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§ 1. Introduction

Let Z be the set of integers, and Z{a1} a2, • • • } denote a free abelian group
with basis [alt a2, • • • } . If h : G —> H is a homomorphism between groups, then
we denote its image, its kernel and its cokernel by Im /?, Ker h and Coker h
respectively.

Let HPn (resp. CPn) (0^?x^oo) be the quaternionic (resp. complex) n-dimen-
sional pro jective space, and HP^=HPn/HPk~1 (resp. CP2=CP",CPK-") (l^k^n)
be the stunted projective space. Then, as is well known,

where fi^Hi^HPk', Z) (/efg/rgn) are the standard generators.
Let

(1.1) hn. k : xln(HP?) — Htn(HP? ; Z)

be the stable Hurewicz homomorphism. Then we denote the order of Coker hn,k
by \hn,k\. Thus, lmhnik is the subgroup generated by \hn ^ ' , 5 . . equivalently,
1 / 2 ^ , ^ ! is equal to the stable order of the attaching map of the top cell of HP".

D.M. Segal [10] has shown that

|/zB . i |=(2n)!/fl(7i) (n^l),

where a(ri) = l if n is even and a(n}=2 if n is odd. In this paper we investigate
the order |/zn ,2 .

Let yz(i) be the exponent of 2 in the prime power decomposition of an in-
teger i. Then our main result is stated as follows :

Theorem A. Let n^2. Then
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where a(n) — l if n is even and a(ri)=2 -if n is odd.

Let p: HP^—HP^S^ be the collapsing map, and />* : ns
in(HP?,)->~s

in(S
in)

be the induced homomorphism. Then by definition, \hniZ\ is equal to the order
of Coker£*.

Analogously, let q\ CP2-k->CP2-l=S2n-2 (l^k<n) be the collapsing map,
and q*\ i^ln-^CP n~lki — > ^L-^S271"2) be the induced homomorphism. Then, we
denote the order of Coker q* by £7(72, k). For some (n, k\ these numbers £7(72, k)
are investigated by various authors (cf. [3], [8], [9], [4], [13]).

As an application of Theorem A and its proof, we have the following :

Theorem B, Let n^2. Then

Remark, According to Knapp [4 ; (7.45)], the odd primary components of
\hn,2\ and £7(2?3-rl. 2n— 2) are already known. £7(2n, 2n— 3) is also determined
by Walker [13].

In our forthcoming paper we shall investigate the analogous problems for
the quaternionic quasi-projective space, and apply to the complex projective space.

Throughout this paper we use the following notations :
(1.2) For a pointed space X, InX denotes the n fold iterated reduced suspension
of X. As we shall work only in the stable category, for a space X, its sus-
pension spectrum is also denoted by the same letter X, and, for spaces X and
Y, a map h: X-+Y denotes the degree 0 map between their suspension spectra.
Moreover, we denote the stable homotopy class [/z]e {X, Y} of a map h simply
by the same letter h.
(1.3) In the stable stems ?4(S0), we denote a generator of Im/^-i by jtk-i-
where Jt is the stable /-homomorphism ni(SO) -> 7rf(S°) (l=£k— 1). For classes
a, ft and j in ~*(S°) satisfying af}=f)7=Q, we denote the Toda bracket [12] of
them by <a; /3, f/. We refer to [12] for various properties on the stable homo-
topy groups of spheres.
(1.4) We denote the Adams ^-invariant [1] of a class a^7t*(S°) by e(a), and
refer to [1] for its various properties.
(1.5) For the stunted projective spaces, pkil : HP%-*HPf and ikil : HPl

m-*HPl
m

(l^m^&g/^nfgcc) denote the collapsing map and the inclusion map respectively.
Also dk : HPk+i — IHP* (ri^k) denotes the map which appears in the cofiber
sequence as follows :

*k,n Pl,k + l dk
HPk — > HPn - > HP%+1 — > IHPk .

For the stunted complex projective spaces, we use the similar notations.
This paper is organized as follows :

In Section 2, we prepare a stable map between the quaternionic projective spaces,
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and state Theorem 3 which is essential in the proof of Theorem 5. In Section
3 we state and prove the main theorem (Theorem 5), and Sections 4 and 6 are
devoted to the proofs of Theorems A and B respectively. In Section 5, we
prove Theorem 3.

The authors thank H. Oshima for his valuable informations on the James
numbers.

§ 2. The Stable Map /

In [7], the second named author showed the existence of some stable maps
IinHPra-*HP™. Using its result, we have the following

Theorem 1. ([7 ; Theorem 1]) There is a stable map

f: ISHP~ — >HP~

which satisfies

/*(0J = ((2n+4)!/(2n)!)0n+B for n^l .

Consider the restriction of / to 2SHPU for some n. Then, by the cellular
approximation, the range of / can be taken as HPn+2, that is, we have a map

>HPn^. Especially, let

(2.1) /! : Sl*

be the restriction to I]SHP1. Then, by Theorem 1, we have

(2.2) /

Since HPl is the mapping cone of 2ja and the order of j3 Is equal to 24,
there is a unique map

(2.3) g : S12 — > HPl satisfying s«(.'i3) = 12ft .

where r12G#12(S
12) is a generator.

By an easy computation, we have the following lemma, which is an immediate
consequence of [5] or [6] for the 2-localized case. In its equality, 31 : HPl -*
2HP1—S5 denotes the map mentioned in (1.5).

Lemma 2. 31g=Sj7 .

Let Mt be the mod t Moore spectrum S°\Je\ and z'0 : S
n-*Mt and p^ : Mt-*

Sl be the inclusion and the projection respectively.
By (2.2) and (2.3), we have />i.2/i=30g, where pli2: HP^-*HPl is the col-

lapsing map. Hence, there is a map /z(l) : J7M30->S0 such that the following
diagram is commutative up to sign :
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Pi 30 z"0
InM,Q •

(2'4)

S1 - - > HP* - > HPl - > S5 ,

where horizontal sequences are cofiberings. Then, by Lemma 2 and (2.4), it
follows that

(2.5) A(l) is an extension of 8/7 .

Also the order of h(l) is a divisor of 30, because, by (2.5) and [12; Proposition
1.9, (3.10)], 30/2(1) =/>?<30, 8/7, 30>=0. Thus, there is a coextension ,4(1) : J8MSO

->M30 of h(l). Then A(l) satisfies ^1^(1X0=8;7.
Since the order of j3 is equal to 24, we have an extension h(2) : J^A/21->S°

of jt. On the other hand, since <24, 10/7, 24>-0 by [12; (3.10)], there is a map
.4(2): J8M24->M21 which satisfies ^1^(2)/0=10j7.

Now, let M(e*=M3Q if e=l and M(e)=M2i if £=:2. Then, we have the
following

Theorem 3. Let s = l or 2, and tef jfe(6)=7 (res/?. 3) if s = l (resp. 2).
the following diagram is commutative :

We prove this theorem in Section 5, and in Sections 3 and 4, we assume it.

§ 3. The Main Theorem

Let M(e), h ^ and A(s) (e=l, 2) be the spaces and maps defined in the pre-
vious section,

Now, we define a class a(n)e7r5n_5(50) (?z^2) as follows:

h(l}A(l}m-li, if n=277x+l(m^l) ,
(3.1) a(n)

h(2)A(2)m-1i0 if n=2m

where /o : 5r — J!^/(s) are the respective inclusions. Note that a(2)=j3 and
a(3)= 8/7. Then, from this definition, the following proposition follows imme-
diately, but we shall not use it in this paper :

Proposition 4, Let m^l.
( i ) The order of a(2m+l) is equal to 30, and

<8;7, 30,
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( i i ) The order of a(2m) is equal to 24, and

a(2?tt+2)EE<a(2m), 24, lQ/7> .

Consider the following Atiyah-Hirzebruch spectral sequence :

(3.2) Elq=

and let dr : Er
pi<l-+Ep-rtq+r-.i (r^2) be the differential in this spectral sequence.

If an element ?'e£|>5 persists to Er
pjq, then we denote its class in Er

p,q simply

by r-
Let tn (n^2) be the following integer :

(3.3) tn=(2n)\/60 if n is odd, and tn=(2n)\/2A if n is even.

Now, we can state the main theorem as follows :

Theorem 5. For n^2,

ti-J and d*»-i(tnpn) = p1

The rest of this section is devoted to the proof of Theorem 5.
First, we prepare the following diagram (n^2) :

(3.4)

S*n™=2i*nr'n ~~~ — ̂  tif'n+z—s '
J

»
^ p2,n+*^^ /

/>2,B HP^ ^___^

;r- 7 '

3,

/!

S l i J— ̂  in ' •

^̂
 rr^^ JTZjf

3,
.

p4,n+<i

Dn + 2

d, IUP\

f /4\

LJD3 2

f *1.*/^

Here, the maps / and / are defined from the map of Theorem 1 by restricting
to S8HPk(k=l, n—ly n), fi is the map in (2.1), the maps ikti, p k > t and dk are
mentioned in (1.5), and d'^pi^d*. Then the squares and the triangles in (3.4)
are commutative, and the two sequences

£2 ,4 3' /I. 3 Pl.S

Hpn^—>HP^Z—>5HPI and IHP1—> IHP^—> IHP\

in (3.4) are cofiberings.
We prove Theorem 5 by induction on n.
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When ?i=2, the theorem is clear, since HP2 is the mapping cone of js.
Also, when n=3, the theorem follows from Lemma 2.

By the definition of dr in the spectral sequence (3.2), the assertion that
Theorem 5 holds for n is equivalent to that there is a map

(3.5), X(n): S*n — > HPl

which satisfies that

(3.6),

and

(3.7),

where hn>2 is the stable Hurewicz homomorphism (see (1.1)). Therefore, by
induction, we may assume the existence of such a map X(ri) in (3.5)B for n^2
that satisfies the properties in (3.6), and (3.7),, and under these assumptions it
is enough to prove that the assertion also holds for n+2, that is, there exists
a mapZ(n+2) in (3.5),+2 satisfying (3.6),+2 and (3.7)n+8.

By Theorem 3 and the definition of a(ri) in (3.1), we have

(3.8) /ia(n) = i l l 8a(n+2).

Then, using (3.7), and the commutativity of (3.4), we have 3'/Z(n)=0. Hence,
there is a map X' : Sin+s->HP%+2 such that p2,,X'=fX(ri). Then, by (3.8) and
(3.4), we have /1§83iXf=38/X(n)=/1a(n)=/li8a(n+2). Thus31Z/-a(n+2)eKer *1§8*,
and so there is a map y' : S*n+s->HPl which satisfies that

(3.9) 3i(^/

Now we define a map X(n+2) by

(3.5)n+2

Then, (3.9) yields that

(3.7),+2

On the other hand, p2,n+2is,n+2y'=Q, since z3|,+2y is a torsion element in
;rJB+8(/fP3+2). Hence, we have

^2, n+2^(n+2)=^2i n+*X'=fp2. nX(n) .

This implies that /271^2,2(Z(n+2))=/^/i,,2(Z(n))=/*/z,,2(Z(n)). But, by Theorem 1
and the assumption (3.6),, we have /*/i,j2(^(n))=((2n+4) !/(2n) !)^,^,+2=^+2^7l+2.
Thus

(3.6),T2 hn

and we have completed the proof of Theorem 5.
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§ 4. Proof of Theorem A

We use the following notations : Let k, I be any integers. Then k \ I means
that k is a divisor of /, v%(k) is the exponent of 2 in the prime power decomposi-
tion of k, and

(4.1) a(k)=l if k is even and a(k)=2 if k is odd.

Recall that \hn,z\ is the order of the cokernel of the stable Hurewicz homo-
morphism hn,z (see (1.1)). Then, Theorem 5 yields that

(4.2) \hn.s\\tn.

Hence, we have

(4.3) ^(|/zn.8 |)^^B) = va(fl(70((2n)!)/8).

Thus, in order to complete the proof of Theorem A, it is sufficient to show
the following proposition.

Proposition 6. v2(a(n)((2n)\)/S)^vz(\hn,z\) for n^2 .

We shall prove this proposition by using standard arguments of /f-theory
and Chern character. For this, we prepare some notations.

Let K, KO and KSp denote the complex, real and symplectic ^"-theory re-
spectively, and K*(X) and KO*(X) denote the K- and J^O-cohomology respectively.
Let f be the canonical quaternionic line bundle over HPn (l^n^oo), and f =<~— 1

^KSp(HPn)=KO\HPn}. Then, as is well known, />?. k : KO^(HP^

is monomorphic and KO^(HP^ is a free module over n*(KO) with basis
k^s^n} whose element f(s) satisfies p*,k(£(s))=i*.

Let c: KO*(X)-^K*(X} be the complexification, and ch: K*(X)-*H*(X] Q]
be the Chern character. The composition ch°c is called the Pontrjagin character

and we denote it by ph: KO*(X}-*H*(X', Q}.
Let x*=H*(HPn) be the Euler class of f. Then H*(//Pn)=ZM/(^n+1). We

use the same letter xi to denote the element of Hli(HP%}. Then it is well
known that

(4.4)
j=i

Let N(m, s) be the coefficient of xm in (4.4), that is,

(4.5) S N(m, s)xm

in, - 1

Then we have

Lemma 7. For k^s,

\hn.k\N(n,
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Proof. Let a^nl^HP^) be a class such that hn,k(a)=- \hn, k\fin> We can
consider a to be a map S*n-*HP£ by the cellular approximation. Then, by
definition, we have

(4.6) a*(xn)=\hn.k\ein for a generator cin^Hin(S4n ; Z) .

By (4.4), (4.5) and (4.6), we have

(4.7) ph(a*£(sfi = a*(N(n, s)xn)=\hn.k\N(n, s}cin.

On the other hand, as is well known, both K4s(Sin) and KOis(Sin) are isomorphic

to Z, and the complexification c: KOis(Sin)^K4s(Sin) sends the generator of

254s(S4n) to the a(n-s) times of the one of J?4S(S471). Moreover the Chern

character gives an isomorphism K*s(S*n)-*H*(Sin ; Z). Since a*
it follows that

(4.8) ph(a*£(s-))^a(n-s)H4n(S*n ; Z) ,

and the result follows from (4.7) and (4.8). q. e. d.

Proof of Proposition 6. By an elementary arithmetic, we have that N(n, 2}
=8(4*-1-l)/(2n) !. Hence, by Lemma 7, 8(471-1-l)|/2n,2|/(a(n)((2n) !)) is an integer.
Since a(ri) ((2ri) !)/8 is an integer for n^2, we have the desired result, q. e. d.

§ 5. Proof of Theorem 3

Proof of Theorem 3 for e = l. Using the commutativity of the left and the
right squares of (2.4) and by that A(l) is a coextension of /i(l), we have

and the theorem holds in this case.

Proof of Theorem 3 for e=2. Recall that Jl/(2)=A/24 is the mod 24 Moore
spectrum, /i(2) is any extension of j3 and A(2) is a map which satisfies p1A(2)i0

=1QJ7. In the following diagram, we explain notations which we shall use in
the proof :

(5.1)

Lemma 8. T/ie composition pi,zfih(2): S15M21t-^HPl is null homotopic.

Proof. We remark that HP\ is a mapping cone of 2j\ and that A-C
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360/3, by (2.2). Then, using [12; Proposition 1.8] and [1; Theorem 11.1], we
have

=(ittJ*<2js, 360, y,>=0.

Thus there is a class ae.it*16(HPl) such that

(5.2) p1,2flh(2) = ap1.

Now, we show that

(5.3) a=o.

Then, by (5.2), we have the lemma.
Let ^e7Ti(S°) be a generator. Then there is an extension rj: HPI-+S1 of

rt : S8— >S7, and we have

(5.4) ?/>i.«

because ypi.zfi^ nl>(S °)=0. Therefore, rjap!=Q. Since 7rJ(S0)=0, a factors a
mapar. S1G-*S8=HPl, and we have

(5.5) i)ait>i=Q.

But 77*: 7r|(S0)->7r|(50) is monomorphic by the table of [12; Chapter XIV], and
£*: {S16, S7} -> {I^Mgi, S7} is monomorphic by that 27r5(S0)=0. Thus or^O by
(5.5), and we have (5.3). q.e. d.

By the above lemma, there is a map <p\ ̂ l5AL2i— >S4 which satisfies

(5.6) ii,w=fih(2) .

Lemma 9. 0(9/0) = 1/24 ,

where e(<pi0) is the Adams eR' '-invariant of CP/U.

Proof. Recall that ^/z : KO( }—>H*( ; Q) is the Pontrjagin character and

j^KO(£*HP") is the element corresponding to q—l^KSp(HP5) under the Bott

isomorphism (see Section 4). We denote the standard generator of KO(Ssi) by
g-Sl. As is well-known (cf. [1], [13]), Adams ^'-invariant is a functional Pon-
trjagin character. In our case we have

(5.7)

where ph2Q is the 20-dimensional component of ph and (ph2Q)(piQ: KO(Sb)-+
H*(S20; Q)/lmph20 = Q/Z is the functional Pontrjagin character of 0/0. We put
6=(pi0. By (5.6) we have the following commutative diagram:

S1G '—> S^HP«
t • t •I Jo # |ii.,

519 _> 53 _
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Then the following diagram is commutative :

- ^ 2 * 3 - ^

KO(I4HP3) - ' - > KO(SS)

(5.8) I/? \(Ph^t
~v (Phzo)j& *
KO(S1G) - > H20(S20 ; Q)/lm phzo .

It is clear that i*,£=g&. On the other hand,

(5.9) /fl=*ifl -

In fact, /f(;i-3)-360;16 by (2.2), and so M(/?f)=/1c((2/(6!))^)=^e, where ,r-
H4(HP3;Z)c:H\HP3;Q) is the Euler class of f. Since />/2 : KO(S16)->HIG(S16 ; Z)
is isomorphic, we have (5.9).

Now, by the naturality of the functional operation, (5.8) and the above
equalities, we have

(5.10) (MM)s>(5r8)=(^»o)5>OT.f)=(M»o)Ji(/tl)

But, (ph20)j6(glG)=e(ji) = l/21. Thus (5.7) and (5.10) give the desired result.
q. e. d.

Now, TTntS^Im/n and the order of Trf^S0) is equal to 504 (cf. [1 ; Example
7.17]). Hence by the above lemma and [1], we have

(5.11) ^o=21/n.

On the other hand, using [12; Proposition 1.7] and [1 ; Theorem 11.1], we have

(5.12) A(2)4(2)/0 GO',, 24, 1Q;7>=21;11 .

But f?: {JUM24, S^-^Trf^S0) is monomorphic, because 7rf2(S°) = 0 (cf. [12]).
Hence (5.11) and (5.12) yield that

(5.13) <p=h(2)A(2).

Thus, by (5.6) and (5.13), we have

(5.14) ili3/i(2).4(2)=/1/i(2),

and this completes the proof of Theorem 3.

§6. Proof of Theorem B

For the homology of the complex projective space, we denote the standard
generators by bt^H2i(CPm'f Z) (Ig^w^oo). Then, H*(CPf ; Z) is a free
abelian group with basis {bk, • • • , bm}.

By the definition of U(n, k) in Section 1, wTe have that U(n, k) is the stable
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order of the attaching map of the top cell in CP%~\, or equivalently,

(6.1) lmh(n— 1, n— k) is generated by U(n, k } b 1 l - l ,

where

(6.2) h(m, /) : ns
2m(CPf) — > H,m(CPf ; Z)

is the stable Hurewicz homomorphism.
Now using JlT-theory for CPf and S'2m (m=n—l, l=7i—k) just in the same

way as Lemma 7, we have immediately the following lemma, where B(n, s)
denotes the rational number which is the coefficient of yn~l in the formal power
series (ey-T)s (s^l) :

Lemma 10. The number U(n, n—k}B(n, s) is an integer for k^s.

By an elementary arithmetic, we have that 5(2/1+1, 3)=3(32n-1+l-22n)/(2n)!
and v2(32"-1+l-22n)=2 for n^2. Thus we have

Corollary 11. v»((2n) !/4)^v2(£7(2n+l, 2w-2)) for n^2 .

Remark. The lower estimation of U(m, 1} is studied by G. Walker [13] by
using TfO-theory, and Lemma 10 may be a weaker condition than his result.
But, for our restricted purpose, Lemma 10 is sufficient.

Q
Let S*->CP°°-*HP™ be the usual fibration, and let

(6.3) t\HP^ — >CP~

be the Becker-Gottlieb transfer [2] for this fibration. By the cellular approxima-
tion, a map

(6.4) t:HPl — >CP\n for n^2

is induced from (6.3). Recall that the Euler characteristic of S2 is equal to 2.
Hence according to [2; Theorem 5.5], we have q*t*(fin}=^2fin for the standard
generator ^n^H^n(HP"}. Since q* : H^n(CP"}— >Hin(HP°°) is isomorphic, we have

(6.5) t*(pn)=2b2n .

Let X(n)^7rln(HPn
2} be the class of (3.5)n. Then, by (3.6)n and (6.5), we

have

Lemma 12. h(2n, 3)(t*(X(n))')=2tnbZn, where tn is the integer in (3.3).

By (6.1) this lemma implies that the number U(2nj
rl, 2n— 2) is a divisor of

2tn. Thus we have

Corollary 13. n2(£/(2n+l, 2n-2}}^(a(n}((2ri) 1/4)), where a(n) = l if n is
even and a(n)=2 if n is odd.



850 MiTSUiXORi LMAOKA AND KAORU MORISUGI

For even n^2, we have completed the proof of Theorem B by Corollaries

11 and 13.
To prove Theorem B for odd n, we need some notations.
According to [11], there is a stable map

(6.6) F:Z2CP°° — >CP°°

which satisfies

(6.7) F*(feB)=(n+l)6n+1 for n^l.

Let

(6.8) F2 : J
4CP2 — > CP4

be the restriction of F°F: S*CP~-*CP~ to J4CP2. Then from (6.7), it follows
that

(6.9) F»(bn)

Now we consider the composition

(6.10) G=plls°F2*t : S*=ZiHP1 — > Z*CP2 — > CP1 — > CPt,

where t: HP1-^CP2 is the restriction of the transfer of (6.3). Then we have

Lemma 14. The composition G°h(2): 2llM<u-*CP\ is null homotopic, where
h(2) : S11M24-*S8 is an extension of j^ (see Section 2).

Proof. In the following diagram, we explain notations used in this proof :

where i0 and f 3 ) 4 are the respective inclusions and pl and pSii are the respective
projections.

Now, by (6.5) and (6.9), we have G^(bl}=2^b,. Hence, by using [12; Prop-
osition 1.9, (3.10)], we have

(6.11) />s.4°G-/2(2)e/tf<24, j*9 24>-0.

Thus, there is a map a: I11M2.i-^SG such that G°h(2)=i3iia. Moreover, since
7ri(S°)=0, a factors a: S12->56, that is, G°h(2)=i3iiap1. Hence it is sufficient
to show that
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(6.12) a=0.

We remark that

(6.13) 7r!(S°) is a group of order 2 and generated by (j3)* (cf. [12]).

Hence a=0 or (;3)
2. Now we suppose that a=(j3)

z. Then j3a = (j^3^Q (cf.
[12]), and

(6.14) hap^Q,

because the homomorphism #f : 7Ti2(S
G)-> (IilM2±, SG} is monomorphic by (6.13).

However, since CPJ is a mapping cone of a generator 57 of 7rJ(S°) and since
M=Q, there is an extension ;3 : CP|->S3 of ;3 : CP1=SG->S3. But ;3Ge7rl(S3)
=0, and so ;3Q:^1=;3G/?(2)=0. This contradicts (6.14), and we have (6.12).

q. e. d.

Let Y(2m) be the composition t*X(2m): SSm+i->^HPIm-^I4CPim (see the
definition of X(2m) to (3.5)). Then we have the following commutative diagram :

F»F
(6.15)

where the maps F and F are defined from the map in (6.6) by restricting it,
Fz is the map in (6.8), and t are the maps in (6.4) and (6.10)

By Lemma 14, we have

Moreover, the sequence

in (6.15) is a cofibermg. Therefore, by chasing the diagram (6.15), we have a
map

(6.16) F(2
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which satisfies

(6.17) pt

Then it follows that

(6.18) p*.in

By (3.6)2m and (6.5), Y(2?n}^8m^i)=t^X(2m}^(c8m+^=2t2mbim for a generator ^e

Ht(S
l; Z) (/ = 8m+4). Also by (6.7), (FoF),e(64m)=(F.F)*(&4m)=(477i+2)(4m+l)

£4771+2- Thus these equalities and (6.18) give

(6.19) h(2n, 3)(F(n)) = ((2n) 1/

By (6.1), this implies that

(6.20) C7(2n+l, 2n-2)|((2n) 1/12) (n=2/n+l) ,

and we have completed the proof of Theorem B by Corollary 11 and (6.20).
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