Publ. RIMS, Kyoto Univ.
20 (1984), 853-866

On the Stable Hurewicz Image of Some
Stunted Projective Spaces, 11

Dedicated to Professor N. Shimada on his 60th birthday
By

Mitsunori IMAOKA* and Kaoru MORISUGI*

§1. Introduction

In the previous paper [3], we investigated the order of the cokerrel of the
stable Hurewicz homomorphism on the stunted projective space HPYy. In this
paper, we consider the analogous problem for the quaternmionic quasi-projective
spaces.

Let QP" (1=n=<oc0) be the (4n—1)-dimensional quaternionic quasi-projective
space, and QPP=QP"/QP** 2=<k=n) (denoted by Q, ,-z+: in James [4]) be
the stunted quasi-projective space. For the complex projective space CP™ and
the quaternionic projective space HP™, it is known (cf. James [5]) that QP> is
a cofiber of the projection ¢ : CP*—HP=. Thus there is a cofiber sequence

q 4
(1.1) CP* —» HP* —> QP>~ — YCP~.

As is well known, the induced homomorphism ¢y : Hx(CP*; Z)—=H«(HP*; Z) is
epimorphic, and so the induced homomorphism 4y : Hx(QP*; Z)—H._,(CP>=; Z)
is monomorphic. We denote by b, H,;(CP~; Z) (1=1) the standard generators.
Then we define ;€ H,;-1(QP>; Z) (1=1) to be the element which satisfies

(1.2) A*?‘L:bm—1 .

Thus the reduced homology group of QP} is a free abelian group with basis
{r:|k<i=n}, that is,

(1.3) HAQPE; Z2)=Z {10, Tws, =, Tl (1Sk=n=co).
Consider the Atiyah-Hirzebruch spectral sequence
(1.4) E% =H,(QP~)®z(S") = 15:,(QP7),

and let d" : E} —E}, s qr-1 (r=2) be the differential in it. For an element
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r€ L%, we denote its class in E} , (r=2) simply by 7. In (3.1), we define a
homotopy class a’(n)ern$,-;(S°. Then our main theorem is stated as follows:

Theorem 1. Let t'(n)=@2n—1)!/15 if n is odd, and t'(n)=02n—1)!/6 if n is
even. Then
V. €Eff1, and d*" ' (n)r.)=1Qa’(n) .

Let
(1.5) ha, #(Q) 1 win 1 (QPR) —> Hy 1(QPY; Z)

be the stable Hurewicz homomorphism, and |k, ,(Q)! the order of the cokernel
of h, »(Q). Then Im h,, (@) is the subgroup generated by |h,, »(Q)|7., equiva-
lently, |k, »(Q)] is equal to the stable order of the attaching map of the
(4n—1)-dimensional cell of QPy. By Walker [12] (see also Mukai [9] or [7]),
|he1(@)] is determined. Note that |h,, .(Q)] is equal to the so called stable
quaternionic James number.

Now, for an integer 7, v,(?) denotes the index of 2 in the prime power
decomposition of 7. Then, by Theorem I, we have

Theorem II. Let n=2. Then
Vol | hn, (@) )=2e((@n—1) 1/a(n+1)),

where a()=1 if i is even, and a())=2 if i is odd.

Concerning the stable Hurewicz homomorphism A(m, ) : 7. (CPT)—
H,,(CP?; Z), we denote by U(n, k) the order of the cokernel of A(n—1, n—k).
Then as an application of Theorems I and II, we have the following :

Corollary III. Let n=2. Then
vo(U@2n, 2n—2))=v,(U(2n, 2n—3))=v,(2n—1)1/2) .

We remark that U(2n, 2n—3) is already known by Walker [12; Corollary 6.2].
Also, the odd primary components of U(mn-+2, n) and v,(U(m-+2, m)) for m=£0
mod 4 are determined by Knapp [6; Proposition 7.41].

We have also determined v,(U(2n+1, 2n—1)) as an application of the stable
map g : 2QP>—QP~ (see Appendix).

Throughout this paper, we make free use of notations used in [3]. The
notations of the collapsing map p. ;, the inclusion map 7,; and the map 0.
mentioned in [3; (1.5)] are used also for the quasi-projective spaces; that is,

Dei: QPE—-QPE, it QP5L—QPL (1=m=k=I=<n=oco) and
0y: QPE—2YQP* (nzk).

This paper is organized as follows:
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In Section 2, we consider a stable map g : Y*QP>—QP> from i7] and investi-
gate some properties which are necessary for the proof of Theorem I. In Section
3 we prove Theorems I and II, and Section 4 is devoted to the proof of Corollary
[II. In Appendix we determine v,(U(2n-+1, 2n—1)).

§2. The Stable Map g

By [7], there is a stable map
2.1) g YQP” — QP~
which satisfies
(2.2) gx(ra)=(2n+3)1/@n—1) D1 n+e .
Restricting this map to 2*QP*, we have a map
2.3) g, SU=3%QP* —> QP*.
Then from (2.2) it follows that
2.4) G1x(r1)=12075 .

By James [4; (2.10)], the following is known:

(2.5) The attaching map of the (4l—1)-dimensional cell ({=2) ‘o the (4—5)-
dimensional cell is lj,,

where j-i€E7w5,-1(S? is a (4k—1)-dimensional generator of the image of the
stable J-homomorphism. Especially, QP} is a mapping cone of 3j,. Since the
order of j, is equal to 24, we have a unique map

(2.6) g’ S — QP} satisfying gi(c,1)=8;;,

where ¢, = H,,(5"") is a generator. Then we have
Lemma 2.1. 0,9'=16j., where 0, : QP3—»YQP'=S"

Proof. Recall that there is a map J : QP*—3CP~> in (1.1, which satisfies
(1.2). Then . induce a map from the spectral sequence (1.4' to the spectral
sequence

@2.7) E% =H,(CP*)Q7(S") = n%,4(CP™).
But, according to Mosher [8; Proposition 4.117, we have
(2.8) d*8b;)=b,Q16j,

in (2.7), where b,€H,,(CP>; Z) is a standard generator. Thus by 1.2) and the
naturality of spectral sequences, we have
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(2.9) d*@87:)=r:®16j,
and (2.6) and (2.9 imply the lemma. g.e.d.

By (2.4) and (2.6, we have p; ,g:=15g’. Hence we have the following lemma
by this equality and Lemma 2.1:

Lemma 2.2. (i+ There is an extension N'(1) : 2°M;—S° of 167, such that
the following diagran: is commutative up to sign:

by 15 i
ST St S 2UM s
' I
e | 2. | g B
v 1.1,3 v D12 \ a1 v
1S QP* QP: S,

where M, is ihe inod t Moore spectrum, and i, : S°—M, and p, : M;—S* are the
inclusion and thz projection respectively.

(ii) There i3 a coextension A’(l) : X8M,s—M,; of h'(1) which satisfies
pi A’ (1)i,=167..

Since the order of j; and j; are equal to 24 and 240 respectively and since
<12, 207, 12,=0 by [11; (3.10)], we have

Lemma 2.3. .i; There is an extension h'(2) : X2*M;,—S° of 2j,.
(ii) There /s a map A'(2) : 23My,—M,s such that pA’(2)iy=20j..

Now, consider the diagram

5 opt < gpi-s
b1 D12
(2.10) I M, s e QP
7o 15
St SP=QP".

Then the following lemma can be proved using the totally similar method to the
proof of Lemma S in [3], and we omit its proof :

Lemma 2.4. pl,z"gl“h,(z):O-

Thus by (2.10 there is a map ¢’ : 2*M,,—S?® satisfying
(2.11) 11,50 =81°h'(2) .
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Then we have

Lemma 2.5. e(p'iy)=1/12,

where e(a) is the Adams ep-invariant of a=¢'i,.

Proof. We put ¢'==¢'/,. From (2.11), we have the following commutative
diagram :

Slli > S:}QPS
A A
@.12) 27, i1
//
S s > S8.

Let ph : ﬁ( )—H*( ; Q) be the Pontrjagin character and ., be the 20-dimen-
sional component of ph. We denote a generator of I%(S”‘ by Zs. By Adams
[2] (see also Walker [12]), Adams eg-invariant is a functional Pontrjagin
character. So in our case we have

(2.13) e(")=(ph2o) - (gs)

where  {(phay),: : Kf\é(SS)ﬁﬁ*(S”; Q)/Im phsy=Q/Z is a functional Pontrjagin
character of ¢’. From (2.12) we have the commutative diagram

~ 1,3 ~
KO(X°QP?) > KO(S®)
\2- 14) % g>1!< (p]lzu)sj'
~ \‘/ (/7/120)2;3 \"
KO(S*) > H>*(S*; Q)/Im phsy=Q Z.

Let ¢ be a canonical quaternionic line bundle over HP? and Z7)¢* denote the
tensor product over the quaternion of & and its conjugate bundle &*. Then, as
is well known, YQP?® is a Thom space of EQE*. We put I=I¢*P4e, where
4p is the real 4-dimensional trivial bundle. Thus we have S°QP*=(HP2¢. Then
there is a Thom class Ueff{\é(a"’QPﬂ and we have 7¥.(L'=g.. Moreover we
have

2.15) gf(U)=g,; up to sign.

Indeed, in order to prove (2.15) we may show that ph,(g¥l =:., for a generator
11, H¥(S*; Z), because phyy : KO(S*)—»H*(S*; Z) is isomorphic. Applying [1:
Theorem 5.17 we see that

(2.16) Pphi(U)=(1/120)7; up to sign,

where 7= H(3°QP?; Z)=HY(QP?; Z) is the dual of y.=H,,’QP’; Z). By (2.4),
g¥({F )=120c,,. Thus we have ph,(g¥U)=g¥ph,s(U)=¢;s up to cign, hence (2.15).
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Now, by (2.14;. (2.15) and the naturality of the functional operation, we have

(2.17) (tho)c-'(gs):(ﬁhzo)ga'(i;k,GU):(tho)zj;;(gikU):(tho)zjs(gm) .
Since (phao)e;,(g1i=e(275)=1/12, (2.13) and (2.17) give the desired result.
g.e.d.
Let
(2.18) M'(e)=M,; if e=1, and M'(e)=M,, if ¢=2.

Then, using Lemmas 2.2—2.5, we can prove the following theorem by the similar
way of the proof of Theorem 3 in [3]:

Theorem 2.6. Let e=1 or 2, and let k(c)=T7 (resp. 3) if e=1 (resp. 2). Then
the following diagram is commutative :

- ) h'(e) &1

SUEEE M) su > QP?
lA’(E) TZ'l.a

SO ' (e) 5

§3. Proofs of Theorems I and II

Using the maps in Lemmas 2.2 and 2.3, we define elements o’(n)==$,-5(S?)
(n=2) as follows:

(DA ()™, if n=2m-+1 (m=1),
3.1) a’'(n)=
R (2)A’2)™ 1, if n=2m (m=1),

where 7, : St—J3¢1[’(c) are the respective inclusions. Then a’(2)=2;j; and «’(3)
=16j,. Moreover we have the following proposition by the definition of «'(n)
and using [2; Theorem 11.1]:

Proposition 3.1. Let m=1.
(1) The order of a'(2m-1) is equal to 15, and

o’ (2m+3)=<167,, 15, a’2m—+1), .
(i) The orde of «’(2m) is equal to 12, and
o' (2m+-2)ela’(2m), 12, 207> .
Let ¢’(n) be the following integer :
62 t’{n)Z{ @n—11/15 if n is odd,

2n—1)1/6 if n is even.

Then, from the construction of the spectral sequence (1.4), it is easy to see that
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Theorem 1 is equivalent to the following theorem, so we shall prove it:

Theorem 3.2. There is a stable map X'(n) : S '—>QP% for n=2 which
satisfies

(3.3)n B, (@)X () =t" ()7
and
(3.4), 0, X'(m)=a’(n),

where h,, ,(Q) @ win-1(QP3)—H-1(QP%; Z) is the stable Hurewicz homomorphism
and 0, : QP}—YQP*'=S"\

Proof. Consider the following diagram :

g

S“"H:ZSQPﬁ gQP%i§:S41L+T
T sz A
D2n QP3* & Dinte
(3.5) 2%QPt = — QPZ”\G;
0 0 & 5QP
Dy,
\ 2 el
Se=XQP* —> 2QP°
s ZV
Si=3QP*,

where the maps g and g are defined from the map in (2.1) by restricting it to
23QP* (k=1, n—1, n), g is the map in (2.3) and 0’=p,,,0;. Then all the squares
and the triangles in (3.5) are commutative, and the sequences

’

Do s Z.1,s L D12
QP3** —> QP —> 3QP} and YQP'—> 3QP’

> YQP}

in (3.5) are cofiberings.

We prove the theorem by induction on n.

For n=2, we take X’(2) as the identity map of S®. Then (3.3), is obvious.
Since QP? is a mapping cone of 2j; by (2.5) and «’(2)=2j; (3.4), also holds.
For n=3, we take X’(3) as the map g’ in (2.6). Then (3.3); and (3.4); follow
from (2.6) and Lemma 2.1 respectively.

We assume that the theorem holds for n=2, and we may prove it for n--2.
By Theorem 2.6, we have

(3.6) g1’ (n)=1,,;a’(n+2).
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Using (3.6) and the diagram (3.5), we can construct a required map X’(n-+2)
quite similarly to the construction of the map X(n+2) in Theorem 5 of [3].
g.e.d.

Proof of Theorem II. For integers %k and /, k|/ means that 2 is a divisor
of /. Then, by Theorem I, we have

3.7) [2n, (@) 2 (n) .
Thus we have
3.8) Vol ha, (@) ) =ve(t’ () =v,{(2n—1) l/a(n+1)),

where a(f)=1 if 7 is even and a(?)=2 if 7 is odd.
On the other hand, Walker [12] estimates the lower bound of the James
numbers. Using his result [12; Theorem 0.2], we have

(3.9 (1/atn—s)(@n—1) DSt D ()= | @] €2
for k=s=n.
Especially, for k=s=2, since Ei;é(—1)‘(2;)(3—2')2”:4"—4 we have
(3.10) an-+1)(A*1—1) | ha o(Q)]/Cn—1)1EZ.
Thus we have
3.11) Ve(| An, Q) ) Zv2((2n—1) !/a(n+1)),
and (3.8) and (3.11) complete the proof. q.e.d.

§4. Proof of Corollary III
According to Walker [12; Theorem 0.1(i)], the following proposition holds :
Proposition 4.1. Let K(n, s):Ez;;(—1>i(2;)(s—z'>2n (n=s=1), and k=2l or
20—1 ({=1). Then, for n—I[+1=s=mn,
(1) (1/s(@n—1) N K(n, s)U@2n, k)eZ,
(i1) (e/@2n) N K(n, )UECn+1, k)eZ,
where e=2 if k=1 mod4 and s=n—I+1, and otherwise e=1.

Especially, for k=2n—2 or 2n—3, we have

Corollary 4.2. Let n=2. Then
vo(U(2n, 2n—1))=v,((2n—1)1/2) (=2 or 3).

Since U(2n, 2n—3)|U(2n, 2n—2) by definition, to prove Corollary IIl we have
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only to show the following :
Proposition 4.3. v (UQ2n, 2n—2))Zv,(2n—1)1/2) .

The remainder of this section is devoted to the proof of Proposition 4.3.

First we prove Proposition 4.3 for even n. We put n=2m (m=1). By
Theorem 3.2, there is a map X'(2m) : S*™*—QPi™ satisfying hAam,2(Q)(X’'(2m))
=((4m—1)1/6)rsn and 0, X’'(2m)=a’(2m). We define a map Y’(2m) as follows:

4.1) Y'@m)=d4-X'(2m) : S?™1—QPi"™—3CPi™1,
where 4 is the map in (1.1). Then by {1.2) we have

4.2) Y @2m)s(tem—1)=((4m—1)1/6)bym-,

for a generator tgn-1E Hgpn-1(S¥™71). This implies that

Nom, (Y 2m))=(4m—1)/6)bym-, .
Thus it follows that

4.3) U(dm, 4m—2)|(4m—1)1/6,

and we have the proposition for n==2m.

Next we shall prove the proposition for odd n. We put n=2m+1 (n=1).
By Toda [107, there is a stable map

4.4 F : 3*CP* — CP~
which satisfies
4.5) Felb)=0+1b,;  for izl
We consider the following diagram ((=4m—1):

F-F

S‘_'H-(:ZICP; —_—ee—3 CP;-:%:S2[+4

Do, HV

Dat CPLte D5, 142
\Z"j.s
Set+t MZ‘CPL _7]_5_3_;. Jicp! _.___.E"_F__» CPl+2 5
4.6) ,
X'@m) TA 3, 2. ) ICPy
FoF Do
2°Qpm Yicpr ———— > YCP! e
a’(Zmy \o, ivs iaa

n'(2)

- F1°F1
SV, —> ST = QP = Y CP* —— > 3CP?,

where the maps F, F, F, are defined from the map in (4.4) by restricting it,
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0'=p, .0, and Y’(2m) is the map in (4.1). Here the squares and the triangles in
(4.6) are commutative, and the sequence

Da.s /
CPim+t —» CPi™*1 —> YCP}
is a cofibering.
Now we put G=p, soi5 o(Fi°F;) : S™XYCP4. Then

Lemma 4.4. G-h'(2)=0.

Assume that the lemma holds. Then, by chasing the diagram (4.6), it fol-
lows that there is a map Y’'(2m—+1) : S*™"2—CP3™*! satisfying

4.7 D5 Y @mA1)=(FeF)opy 3o Y'(2m).

Then by (4.7) and the commutativity of (4.6) we have

4.8) Do ims1e Y CmA41)=(FF)eps im-1°Y'(2m).

By (4.2), (4.5) and (4.8), we see that

4.9) h(dm—+1, 2)(Y’@2m~+1)=(4m~+1)1/6)bm+1 ,

where h(n, 2) is the stable Hurewicz homomorphism. Thus we have
(4.10) Udm—+2, 4m)|((dm-+1)1/6),

and complete the proof of the proposition for n=2m-+1.

Proof of Lemma 4.4. We consider the following diagram :

su S 1o yeps Pas ICPi=S' —1 5 8
Tl TG T“ /
p2,4
X G
w1y e, G Lo SCP;
S Ccpt———> S5,

Here the triangles commute obviously, and the square commute, because (Fye Fy)sb;
=6b, by (4.5). 7 denotes a generator of x$(S°), and 9’=p, .0,. The sequence

7/

1.2, Do,z
CPi —> S* > 3CPi s 3CP3
is a cofibering. As is well known,
4.12) CP} is a mapping cone of 7,

and 0’ factors an odd multiple of j;, that is,
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(4.13) 0'=2[+1)j;°p, , for some integer /.
By (4.12) the sequence

1.3,1 Dt n
ST —> YCP{—> 3CP{—> S°

in (4.11) is a cofibering.
Now, by (4.12) and that 7°=12j;, we have

(.19 D2 52 Goh'(2)eiy=1i, 4°12],=0.

Since 7§(S%)=0, (4.14) yields

(4.15) Goh'(2)°1,=0.

Thus there is a map ¢ : S*—YCP} such that ¢op,=G-1’(2). Then
(4.16) De.5op=0.

In fact, since ps, sop= (S, ps,o¢p=0 or 5°% But 7eps cd=mnep, i°p; ;=0 and
7°=0. Thus p, 4°¢=0, and we have (4.16), since 7{(5°)=0.
Therefore there is a map ¢ : S"*—S® satisfying

(4.17) Iy 1o@epr=G-h'(2).

Since 7§(S°) is a group of order 2 and generated by (;,)% ¢=0or (j;)°. But the
kernel of 7, 4: {SY, S} —{S', YCP4} is generated by (j))* by (4.13). Thus
72,1°0=0, and we have the lemma by (4.17). q.e.d.

Appendix. The Number U(2n-+1, 2rn—1)

As is well-known, U(n, n—1)=n—1)! (cf. [10], [8]) and this is given by
applying the map F in (4.4). We have determined in [3] the values of
v,(U@2m~+1, 2m—2)) and in Corollary III the values of v,(UQ2m, 2m—2))=
vo(U@2m, 2m—3)) for m=2 by using the maps f : Y*HP*—HP> and g : Y%QP~
—Q@P= in [7] respectively. Using Proposition 4.1(ii) and the above fact that
Uln, n—1)=m—1)!, we have immediately that v,(Udm—+1, 4m—1))=v,(Udm-+1,
4m)). In this appendix we shall determine v,(U(4m-3, 4m+1)) for m=0 by using
the map g, in (2.3) and a stable map X*CP~*—CP>. We denote the map g;
simply by g in this appendix. Consequently we obtain all values of v,(U(n, n—1))
for 1=/<3 and /<n.

Let pe=i(S°) be the generator and 7 : 2M,—S" be any extension of 7 to
the mod 2 Moore spectrum M,=S°_J,¢'. We prepare the following diagram :
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SlS QPg:S’T 1.2,3 > QPZ pﬂ,s > QPg:Sll
Tp‘ Tpl’%’
<A. 1) ZIZMZ 7/ P Sll g ;}QP:;
Tio Til,g
Stz S*=QP*.

Then we have
Lemma A.2. p, ,0g°7=0.

Proof. Using (2.4), we have p; ;og°75€p¥<120, 3, 2>=0. Thus p,s°g°7
factors a map X'*M,—QP3%=S". Since r;(S%)=0, there is a map a : S¥—QP:=S"
with 75 soaep;=p;,.°8°7. But zi(S°) is generated by jZ and QP} is the mapping
cone of 3j;. Therefore i, ;oae=0, and we have the desired result. g.e.d.

By the above lemma we have a map ¢ : Y*2A,—QP'=S* which satisfies

(A.3) iLeo@p=geT .

Lemma A.4. There is a coextension h : S®—>3, of 1207, such that 7-h=
@oly 1 SP—-SE=QP".

Proof. For an element a we denote its dg-invariant by dgz(a). By (A.3)
we have a commutative diagram :

g

RO(ZQP) > KO(S™)

{A.D) iE, *

7

oiy)*

\2 \'2
KO(S) KOS =Z,.

Let Ue[?é(Z SQP?®) be a Thom class (see the proof of Lemma 2.5) and gy, =
KO(S®) be a generator. Then by (A.5) and (2.15) we have

dr(@io)= (i) *(gs)=(io)*iF os(U)=0*(g*U)=n*(g1s) #0 .

On the other hand by [2] the Toda bracket <7, 2, 120j,> consists of elements in
75(S° whose dg-invariants are non-zero. Thus we can take a coextension /1 of
1205, satisfying 7eh=¢-i,. g.e.d.

Since <2, 1207, 2>=0, there is an extension .4 : Y*M,—M, of h. Then it
follows that p,°A-i,=1207,. Using these maps, we define a p-series ggn—.<
T8 ne1(S?) (m=0) as follows :



Hurewicz IniAGE OoF ProOJECTIVE Sraces, 11 865

(A.6) Hemer=7oA™ely 1 S — I} [, — Y[, —> S°.

Now we have the following theorem in which we consider only for the 2-local-

ized version and we denote the 2-primary component of =3(1") by .zi(1).
Theorem A. For m=0 therc is an element

‘Ymeznng__i(CPémvz)
which satisfies
/l(*’Ynl):((47”+2) !/2)b4m+2 and aJ_Ym:/_l\m-‘ I

where h @ ,z$(Y)—>Hy(Y ; Zsy) is the stable Hurewicz homomorphism and 8, : »=5(1)
=, (CPY=,m}_4(S°) for Y=CPi™** and i=8m—4.
By the above theorem and Proposition 4.1(ii) we obtain

Corollary B. 1,(U(dm+3, 4m—+1))=v,((dm-+2)1/2) for m=0.

The rest of this paper is devoted to the proof of Theorem A. Let /.(n, s) :
S '"CP>—CP= be the stable map in [7; Section 3]. We put F'=f.(2, 1) : 33CP*
—CP> which may be equal to the 4-fold composition of F in (4.1). Then it
follows that

(A7) Fi(b)=(G+4) /i Dbysy,
and the following diagram is commutative :
g
QP > QP
|
(A.8) \ 4 4
| oo
CP > SCP~,

where 4 is the map in (1.1).

Now we prove the theorem by induction on m. First we take X, to be the
identity map. Since CP?® is the mapping cone of 7, the theorem clearly holds
for m=0. Assume that the theorem holds for m. Then we can consider the
following diagram :

CP;WH-G
2,6
X’”’- ’ im+6
58m+12 —_— 5 ZSCPém+2 S CPG ,
\a\
Usm+1 -
(A.9) l \ lal 135 JCP;
7 F /171’2
Jie)f, ——> Su=3Cpt ——= ICP°*

\44 M /
21,5
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where the square and the triangles are commutative. If the part (I) in (A.9) is
commutative, then by the same reason in the proof of Theorem 5 in [3] or
Theorem 3.2, we can construct a stable map X,.; : S*™"2>CP3™*¢ satisfying
the assertions in the theorem and the proof is completed.

Lemma A.10. The part (I) in the diagram (A.9) is commutative, that is,
Flp=i, ;°5°A.

Proof. Consider the following diagram :

Sl3

I\ 1/777 2CP ——> JCP5
2'121‘42 -77 “ TA
T. \ZSQPx__i_)QP:x 1.1,5
20 A T-
2,3
S* M, ———77——-> QP'=3CP'=S?.

Then we have dg=F’ by (A.8). By Lemma A.4 there is a map « : S¥—QP'
=S5% such that 7, scacp,=ge7—1i13°7°A. But ,x3,(S° is generated by »nu, (cf.
[11]) and CP? is the mapping cone of 7. Therefore 7, ,oa=0 and we have g-7
=1;,3°7°A. Thus we have the desired result. g.e.d.

This completes the proof of Theorem A.
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