On the Stable Hurewicz Image of Some Stunted Projective Spaces, II

Dedicated to Professor N. Shimada on his 60th birthday

By

Mitsunori IMAOKA* and Kaoru Morisugi*

§ 1. Introduction

In the previous paper [3], we investigated the order of the cokernel of the stable Hurewicz homomorphism on the stunted projective space HP_2^{∞} . In this paper, we consider the analogous problem for the quaternionic quasi-projective spaces.

Let QP^n ($1 \le n \le \infty$) be the (4n-1)-dimensional quaternionic quasi-projective space, and $QP^n_k = QP^n/QP^{k-1}$ ($2 \le k \le n$) (denoted by $Q_{n,n-k+1}$ in James [4]) be the stunted quasi-projective space. For the complex projective space CP^n and the quaternionic projective space HP^n , it is known (cf. James [5]) that QP^∞ is a cofiber of the projection $q: CP^\infty \to HP^\infty$. Thus there is a cofiber sequence

$$(1.1) CP^{\infty} \xrightarrow{q} HP^{\infty} \longrightarrow QP^{\infty} \xrightarrow{\Delta} \Sigma CP^{\infty}.$$

As is well known, the induced homomorphism $q_*: H_*(CP^{\infty}; Z) \to H_*(HP^{\infty}; Z)$ is epimorphic, and so the induced homomorphism $A_*: H_*(QP^{\infty}; Z) \to H_{*-1}(CP^{\infty}; Z)$ is monomorphic. We denote by $b_i \in H_{2i}(CP^{\infty}; Z)$ $(i \geq 1)$ the standard generators. Then we define $\gamma_i \in H_{4i-1}(QP^{\infty}; Z)$ $(i \geq 1)$ to be the element which satisfies

$$(1.2) \Delta_* \gamma_i = b_{2i-1}.$$

Thus the reduced homology group of QP^n_k is a free abelian group with basis $\{\gamma_i | k \le i \le n\}$, that is,

$$(1.3) \widetilde{H}_*(QP_k^n; Z) = Z\{\gamma_k, \gamma_{k+1}, \cdots, \gamma_n\} (1 \leq k \leq n \leq \infty).$$

Consider the Atiyah-Hirzebruch spectral sequence

$$(1.4) \hspace{1cm} E_{p,q}^{\, 2} = \widetilde{H}_{p}(QP^{\, \infty}) \otimes \pi_{q}^{\, s}(S^{\, 0}) \Longrightarrow \pi_{p+q}^{\, s}(QP^{\, \infty}) \; ,$$

and let $d^r: E^r_{p,q} \to E^r_{p-r,q+r-1}$ $(r \ge 2)$ be the differential in it. For an element

Communicated by N. Shimada, August 1, 1983.

^{*} Department of Mathematics, Faculty of Education, Wakayama University, Wakayama 640, Japan.

 $\gamma \in E_{p,q}^2$, we denote its class in $E_{p,q}^r$ $(r \ge 2)$ simply by γ . In (3.1), we define a homotopy class $\alpha'(n) \in \pi_{4n-5}^s(S^0)$. Then our main theorem is stated as follows:

Theorem I. Let t'(n) = (2n-1)!/15 if n is odd, and t'(n) = (2n-1)!/6 if n is even. Then

$$t'(n)\gamma_n \in E_{4n-1,0}^{4n-4}$$
 and $d^{4n-4}(t'(n)\gamma_n) = \gamma_1 \otimes \alpha'(n)$.

Let

$$(1.5) h_{n,k}(Q) : \pi_{4n-1}^s(QP_k^{\infty}) \longrightarrow H_{4n-1}(QP_k^{\infty}; Z)$$

be the stable Hurewicz homomorphism, and $|h_{n,k}(Q)|$ the order of the cokernel of $h_{n,k}(Q)$. Then $\operatorname{Im} h_{n,k}(Q)$ is the subgroup generated by $|h_{n,k}(Q)|\gamma_n$, equivalently, $|h_{n,k}(Q)|$ is equal to the stable order of the attaching map of the (4n-1)-dimensional cell of QP_k^{∞} . By Walker [12] (see also Mukai [9] or [7]), $|h_{n,1}(Q)|$ is determined. Note that $|h_{n,k}(Q)|$ is equal to the so called stable quaternionic James number.

Now, for an integer i, $\nu_2(i)$ denotes the index of 2 in the prime power decomposition of i. Then, by Theorem I, we have

Theorem II. Let $n \ge 2$. Then

$$\nu_2(|h_{n,2}(Q)|) = \nu_2((2n-1)!/a(n+1))$$
,

where a(i)=1 if i is even, and a(i)=2 if i is odd.

Concerning the stable Hurewicz homomorphism $h(m, l): \pi_{2m}^s(CP_l^{\infty}) \to H_{2m}(CP_l^{\infty}; Z)$, we denote by U(n, k) the order of the cokernel of h(n-1, n-k). Then as an application of Theorems I and II, we have the following:

Corollary III. Let $n \ge 2$. Then

$$\nu_2(U(2n, 2n-2)) = \nu_2(U(2n, 2n-3)) = \nu_2((2n-1)!/2)$$
.

We remark that U(2n, 2n-3) is already known by Walker [12; Corollary 6.2]. Also, the odd primary components of U(n+2, n) and $\nu_2(U(m+2, m))$ for $m \not\equiv 0$ mod 4 are determined by Knapp [6; Proposition 7.41].

We have also determined $\nu_2(U(2n+1, 2n-1))$ as an application of the stable map $g: \Sigma^{g}QP^{\infty} \rightarrow QP^{\infty}$ (see Appendix).

Throughout this paper, we make free use of notations used in [3]. The notations of the collapsing map $p_{k,l}$, the inclusion map $i_{k,l}$ and the map ∂_k mentioned in [3; (1.5)] are used also for the quasi-projective spaces; that is,

$$\begin{array}{lll} p_{k,\,l}:\,QP^{\,n}_k{\to}QP^{\,n}_{\,l}, & i_{k,\,l}:\,QP^{\,k}_m{\to}QP^{\,l}_m & (1{\leqq}m{\leqq}k{\leqq}l{\leqq}n{\leqq}\infty) & \text{and} \\ \widehat{\sigma}_k:\,QP^{\,n}_{k+1}{\to}\Sigma QP^{\,k} & (n{\geqq}k)\,. \end{array}$$

This paper is organized as follows:

In Section 2, we consider a stable map $g: \Sigma^s QP^{\infty} \to QP^{\infty}$ from [7] and investigate some properties which are necessary for the proof of Theorem I. In Section 3 we prove Theorems I and II, and Section 4 is devoted to the proof of Corollary III. In Appendix we determine $\nu_2(U(2n+1, 2n-1))$.

§ 2. The Stable Map g

By [7], there is a stable map

$$(2.1) g: \Sigma^{8}QP^{\infty} \longrightarrow QP^{\infty}$$

which satisfies

(2.2)
$$g_*(\gamma_n) = ((2n+3)!/(2n-1)!)\gamma_{n+2}$$
.

Restricting this map to $\Sigma^{8}QP^{1}$, we have a map

$$(2.3) g_1: S^{11} = \Sigma^8 Q P^1 \longrightarrow Q P^3.$$

Then from (2.2) it follows that

(2.4)
$$g_{1*}(\gamma_1) = 120\gamma_3$$
.

By James [4; (2.10)], the following is known:

(2.5) The attaching map of the (4l-1)-dimensional cell $(l \ge 2)$ to the (4l-5)-dimensional cell is lj_3 ,

where $j_{4k-1} \in \pi_{4k-1}^s(S^0)$ is a (4k-1)-dimensional generator of the image of the stable *J*-homomorphism. Especially, QP_2^s is a mapping cone of $3j_3$. Since the order of j_3 is equal to 24, we have a unique map

$$(2.6) g': S^{11} \longrightarrow QP_{\frac{3}{2}} \text{ satisfying } g'_{*}(\ell_{11}) = 8\gamma_{3},$$

where $t_{11} \equiv H_{11}(S^{11})$ is a generator. Then we have

Lemma 2.1.
$$\partial_1 g' = 16j_7$$
, where $\partial_1 : QP_2^3 \rightarrow \Sigma QP_1 = S^1$.

Proof. Recall that there is a map $J: QP^{\infty} \to \Sigma CP^{\infty}$ in (1.1) which satisfies (1.2). Then J induce a map from the spectral sequence (1.4) to the spectral sequence

$$(2.7) \hspace{1cm} E_{p,q}^{2} = \widetilde{H}_{p}(CP^{\infty}) \otimes \pi_{q}^{s}(S^{0}) \Longrightarrow \pi_{p+q}^{s}(CP^{\infty}) \; .$$

But, according to Mosher [8; Proposition 4.11], we have

$$(2.8) d^{8}(8b_{5}) = b_{1} \otimes 16i_{7}$$

in (2.7), where $b_n \in H_{2n}(\mathbb{C}P^\infty; \mathbb{Z})$ is a standard generator. Thus by 1.2) and the naturality of spectral sequences, we have

$$(2.9) d8(8\gamma3) = \gamma1 \otimes 16j7,$$

and (2.6) and (2.9 imply the lemma.

q. e. d.

By (2.4) and (2.6) we have $p_{1,2}g_1=15g'$. Hence we have the following lemma by this equality and Lemma 2.1:

Lemma 2.2. (i) There is an extension $h'(1): \Sigma^{\tau}M_{15} \rightarrow S^{0}$ of $16j_{\tau}$ such that the following diagram is commutative up to sign:

where M_t is the mod t Moore spectrum, and $i_0: S^0 \rightarrow M_t$ and $p_1: M_t \rightarrow S^1$ are the inclusion and the projection respectively.

(ii) There is a coextension $A'(1): \Sigma^8 M_{15} {\rightarrow} M_{15}$ of h'(1) which satisfies $p_1A'(1)i_0=16j_7$.

Since the order of j_3 and j_7 are equal to 24 and 240 respectively and since $\langle 12, 20j_7, 12 \rangle = 0$ by [11; (3.10)], we have

Lemma 2.3. (i) There is an extension $h'(2): \Sigma^3 M_{12} \rightarrow S^0$ of $2j_3$. (ii) There is a map $A'(2): \Sigma^{8}M_{12} \to M_{12}$ such that $p_{1}A'(2)i_{0}=20j_{7}$.

Now, consider the diagram

Now, consider the diagram
$$S^{15} \qquad QP_2^3 \xleftarrow{i_{2,3}} QP_2^2 = S^7$$

$$\downarrow p_1 \qquad \qquad p_{1,2} \qquad p_{1,2}$$

$$\Sigma^{14}M_{12} \xrightarrow{g_1h'(2)} QP^3 \qquad \qquad \downarrow i_{1,3} \qquad \qquad \downarrow i_{1,3}$$

$$S^{11} \qquad S^3 = QP^1.$$

Then the following lemma can be proved using the totally similar method to the proof of Lemma 8 in [3], and we omit its proof:

Lemma 2.4.
$$p_{1,2} \circ g_1 \circ h'(2) = 0$$
.

Thus by (2.10 there is a map $\varphi': \Sigma^{14}M_{12} \rightarrow S^3$ satisfying

$$(2.11) i_{1.3} \varphi' = g_1 \circ h'(2).$$

Then we have

Lemma 2.5.
$$e(\varphi'i_0)=1/12$$
,

where $e(\alpha)$ is the Adams e'_R -invariant of $\alpha = \varphi'i_0$.

Proof. We put $\phi' = \varphi' i_0$. From (2.11), we have the following commutative diagram:

$$(2.12) S^{16} \xrightarrow{g_1} \Sigma^5 Q P^3$$

$$\uparrow 2j_3 \qquad \uparrow i_{1,3}$$

$$S^{19} \xrightarrow{\psi'} S^8.$$

Let $ph: \widetilde{KO}() \to \widetilde{H}^*(;Q)$ be the Pontrjagin character and ph_2 , be the 20-dimensional component of ph. We denote a generator of $\widetilde{KO}(S^{*i})$ by g_{si} . By Adams [2] (see also Walker [12]), Adams e'_R -invariant is a functional Pontrjagin character. So in our case we have

$$(2.13) e(\phi') = (ph_{20})_{\phi'}(g_8),$$

where $(ph_{20})_{Q'}: \widetilde{KO}(S^8) \to \widetilde{H}^*(S^{20}; Q)/\mathrm{Im} \ ph_{20} \cong Q/Z$ is a functional Pontrjagin character of ϕ' . From (2.12) we have the commutative diagram

$$(2.14) \qquad \widetilde{KO}(\Sigma^{5}QP^{3}) \xrightarrow{i_{1,2}^{*}} \widetilde{KO}(S^{8})$$

$$\downarrow g_{1}^{*} \qquad \qquad \downarrow (ph_{20})_{\phi'}$$

$$\widetilde{KO}(S^{16}) \xrightarrow{(ph_{20})_{2j_{3}}} H^{20}(\widetilde{S}^{20}; Q)/\mathrm{Im} \ ph_{20} \cong Q \ Z \ .$$

Let ξ be a canonical quaternionic line bundle over HP^2 , and $\xi \ominus \xi^*$ denote the tensor product over the quaternion of ξ and its conjugate bundle ξ^* . Then, as is well known, ΣQP^3 is a Thom space of $\xi \otimes \xi^*$. We put $\zeta = \xi \odot \xi^* \oplus 4_R$, where 4_R is the real 4-dimensional trivial bundle. Thus we have $\Sigma^5 QP^3 = (HP^2)^{\zeta}$. Then there is a Thom class $U \in \widetilde{KO}(\Sigma^5 QP^3)$ and we have $i_{1,3}^*(U) = g_2$. Moreover we have

(2.15)
$$g_1^*(U) = g_{16}$$
 up to sign.

Indeed, in order to prove (2.15) we may show that $ph_{16}(g_1^*U=\mathfrak{l}_{16})$ for a generator $\mathfrak{l}_{16}\in H^{16}(S^{16};Z)$, because $ph_{16}:\widetilde{KO}(S^{16})\to H^{16}(S^{16};Z)$ is isomorphic. Applying [1: Theorem 5.1] we see that

(2.16)
$$ph_{16}(U) = (1/120)\tilde{\gamma}_3$$
 up to sign,

where $\tilde{\gamma}_3 \in H^{16}(\Sigma^5 Q P^3; Z) = H^{11}(Q P^3; Z)$ is the dual of $\gamma_3 \in H_{11}: Q P^3; Z)$. By (2.4), $g_1^*(\tilde{\gamma}_1) = 120\iota_{16}$. Thus we have $ph_{16}(g_1^*U) = g_1^*ph_{16}(U) = \iota_{16}$ up to sign, hence (2.15).

Now, by (2.14). (2.15) and the naturality of the functional operation, we have

$$(2.17) (ph_{20})_{\zeta'}(g_8) = (ph_{20})_{\phi'}(i_{1,3}^*U) = (ph_{20})_{2j_3}(g_1^*U) = (ph_{20})_{2j_3}(g_{16}).$$

Since $(ph_{20})_{2,1}(g_{10})=e(2j_3)=1/12$, (2.13) and (2.17) give the desired result.

q.e.d.

Let

(2.18)
$$M'(\varepsilon)=M_{15}$$
 if $\varepsilon=1$, and $M'(\varepsilon)=M_{12}$ if $\varepsilon=2$.

Then, using Lemmas 2.2—2.5, we can prove the following theorem by the similar way of the proof of Theorem 3 in [3]:

Theorem 2.6. Let $\varepsilon=1$ or 2, and let $k(\varepsilon)=7$ (resp. 3) if $\varepsilon=1$ (resp. 2). Then the following diagram is commutative:

$$\Sigma^{11+k(\varepsilon)}M'(\varepsilon) \xrightarrow{h'(\varepsilon)} S^{11} \xrightarrow{g_1} QP^3$$

$$\downarrow A'(\varepsilon) \qquad \qquad \uparrow i_{1,3}$$

$$\Sigma^{3+k(\varepsilon)}M'(\varepsilon) \xrightarrow{h'(\varepsilon)} S^3.$$

§ 3. Proofs of Theorems I and II

Using the maps in Lemmas 2.2 and 2.3, we define elements $\alpha'(n) \in \pi_{4n-5}^s(S^0)$ $(n \ge 2)$ as follows:

(3.1)
$$\alpha'(n) = \begin{cases} h'(1)A'(1)^{m-1}i_0 & \text{if } n = 2m+1 \quad (m \ge 1), \\ h'(2)A'(2)^{m-1}i_0 & \text{if } n = 2m \quad (m \ge 1), \end{cases}$$

where $i_0: S^t \rightarrow \Sigma^t M'(\varepsilon)$ are the respective inclusions. Then $\alpha'(2)=2j_3$ and $\alpha'(3)=16j_7$. Moreover we have the following proposition by the definition of $\alpha'(n)$ and using [2; Theorem 11.1]:

Proposition 3.1. Let $m \ge 1$.

(i) The order of $\alpha'(2m+1)$ is equal to 15, and

$$\alpha'(2m+3) \in \langle 16j_7, 15, \alpha'(2m+1) \rangle$$
.

(ii) The order of $\alpha'(2m)$ is equal to 12, and

$$\alpha'(2m+2) \in \langle \alpha'(2m), 12, 20i_{\tau} \rangle$$
.

Let t'(n) be the following integer:

(3.2)
$$t'(n) = \begin{cases} (2n-1)!/15 & \text{if } n \text{ is odd,} \\ (2n-1)!/6 & \text{if } n \text{ is even.} \end{cases}$$

Then, from the construction of the spectral sequence (1.4), it is easy to see that

Theorem I is equivalent to the following theorem, so we shall prove it:

Theorem 3.2. There is a stable map $X'(n): S^{4n-1} \rightarrow QP_2^n$ for $n \ge 2$ which satisfies

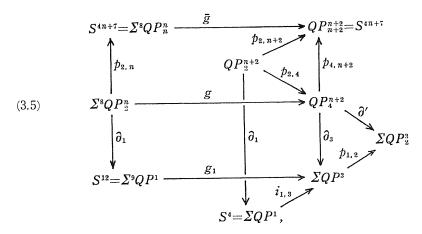
$$(3.3)_n$$
 $h_{n,2}(Q)(X'(n)) = t'(n)\gamma_n$

and

$$(3.4)_n$$
 $\partial_1 X'(n) = \alpha'(n)$,

where $h_{n,2}(Q): \pi^s_{4n-1}(QP^n_2) \to H_{4n-1}(QP^n_2; Z)$ is the stable Hurewicz homomorphism and $\partial_1: QP^n_2 \to \Sigma QP^1 = S^1$.

Proof. Consider the following diagram:



where the maps g and \bar{g} are defined from the map in (2.1) by restricting it to $\Sigma^s QP^k$ (k=1, n-1, n), g_1 is the map in (2.3) and $\partial'=p_{1,2}\partial_s$. Then all the squares and the triangles in (3.5) are commutative, and the sequences

$$QP_{2}^{n+2} \xrightarrow{p_{2,4}} QP_{4}^{n+2} \xrightarrow{\widehat{\partial}'} \Sigma QP_{2}^{3} \quad \text{and} \quad \Sigma QP^{1} \xrightarrow{i_{1,3}} \Sigma QP^{3} \xrightarrow{p_{1,2}} \Sigma QP_{2}^{3}$$

in (3.5) are cofiberings.

We prove the theorem by induction on n.

For n=2, we take X'(2) as the identity map of S^3 . Then $(3.3)_2$ is obvious. Since QP^2 is a mapping cone of $2j_3$ by (2.5) and $\alpha'(2)=2j_3$, $(3.4)_2$ also holds. For n=3, we take X'(3) as the map g' in (2.6). Then $(3.3)_3$ and $(3.4)_3$ follow from (2.6) and Lemma 2.1 respectively.

We assume that the theorem holds for $n \ge 2$, and we may prove it for n+2. By Theorem 2.6, we have

(3.6)
$$g_1 \alpha'(n) = i_{1.3} \alpha'(n+2)$$
.

Using (3.6) and the diagram (3.5), we can construct a required map X'(n+2) quite similarly to the construction of the map X(n+2) in Theorem 5 of [3].

q.e.d.

Proof of Theorem II. For integers k and l, k|l means that k is a divisor of l. Then, by Theorem I, we have

$$|h_{n,2}(Q)| |t'(n).$$

Thus we have

(3.8)
$$\nu_2(|h_{n,2}(Q)|) \leq \nu_2(t'(n)) = \nu_2((2n-1)!/a(n+1)),$$

where a(i)=1 if i is even and a(i)=2 if i is odd.

On the other hand, Walker [12] estimates the lower bound of the James numbers. Using his result [12; Theorem 0.2], we have

$$(3.9) (1/a(n-s)((2n-1)!)s)(\sum_{i=0}^{s-1}(-1)^{i}\binom{2s}{i}(s-i)^{2n})|h_{n,k}(Q)| \in Z$$

Especially, for k=s=2, since $\sum_{i=0}^{s-1} (-1)^{i} {2s \choose i} (s-i)^{2n} = 4^{n}-4$ we have

(3.10)
$$a(n+1)(4^{n-1}-1)|h_{n,2}(Q)|/(2n-1)! \in \mathbb{Z}.$$

Thus we have

(3.11)
$$\nu_2(|h_{n,2}(Q)|) \ge \nu_2((2n-1)!/a(n+1)),$$

and (3.8) and (3.11) complete the proof.

q. e. d.

§ 4. Proof of Corollary III

According to Walker [12; Theorem 0.1(i)], the following proposition holds:

Proposition 4.1. Let $K(n, s) = \sum_{i=0}^{s-1} (-1)^i {2s \choose i} (s-i)^{2n}$ $(n \ge s \ge 1)$, and k=2l or 2l-1 $(l \ge 1)$. Then, for $n-l+1 \le s \le n$,

(i)
$$(1/s((2n-1)!))K(n, s)U(2n, k) \in \mathbb{Z}$$
,

(ii)
$$(\varepsilon/(2n)!)K(n, s)U(2n+1, k) \in \mathbb{Z}$$
,

where $\varepsilon=2$ if $k\equiv 1 \mod 4$ and s=n-l+1, and otherwise $\varepsilon=1$.

Especially, for k=2n-2 or 2n-3, we have

Corollary 4.2. Let $n \ge 2$. Then

$$\nu_2(U(2n, 2n-i)) \ge \nu_2((2n-1)!/2)$$
 (i=2 or 3).

Since $U(2n, 2n-3) \mid U(2n, 2n-2)$ by definition, to prove Corollary III we have

only to show the following:

Proposition 4.3.
$$\nu_2(U(2n, 2n-2)) \leq \nu_2((2n-1)!/2)$$
.

The remainder of this section is devoted to the proof of Proposition 4.3.

First we prove Proposition 4.3 for even n. We put n=2m $(m \ge 1)$. By Theorem 3.2, there is a map $X'(2m): S^{8m-1} \rightarrow QP_2^{2m}$ satisfying $h_{2m,2}(Q)(X'(2m))$ $=((4m-1)!/6)\gamma_{2m}$ and $\partial_1 X'(2m)=\alpha'(2m)$. We define a map Y'(2m) as follows:

$$(4.1) Y'(2m) = \mathcal{A} \circ X'(2m) : S^{8m-1} \to QP_2^{2m} \to \Sigma CP_2^{4m-1},$$

where Δ is the map in (1.1). Then by (1.2) we have

$$(4.2) Y'(2m)_*(s_{m-1}) = ((4m-1)!/6)b_{4m-1}$$

for a generator $\iota_{8m-1} \in H_{8m-1}(S^{8m-1})$. This implies that

$$h_{2m,2}(Y'(2m)) = ((4m-1)!/6)b_{4m-1}$$
.

Thus it follows that

$$(4.3) U(4m, 4m-2)|(4m-1)!/6,$$

and we have the proposition for n=2m.

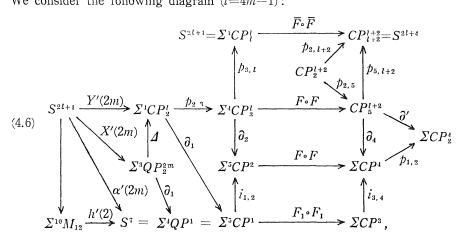
Next we shall prove the proposition for odd n. We put n=2m+1 $(m \ge 1)$. By Toda [10], there is a stable map

$$(4.4) F: \Sigma^2 CP^{\infty} \longrightarrow CP^{\infty}$$

which satisfies

(4.5)
$$F_*(b_i) = (i+1)b_{i+1}$$
 for $i \ge 1$.

We consider the following diagram (l=4m-1):



where the maps F, \overline{F} , F_1 are defined from the map in (4.4) by restricting it,

 $\partial' = p_{1,2}\partial_4$ and Y'(2m) is the map in (4.1). Here the squares and the triangles in (4.6) are commutative, and the sequence

$$CP_2^{4m+1} \xrightarrow{p_{2,5}} CP_5^{4m+1} \xrightarrow{\partial'} \Sigma CP_2^4$$

is a cofibering.

Now we put $G=p_{1,2}\circ i_{3,4}\circ (F_1\circ F_1):S^7\to \Sigma CP_{\frac{1}{2}}$. Then

Lemma 4.4. $G \circ h'(2) = 0$.

Assume that the lemma holds. Then, by chasing the diagram (4.6), it follows that there is a map $Y'(2m+1): S^{8m+2} \rightarrow CP_2^{4m+1}$ satisfying

$$(4.7) p_{2.5} \circ Y'(2m+1) = (F \circ F) \circ p_{2.3} \circ Y'(2m).$$

Then by (4.7) and the commutativity of (4.6) we have

$$(4.8) p_{2,4m+1} \circ Y'(2m+1) = (\overline{F} \circ \overline{F}) \circ p_{2,4m-1} \circ Y'(2m).$$

By (4.2), (4.5) and (4.8), we see that

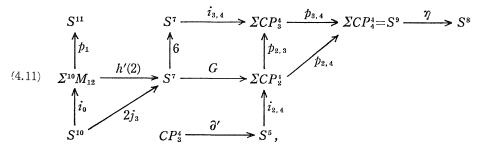
$$(4.9) h(4m+1, 2)(Y'(2m+1)) = ((4m+1)!/6)b_{4m+1},$$

where h(n, 2) is the stable Hurewicz homomorphism. Thus we have

$$(4.10) U(4m+2, 4m)|((4m+1)!/6),$$

and complete the proof of the proposition for n=2m+1.

Proof of Lemma 4.4. We consider the following diagram:



Here the triangles commute obviously, and the square commute, because $(F_1 \circ F_1)_*b_1 = 6b_3$ by (4.5). η denotes a generator of $\pi_1^s(S^0)$, and $\partial' = p_{1,2}\partial_2$. The sequence

$$CP_{3}^{4} \xrightarrow{\partial'} S^{5} \xrightarrow{i_{2,4}} \Sigma CP_{2}^{4} \xrightarrow{p_{2,3}} \Sigma CP_{3}^{4}$$

is a cofibering. As is well known,

(4.12)
$$CP_{\frac{1}{3}}$$
 is a mapping cone of η ,

and ∂' factors an odd multiple of j_3 , that is,

By (4.12) the sequence

$$S^7 \xrightarrow{i_{3,1}} \Sigma CP_{\frac{4}{3}} \xrightarrow{p_{3,1}} \Sigma CP_{\frac{4}{3}} \xrightarrow{\eta} S^5$$

in (4.11) is a cofibering.

Now, by (4.12) and that $\eta^3 = 12j_3$, we have

$$(4.14) p_2 \circ G \circ h'(2) \circ i_0 = i_{3,4} \circ 12j_3 = 0.$$

Since $\pi_5^s(S^0)=0$, (4.14) yields

(4.15)
$$G \circ h'(2) \circ i_0 = 0$$
.

Thus there is a map $\psi: S^{11} \rightarrow \Sigma CP_{\frac{1}{2}}$ such that $\psi \circ p_1 = G \circ h'(2)$. Then

$$(4.16) p_{2,3} \circ \psi = 0.$$

In fact, since $p_{2,4} \circ \psi \in \pi_2^s(S^0)$, $p_{2,4} \circ \psi = 0$ or η^2 . But $\eta \circ p_{2,4} \circ \psi = \eta \circ p_{3,4} \circ \psi = 0$ and $\eta^3 = 0$. Thus $p_{2,4} \circ \psi = 0$, and we have (4.16), since $\pi_4^s(S^0) = 0$.

Therefore there is a map $\varphi: S^{11} \rightarrow S^5$ satisfying

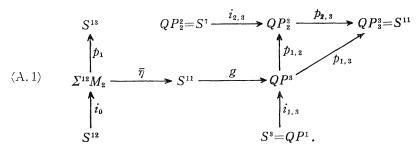
$$(4.17) i_2 \circ \varphi \circ p_1 = G \circ h'(2).$$

Since $\pi_6^s(S^0)$ is a group of order 2 and generated by $(j_3)^2$, $\varphi=0$ or $(j_3)^2$. But the kernel of $i_{2,4*}:\{S^{11},S^5\}\to\{S^{11},\Sigma CP_2^4\}$ is generated by $(j_3)^2$ by (4.13). Thus $i_{2,1}\circ\varphi=0$, and we have the lemma by (4.17).

Appendix. The Number U(2n+1, 2n-1)

As is well-known, U(n, n-1)=(n-1)! (cf. [10], [8]) and this is given by applying the map F in (4.4). We have determined in [3] the values of $\nu_2(U(2m+1, 2m-2))$ and in Corollary III the values of $\nu_2(U(2m, 2m-2))=\nu_2(U(2m, 2m-3))$ for $m\geq 2$ by using the maps $f: \Sigma^8HP^\infty\to HP^\infty$ and $g: \Sigma^8QP^\infty\to QP^\infty$ in [7] respectively. Using Proposition 4.1(ii) and the above fact that U(n, n-1)=(n-1)!, we have immediately that $\nu_2(U(4m+1, 4m-1))=\nu_2(U(4m+1, 4m))$. In this appendix we shall determine $\nu_2(U(4m+3, 4m+1))$ for $m\geq 0$ by using the map μ_1 in (2.3) and a stable map μ_2 0 by using the map μ_3 1 in (2.3) and a stable map μ_3 2 in this appendix. Consequently we obtain all values of $\nu_2(U(n, n-i))$ 3 for $1\leq i\leq 3$ 3 and i< n.

Let $\eta \in \pi_1^s(S^0)$ be the generator and $\bar{\eta}: \Sigma M_2 \to S^0$ be any extension of η to the mod 2 Moore spectrum $M_2 = S^0 \bigcup_2 e^1$. We prepare the following diagram:



Then we have

Lemma A.2. $p_1 \circ g \circ \overline{r_i} = 0$.

Proof. Using (2.4), we have $p_{1,3} \circ g \circ \bar{\eta} \in p_1^* \langle 120, \eta, 2 \rangle = 0$. Thus $p_{1,2} \circ g \circ \bar{\eta}$ factors a map $\Sigma^{12} M_2 \rightarrow Q P_2^2 = S^7$. Since $\pi_5(S^0) = 0$, there is a map $\alpha : S^{18} \rightarrow Q P_2^2 = S^7$ with $i_{2,3} \circ \alpha \circ p_1 = p_{1,2} \circ g \circ \bar{\eta}$. But $\pi_5^8(S^0)$ is generated by j_3^2 and $Q P_2^3$ is the mapping cone of $3j_3$. Therefore $i_{2,3} \circ \alpha = 0$, and we have the desired result. q.e.d.

By the above lemma we have a map $\varphi: \Sigma^{12}M_2 \to QP^1 = S^3$ which satisfies (A.3) $i_{1,3} \circ \varphi = g \circ \bar{\eta} \; .$

Lemma A.4. There is a coextension $h: S^8 \rightarrow M_2$ of $120j_7$ such that $\overline{\eta} \circ h = \varphi \circ i_0: S^{12} \rightarrow S^3 = QP^1$.

Proof. For an element α we denote its d_R -invariant by $d_R(\alpha)$. By (A.3) we have a commutative diagram:

$$(A.5) \qquad \widetilde{KO}(\Sigma^{5}QP^{3}) \xrightarrow{g^{*}} \widetilde{KO}(S^{16})$$

$$\downarrow i_{1,3}^{*} \qquad \qquad \downarrow \eta^{*}$$

$$\widetilde{KO}(S^{8}) \xrightarrow{(\varphi \circ i_{0})^{*}} \widetilde{KO}(S^{17}) \cong Z_{2}.$$

Let $U \in \widetilde{KO}(\Sigma^5 Q P^3)$ be a Thom class (see the proof of Lemma 2.5) and $g_{si} \in \widetilde{KO}(S^{8i})$ be a generator. Then by (A.5) and (2.15) we have

$$d_{R}(\varphi i_{0}) = (\varphi i_{0})^{*}(g_{8}) = (\varphi i_{0})^{*}i_{1,3}^{*}(U) = \eta^{*}(g^{*}U) = \eta^{*}(g_{16}) \neq 0.$$

On the other hand by [2] the Toda bracket $\langle \eta, 2, 120j_7 \rangle$ consists of elements in $\pi_{\bar{\tau}}^s(S^0)$ whose d_R -invariants are non-zero. Thus we can take a coextension h of $120j_7$ satisfying $\bar{\eta} \circ h = \varphi \circ i_0$.

Since $\langle 2, 120j_7, 2 \rangle = 0$, there is an extension $A: \Sigma^8 M_2 \to M_2$ of h. Then it follows that $p_1 \circ A \circ i_0 = 120j_7$. Using these maps, we define a μ -series $\mu_{8m-1} \in \pi_{8m+1}^s(S^0)$ $(m \ge 0)$ as follows:

Now we have the following theorem in which we consider only for the 2-localized version and we denote the 2-primary component of $\pi_i^s(Y)$ by ${}_2\pi_i^s(Y)$.

Theorem A. For $m \ge 0$ there is an element

$$X_m \in {}_2\pi^s_{8m+4}(CP_2^{4m-2})$$

which satisfies

$$h(X_m) = ((4m+2)!/2)b_{4m+2}$$
 and $\partial_1 X_m = \mu_{5m+1}$,

where $h: {}_2\pi_i^s(Y) \to H_i(Y; Z_{(2)})$ is the stable Hurewicz homomorphism and $\partial_1: {}_2\pi_i^s(Y) \to {}_2\pi_{i-1}^s(CP^1) = {}_2\pi_{i-3}^s(S^0)$ for $Y = CP_2^{4m+2}$ and i = 8m+4.

By the above theorem and Proposition 4.1(ii) we obtain

Corollary B.
$$\nu_2(U(4m+3, 4m+1)) = \nu_2((4m+2)!/2)$$
 for $m \ge 0$.

The rest of this paper is devoted to the proof of Theorem A. Let $\int_c(n, s)$: $\sum^{1n} CP^{\infty} \to CP^{\infty}$ be the stable map in [7; Section 3]. We put $F' = f_c(2, 1)$: $\sum^{8} CP^{\infty} \to CP^{\infty}$ which may be equal to the 4-fold composition of F in (4.1). Then it follows that

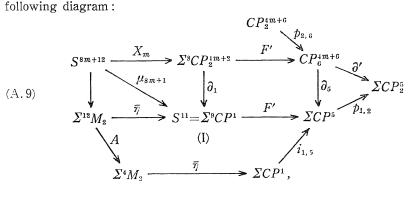
(A.7)
$$F'_*(b_i) = ((i+4)!/i!)b_{i+1}$$

and the following diagram is commutative:

$$(A.8) \qquad \begin{array}{c} \Sigma^{8}QP^{\circ\circ} & \xrightarrow{g} & QP^{\circ\circ} \\ & & \downarrow \mathcal{A} & & \downarrow \mathcal{A} \\ & & & \downarrow \mathcal{A} & & \downarrow \mathcal{A} \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & &$$

where Δ is the map in (1.1).

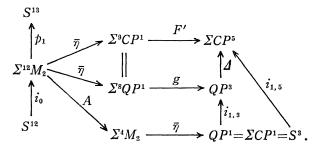
Now we prove the theorem by induction on m. First we take X_0 to be the identity map. Since \mathbb{CP}^2 is the mapping cone of η , the theorem clearly holds for $m{=}0$. Assume that the theorem holds for m. Then we can consider the following diagram:



where the square and the triangles are commutative. If the part (I) in (A.9) is commutative, then by the same reason in the proof of Theorem 5 in [3] or Theorem 3.2, we can construct a stable map $X_{m+1}: S^{8m+12} \rightarrow CP_2^{4m+6}$ satisfying the assertions in the theorem and the proof is completed.

Lemma A.10. The part (I) in the diagram (A.9) is commutative, that is, $F'\bar{\tau}=i_{1,5}\circ\bar{\tau}\circ A$.

Proof. Consider the following diagram:



Then we have $\Delta g = F'$ by (A.8). By Lemma A.4 there is a map $\alpha: S^{13} \to QP^1$ $= S^3$ such that $i_{1,3} \circ \alpha \circ p_1 = g \circ \bar{\gamma} - i_{1,3} \circ \bar{\gamma} \circ A$. But ${}_2\pi^s_{10}(S^0)$ is generated by $\eta \mu_9$ (cf. [11]) and CP^2 is the mapping cone of η . Therefore $i_{1,2} \circ \alpha = 0$ and we have $g \circ \bar{\gamma} = i_{1,3} \circ \bar{\gamma} \circ A$. Thus we have the desired result. q.e.d.

This completes the proof of Theorem A.

References

- [1] Adams, J. F., On the groups J(X)-II, Topology, 3 (1965), 137-171.
- [2] —, On the groups J(X)-IV, Topology, 5(1966), 21-71.
- [3] Imaoka, M. and Morisugi, K., On the stable Hurewicz image of some stunted projective spaces, I, *Publ. RIMS*, *Kyoto Univ.*, **20** (1984) (this volume), 839-852.
- [4] James, I.M., Spaces associated with Stiefel manifolds, Proc. London Math. Soc., 9 (1959), 115-140.
- [5] _____, The topology of Stiefel manifolds, London Math. Soc. Lecture Note Series,
- [6] Knapp, K., Some applications of K-theory to framed bordism: E-invariant and transfer, Habilitationsschrift, Bonn, 1979.
- [7] Morisugi, K., Stable self maps of the quaternionic (quasi-) projective space, preprint.
- [8] Mosher, R.E., Some stable homotopy of complex projective space, *Topology*, 7 (1968), 179-193.
- [9] Mukai, J., The order of attaching class in the suspended quaternionic quasi-projective space, *Publ. RIMS*, *Kyoto Univ.*, **20** (1984) (this volume), 717-725.
- [10] Toda, H., A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, *Memoirs Univ. of Kyoto*, 32 (1957), 103-119.
- [11] ______, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, 1962.
- [12] Walker, G., Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford (2), 32 (1981), 467-489.