Boundary Behavior of the Bergman Kernel Function on Pseudoconvex Domains

Bу

Takeo OHSAWA*

Introduction

Let $D \subset \mathbb{C}^n$ be a bounded domain of holomorphy and let $H^2(D)$ be the set of square integrable holomorphic functions on D. The Bergman kernel function (cf. [1]) is defined by

$$K_{D}(z) := \sup_{f \in H^{2}(D) - \{0\}} |f(z)|^{2} / ||f||_{D}^{2},$$

where

 $||f||_{\mathcal{D}}^2 = \int_{\mathcal{D}} |f(z)|^2 dv$ (dv denotes the Lebesgue measure on \mathbb{C}^n).

 $K_D(z)$ is regarded as a function measuring how large the space $H^2(D)$ can be. We are interested in the growth of K_D near the boundary. Our motivation is the following theorem which has been proved by Hörmander and Diederich independently (see [2] and [4]).

Theorem 1. If the boundary of D is strictly pseudoconvex, then $K_D(z) \sim d(z)^{-n-1}$. Here $d(z) = \inf_{z \in \partial D} |z-x|$ and $A \sim B$ means that both A/B and B/A are bounded.

From Theorem 1 and the definition of K_D it can be easily seen that $K_D(z) \leq d(z)^{-n-1}$ if ∂D is locally Lipschitz, where $A \geq B$ means that B/A is bounded. Further it has been shown by Pflug [6], [7] that if D has a C^2 -pseudoconvex boundary, then

$$K_D(z) \geq d(z)^{-2+\varepsilon}$$
.

Here ε is any positive number.

^{*} Received February 6, 1982. Revised December 21, 1983. Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Takeo Ohsawa

The present note may well be understood as a continuation of the above works. Let φ be a defining function of a bounded domain D with a C^2 -pseudoconvex boundary in \mathbb{C}^n , let x be a boundary point, and let

$$N_{\mathbf{x}} := \left\{ (\xi^1, \cdots, \xi^n) \in \mathbb{C}^n; \sum_{i=1}^n \frac{\partial \varphi}{\partial z_i}(x) \xi^i = 0, \sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial z_i \partial z_j}(x) \xi^j \xi^j = 0 \right\},$$

$$\nu_{\mathbf{x}} = \dim_{\mathbb{C}} N_{\mathbf{x}}.$$

Under this situation we have the following theorem.

Main Theorem. Let D be a bounded domain in \mathbb{C}^n with C⁴-pseudoconvex boundary. Fix $x \in \partial D$. Then, for any positive number ε ,

$$\inf_{z\in D}K_D(z)|z-x|^{n-\nu_x+1-\varepsilon}>0.$$

Moreover if we set $S_x := \{y; v_y = v_x\}$ and

$$m_{\varepsilon}^{x}(y):=\inf_{z\in D}K_{D}(z)|z-y|^{n-\nu_{x}+1-\varepsilon},$$

then the function $y \mapsto m_{\mathfrak{g}}^{\mathfrak{x}}(y)$ is continuous on $S_{\mathfrak{x}}$.

Corollary. Let
$$\nu_D := \sup_{x \in \partial D} \nu_x$$
. Then, for any $\varepsilon > 0$,
 $K_D(z) \ge d(z)^{-n+\nu_D - 1+\varepsilon}$.

The main tool in the proof is a vanishing theorem on complete Kähler manifolds.

The author thanks to Professors K. Diederich and P. Pflug for their encouragement. Also many thanks to the referee for valuable criticisms.

§1. Localization lemma

Let $D \subset \mathbb{C}^n$ be a bounded domain of holomorphy, let x be a boundary point, and let V and U with $V \subset \subset U$ be two open neighbourhoods of x in \mathbb{C}^n .

Localization lemma. There is a positive number δ such that for any point $y \in D \cap V$,

(*)
$$\delta K_{D \cap U}(y) \leq K_D(y) \leq K_{D \cap U}(y) .$$

Proof. Let $\chi: \mathbb{C}^n \to \mathbb{R}$ be a \mathbb{C}^{∞} function such that $\chi=1$ on a neighbourhood of V and $\chi=0$ outside U. Let $z_0 \in V \cap D$ be any point and let f be a holomorphic function in $H^2(D \cap U)$ such that $||f||_{D \cap U} = 1$ and $|f(z_0)|^2 = K_{D \cap U}(z_0)$. We set $\alpha = \overline{\partial}(f\chi)$ on U and $\alpha = 0$ outside U. Then α is a $\overline{\partial}$ -closed (0, 1)-form

898

defined on D satisfying

$$\int_{D} |z-z_{0}|^{-2\pi} |\exp(|z-z_{0}|^{2})| \alpha|^{2} dv < C,$$

where C is a constant independent of z_0 . Thus, by a well known theorem of Hörmander (cf. Theorem 2.2.1 in [4]), there is a function β satisfying $\overline{\partial}\beta = \alpha$ and

$$\int_{D} |z-z_{0}|^{-2n} \exp(-|z-z_{0}|^{2})|\beta|^{2} dv < C.$$

Hence $\chi f - \beta$ is a holomorphic function defined on D satisfying $\chi(z_0)f(z_0) - \beta(z_0) = f(z_0)$ and

$$\int_{D} |\chi f - \beta|^2 dv < 2(Cd^{2n} \exp(d^2) + 1),$$

where d denotes the diameter of D. Therefore if we set $\delta = \frac{1}{2} (Cd^{2n} \exp(d^2) + 1)^{-1}$, we obtain (*).

§2. Proof of Main Theorem

In what follows D is a bounded domain in \mathbb{C}^n with C⁴-pseudoconvex boundary and a defining function φ , and x is a boundary point.

Proposition 1. Let F be a holomorphic function on a neighbourhood of \overline{D} such that $\{F=0\}$ is nonsingular, $\{F=0\} \cap \partial D = \{x\}$, and the zero-order of $\varphi \mid \{F=0\}$ is two for every tangent direction at x. Then, for every positive number ε ,

$$\int_D |F|^{-n-1+\varepsilon} dv < \infty \; .$$

Proof is easy.

We need the following proposition. (cf. [3]).

Proposition 2 (Diederich-Fornaess). There are positive numbers L and η_0 such that for any positive number $\eta < \eta_0$, the function $-(d(z)\exp(-L|z|^2))^{\eta}$ is strictly plurisubharmonic on $D \cap \{z_0; d(z) \text{ is } C^2 \text{ at } z_0\}$.

In what follows we take a coordinate $z=(z_1, \dots, z_n)$ so that x is the origin. We put $\nu = \nu_x$, $z'=(z_1, \dots, z_\nu, 0, \dots, 0)$, and $z''=(0, \dots, 0, z_{\nu+1}, \dots, z_n)$. We may assume that the linear subspace $H=\{z; z'=0\}$ is transversal to N_x and ∂D .

TAKEO OHSAWA

We set $B(r) = \{z; |z| < r\}$. We may assume that $B(1) \cap D \cap H$ is simply connected.

We put

$$p(\varphi) = p(\varphi)(z'') = \sum_{i=\nu+1}^{n} \frac{\partial \varphi}{\partial z_i}(0) z_i + \sum_{i,j=\nu+1}^{n} \frac{\partial^2 \varphi}{\partial z_i \partial z_j}(0) z_i z_j.$$

Let f_{ε} be a branch of $p(\varphi)^{(-n+\nu-1+\varepsilon)/2}$ over $H \cap B(1) \cap D$, where ε is a positive number satisfying $\varepsilon < 2/(n-\nu+1)$. Then, by Proposition 1,

$$\int_{H\cap B(1)\cap D} |f_{\mathbf{e}}|^{2+\mathbf{e}^2} dv < \infty.$$

We shall extend $f_{\varepsilon}|_{H\cap B(1/2)\cap D}$ to a square integrable holomorphic function on $B(1/2)\cap D$. First, in virtue of Proposition 2, we may assume that for any sufficiently small η , $-(-\varphi)^{\eta}$ is strictly plurisubharmonic on D. If we set $\sigma(z_1, \dots, z_n) = z''$, then we can find a positive number C such that

$$\sigma^{-1}(H \cap D) \supset \{z \in D; -\varphi(z) > C \mid z' \mid\}$$

Let χ be a C^{∞} function on **R** such that

$$\chi(t) = \begin{cases} 1 & \text{if } t \geq 2C \\ 0 & \text{if } t < C \end{cases}$$

We set $\lambda(z) = \chi(-\varphi(z)/|z'|)$. Let \emptyset be a plurisubharmonic function on $B(1) \cap D$ defined by

$$\Phi(z) = -\log(-\log|z'|) - (-\varphi)^{\eta} + 2\nu \log|z'| + |z|^2.$$

Let dv_{ϕ} and $| |_{\phi}$ denote respectively the volume form and the length of forms with respect to $\partial \overline{\partial} \phi$. We put

$$\widetilde{\alpha} = \begin{cases} \overline{\partial} (\lambda \sigma^* f_{\mathfrak{e}}) \wedge dz_1 \wedge \cdots \wedge dz_n & \text{on } \sigma^{-1} (H \cap D \cap B(1)) \\ 0 & \text{otherwise,} \end{cases}$$

and $\alpha = \tilde{\alpha}|_{D \cap B(1/2)}$. Then α is a $\overline{\partial}$ -closed (n, 1)-form on $D \cap B(1/2)$.

Proposition 3. Let Φ and α be as above, then

$$(**) \qquad \qquad \int_{D\cap B(1/2)-H} e^{-\psi} |\alpha|_{\psi}^2 dv_{\psi} < \infty.$$

Proof. Choosing η so small that $-(-\varphi)^{2\eta}$ is strictly plurisubharmonic, we may assume that

900

$$\partial \overline{\partial} (-(-\varphi)^{\eta}) \geq \eta^2 (-\varphi)^{\eta-2} \partial \varphi \wedge \overline{\partial} \varphi$$
.

Hence we have

$$\begin{split} \partial \bar{\partial} \varPhi & \geq \frac{\partial |z'| \wedge \bar{\partial} |z'|}{|z'|^2 (\log |z'|)^2} + \eta^2 (-\varphi)^{\eta-2} \partial \varphi \wedge \bar{\partial} \varphi + \sum_{i=1}^n dz_i \wedge d\bar{z}_i \\ & \text{on} \quad D \cap B(1) - H \,. \end{split}$$

Therefore,

•

$$\begin{split} &|\overline{\partial}\lambda(z)|_{\varphi}^{2} = \left| \left| \chi'(-\varphi(z)/|z'|) \left(-\frac{\overline{\partial}\varphi}{|z'|} + \frac{\varphi\overline{\partial}|z'|}{|z'|^{2}} \right) \right|_{\varphi}^{2} \\ \leq & \frac{2K^{2}C^{2}}{\eta^{2}} \left\{ (-\varphi)^{-\eta} + (\log|z'|)^{2} \right\} \; . \end{split}$$

Here, $K = \sup_{t \in \mathbb{R}} \chi'(t)$ and η is chosen to be smaller than one. Since $|dz_1 \wedge \cdots \wedge dz_n|_{\phi}^2 dv_{\phi} = |dz_1 \wedge \cdots \wedge dz_n|^2 dv$ we have

$$|\alpha|_{\varphi}^{2}dv_{\varphi} \leq C_{1}(\eta)|f_{\varepsilon}(\sigma(z))|^{2}\left\{(-\varphi)^{-\eta}+(\log|z'|)^{2}\right\}dv,$$

for some constant $C_1(\eta)$ depending on η . On the support of α we have $|z'| < -\varphi(z)/C$. Hence

$$|\alpha|_{\phi}^{2}dv_{\phi} \leq C_{2}(\eta)|f_{\mathfrak{g}}(\sigma(z))|^{2}(-\varphi)^{-\eta}dv,$$

for some constant $C_2(\eta)$. Therefore, for some constants $C_3(\eta)$, *m* and *M*, we have

$$\int_{D \cap B(1/2) - H} e^{-\varphi} |\alpha|_{\varphi}^{2} dv_{\varphi}$$

$$\leq C_{3}(\eta) \int_{D \cap B(1) \cap H} |f_{\varepsilon}|^{2} |\varphi(z'')|^{-2\eta} \left(\int_{B(M^{\varphi}(z'')) - B(m^{\varphi}(z''))} |z'|^{-2\nu} dv_{1} \right) dv_{2}$$

Here dv_1 is the Lebesgue measure on $\{z''=\text{constant}\}\$ and dv_2 is the Lebesgue measure on H. Hence,

$$\begin{split} & \int_{D \cap B(1/2) - H} e^{-\varphi} |\alpha|_{\varphi}^{2} dv_{\varphi} \\ & \leq C_{4}(\eta) \int_{D \cap B(1) \cap H} |f_{\varepsilon}|^{2} |\varphi(z'')|^{-3\eta} dv_{2} \\ & \leq C_{4}(\eta) \left(\int_{D \cap B(1) \cap H} |f_{\varepsilon}|^{2+\varepsilon^{2}} dv_{2} \right)^{2/(2+\varepsilon^{2})} \left(\int_{D \cap B(1) \cap H} |\varphi(z'')|^{-3(2+\varepsilon^{2})\eta/\varepsilon^{2}} dv_{2} \right)^{\varepsilon^{2}/(2+\varepsilon^{2})} \end{split}$$

for some constant $C_4(\eta)$. Hence, if η is sufficiently small relative to ϵ^2 , we have (**).

In [5] we have proved the following

Proposition 4. Let X be a complex manifold which admits a complete Kähler metric, and let Φ be a strictly plurisubharmonic function on X of class C⁴. Then, for any $\overline{\partial}$ -closed (n, 1)-form α with $\int_{X} e^{-\phi} |\alpha|_{\phi}^{2} dv_{\phi} < \infty$, we can find an (n, 0)form β satisfying $\overline{\partial}\beta = \alpha$ and $\int_{X} e^{-\phi} |\beta|_{\phi}^{2} dv_{\phi} \leq \int_{X} e^{-\phi} |\alpha|_{\phi}^{2} dv_{\phi}$.

Since $D \cap B(1/2) - H$ admits a complete Kähler metric

$$\sum_{i=1}^{n} dz_{i} \wedge d\bar{z}_{i} + \partial \overline{\partial} (-\log(-\log|z'|)) + \partial \overline{\partial} (-1/\varphi) + \partial \overline{\partial} (1/2 - |z|^{2})^{-1},$$

Proposition 4 is applicable and we can find β such that $\overline{\partial}\beta = \alpha$ and

$$\int_{D\cap B(1/2)-H} e^{-\phi} |\beta|_{\phi}^2 dv_{\phi} \leq \int_{D\cap B(1/2)-H} e^{-\phi} |\alpha|_{\phi}^2 dv_{\phi} .$$

If we set

$$fdz_1\wedge\cdots\wedge dz_n=\lambda\sigma^*f_{\mathbf{e}}dz_1\wedge\cdots\wedge dz_n-eta$$
,

we obtain a square integrable holomorphic function f on $D \cap B(1/2) - H$ which naturally extends across H and gives the desired extension of f_{e} .

Since the constructions of f_{ϵ} and f are uniform with respect to the choices of x and H, we obtain the Main Theorem. Q.E.D.

Question. Is it possible to drop ϵ in Main Theorem?

References

- [1] Bergman, S., The kernel function and the conformal mapping, Math. Surveys, No. 5 (1950).
- [2] Diederich, K., Das Randverhalten der Bergmanschen Kernfunction und Metrik in streng pseudo-konvexen Gebieten, Math. Ann., 187 (1970), 9-36
- [3] Diederich, K. and Fornaess, J.E., Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, *Invent. Math.* 25 (1977), 129–141.
- [4] Hörmander, L., L²-estimates and existence theorems for the *\(\bar\)*-operator. Acta Math. 113 (1965), 89–152.
- [5] Ohsawa, T., On complete Kähler domains with C¹-boundary, Publ. RIMS, Kyoto Univ. 16 (1980), 929–940.
- [6] Pflug, P., Quadratintegrable holomorphe Funktionen und die Serre-Vermutung, Math. Ann. 216 (1975), 285–288.
- [7] —, Various applications of the existence of well growing holomorphic functions, *Functional analysis, Holomorphy and approximation theory*, J.A. Barroso (ed.), North-Holland Publishing Company, 1982.