+2} X(n+2) = X' + i_{3, n+2} y'.$$

Then, (3.9) yields that

$$(3.7)_{n+2} \qquad \qquad \partial_1 X(n+2) = \alpha(n+2) \,.$$

On the other hand, $p_{2,n+2}i_{3,n+2}y'=0$, since $i_{3,n+2}y'$ is a torsion element in $\pi_{4n+8}^s(HP_2^{n+2})$. Hence, we have

$$p_{2,n+2}X(n+2) = p_{2,n+2}X' = \bar{f}p_{2,n}X(n)$$
.

This implies that $h_{n+2,2}(X(n+2)) = \bar{f}_*h_{n,2}(X(n)) = f_*h_{n,2}(X(n))$. But, by Theorem 1 and the assumption $(3.6)_n$, we have $f_*h_{n,2}(X(n)) = ((2n+4)!/(2n)!)t_n\beta_{n+2} = t_{n+2}\beta_{n+2}$. Thus

$$(3.6)_{n+2} \qquad \qquad h_{n+2,2}(X(n+2)) = t_{n+2}\beta_{n+2},$$

and we have completed the proof of Theorem 5.

§4. Proof of Theorem A

We use the following notations: Let k, l be any integers. Then k|l means that k is a divisor of l, $\nu_2(k)$ is the exponent of 2 in the prime power decomposition of k, and

(4.1)
$$a(k)=1$$
 if k is even and $a(k)=2$ if k is odd.

Recall that $|h_{n,2}|$ is the order of the cokernel of the stable Hurewicz homomorphism $h_{n,2}$ (see (1.1)). Then, Theorem 5 yields that

$$(4.2) |h_{n,2}| |t_n|$$

Hence, we have

(4.3)
$$\nu_2(|h_{n,2}|) \leq \nu_2(t_n) = \nu_2(a(n)((2n)!)/8)$$

Thus, in order to complete the proof of Theorem A, it is sufficient to show the following proposition.

Proposition 6. $\nu_2(a(n)((2n)!)/8) \leq \nu_2(|h_{n,2}|)$ for $n \geq 2$.

We shall prove this proposition by using standard arguments of K-theory and Chern character. For this, we prepare some notations.

Let K, KO and KSp denote the complex, real and symplectic K-theory respectively, and $K^*(X)$ and $KO^*(X)$ denote the K- and KO-cohomology respectively. Let ξ be the canonical quaternionic line bundle over HP^n $(1 \le n \le \infty)$, and $\tilde{\xi} = \tilde{\zeta} - 1 \in \widetilde{KSp}(HP^n) = \widetilde{KO}^4(HP^n)$. Then, as is well known, $p_{1,k}^* : \widetilde{KO}^*(HP_k^n) \to \widetilde{KO}^*(HP^n)$ is monomorphic and $\widetilde{KO}^*(HP_k^n)$ is a free module over $\pi_*(KO)$ with basis $\{\tilde{\zeta}(s): k \le s \le n\}$ whose element $\xi(s)$ satisfies $p_{1,k}^*(\xi(s)) = \tilde{\xi}^s$.

Let $c: KO^*(X) \to \tilde{K}^*(X)$ be the complexification, and $ch: \tilde{K}^*(X) \to \tilde{H}^*(X; Q)$ be the Chern character. The composition $ch \circ c$ is called the Pontrjagin character and we denote it by $ph: KO^*(X) \to \tilde{H}^*(X; Q)$.

Let $x \in H^4(HP^n)$ be the Euler class of ξ . Then $H^*(HP^n) = Z[x]/(x^{n+1})$. We use the same letter x^i to denote the element of $H^{4i}(HP^n_k)$. Then it is well known that

(4.4)
$$ph(\xi(s)) = (e^{\sqrt{x}} + e^{-\sqrt{x}} - 2)^s = (\sum_{j \ge 1} (2/(2j)!)x^j)^s.$$

Let N(m, s) be the coefficient of x^m in (4.4), that is,

(4.5)
$$\sum_{m\geq 1} N(m, s) x^m = (\sum_{j\geq 1} (2/(2j)!) x^j)^s.$$

Then we have

Lemma 7. For $k \leq s$,

$$|h_{n,k}| N(n, s) \in a(n-s)Z$$
.

Proof. Let $\alpha \in \pi_{4n}^s(HP_k^\infty)$ be a class such that $h_{n,k}(\alpha) = |h_{n,k}| \beta_n$. We can consider α to be a map $S^{4n} \to HP_k^n$ by the cellular approximation. Then, by definition, we have

(4.6)
$$\alpha^{*}(x^{n}) = |h_{n,k}| \iota_{1n} \text{ for a generator } \iota_{1n} \in H^{1n}(S^{4n}; Z).$$

By (4.4), (4.5) and (4.6), we have

(4.7)
$$ph(\alpha^*\xi(s)) = \alpha^*(N(n, s)x^n) = |h_{n,k}| N(n, s)\epsilon_{in}.$$

On the other hand, as is well known, both $\widetilde{K}^{4s}(S^{4n})$ and $\widetilde{KO}^{4s}(S^{4n})$ are isomorphic to Z, and the complexification $c: \widetilde{KO}^{4s}(S^{4n}) \to \widetilde{K}^{4s}(S^{1n})$ sends the generator of $\widetilde{KO}^{4s}(S^{4n})$ to the a(n-s) times of the one of $\widetilde{K}^{4s}(S^{4n})$. Moreover the Chern character gives an isomorphism $\widetilde{K}^{4s}(S^{4n}) \to \widetilde{H}^*(S^{1n}; Z)$. Since $\alpha^*\xi(s) \in \widetilde{KO}^{4s}(S^{4n})$, it follows that

$$(4.8) \qquad \qquad ph(\alpha^*\xi(s)) \in a(n-s)H^{4n}(S^{4n}; Z),$$

and the result follows from (4.7) and (4.8).

Proof of Proposition 6. By an elementary arithmetic, we have that
$$N(n, 2) = 8(4^{n-1}-1)/(2n)!$$
. Hence, by Lemma 7, $8(4^{n-1}-1)|h_{n,2}|/(a(n)((2n)!))$ is an integer.
Since $a(n)((2n)!)/8$ is an integer for $n \ge 2$, we have the desired result. q.e.d.

q. e. d.

§5. Proof of Theorem 3

Proof of Theorem 3 for $\varepsilon = 1$. Using the commutativity of the left and the right squares of (2.4) and by that A(1) is a coextension of h(1), we have

$$f_1h(1) = f_1p_1A(1) = i_{1,3}h(1)A(1)$$
,

and the theorem holds in this case.

Proof of Theorem 3 for $\varepsilon = 2$. Recall that $M(2) = M_{24}$ is the mod 24 Moore spectrum, h(2) is any extension of j_3 and A(2) is a map which satisfies $p_1A(2)i_0 = 10j_7$. In the following diagram, we explain notations which we shall use in the proof:

(5.1)
$$\begin{array}{c} S^{16} & HP_{\frac{3}{2}} \underbrace{\stackrel{i_{2,3}}{\leftarrow}} S^{s} = HP_{\frac{2}{2}} \\ & \uparrow p_{1} & f_{1}h(2) & \uparrow p_{1,2} \\ & & \uparrow i_{0} & & \uparrow i_{1,3} \\ & & S^{15} & & S^{4} \end{array}$$

Lemma 8. The composition $p_{1,2}f_1h(2): \Sigma^{15}M_{21} \to HP_2^3$ is null homotopic. Proof. We remark that HP_2^3 is a mapping cone of $2j_3$ and that $f_{1*}(\beta_1) =$ $360\beta_{J}$ by (2.2). Then, using [12; Proposition 1.8] and [1; Theorem 11.1], we have

$$p_{1,2}f_1h(2)i_0 \in (i_{2,3})_* \langle 2j_3, 360, j_3 \rangle = 0$$
.

Thus there is a class $\alpha \in \pi_{16}^{s}(HP_{2}^{s})$ such that

(5.2)
$$p_{1,2}f_1h(2) = \alpha p_1$$

Now, we show that

(5.3)

Then, by (5.2), we have the lemma.

Let $\eta \in \pi_1^s(S^0)$ be a generator. Then there is an extension $\overline{\eta} : HP_2^{\mathfrak{d}} \to S^{\mathfrak{q}}$ of $\eta : S^s \to S^{\mathfrak{q}}$, and we have

 $\alpha = 0$.

(5.4)
$$\bar{\eta} p_{1,2} f_1 h(2) = 0$$
,

because $\overline{\eta}p_{1,2}f_1 \in \pi_5^s(S^0) = 0$. Therefore, $\overline{\eta}\alpha p_1 = 0$. Since $\pi_4^s(S^0) = 0$, α factors a map $\alpha_1: S^{16} \to S^8 = HP_2^2$, and we have

$$(5.5) \qquad \qquad \eta \alpha_1 p_1 = 0.$$

But $\eta^*: \pi_{\$}^*(S^0) \to \pi_{\$}^*(S^0)$ is monomorphic by the table of [12; Chapter XIV], and $p_1^*: \{S^{16}, S^7\} \to \{\Sigma^{15}M_{24}, S^7\}$ is monomorphic by that $2\pi_{\$}^*(S^0)=0$. Thus $\alpha_1=0$ by (5.5), and we have (5.3).

By the above lemma, there is a map $\varphi: \Sigma^{15}M_{21} \rightarrow S^4$ which satisfies

(5.6)
$$i_{1,3}\varphi = f_1 h(2)$$
.

Lemma 9. $e(\varphi i_0) = 1/24$,

where $e(\varphi i_0)$ is the Adams e_R' -invariant of φi_0 .

Proof. Recall that $ph: \widetilde{KO}() \to \widetilde{H}^*(; Q)$ is the Pontrjagin character and $\tilde{\xi} \in \widetilde{KO}(\Sigma^4 HP^3)$ is the element corresponding to $\tilde{\xi} - 1 \in \widetilde{KSp}(HP^3)$ under the Bott isomorphism (see Section 4). We denote the standard generator of $\widetilde{KO}(S^{si})$ by g_{si} . As is well-known (cf. [1], [13]), Adams e_R' -invariant is a functional Pontrjagin character. In our case we have

(5.7)
$$e(\varphi i_0) = (ph_{20})_{\varphi i_0}(g_s),$$

where ph_{20} is the 20-dimensional component of ph and $(ph_{20})_{\varphi i_0} \colon \widetilde{KO}(S^s) \to \widetilde{H}^*(S^{20}; Q)/\operatorname{Im} ph_{20} \cong Q/Z$ is the functional Pontrjagin character of φi_0 . We put $\varphi = \varphi i_0$. By (5.6) we have the following commutative diagram:

$$\begin{array}{ccc} S^{16} & \xrightarrow{f_1} & \Sigma^1 HP^3 \\ \uparrow j_3 & \psi & \uparrow i_{1,3} \\ S^{19} & \longrightarrow & S^8 \end{array}$$

Then the following diagram is commutative:

(5.8)
$$\widetilde{KO}(\Sigma^{4}HP^{8}) \xrightarrow{i_{1,3}^{*}} \widetilde{KO}(S^{8})$$
$$\downarrow f_{1}^{*} \qquad \qquad \downarrow (ph_{20})_{\dot{\varphi}}$$
$$\widetilde{KO}(S^{16}) \xrightarrow{(ph_{20})_{j_{3}}} H^{20}(S^{20}; Q)/\operatorname{Im} ph_{20}.$$

It is clear that $i_{1,3}^* \tilde{\xi} = g_8$. On the other hand,

(5.9)
$$f_1^* \tilde{\xi} = g_{16}$$
.

In fact, $f_1^*(x^3) = 360\iota_{16}$ by (2.2), and so $ph(f_1^*\tilde{\xi}) = f_1^*((2/(6!))x^3) = \iota_{16}$, where $x \in H^4(HP^3; Z) \subset H^4(HP^3; Q)$ is the Euler class of ξ . Since $ph: \widetilde{KO}(S^{16}) \to H^{16}(S^{16}; Z)$ is isomorphic, we have (5.9).

Now, by the naturality of the functional operation, (5.8) and the above equalities, we have

(5.10)
$$(ph_{20})_{\phi}(g_8) = (ph_{20})_{\phi}(i_{1,3}^*\tilde{\xi}) = (ph_{20})_{J_3}(f_1^*\tilde{\xi})$$

$$=(ph_{20})_{j_3}(g_{16})$$

But, $(ph_{20})_{j_3}(g_{16}) = e(j_3) = 1/24$. Thus (5.7) and (5.10) give the desired result. q. e. d.

Now, $\pi_{11}^{s}(S^{0}) = \text{Im } J_{11}$ and the order of $\pi_{11}^{s}(S^{0})$ is equal to 504 (cf. [1; Example 7.17]). Hence by the above lemma and [1], we have

(5.11)
$$\varphi i_0 = 21 j_{11}$$
.

On the other hand, using [12; Proposition 1.7] and [1; Theorem 11.1], we have

(5.12)
$$h(2)A(2)i_0 \in \langle j_3, 24, 10j_7 \rangle = 21j_{11}$$

But i_0^* : { $\Sigma^{11}M_{24}$, S^0 } $\rightarrow \pi_{11}^s(S^0)$ is monomorphic, because $\pi_{12}^s(S^0) = 0$ (cf. [12]). Hence (5.11) and (5.12) yield that

(5.13)
$$\varphi = h(2)A(2)$$
.

Thus, by (5.6) and (5.13), we have

(5.14)
$$i_{1,3}h(2)A(2) = f_1h(2)$$
,

and this completes the proof of Theorem 3.

§6. Proof of Theorem B

For the homology of the complex projective space, we denote the standard generators by $b_i \in H_{2i}(CP^m; Z)$ $(1 \le i \le m \le \infty)$. Then, $\widetilde{H}_*(CP^m; Z)$ is a free abelian group with basis $\{b_k, \dots, b_m\}$.

By the definition of U(n, k) in Section 1, we have that U(n, k) is the stable

order of the attaching map of the top cell in CP_{n-k}^{n-1} , or equivalently,

(6.1) Im
$$h(n-1, n-k)$$
 is generated by $U(n, k)b_{n-1}$,

where

(6.2)
$$h(m, l): \pi_{2m}^{s}(CP_{l}^{m}) \longrightarrow H_{2m}(CP_{l}^{m}; Z)$$

is the stable Hurewicz homomorphism.

Now using K-theory for CP_l^m and S^{2m} (m=n-1, l=n-k) just in the same way as Lemma 7, we have immediately the following lemma, where B(n, s) denotes the rational number which is the coefficient of y^{n-1} in the formal power series $(e^y-1)^s$ $(s\geq 1)$:

Lemma 10. The number U(n, n-k)B(n, s) is an integer for $k \leq s$.

By an elementary arithmetic, we have that $B(2n+1, 3)=3(3^{2n-1}+1-2^{2n})/(2n)!$ and $\nu_2(3^{2n-1}+1-2^{2n})=2$ for $n\geq 2$. Thus we have

Corollary 11. $\nu_2((2n)!/4) \leq \nu_2(U(2n+1, 2n-2))$ for $n \geq 2$.

Remark. The lower estimation of U(m, l) is studied by G. Walker [13] by using *KO*-theory, and Lemma 10 may be a weaker condition than his result. But, for our restricted purpose, Lemma 10 is sufficient.

Let $S^2 \rightarrow CP^{\infty} \rightarrow HP^{\infty}$ be the usual fibration, and let

$$(6.3) t: HP^{\infty}_{+} \longrightarrow CP^{\infty}_{-}$$

be the Becker-Gottlieb transfer [2] for this fibration. By the cellular approximation, a map

(6.4)
$$t: HP_{\frac{n}{2}} \longrightarrow CP_{\frac{2}{3}}^{2n} \quad \text{for} \quad n \ge 2$$

is induced from (6.3). Recall that the Euler characteristic of S^2 is equal to 2. Hence according to [2; Theorem 5.5], we have $q_*t_*(\beta_n)=2\beta_n$ for the standard generator $\beta_n \in H_{4n}(HP^{\infty})$. Since $q_*: H_{4n}(CP^{\infty}) \to H_{4n}(HP^{\infty})$ is isomorphic, we have

(6.5)
$$t_*(\beta_n) = 2b_{2n}$$
.

Let $X(n) \in \pi_{4n}^s(HP_2^n)$ be the class of $(3.5)_n$. Then, by $(3.6)_n$ and (6.5), we have

Lemma 12. $h(2n, 3)(t_*(X(n)))=2t_nb_{2n}$, where t_n is the integer in (3.3).

By (6.1) this lemma implies that the number U(2n+1, 2n-2) is a divisor of $2t_n$. Thus we have

Corollary 13. $\nu_2(U(2n+1, 2n-2)) \leq \nu_2(a(n)((2n)!/4))$, where a(n)=1 if n is even and a(n)=2 if n is odd.

For even $n \ge 2$, we have completed the proof of Theorem B by Corollaries 11 and 13.

To prove Theorem B for odd n, we need some notations.

According to [11], there is a stable map

which satisfies

(6.7)
$$F_*(b_n) = (n+1)b_{n+1}$$
 for $n \ge 1$.

Let

$$F_2: \Sigma^4 CP^2 \longrightarrow CP^4$$

be the restriction of $F \circ F : \Sigma^4 CP^{\infty} \to CP^{\infty}$ to $\Sigma^4 CP^2$. Then from (6.7), it follows that

(6.9)
$$F_{2}(b_n) = (n+1)(n+2)b_{n+2} \quad (n \ge 1).$$

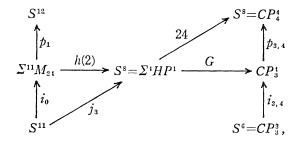
Now we consider the composition

$$(6.10) G=p_{1,3}\circ F_2\circ t: S^3=\Sigma^4HP^1\longrightarrow \Sigma^4CP^2\longrightarrow CP^4\longrightarrow CP_3^4,$$

where $t: HP^1 \rightarrow CP^2$ is the restriction of the transfer of (6.3). Then we have

Lemma 14. The composition $G \circ h(2) : \Sigma^{11}M_{24} \to CP_3^4$ is null homotopic, where $h(2) : \Sigma^{11}M_{24} \to S^8$ is an extension of j_3 (see Section 2).

Proof. In the following diagram, we explain notations used in this proof:



where i_0 and $i_{3,4}$ are the respective inclusions and p_1 and $p_{3,4}$ are the respective projections.

Now, by (6.5) and (6.9), we have $G_*(b_1)=24b_4$. Hence, by using [12; Proposition 1.9, (3.10)], we have

(6.11)
$$p_{3,4} \circ G \circ h(2) \in p_1^* \langle 24, j_3, 24 \rangle = 0.$$

Thus, there is a map $\bar{\alpha}: \Sigma^{11}M_{24} \to S^6$ such that $G \circ h(2) = i_{3,4}\bar{\alpha}$. Moreover, since $\pi^s_{\mathfrak{s}}(S^0) = 0$, $\bar{\alpha}$ factors $\alpha: S^{12} \to S^6$, that is, $G \circ h(2) = i_{3,4}\alpha p_1$. Hence it is sufficient to show that

HUREWICZ IMAGE OF PROJECTIVE SPACES, I

(6.12)

 $\alpha = 0$.

We remark that

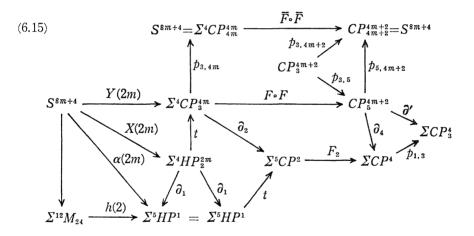
(6.13) $\pi_6^s(S^0)$ is a group of order 2 and generated by $(j_3)^2$ (cf. [12]).

Hence $\alpha = 0$ or $(j_3)^2$. Now we suppose that $\alpha = (j_3)^2$. Then $j_3 \alpha = (j_3)^3 \neq 0$ (cf. [12]), and

(6.14)
$$j_3 \alpha p_1 \neq 0$$
,

because the homomorphism $p_1^*: \pi_{12}^*(S^0) \to \{\Sigma^{11}M_{24}, S^e\}$ is monomorphic by (6.13). However, since CP_3^* is a mapping cone of a generator η of $\pi_1^*(S^0)$ and since $j_3\eta=0$, there is an extension $\overline{j}_3: CP_3^* \to S^3$ of $j_3: CP_3^* = S^e \to S^3$. But $\overline{j}_3G \in \pi_s^*(S^3) = 0$, and so $j_3\alpha p_1 = \overline{j}_3Gh(2) = 0$. This contradicts (6.14), and we have (6.12). q. e. d.

Let Y(2m) be the composition $t \circ X(2m)$: $S^{8m+1} \rightarrow \Sigma^4 HP_2^{2m} \rightarrow \Sigma^4 CP_3^{4m}$ (see the definition of X(2m) to (3.5)). Then we have the following commutative diagram:



where the maps F and \overline{F} are defined from the map in (6.6) by restricting it, F_2 is the map in (6.8), and t are the maps in (6.4) and (6.10)

By Lemma 14, we have

$$p_1 , F_2 t \alpha(2m) = 0$$
.

Moreover, the sequence

$$CP_{3}^{\pm m+2} \xrightarrow{\dot{p}_{3,5}} CP_{5}^{\pm m+2} \xrightarrow{\partial'} \Sigma CP_{3}^{\pm}$$

in (6.15) is a cofibering. Therefore, by chasing the diagram (6.15), we have a map

$$Y(2m+1): S^{\delta m+4} \longrightarrow CP_{3}^{4m+2}$$

which satisfies

(6.17)
$$p_{3.5}Y(2m+1) = (F \circ F)Y(2m) .$$

Then it follows that

(6.18)
$$p_{3,4m+2}Y(2m+1) = (\overline{F} \circ \overline{F})p_{3,4m}Y(2m).$$

By $(3.6)_{2m}$ and (6.5), $Y(2m)_*(\iota_{8m+4}) = t_*X(2m)_*(\iota_{8m+4}) = 2t_{2m}b_{4m}$ for a generator $\iota_l \in H_l(S^l; Z)$ (l=8m+4). Also by (6.7), $(\overline{F} \circ \overline{F})_*(b_{4m}) = (F \circ F)_*(b_{4m}) = (4m+2)(4m+1)b_{4m+2}$. Thus these equalities and (6.18) give

(6.19) $h(2n, 3)(Y(n)) = ((2n)!/12)b_n \quad (n=2m+1).$

By (6.1), this implies that

$$(6.20) U(2n+1, 2n-2)|((2n)!/12) (n=2m+1),$$

and we have completed the proof of Theorem B by Corollary 11 and (6.20).

References

- $\begin{bmatrix} 1 \end{bmatrix}$ Adams, J.F., On the groups J(X)-IV, Topology, 5 (1966), 21-71.
- [2] Becker, J.C. and Gottlieb, D.H., The transfer map and fiber bundles, *Topology*, 14 (1975), 1-12.
- [3] James, I. M., Spaces associated with Stiefel manifolds, Proc. London Math. Soc.,
 (3) 9 (1959), 115-140.
- [4] Knapp, K., Some applications of K-theory to framed bordism: E-invariant and transfer, Habilitationsschrift, Bonn, 1979.
- [5] Kochman, S.O. and Snaith, V.P., On the stable homotopy of symplectic classifying and Thom spaces, *Lectures Notes in Math.*, 741, Springer-Verlag, 1979, 394-448.
- [6] Morisugi, K., Massey products in MSp* and its application, J. Math. Kyoto Univ., 23 (1983), 241-265.
- [7] ——, Stable self maps of the quaternionic (quasi-)projective space, preprint.
- [8] Oshima, H., On James numbers of stunted complex or quaternionic projective spaces, Osaka J., Math., 16 (1979), 479-504.
- [9] _____, Some James numbers of Stiefel manifolds, Math. Proc. Camb. Phil. Soc., 92 (1982), 139-161.
- [10] Segal, D. M., On the stable homotopy of quaternionic and complex projective spaces, Proc. Amer. Math. Soc., 25 (1970), 838-841.
- [11] Toda, H., A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, *Memoirs Univ. of Kyoto*, 32 (1957), 103-119.
- [12] ——, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, 1962.
- [13] Walker, G., Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford (2), 32 (1981), 467-489.