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§ 1. Introduction

In the previous paper [3], we investigated the order of the cokernel of the
stable Hurewicz homomorphism on the stunted projective space HP™. In this
paper, we consider the analogous problem for the quaternionic quasi-projective
spaces.

Let QPn (l^n^oo) be the (4n— l)-dimensional quaternionic quasi-projective
space, and QP^=QPn/QPk~1 (2^k^ri) (denoted by Qn.n-k+1 in James [4]) be
the stunted quasi-projective space. For the complex projective space CPn and
the quaternionic projective space HPn, it is known (cf. James [5]) that QP°° is
a cofiber of the projection q : CP^-^HP00. Thus there is a cofiber sequence

q A
(1.1) CP00 — > HP00 — > QP- — > ICP00.

As is well known, the induced homomorphism q* : H*(CP°° ; Z)-+H*(HP°° ; Z] is
epimorphic, and so the induced homomorphism A* : H*(QP™ \ Z)-^^_1(CP00 ; Z)
is monomorphic. We denote by b^H^CP00', Z) (z'^1) the standard generators.
Then we define Yt^Hn-^QP00', Z) (z'^1) to be the element which satisfies

(1.2) 4*r*=*>t-i.
Thus the reduced homology group of QPf, is a free abelian group with basis
{Yi\k^i^n}, that is,

(1.3)

Consider the Atiyah-Hirzebruch spectral sequence

(1.4)

and let dr : Er
piq-^Er

p-r,q+r-i (r^2) be the differential in it. For an element
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we denote its class in Er
piq (r^2) simply by f. In (3.1), we define a

homotopy class a'(ri)^7iln--,(S°). Then our main theorem is stated as follows:

Theorem I. Let tf(ri) = (2n-l) !/15 // n is odd, and f '(n) = (2n-l) !/6 */ n is
even. Then

iSii.0 and #*-*(? (ri)r »)=ri®«'W .

Let

(1.5) hn, k(Q) : ^n-i(O^Z) — > H,n^(QPT! ; Z)

be the stable Hurewicz homomorphism, and \hn>k(Q}\ the order of the cokernel
of hn,k(Q)> Then Im &„,*((?) is the subgroup generated by \hnik(Q)\Yn, equiva-
lently, \hntk(Q)\ is equal to the stable order of the attaching map of the
(4n— l)-dimensional cell of QP™. By Walker [12] (see also Mukai [9] or [7]),
\hn,\(Q)\ is determined. Note that \ h n t k ( Q ) \ is equal to the so called stable
quaternionic James number.

Now, for an integer /, vz(i) denotes the index of 2 in the prime power
decomposition of i. Then, by Theorem I, we have

Theorem II. Let n^2. Then

where a(i) = l if i is even, and a(i)—2 if i is odd.

Concerning the stable Hurewicz homomorphism h(m, /) : 7r
H2m(CPT',Z), we denote by U(n, k) the order of the cokernel of h(n—l, n—K).
Then as an application of Theorems I and II, we have the following :

Corollary III. Let n^2. Then

vz(U(2n, 2n-2)) =

We remark that U(2n, 2n— 3) is already known by Walker [12; Corollary 6.2].
Also, the odd primary components of U(n+2, n) and vz(U(mJr2, ?n)) for m^O
mod 4 are determined by Knapp [6; Proposition 7.41].

We have also determined v2(U(2nJ
rl, 2n—l)) as an application of the stable

map g : ZSQP°°-*QP°° (see Appendix).
Throughout this paper, we make free use of notations used in [3]. The

notations of the collapsing map pkti, the inclusion map ik,i and the map dk

mentioned in [3; (1.5)] are used also for the quasi-projective spaces; that is,

ik,i:QPk
m-+QPl

m (l^m^k^l^n^oo) and
( n ^ k ) .

This paper is organized as follows :
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In Section 2, we consider a stable map g : 2'SQP00-><5P00 from [7] and investi-
gate some properties which are necessary for the proof of Theorem I. In Section
3 we prove Theorems I and II, and Section 4 is devoted to the proof of Corollary
III. In Appendix we determine v2(U(2n+l, 2n — l)).

§ 2. The Stable Map g

By [7], there is a stable map

(2.1) g : Z*QP~^QP~

which satisfies

(2.2) £*(rn)=((2n+3) !/(2n-l) !)r»+. .

Restricting this map to S*QPl, we have a map

(2.3) gl : SU=ISQP1 — > OP3.

Then from (2.2) it follows that

(2.4) £i*(ri)=i20rs.
By James [4; (2.10)], the following is known:

(2.5) The attaching map of the (kl—Y)-dimensional cell (1^2) to the (4/— 5)-
dimensiorial cell is Ij3,

where J4k-i^xlk-i(S°) is a (4&— l)-dimensional generator of the image of the
stable /-homomorphism. Especially, QP\ is a mapping cone of 3/3. Since the
order of j"3 is equal to 24, we have a unique map

(2.6) g' : S11 —> QPl satisfying

where rn^/JnCS11) is a generator. Then we have

Lemma 2.1. d^'^16/,, where d, : QPl-+SQP1 = Si.

Proof. Recall that there is a map J : QP°°->ICP™ in (1.1; which satisfies
(1.2). Then J induce a map from the spectral sequence Q.4 s to the spectral
sequence

(2.7) £^=

But, according to Mosher [8; Proposition 4.11], we have

(2.8)

in (2.7), where bn<=H2n(CP°° ; Z) is a standard generator. Thus by 1.2) and the
naturality of spectral sequences, we have
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(2.9) d8(8r3)=

and (2.6) and (2,9 imply the lemma. q. e. d.

By (2.4) and s2.6; we have pi.2gi=15g'. Hence we have the following lemma
by this equality and Lemma 2.1 :

Lemma 2.2. ( i > There is an extension h'(l] : 27Alii-*S° of 16; 7 such that
the following diagram is commutative up to sign :

pi 15 z0

g' A'(l)

Pi, 2 3i i
S^ - >QP* - >QP\ - > S4,

where Mt is the mod t Moore spectrum, and i0 : S0-^Mt and pi : Mt-*Sl are the
inclusion and the projection respectively.

(ii) There is a coextension Af(T) : £8AI15— >M15 of hr(Y} which satisfies

Since the order of ;3 and ;7 are equal to 24 and 240 respectively and since
<12, 20;'7, 12)^0 by [11; (3.10)], we have

Lemma 2.3* J) There is an extension /zx(2) : 2SM1Z-+S° of 2j3.
(ii) There ;s a 7?za^ A'(2] : SSM12->M12 such that p1A

/(2)i0=20j1.

Now, consider the diagram

(2.10)

S15 QPl < QPI=S7

pi
£lA'(2)

Sn S*=QP1.

Then the following lemma can be proved using the totally similar method to the
proof of Lemma S in [3], and we omit its proof:

Lemma 2.4. pi,z°gi°h/(2)=Q.

Thus by (2,10 there is a map <p' : J14Af12->S3 satisfying

(2.11) ii.M'=gi*h'(2).
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Then we have

Lemma 2.5. ^(^//o) —1/12,

where e(a) is the Adams e'R-invariant of a=<p'i0.

Proof. We put $' —o'iQ. From (2.11), we have the following commutative
diagram:

(2.12)

Let ph : K0( )-»/?*( ; Q] be the Pontrjagin character and ph:, be the 20-dimen-
sional component of ph. We denote a generator of KO(S'1" by gsi. By Adams
[2] (see also Walker [12]), Adams ^-invariant is a functional Pontrjagin
character. So in our case we have

where (/>/z20)^ : KO(SS)->H*(S20 ; Q)/lmph20^Q/Z is a functional Pontrjagin
character of <!)' . From (2.12) we have the commutative diagram

(2.14)

Let | be a canonical quaternionic line bundle over HP2, and JO£* denote the
tensor product over the quaternion of f and its conjugate bundle f*. Then, as
is well known, JQP3 is a Thorn space of f®f*. We put C=-?®l*®4/2, where
4/2 is the real 4-dimensional trivial bundle. Thus we have J5QP3=(/JP2)C. Then
there is a Thorn class U^KO(£~°QP5} and we have /?yL~; = §v Moreover we
have

(2.15) £?W)-£iG up to sign.

Indeed, in order to prove (2.15) we may show that ph1G(gfLJ =::, for a generator
.'16etf 16(S16; Z), because ph16 : KO(S1G^PPG(S1G; Z) is isomorphic. Applying [1;
Theorem 5.1] we see that

(2.16) ^16(£/)=(l/120)f8 up to sign,

where f3e#1G(J5QP3; Z)=Hll(QP*; Z) is the dual of r^H^QP", Z). By (2.4),
£*(fJ = 120r1G. Thus we have ph1G(gfU)=gfph1G(U)=c1G up to sign, hence (2.15).
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Now, by (2.14;. (2.15) and the naturality of the functional operation, we have

(2.17) (M2o)o'(^8)-(M2o)^(2T1C^) = (M2o)2;3(^f^) = (M2o)2J-3(^6).

Since (M80)8j3(5rib}=g(2j3)=l/12, (2.13) and (2.17) give the desired result.
q.e.d.

Let

(2.18) M'(e)=Mls if s=l, and M'(e)=M18 if e=2.

Then, using Lemmas 2.2—2.5, we can prove the following theorem by the similar
way of the proof of Theorem 3 in [3] :

Theorem 2.6. Let e=l or 2, and let k(e)=7 (resp. 3) if e = l (resp. 2). Then
the following diagram is commutative:

§ 3. Proofs of Theorems I and II

Using the maps in Lemmas 2.2 and 2.3, we define elements a'(n)~~in--Q(SQ)
^2) as follows:

hf(l)A'(l)m-liQ if n=2m+l (m^l),
(3.1) ' '1 '- if n=^

where /0 '• S^—J^U'is) are the respective inclusions. Then a'(2)=2j2 and «'(3)
=16/7. Moreover we have the following proposition by the definition of a'(n]
and using [2; Theorem 11.1] :

Proposition 3.1. Let m^l.
(i) T/2£ 077/0r o/ a/(2??z+l) is equal to 15,

a'(2?72+3)eE<16/7, 15, a/(

(ii) The orde-- of a' (2m) is equal to 12, and

a' \2m +2)e <«' '(2m), 12, 20/7> .

Let ^(?z; be the following integer :

(2w-l)!/15 if n is odd,
(3.2) t'(n)=\

(2n—1)1/6 if ?2 is even.

Then, from the construction of the spectral sequence (1.4), it is easy to see that
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Theorem I is equivalent to the following theorem, so we shall prove it :

Theorem 3.2. There is a stable map Xf(n} : S^^-^QP? for n^2 which
satisfies

(3.3), hn.*(Q)(X'(nfi = t'(n)rn

and

(3.4)n 31^'(n) = a /(n),

where hn,z(Q) '• ̂ ln-i(QPz}— >ff4.n-i(QPz ', Z} is the stable Hurewicz homomorphism
and 3, : QP%->SQPl=S[.

Proof. Consider the following diagram :

(3.5)

s12-

where the maps g and J- are defined from the map in (2.1) by restricting it to
S*QPk (fc=l, n— 1, n), ^! is the map in (2.3) and d'=p1>zds. Then all the squares
and the triangles in (3.5) are commutative, and the sequences

in (3.5) are cofiberings.
We prove the theorem by induction on n.
For n—2, we take X'(2) as the identity map of S"\ Then (3.3)2 is obvious.

Since QP2 is a mapping cone of 2/3 by (2.5) and a'(2)=2j"3, (3.4)8 also holds.
For n=3, we take Zx(3) as the map g' in (2.6). Then (3.3)3 and (3.4)., follow
from (2.6) and Lemma 2.1 respectively.

We assume that the theorem holds for n~^2, and we may prove it for n+2.
By Theorem 2.6, we have

(3.6) gla'(n)=i1>3
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Using (3.6) and the diagram (3.5), we can construct a required map X'(n-\-2)
quite similarly to the construction of the map X(n+2) in Theorem 5 of [3].

q. e. d.

Proof of Theorem II. For integers k and /, k\l means that k is a divisor
of /. Then, by Theorem I, we have

(3.7)

Thus we have

(3.8) » '» ( l / i

where a(i)— 1 if i is even and a(i}=2 if i is odd.
On the other hand, Walker [12] estimates the lower bound of the James

numbers. Using his result [12; Theorem 0.2], we have

(3.9) \ i /
for k^s^n.

Especially, for k = s=2, since S{;J(— !)'( S)(s-z)2'*:=47l-4 we have

(3.10)

Thus we have

(3.11)

and (3.8) and (3.11) complete the proof. q. e. d.

§4. Proof of Corollary III

According to Walker [12; Theorem O.l(i)], the following proposition holds:

Proposition 4.1. Let K(n, s)=SJ-J(-l)*(2.S)(s-/)an (n^s^l), and k=2l or

21-1 (/^l). Then, for n-l+l^s^n,

(i) (l/s((2n-l) !))/f(n, s)I7(2n,

(ii)

where e—2 if k = l mod 4 and s=n— /+!, an<i otherwise e = l.

Especially, for k=2n—2 or 2n— 3, we have

Corollary 4.2. Le£ n^2. T/zen

v2(U(2n, 2n-/))^V2((2n-l) 1/2) (/=2 or 3).

Since f/(2n, 2n— 3)|£7(2n, 2n— 2) by definition, to prove Corollary III we have
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only to show the following :

Proposition 4.3. ya(£7(2/i, 2n-2))^2((2n-l) !/2) .

The remainder of this section is devoted to the proof of Proposition 4.3.
First we prove Proposition 4.3 for even n. We put n=2m (m^T). By

Theorem 3.2, there is a map X'(2m) : S*m~l-*QPlm satisfying /z2m,2(Q)(Z'(2m))
= ((47n-l) !/6)r2m and dlX

f(2m}=ar(2m}. We define a map F'(2m) as follows:

(4.1) F /(2m)=Jo,

where A is the map in (1.1). Then by (1.2) we have

(4.2) Ir/(27;i)3|8t8m.1) = ((4m-l)!/6)ft4lll_

for a generator ^-i^ftm-ivS8771"1). This implies that

Thus it follows that

(4.3) £7(4771, 4777-

and we have the proposition for n=2m.
Next we shall prove the proposition for odd n. We put n— 2?;z+l

By Toda [10], there is a stable map

(4.4) F : 2*CP~ — > CP~

which satisfies

(4.5) F*(bJ=(i+l)bg+l for i^l.

We consider the following diagram (l-=-^m— 1) :

F°F

(4.6)
SCPi

where the maps F, F, Fl are defined from the map in (4.4) by restricting it,
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df=pli2dfi and Yf(2m) is the map in (4.1). Here the squares and the triangles in
(4.6) are commutative, and the sequence

02.6 3'

CPim+1 —> cp|m+1 —> ICP\
is a cofibering.

Now we put G=/>i.2 '>i8,1»(F1oF1) : S1->ICP\. Then

Lemma 4.4. G°/V(2)-0.

Assume that the lemma holds. Then, by chasing the diagram (4.6), it fol-
lows that there is a map F/(2?7Z+1) : S8m+2->CP|m+1 satisfying

(4.7) ^ .B«]

Then by (4.7) and the commutativity of (4.6) we have

(4.8) 02,4m+i°F'(2?7z+l)=

By (4.2), (4.5) and (4.8), we see that

(4.9) /X4772+1, 2)(r'(2ro+l))=((4m+l)!

where h(n, 2) is the stable Hurewicz homomorphism. Thus we have

(4.10) £7(4771+2, 4??z) | ((4m+1) 1/6),

and complete the proof of the proposition for n=2m+l.

Proof of Lemma 4.4. We consider the following diagram:

Zq A "h<* *

S11 S< '-±-+ SCPi3
A A A

01 6 02,3

I k,(2\ I Q. I /02.^

(4.11) JioMi2 "W >5? ^Jcpj

Here the triangles commute obviously, and the square commute, because (/vFJ*^
—6^0 by (4.5). 77 denotes a generator of 7r?(S°), and d'—pli2d2. The sequence

2 , 4

CP^ —> S5 —> JCP! —

is a cofibering. As is well known,

(4.12) CP\ is a mapping cone of 7],

and 3' factors an odd multiple of ;3, that is,
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(4.13) 9' = (2/+l);>/>s , for some integer /.

By (4.12) the sequence

* 3 . i P>, t y
S7 — > iCPi — > ICP\ — > Ss

In (4.11) is a cofibering.
Now, by (4.12) and that r^ — Ylj^ we have

(4.14) p2 ,oG-/ i /(2)ofo=/ , i 4ol27 3=0 .

Since 7r|(S°)=0, (4.14) yields

(4.15) G'fc'(2)o/0=0.

Thus there is a map cp : 511->ITCP| such that ^p1=G-h/(2). Then

(4.16) £2,3°^=0.

In fact, since p2,±°(p^xS2(S°), pi,i°(/>=Q or rf. But 7]°p2,io<f>=y°px,iop2,io<f>:=Q and
57-^0. Thus £2>4°^=0, and we have (4.16), since 7r|(S°)=0.

Therefore there is a map <p : S11— >S3 satisfying

(4.17) /2 s<p*pi=G°h'(2).

Since 7r^(S°) is a group of order 2 and generated by O'.)2, ^=0 or (j,)°. But the
kernel of «2.4* : {S11, SB}->{Sn, I'CPJ} is generated by (_/3)2 by (4.13j. Thus
z'2j l°p=0, and we have the lemma by (4.17). q. e.d.

Appendix. The Number U(2n + l, 2n — l)

As is well-known, U(n, n—l} = (n—l}\ (cf. [10], [8]) and this is given by
applying the map F in (4.4). We have determined in [3] the values of
v*(U(2m+l, 2??i-2)) and in Corollary III the values of v*(U(2m, 2?7i-2)) =
v,(U(2m, 2m -3)) for 7?z^2 by using the maps / : ^HP^HP00 and g : SSQP°°
-+QP00 in [7] respectively. Using Proposition 4.1(ii) and the above fact that
U(n, n—l) = (n—l)l, we have immediately that v2(U(^m + l, 4?7Z— I))=v2(£/(4?7z+l,
4m)). In this appendix we shall determine y2(£/(4m+3, 4m +1)) for ??i^0 by using
the map g± in (2.3) and a stable map I^CP^-^CP™. We denote the map g±
simply by g in this appendix. Consequently we obtain all values of v2(U(n, n—i)}
for l^z'^3 and i<n.

Let 57<E7Ti(S°) be the generator and rj : IM2-*S" be any extension of 77 to
the mod 2 Moore spectrum M2=S°{J2e

1. We prepare the following diagram:
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(A.:

Then we have

Lemma A.2. p1 2°g°-7j=Q.

Proof. Using (2.4), we have ^i,3
og°5e^f<120 ; rh 2>=0. Thus plt2°g0^

factors a map £12M2->QPI=S7. Since 7r6(S°)=0, there is a map a : S13-*QP2
2=S7

with iz,^°ocopi—pi,zog0^- But 7T6(5°) is generated by j\ and QP\ is the mapping
cone of 3/3. Therefore /2 i3oa '—o, and we have the desired result. q. e. d.

By the above lemma we have a map <p : £12A/L-*QP1=S3 which satisfies

(A. 3) ii.soy>=g°ij -

Lemma A.4. There is a coextension h : SS—>MZ of 120/7 suck that f/°h=

Proof. For an element a we denote its ^-invariant by dR(a). By (A. 3)
we have a commutative diagram:

or5'' ^-x^

KO(S16)

(A. 5)

Let U^KO(23QPS} be a Thorn class (see the proof of Lemma 2.5) and g^^
KO(Ssi) be a generator. Then by (A. 5) and (2.15) we have

d«(pi'o) = (0Ho)*(^

On the other hand by [2] the Toda bracket (77, 2, 120/7> consists of elements in
^9(5°) whose ^-invariants are non-zero. Thus we can take a coextension h of
120/7 satisfying 7j°h=<p°i0. q. e. d.

Since <2, 120/7, 2>—0, there is an extension A : I8M2->M2 of /z. Then it
follows that £i°,4°z0=120/7. Using these maps, we define a /^-series /jSm-i^
-Tfm+i(S°) (wz^O) as follows:
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(A. 6; /*8m+i=5Mm-'n : Ssm+l — > Jhm+1A/2

Now we have the following theorem in which we consider only for the 2-local-
ized version and we denote the 2-primary component of r r f f F ) by ^l(Y).

Theorem Aa For m^Q there is an element

V (= >rrs fnp4m-2\
- * m f c = 2 7 r 8 m - L 4 \ k < ~ ^ 2 )

which satisfies

/z(*J = ((4?7i+2)!/2)^m+8 and 3i-Ym=/Am ,i,

it here h : ^l(Y}—>Hi(Y] Z (2>) is the stable Hurewicz homomorphism and dl : ^(Y j
->,7c?_](CP1)=27r?_3(S°) for Y=CP4

2
m+* and i=8m+4.

By the above theorem and Proposition 4.1(ii) we obtain

Corollary B. P2(£7(4;;z+3, 4m + l)) = v2((4m+2) !/2) /or 7 /z^O,

The rest of this paper is devoted to the proof of Theorem A. Let fc(n, s) :
Z^Opco^apco be the stable map in [7; Section 3]. We put F'=fc(2, 1) : I8CP~
—• >CP°° which may be equal to the 4-fold composition of F in (4.1). Then it
follows that

(A. 7) Fi(W =

and the following diagram is commutative :

ZSQP~ — - > QP"
!

(A. 8) \/l

where J is the map in (1.1).
Now we prove the theorem by induction on m. First we take X0 to be the

identity map. Since CP2 is the mapping cone of 77, the theorem clearly holds
for m=Q. Assume that the theorem holds for m. Then we can consider the
following diagram :

(A > 9 )
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where the square and the triangles are commutative. If the part (I) in (A.9) is

commutative, then by the same reason in the proof of Theorem 5 in [3] or

Theorem 3.2, we can construct a stable map Xm+1 : s8m+12-^CP4
2
m+6 satisfying

the assertions in the theorem and the proof is completed.

Lemma A.10. The part (/) in the diagram (.4.9) is commutative, that is,

Proof. Consider the following diagram :

S13

F'

Then we have Ag=Ff by (A.8). By Lemma A.4 there is a map a : Sls-^QPi

=S3 such that ii,3°a°p1=g°^~i1^°7j°A. But 2^fo(5°) is generated by ^9 (cf.

[11]) and CP2 is the mapping cone of 77. Therefore z l i 2°a=0 and we have g°Tj

=/1.3°5°A Thus we have the desired result. q.e. d.

This completes the proof of Theorem A.
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