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On the Hopf Algebra Structure of the mod 2
Cohomology of a Finite ff-Space

By

James LIN*

§ 1. Introduction

The action of the Steenrod algebra on the cohomology of a finite //-space has
placed several restrictions on the possible spaces which can be finite //"-spaces.
It is now known, for example, that the loop space of a finite //-space has no
homology torsion. We continue this study here by showing that in the mod 2
cohomology of a finite //-space, every generator of degree 4/e + l is in the image
of Sq2k.

This result has several consequences. For example, if an integer n has
dyadic expansion

n=2Sl+ •••+2SL

where O^s^St+i we say n has length I. If 4& + 1 has length / and there is a
generator of the mod 2 cohomology of a finite //-space in degree 4& + 1, then
there is a generator in degree 2Z— 1. Hence if a finite //-space is highly con-
nected this result implies the non-existence of generators of small length.

Another implication is that there are no 4/e dimensional primitive indecom-
posables in the mod 2 cohomology of the loop space. Also, all generators of
degree 8/2+5 in the cohomology of a finite //-space are in the image of Sq2.

Throughout this paper it is assumed that all finite //-spaces used in this
paper are simply connected and have associative mod 2 homology rings. Under
this assumption it is easily shown that finite //-spaces that have no two torsion
have primitively generated mod 2 cohomology rings. Hence their structure over
the Steenrod algebra is restricted by several results of Thomas [4]. It is there-
fore more interesting to study finite //-spaces that have two torsion in their
homology.

Under these circumstances it was shown that the two torsion is of order at
most two and arises from odd degree mod 2 cohomology generators whose cup
product is non trivial. In chapter 3 of this paper a structure theorem is given
for the action of the Steenrod algebra on these generators. In particular if y is

Communicated by N. Shimada, September 7, 1983.
* University of California, San Diego La Jolla, California 92093, USA.

** Partially supported by a National Science Foundation grant.



878 JAMES LIN

a generator of the mod 2 cohomology of a finite //-space and the degree of y
has the form 2s^1—l+2s+zk where s^O and k>Q, and y has cup product square
non trivial, then y is in the image of SqzS+lk modulo decomposables. For exam-
ple, if y is a generator in H19(X; Z2) where X is a finite //-space and y2 is
non-zero, then 19 =22— 1+24, hence y=Sqsz modulo decomposables, where z lies
in Hll(X;Zz}. Applying the theorem again, z=Sq*w modulo decomposables
where w lies in H7(X; Z2). So this theorem restricts the structure of the two
torsion which appears in the mod 2 cohomology of a finite //-space.

In chapter four a general Hopf algebra structure theorem for the mod 2
cohomology of a finite //-space is presented. If X is a finite //-space, H*(X; Z2)
can be considered a universal object on a certain coalgebra which admits a
squaring map. Let R be the set of elements of H*(X; Z2) which have reduced
coproduct in f//*(Z; Z2)®H*(X; Z2). Note that this is a coalgebra over the
Steenrod algebra, and the squaring map £ : H*(Xm, Z2)-^H*(Xm, Z2) in fact
restricts to R. Such a coalgebra will be called a coalgebra with squares. Let
S(R) be the free commutative algebra on R and let / be the ideal in S(R)
generated by elements of the form xz— gx. Then S(R)/I is isomorphic to
H*(X; Z2} as Hopf algebras over the Steenrod algebra. Hence H*(X; Zz] has a
particularly simple form.

The author is grateful to Alex Zabrodsky and John C. Moore for several
useful conversations. The author also thanks the Institute for Advanced Study
in Jerusalem for their warm hospitality while work was in progress. Throughout
the paper it will be assumed that the reader is familiar with the notation of [2].

§2. Q*k+i=SqzkQzk+1

In this chapter, we prove Qlk+1 = Sq*kQzk^ for jfe^l . The proof uses several
techniques which appear in [2].

Definition. Let u(s)=2*+1— 1,

a(s, k)=2s+zk+2v(s-l),

b(s, k)=2s+zk-^

Let /i be the two sided ideal of <J(2) generated by Sqz, L2 the two sided ideal
generated by /r/i. Let Jr be the right ideal generated by Sq\ •- , Sqzr for r^2.
Let KT be the right ideal generated by /r+/2.

The following theorems were proved in [2] :

Theorem 2.1 [2]. Let s^l, k>l, then
(a,) Qa(s' k^-^=SqzS+lkQb^-1' *)-!.
(bs) Sg8'+1Qa(''*)-1=0.
(cs) Ift^Pb(8,^-lf then t is annihilated by Ks+1. Dually 06( '-*)

=0.
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(ds) Qt'+t+W'-u-^Sq^Qwi-i + SqW-vQ*'**-1.
(e) Sq*l+zQlk+l=Q.

Theorem 2.2 [2]. Qzv^-1 = QJ.lQ
zv^-^+1 where Q^ Is Sq«' ' 2, where 2 is in

the jui place.

Definition. A doubleton (3^JL(2) of degree 2r is a sum of monomials of the
form hSq^bsSq^bi where deg 62~deg63=0 mod2 f+1 and i<r.

It is easy to see that Qj-i=[Sqz3, Qj-z]+d where 0 is a doubleton degree 1.
We now consider several consequences of assuming

(2.1) Q2*T2 + 2 1 > C . - 1 > - 1 = 502»-1Q2T>(,>-1 f()r

Theorem 2.3. // equation (2.1) holds, then Theorem 2.1 is true for k = l.

Proof. a(s, l)-l=2s+2+22;(s-l)-l so (as) is precisely equation (2.1). Now
for s = l, equation (2.1) becomes

Q9=Sq'Q->

and Sq^Sql=Sq1Sq1+SqC}Sqz. Since Sq2Qik+1=Q and all doubletons of degree 1
annihilate Q*k+1 it follows that

Sq'Q^SqLSqtQ5^.

We assume now by induction that

Sq3t+iQ*i+*+wt-u-i=Q for t<Sf

Then
Sq*8+1Q*8+^w>-»-i=Sqz8+1Sq*'+1Q*ow-1 by (2.1)

=$Q2vw-i where 8 is a doubleton of
degree 2s by the Adem relations.

Consider
bzSq9-lb,Qzv(s}-l<^Qa(i'^-\

By Theorem 2.1 (bs) and the inductive assumption (for k — l\ it follows that

We conclude dQ^^^^Q. Therefore, by induction we have shown Sq^^Q"
=Q,

To prove (cs) for k = l note that b(s, l) = b(s — l, 3) so

06('-1)-1nimX',=0 by Theorem 2.1 (c,_i).

Note b(s, l)=2v(s+l). Now if Q6( '-1)-1nimS^HVO, then

^S^^S^O^'^^^O by (b,).
So we conclude
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Qb(s "-'nimAVi^O

This completes the proof. Q.E.D.

Theorem 2.4. // equation (2.1) holds then for k^l

Qik+1 = Sq2kQ2k+1.

Proof. Recall if 4/e-f-l is not of the form 2v(j}-l then 4k+l=a(s, /)— 1
for some s^l, /^l. By Theorems 2.1 and 2.3, Qik+l=aQ

zv^~l where a
Now by Theorem 2.2

since doubletons of degree one annihilate Q2t3°~1)+1. By Theorem 2.3, since
/)-l=&(/-l, 1)-1, Q^-'nim/^O. It follows that

It follows that for every k, there exists ae«J(2), / an integer such that

Q4& + l_ a £«2U( .7 - l )Q2UO-l )+ l

Now the Adem relations imply for I, in positive integers,

Applying this rule to a, which is a polynomial in the even Steenrod squares,
we conclude

Qik+1 = Sq2kQ2k4-\ Q.E.D.

The following factorizations follow by induction using the methods in [2,
Prop. 2.7].

Proposition 2.5. (a) Sqw = SqsSq2j
rQ1Sq4+Q0Q1Sq«+Q1Sq1

+ Q2Sq3+Sq1Sq°Sq1SqG.
(b) For s^2
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(c) Sq*k+2= £ Sqik"iv(^QJ+1+^ fli«t where degat = 3 mod four.
j=-i

Sq*+*t+ll = SqziSq*i+llJrdoubletons of degree ^i-L

Now by [2, Thm. 8.7], we may choose representatives for Q
that have reduced coproduct in f2//*®/?, where

R is an Jl(2) module.

Proposition 2.6. // QS'^-W-U-I js not contained in imS<fS r l then there
exist elements x with Jjeef2//*®^, 0^v€EQ2*+2+21 '(JI-1)-1, Sq1x = Qt and x

imSq*'+1.

Proof. By the above remark there is an #' with .v'^im S^2*"1"1, J,r'
and O^jc'ep2^21-2^-"-1. Now if S^jc'^O then

is decomposable since Qeven=Q by [2, Cor. 7.6]. Hence {Sq1*'} = {w}2 where we
may assume w^R. If u = Sq*x'-w* then ut=I(?H*)H* and Jue£*H*®H*
Applying the Milnor Moore isomorphism

H* — > H*®H* — > H*//£*H*®q*H*

implies u^^H*. But deg u =2 mod 4 and f 2//* is concentrated in degrees divisible
by 4. Therefore u=0 and

Hence x = x' — Sqz**'1~r*v(s~'2}ic has S^1A'=0. By Theorem 2.1(c) and Proposition
2.5(c) we get

Now if y^s— 3, a simple argument shows that

By Theorem 2.1(c)

Sq*'+1+w-*>w=Sq*°+1Qs-zw.

Hence x = x' — Sq*8+1Q8-2ii'. It follows that Ju^imS^1. This completes the
proof. Q. E. D.

We now prove Q* = SqiQ~\ This is equation (2.1) for s = l. This simple
example will illustrate the methods used. Later we will prove equation (2.1)
for arbitrary s.

By Proposition 2.5(a)
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+ Sq1Sq*Sq1Sq*

= (Sqs+Q2Sql}Sq

By Theorem 2.1(e), since Sq'i=Sq1Sq6
J Sq*=Sq1Sq*,

0=Sq2Q9=SqGQ9=Sq'?Q9=Sq3Q9 .

By Theorem 2.2,

Sq^Q^QiQ1 and QiQi=0.

Our situation is that we can write Sqw=Q1Sq4Jr^l albi where if x^Q9 with
representative x^R, then blx=Q and Sq*x = Qiy.

Both * and 3; may be chosen to be primitive. To see this, note that if x e
R then Jxs=^H*®R. Now because #*(Z; Z2) is trivial in degrees 1 and 2,
I2//* is 11 connected. Hence x is primitive. Similarly, y may be chosen so
that 3y^^H*§§R, and ffiT* is 5 connected, so j is primitive.

We now write down the universal example which describes the above relations.
Let

K=K(Z, 9, 7)

K0=K(Z2, 11, 13, 15)

w: K — >KQ

Then

In fact

Let E be the fibre of w. It follows that there is an element v^H*(E; Z2)
with Jv=u(£)u where u = p*(i9)

QQ1+Q1Sql+Sq1Sq^

E

K
K - >K0.
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The proof of this follows from [2, Prop. 3.1].
Now suppose Q9 is not contained in the image of S<?4. Then there exists

an x^R9, with x&imSq'1, x primitive, and a y primitive such that Sq^x = Q1y.
Hence there is a commutative diagram

where f*(ig) = x, /*(?7) = ;y. It follows that the //-deviation of / factors through
DK0 so we have Dj=jD and

+im (Q.

Ql .

Now if x&imSq*, there exists a primitive t^P9 with <£, z>^0 and t Sq[ = Q. By
Browder, if deg a odd, aej[(2), ^a=0 [1]. It follows that

"Now Qi=[_Sq\ Sqz~] + Sql doubletons

So £(?i=0 implies

This is a contradiction because £2=0 if t^Podd by Browder [1].
We conclude that our original assumption that Q9 is not contained in im S<?4

must be false. Therefore we have proven

Theorem 2.7. Q* = Sq*Q\

To prove that Qt'^w-u-i^Sq^Q**™-1 is analogous to the above proof,
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we must construct the universal example, verify that primary operations vanish
on our element and then examine the properties of the .//-deviation. The only
difference is that in general elements in the domain of the operation are not
necessarily primitive. We therefore use the methods of Cartan formulae described
in [5, Sec. 4]. We assume the reader is familiar with this and will use these
results freely.

Now consider the factorization from Proposition 2.5(b).

Henceforth we assume Q2 s-2-2u(s-i)-i -1B not contained in im SqzS+1. Our goal will

be to produce a contradiction. We will find a £eP2 S+2+ 2u(S-i)-i with tz=f=Q. This
will contradict the result of Browder.

By Proposition 2.6 there is an x with O^JceO2*4"24"20^"""1 and Sqlx=Q and
qzS~rl. It follows that there is a primitive t with

and

Further, 2x&£*H*<8>R.
By Theorem 2.1(e) we have

(a) QM+i*=0 for all u .

(b) Sq*M-1x=Sq1Sq*'+1-*x=Q.

(c) Sq2S+2+iv(s-v-2x=Q.

By Theorem 2.2, there is a y^R with
(d) Sq*s+1x = Qsy. (Theorem 2.2 states that this is true modulo decom-

posables. A simple argument using the Milnor Moore isomorphism implies strict
equality.)

Proposition 2.8. QU+1S^ST2+2S+1-2M+1-2M+2A'=0 for all u such that Q^u^s-L

Proof. The case u~Q follows from Theorem 2.1(e). Recall that QQ=Sq1,
Qi=[_Sq2, Sq1'] and Qi=^Sq2l~1

} Qz-J. Hence Qu+1 is a sum of monomials with
Sq1 and Sq2 in them. If b1Sq1b2Sq2b3 is such a monomial, then degree bs must
be divisible by 4. By Theorem 2.1(e), Sq2bsSq2S+2+2S+1-'2U+1-2U+*x=Q.

Now consider a monomial of the form CiSq2c2Sq1cs. If this is a summand of
Qu+i then degree cz is divisible by 4. The Adem relation

and Theorem 2.1(e) imply for u
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=0 because Sq1x=Q.

The theorem follows from the above arguments. Q. E. D.

We now construct the universal example which describes the relations (a),
(b), (c), (d) and Proposition 2.8.

Let K=-K(Z2, 2s+2+2v(s-l)-l, 2s+2-l). Let i be the fundamental class in
degree 2*+2+2v(s— 1)—1, r] be the fundamental class of degree 2S+2— 1

K*= S K(Z2> 2s+2+2z;(s-l)+2i;(w + l)-l)
u=-l

XK(ZZ, 2i;(s + l)-l)

X 2 K(Z2, 2s+B+2v(s}-2u+1-2)
u=Q

XK(Z2, 2v(s+l)-2, 2s+3+8y(s-2)-l)0

w: K — >K0

Let £ be the fibre of

The argument in [2, Sec. 3] implies there is a i;e K*(E\ Z2) with

Av=u®u, u = p*(i]

and

-'*/,,> _ V1 Cl
/72

s + 2 + 4 U ( S - 2 ) - 4 U ( M ) / T * / V ,„ \7 W— 2-i sq Q ^ 2 s+242u(s - i )+2u(^+ i ) - i ;
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There is a commutative diagram

and f*(i)=x, f*(tf=y, 2f*(v)=x
In [2, 5, Sec. 4] the theory o

Note there is a commutative diagram
In [2, 5, Sec. 4] the theory of Cartan maps describes how to compute D%(v).

Df V w
XxX - ->K

Hence there exist generalized Eilenberg MacLane spaces AI concentrated in even
degrees and A2 concentrated in odd degrees such that Df factors

XxX -^^ A,XA2 ~^-^ K

and m is a Cartan map. That is, there exist Klf K2 and maps wit nt such that
there is a commutative square

> K

(u/iXl)x(lxu/a)

I
KoXKa

\
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By [2, Theorem 4.1] if El is the fibre of wl} there is a commutative diagram

QK*

Hence £)/ and /(/iX/2) both lift /)/ so

for some /) : XxX-+QK0.
By Theorem 4.1 of [2]

Now im /?£?//*, hence this part has no summand in an odd degree. We there-
fore concentrate on the contribution of (/*(8>/*V*M in //*0im/f in bidegrees
(2s+2+2z;(s-l)-l, 2s+2+2z;(s-l)-l).

Let FnR={z<=R\Zmz=Q}. Let C(m) be the j?(2) subHopf algebra of H*
generated by FmR. Then H* is filtered

Assume x^C(m), x&C(m — V). By coassociativity Jx^C(m — l)®C(?7i — 1). We
can clearly choose £ so that <£, C(??i— 1)>=0.

Theorem 2.9. < f ® f , (/f(g)/?)/*(i;)>=0.

Proof. We follow closely [2, Sec. 4]. Given a fundamental class i

where a ;eker /* S.eker /*, /T(fc*)ef#*, /?(fl ;)e/?.

Define

Z2, deg a,) 7i2= n /f(Zz, deg

w2 : A2 — >

71 ! : A'j X ,42

722 : .-li X K,

?? !, n o induce maps
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k,: QK.AE, — >QKQ

kz: E±/\QK2 — >QKQ

From this we can compute &*/*(iO, k*j*(v]

where J*(VJ)=KJ, j*(v")=Ki. From this

modulo image (/? ® /f

Clearly the second summation belongs to <? H* (g) #*. These operations annihilate
t(S)t for degree reasons.

Now consider the first summand. Let Si be the Jl(2) span of terms in the
second bidegree of m*(i) and let Sz be the Jl(2) span of terms in the second
bidegree of m*(yj). By construction flJ7eSi+S2.

Case 1. If ay e Si then f^(a")^C(m— 1) and hence a term of this form an-
nihilates £0£.

Case 2. If <eS2 and <f, /f(flJ7)>^0 we must have degree
2v(s-l)-l.

Tracing backwards through the construction, we must have /*(^
appearing in

0«&*ff*(l'2!>C« + l ) - l ) .

Since ^QS=QS®QS and tQs=Q we can reduce to the situation where the
secondary operations comes from

j*(Vj) = Qiff*(ites a) -

But then /?(a^) must be an element in the second bidegree of a summand of
Jy. Because degree y is less than degree x, degree /?(a")<degree x. Hence

Finalty, im'/*® /f c<f//*(g) J? so this also annihilates
We conclude <f (g ) f , (/f (g)/?)/*(y)>=0. Q.E.D.

It follows that
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j*(v)y by Theorem 2.9

, im S^Stf'S?1) .

Since £a=0 for deg a odd, only the first two terms besides <£, .r>2 can possibly
be nonzero.

Step 1. <?(g)f, 2 im S0S' + 2 Tii>(s-2>-4 D («) > B We must consider terms of the form

f (V72S + 1 + 2 u r s ~ 2 } - 2 U ( U ) + Z (5?)^ Cl,->2s + :L + 2 U ( S - 2 ) - 2 U ( M ) -Z

where -2K^)^/^2z;(w).
By Theorem 2.1(c) and the assumption ^5<72S+1=0, t is annihilated by /<"s+i.

By checking degrees, Theorem 2.1(c) implies t is annihilated by doubletons of
degree gs. Now if degree 2s+1+2i;(s— 2)— 2z;(w)+/=2mod4 Proposition 2.5(c)
implies

of degree^s

for some i^s .

If degree 2s+1Jr2v(s-2)-2v(u}-\-l=Q mod 4, Proposition 2.5(c) implies

imSg2S+1+2u(s-2)-2uU)+^imSg2"+doubletons of degree^ /-I

for some ?' ̂  s .
In all cases

2. ^®f, imQ s>.

If £QS^0 then 0S02'+1-1=S^S+1QJ,-10
2'+1-1. Hence tQs^O implies ^S^2S+VO.

But by assumption f S?2'+1=0. Therefore <f0^, imQs>=0.
We conclude <^2, f*(vf> = /t, x>2 which implies £2^0. This is the desired

contradiction.
We have proved the following theorem :

Theorem 2.10. Q2'+2-*>"-i>-i = S02S+1Q21>(s)-1 for s^l. Hence by Theorem
2.4, QlkJn = Sq**Q*k+\

§3.

In this chapter we prove a theorem about algebra generators of H*(X\ Z2)
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whose cup product square is nontrivial. The results derive from techniques
developed by Zabrodsky [6]. Because H*(QX; Z] is two torsion free it was
shown that

* (X;z2)(^2, Z2) is isomorphic to H*(QX\ Z2}

as a coalgebra [2].
If H*(Xm, Z2)=®/\(xi)®Z2[yJ']/(yJf

fj' then there is an exterior coalgebra

S\(a*(yj))£H*(QX', Z2). In H*(QX, Z2} this corresponds to a subHopf algebra
which is the kernel of f : H*(QX] Z2) -> H*(QX ; Z2).

Since

it follows that all generators of kernel <? map monomorphically to H*(X\ Z2)
This implies the following theorem :

Theorem 3.1. Let y^H*(X; Za) /zave dfegra? i<s)+2s^&, s^O, &>0 and
suppose y2^Q and 2y€EgH*(X; ZJ®H*(X\ Z2). T/ig/i y = Sq*8+lkz for some z,
and y&imSq21 for i^s.

Proof, y projects nontrivially to QH*(X', Z2) because {>'}e//*(Z; Z2)//
%H*(X\ Z2) is odd degree primitive. Hence ff*(:y) is nontrivial and is dual to
an element t^H^(QX; Z2) with ^z=0. Associated to the factorization

is a secondary operation <j). Now since H*(QX\ Z2) is even dimensional,
Qu+i0*(y)=Q for all u. According to Zabrodsky [6], since QX is homotopy
commutative,

(3.1) A6(a*y)eLa*y®a*y + S im Sq2S+lk+v(s~1)~v(u) ®Sq2S+lk+v(s~1)~vW .
u=-l

The proof now proceeds by induction. For s=0 the theorem follows because
Q*k+1=Sq2kQ2k+1. Assume the theorem is true for s'<s. Then if degree y =
v(s)J

r2
s+2k. Suppose y=Sqzlz for some i^s. Pick the smallest such i. Then

z*^Q since y2^Q. By induction z=Sq*i+'"+*'~1+*'+lkw for some w. But then by
applying Adem relations Sqzlz=y is in the image of Sq1, • • • , Sq*1'1. This con-
tradicts the assumption that the smallest i was chosen.

We conclude y&imSq21 for z^s. It follows that a*y&im Sqzl for z^s,
because, if so, a*y=Sq2lw and w^§§/\(ff*(yj)) which implies w = a*z.

3

Now by (3.1), if

then (t2, (j)(a*yy>=t=Q which would imply t2 =£0. This can't happen, so
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The only term not in the image of SqzZ for i^s is SqzS+lk. Hence a*y =
SqzS+lka*z which implies y = Sq*'*ikz. Q.E.D.

§ 4. Applications

There are several applications of the fact that Qik+1=SqzkQzk+1. Wre des-
cribe a few which will be used in subsequent papers to deduce the action of
the Steenrod algebra on H*(QX).

Definition 4.1. Let n have dyadic expansion

where Q<si<sl+1. We will call / the "length of n".

Proposition 4.1. // 4& + 1 has length I and Qik+1 is nontrivial, then Qz ~1

is nontrivial.

Proof. From Theorem 2.3 and Theorem 2.1(a) we must have

Q2D(o-i nontrivial.

By Theorem 2.2, Q*1-1 is nontrivial. Q.E.D.

Proposition 4.2. PHik(QX)=£(<r*Q2fc^.

Proof. It is known that

But Qik+1=SqzkQ2k+\ Q.E.D.

Proposition 4.3. Qsk^ = Sq2Qsk+3

Proof. Q8k+'*=Sqik+2Qlk-**

= SqzSqikQ4k^

since Sqik+z = Sq2Sq4k modulo a S^1 doubleton. Q.E.D.

Definition 4.3. A coalgebra with squares is a coalgebra C together with a
mapf : C— >C of coalgebras such that degree fx= twice degree of x.

Let f : H*(X\ ZZ)-+H*(X; Z2) be the cup product squaring map. Define

Note that since £H*(X; Zz) is a subHopf algebra, £H*(X',
Further, by coassociativity,

and in fact R is a coalgebra over the Steenrod algebra with squares.
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Let S(R) be the free commutative algebra on R. Then S(R) is a Hopf
algebra and there is a diagram

where the dotted arrow is a map of Hopf algebras.

Theorem 4.4e Let I^S(R) be the ideal generated by elements of the form
x2—£x. Then 6 induces an isomorphism 6 of Hopf algebras over the Steenrod
algebra

H*(X; Z2)

Proof. 6 is a map of Hopf algebras. Because the map

R — > H*(X] Z2) — > QH*(X; Z2)

is an epimorphism, 6 is an epimorphism, with kernel ^R. Filter both S(R)/I
and H*(X', Zz] by powers of the augmentation ideal. Then E0(S(R)/I) is a
primitively generated Hopf algebra on generators R/^R. Since generators of a
Borel decomposition of H*(X] Z2) can be chosen in R, E0(H*(X°, Z2}) is also
primitively generated on R/^R. It follows that EQ(d) is an isomorphism. Hence
6 is an isomorphism. Q.E.D.

References

[1] Browder, W., Torsion in //-spaces, Ann. of Math., 74 (1961), 24-51.
[2] Lin, J., Two torsion and the loop space conjecture, Ann. of Math., 115 (1982),

35-91.
[3] Milnor, J. and Moore, J. C., On the structure of Hopf algebras, Ann. of Math., 81

(1965), 211-264.
[4] Thomas, E., Steenrod squares and #-spaces, I, II, Ann. of Math., 11 (1963), 306-

317; 81 (1965), 473-495.
[5] - , Whitney Cartan product formulas, Math. Z. 118 (1970), 115-138.
[6] Zabrodsky, A., Cohomology operations and homotopy commutative //-spaces in the

Steenrod algebra and its applications, Springer Verlag, 168 (1970), 308-317.


