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On the Hopf Algebra Structure of the mod 2
Cohomology of a Finite H-Space

By

James LiNn*

§1. Introduction

The action of the Steenrod algebra on the cohomology of a finite H-space has
placed several restrictions on the possible spaces which can be finite H-spaces.
It is now known, for example, that the loop space of a finite H-space has no
homology torsion. We continue this study here by showing that in the mod 2
cohomology of a finite H-space, every generator of degree 4£-+1 is in the image
of Sg%*.

This result has several consequences. For example, if an integer n has
dyadic expansion

n=2"4 ... 42

where 0<s5,<s;+; we say n has length [. If 4k+1 has length [ and there is a
generator of the mod 2 cohomology of a finite H-space in degree 4k-1, then
there is a generator in degree 2'—1. Hence if a finite H-space is highly con-
nected this result implies the non-existence of generators of small length.

Another implication is that there are no 4% dimensional primitive indecom-
posables in the mod 2 cohomology of the loop space. Also, all generators of
degree 8%k+5 in the cohomology of a finite H-space are in the image of S¢*

Throughout this paper it is assumed that all finite H-spaces used in this
paper are simply connected and have associative mod 2 homology rings. Under
this assumption it is easily shown that finite H-spaces that have no two torsion
have primitively generated mod 2 cohomology rings. Hence their structure over
the Steenrod algebra is restricted by several results of Thomas [4]. It is there-
fore more interesting to study finite H-spaces that have two torsion in their
homology.

Under these circumstances it was shown that the two torsion is of order at
most two and arises from odd degree mod 2 cohomology generators whose cup
product is non trivial. In chapter 3 of this paper a structure theorem is given
for the action of the Steenrod algebra on these generators. In particular if v is
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a generator of the mod 2 cohomology of a finite H-space and the degree of y
has the form 25*'—1-4-2°*2k where s=0 and %2>0, and y has cup product square
non trivial, then y is in the image of S¢**'* modulo decomposables. For exam-
ple, if vy is a generator in H**(X; Z,) where X is a finite H-space and y? is
non-zero, then 19=2°—1-2* hence y=S¢®z modulo decomposables, where z lies
in H*X; Z,). Applying the theorem again, z=Sg*w modulo decomposables
where w lies in H(X; Z,). So this theorem restricts the structure of the two
torsion which appears in the mod 2 cohomology of a finite H-space.

In chapter four a general Hopf algebra structure theorem for the mod 2
cohomology of a finite H-space is presented. If X is a finite H-space, H*(X; Z,)
can be considered a universal object on a certain coalgebra which admits a
squaring map. Let R be the set of elements of H*(.X; Z,) which have reduced
coproduct in EH*(X; Z,) QH*(X; Z,). Note that this is a coalgebra over the
Ste;enrod algebra, and the squaring map & : H¥(X; Z,—H*(X; Z,) in fact
restricts to R. Such a coalgebra will be called a coalgebra with squares. Let
S(R) be the free commutative algebra on R and let I be the ideal in S(R)
generated by elements of the form x%®—&x. Then S(R)/I is isomorphic to
H*(X; Z,) as Hopf algebras over the Steenrod algebra. Hence H*(X; Z,) has a
particularly simple form.

The author is grateful to Alex Zabrodsky and John C. Moore for several
useful conversations. The author also thanks the Institute for Advanced Study
in Jerusalem for their warm hospitality while work was in progress. Throughout
the paper it will be assumed that the reader is familiar with the notation of [2].

§2. Qrti=SqrrQ2t+1

In this chapter, we prove Q!**'=S¢**Q**+! for k>=1. The proof uses several
techniques which appear in [27.

Definition. Let v(s)=25+1—1,
a(s, k)=2"2k+2v(s—1),
b(s, k)=2%"2pL20(s).

Let I, be the two sided ideal of A(2) generated by Sg? I, the two sided ideal
generated by I,-I;. Let J, be the right ideal generated by Sg¢*, ---, Sq¥ for r=2.
Let K, be the right ideal generated by J,+1,.

The following theorems were proved in [2]:

Theorem 2.1 [2]. Let s=1, k>1, then
(a,) Qo k)—lZqus‘Hka(s—l, ky-1
(bs) Sq23+1Qa(s, B-1—(),
(cs) If te Py, 1y-1, then t is annihilated by K.y, Dually Q°®®-'Nim K,
=0.
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(ds) st+2+zv(s—1)—1:Sq23+1sz(s)—1+quv(s—1>Q29+3~1_
(e) Sq4l+2Qlk+1:0.

Theorem 2.2 [2]. Q*'~'=(Q, ,Q*Y"V* where Q,_, is S¢* **, where 2 is in
the j** place.

Definition. A doubleton B A2) of degree 27 is a sum of monomials of the
form blsqziszqzibs where deg b,=deg b;=0 mod 2i** and /=7.

It is easy to see that Q, ,=[S¢%, @, ,]+0 where 6 is a doubleton degree 1.
We now consider several consequences of assuming

2.1 stvzwv(sﬂ)—1:qus*1Q2v(s)—1 for s=1.
Theorem 2.3. ] equation (2.1) holds, then Theorem 2.1 is true for k=1.

Proof. a(s, 1)—1=2%"*4+20(s—1)—1 so (a,) is precisely equation (2.1). Now
for s=1, equation (2.1) becomes
Q9:Sq1Q3

and S¢'Sq¢*=Sq"Sq'+Sq°Sq?. Since Sg?Q'***=0 and all doubletons of degree 1
annihilate Q**+* it follows that

Sq¢'Q°=Sq¢*Sq'Q°=0.
We assume now by induction that

Sq2t+1Q2H‘2+2L‘(L—1)—1:0 for 1<s.

Then
qus+les+21—zv<s—1>—1:Sq28+lsqzs+1qu(s)_1 by (2'1)
=0Q*® 1 where ¢ is a doubleton of
Consid degree 2° by the Adem relations.
onsider

szQZlb;QZU(S)_IgQa(i'k)_l.
Bv Theorem 2.1 (b,) and the inductive assumption (for k=1), it follows that
quinquibJQM(”_l———O.

We conclude 6Q*®-'=0. Therefore, by induction we have shown Sg*° 'Q«® v+
=0.
To prove (c;) for £2=1 note that b(s, 1)=b(s—1, 3) so

Qv v-1Nim K,=0 by Theorem 2.1 (c;_y).
Note b(s, )=2u(s+1). Now if Q°®»-1N\im S¢** "0, then
sz<s+1)~1:Sq23+1Qa(s,1)—1

=S¢*ISg Q=0 by (by).
So we conclude
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Q¢ " *Nim K., =0
This completes the proof. Q.E.D.
Theorem 2.4. [If equation (2.1) holds then for k=1
Q1 =S¢ Q1.

Proof. Recall if 4k-1 is not of the form 2v(;)—1 then 4k+1=a(s. [)—1
for some s=1, /[=1. By Theorems 2.1 and 2.3, Q**'=aQ**’~! where a<_1(2).
Now by Theorem 2.2

QZ’U(])—]:@J_lQZD(j—l)+1

— o -
=[S¢¥, @, ,]Q»u-b-!

since doubletons of degree one annmihilate Q#*V-V*! By Theorem 2.3, since
20(5)—1=b(j—1, 1)—1, Q**Nim K;=0. It follows that

sz(])—IZQ-]—ZngjQZU(J_I)TI
:Gj_asqzﬁlsqzinvrrl)ﬂ
:qusq4 quinu<J—1)+1
=SgPu-DQu-b1,
It follows that for every £k, there exists a=A(2), j an integer such that
Q4k+1___a,quv(jﬂ)sz(J-lHl.
Now the Adem relations imply for /, m positive integers,
qulsmem+1___Sqm+ZSqum+1_

Applying this rule to «, which is a polynomial in the even Steenrod squares,

we conclude
QUE+1=Sg *Q** "1, Q.E.D.

The following factorizations follow by induction using the methods in [2,
Prop. 2.7].
Proposition 2.5. (a) S¢"*=S5¢°Sq¢*+Q;S¢*+Q,Q,S¢°+Q,Sq"
+Q.S¢*+Sq¢*'Sq*Sq*Sq°.
(b) For s=2

s-2
28T 242p(s-1) — S 28+24 -2)-
Sq ( 2—)1 q +40(s-2) lv(u)Q 1

s—1
a1 S+1 S+2498+1_suU+1_gu+2
+0uSq 4 2 QuQun gt

_:_Qssqzsﬂ_1+Sq15q25q1sqgs+2+w(s_2)_2.
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(©) Sq4k+2:_EISq”““"J’C)JH—{—E a,a, where dega,=3 mod four.
e

Sq¥ N =Sgr'Sg* ' doubletons of degree <i—1.

28+2 0y 5-1) -1

Now by [2, Thm. 8.7], we may choose representatives for Q
that have reduced coproduct in &2H*QR, where

R={xeH*| Ix=EH*QH*.
R is an J(2) module.

Proposition 2.6. If Q¥ *-2G-D-1 45 3ot contained in im Sg* "' then there

exist elements x with Jxe&H*QR, 0#31eQ¥™+w6-0-1 Spix=—(, and &
98+1

im Sg* ™.

=9

Proof. By the above remark there is an x” with ¥'&im S¢*™, Jx'e2H*QR,
and 0% €Q*"?r2¢-0-1 Now if S¢'x’#0 then

{Sq¢'x"y eP(H*//E*H*)

is decomposable since Q****=0 by [2, Cor. 7.6]. Hence {Sq¢'x’} = {w}* where we
may assume weR. If u=Sg'x'—w?® then uc[(EH*H* and JucfH*QH*
Applying the Milnor Moore isomorphism

H* —> HXQH* —> H*/ /& H*Q3H*

implies u=&2H*. But deg u=2mod 4 and &*H* is concentrated in degrees divisible
by 4. Therefore =0 and

Sq¢*x'=w?
:Sqlsqzs*lﬂv(s—z;w .
Hence x=x'—S¢> "'=#*¢-2y has Sq'x=0. By Theorem 2.1(c) and Proposition
2.5(c) we get

qus*lfzv(s—mwzz Sq25+1+1u(s—3\—w(;)@]_lu .
Now if j#s—3, a simple argument shows that
im S(]23+1+w(s—3)~w(ngim(sql’ qu’ e qus)_

By Theorem 2.1(c)

S+1 - +17
Y SR TEAY AR O IR TN

Hence x=x'—S¢**"'Q, .. It follows that Teim S¢**"". This completes the

proof. Q.E.D.

We now prove @Q°=S¢'Q°. This is equation (2.1) for s=1. This simple
example will illustrate the methods used. Later we will prove equation (2.1)
for arbitrary s.

By Proposition 2.5(a)
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Sq**=5¢*S¢*+0Q.S¢"+Q:Q:S¢°+Q:S¢"+Q.S¢*
+Sq¢'Sq*Sq'Sq*
=(S¢°+Q:S¢)S¢*+(QoQ:+Q:Sq"+S¢*Sg*S¢")Sq*+Q.Sq*
By Theorem 2.1(e), since S¢"=S¢'Sq®, Sq¢*=Sq'Sq?,
0:SQZQQZS(]GQQZSQ7Q9:SQ3Q9.
By Theorem 2.2,
S¢'Q°cQ.Q" and Q,Q,=0.
Our situation is that we can write S¢°=0Q,S¢*+> a,b; where if T=Q® with
representative xR, then b,x=0 and S¢*x=0Q,y.
Both x and y may be chosen to be primitive. To see this, note that if x=
R then Jxc&H*QR. Now because H*(X; Z,) is trivial in degrees 1 and 2,
&H* is 11 connected. Hence x is primitive. Similarly, y may be chosen so
that JycEH*QR, and EH* is 5 connected, so y is primitive.
We now write down the universal example which describes the above relations.

Let
K=K(Z,9,7)

Ny=K(Z,, 11, 13, 15)
w: K— K,
w*(i1)=S¢"s
wH(iys)=Sq"1,— Qi

w*(iy5)=Sq%,.
Then

z=(S¢*+Q:SgY i1, +(QeQ1+Q,Sq*+Sq'Sq?Sq")i 15+ Qs Eker w* .

In fact
w*(z)=5¢"1,=0.

Let E be the fibre of w. It follows that there is an element v H¥E; Z,)
with Jv=u®u where w=p*(,)

T¥)=(S¢°+Q:5¢")0*(11)+(QoQ:+Q:S¢'+ 5S¢’ S¢*Sq") 0 *(115)
+Q,0%(ss) .
QK,
. ;

< [y <

w
R—K,.
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The proof of this follows from [2, Prop. 3.1].

Now suppose Q° is not contained in the image of S¢?. Then there exists
an x€R°, with x&im S¢*, x primitive, and a y primitive such that Sg‘x=Q,x.
Hence there is a commutative diagram

QK

li
Ay

X———K——> K,
where f*(jo)=x, f*({;)=y. It follows that the H-deviation of 7 factors through
02K, so we have Dy= jD and
I7#@)=(F*®@ F*)(dv)+D¥w)
=xQx+D**()
exQ@x+im(S¢5+Q,Sq)
+im (QoQ1+Q1S¢'+5¢*Sq*Sq*)
+im @, .
Now if x&im S¢*, there exists a primitive =P, with <, x>0 and ¢ S¢'=0. By
Browder, if deg @ odd, a=A(2), ta=0 [17. It follows that

e, Frap=a®t, IF*)
={Q@t, x@ x>+t im (Sg°+Q.S¢")>
—{@t, im(QQ:+Q:Sq¢*+Sg'Sq*Sq")>
+<Q®t, im Q>
=, ARt im Q).
Now @Q,='Sgq", S¢*]+Sq* doubletons
10,=0,®Q;.

<, Py =4, x*#0.

So tQ,=0 implies

This is a contradiction because 2=0 if 1€ P,qq by Browder [1].
We conclude that our original assumption that Q° is not contained in im Sg¢*
must be false. Therefore we have proven

Theorem 2.7. Q°=S¢*Q".

To prove that Q2*"*#2v¢-D-1=G,2**1Q2® 1 5 apalogous to the above proof,
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we must construct the universal example, verify that primary operations vanish
on our element and then examine the properties of the H-deviation. The only
difference is that in general elements in the domain of the operation are not
necessarily primitive. We therefore use the methods of Cartan formulae described
in [5, Sec. 4]. We assume the reader is familiar with this and will use these
results freely.
Now consider the factorization from Proposition 2.5(b).
Sq23+2+20(s—1): 322 Sq25+2+w(s—2>—w(u)@uﬂ_{_@ssqzs*l

u=-1

s S42,98+1_pltrl_ogu+2
5 0uQuursg i

+stqzsﬂ—1+Sq1sqzsq15qzs+2+w(s-2)—2 .

2872 98+1

Henceforth we assume Q%7 "~2*¢-D-1 ig not contained in im Sg Our goal will
be to produce a contradiction. We will find a 1€ Pys+o10p5-1)-1 With 2#0. This
will contradict the result of Browder.

By Proposition 2.6 there is an x with 0= E=Q* ***2¢-0-1 and Sg'x=0 and
Teim S¢**™'. It follows that there is a primitive ¢ with

&, x>0 and tSg*'=0.
Further, dxs&H*QR.
By Theorem 2.1(e) we have
(@) Quiix=0 for all u.
(b) Sg¥*'-1x=S¢'S¢* " 2x=0.
(c) qus+2+4v(s-2)—2x:0'

By Theorem 2.2, there is a ye R with

(d) S¢¥*'x=Q,y. (Theorem 2.2 states that this is true modulo decom-
posables. A simple argument using the Milnor Moore isomorphism implies strict
equality.)

Proposition 2.8. Q,,,Sg¥ **¥" -2+ 0 1o all u such that 0Su<s—1.

Proof. The case u=0 follows from Theorem 2.1(e). Recall that Q,=Sq’,
Q:=[S¢? Sg']1 and Q;=[S¢**"", Q._,]. Hence Q.. is a sum of monomials with
S¢* and Sg® in them. If b,S¢'6,Sq¢?h; is such a monomial, then degree b, must
be divisible by 4. By Theorem 2.1(e), Sg?bySqg>+*+251-2u+1-2u+2, ()

Now consider a monomial of the form ¢,S¢%c;Sq*c;. If thisis a summand of
Qu+: then degree c¢; is divisible by 4. The Adem relation

SqlsqtN:Sq«llsql_]_SqZSqISqtll—E

and Theorem 2.1(e) imply for u>0,
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o5 +2easHlgutlgu2

€15¢%¢c,Sq*csSq
:ClsqgczcnSQZ.HZTZsJ—l_Zu+1_2u+25q1x
=0 because Sg'x=0.
The theorem follows from the above arguments. Q.E.D.

We now construct the universal example which describes the relations (a),
(b), (c), (d) and Proposition 2.8.

Let K=K(Z,, 2°724-2v(s—1)—1, 2°**—1). Let 7 be the fundamental class in
degree 2°**-+-2u(s—1)—1, 5 be the fundamental class of degree 2°**—1

K= 3 K(Zy, 2%+ 20(s— D+ 20+ 1) 1)

U=-

X K(Zy, 2v(s+1)—1)
X Si):OK(Zz, 2803 4-20(s)—2%+1—2)

X K(Z,, 20(s+1)—2, 28**+8uv(s—2)—1).
w: K—> K,
W*(i25+2+zv(s—1)+2v(u+1)—1):@u+ll.
w*@zv(sﬂ)—1):qus+ll._@s7]
W*(i28+3+2v(s)—2u+1—2):Qu+1sq28+2+23+1‘zuﬂ_zuwi

. S+1.p:
w*(hv(sﬂ)—z)”—“sqz K

WH(Igs+31gp(s-9y-1) =Sq% THE-D -2
Let E be the fibre of w

QK,

i

I,

K———K,.
The argument in [2, Sec. 3] implies there is a ve H¥E ; Z,) with

dv=u@u, u=p*@)
and

$—2
. s+2 —oy- ;
_7*(7)):742)1&]2 Tl m(u)0'>’<(Zzs+2+20(s—1>+2u(11.+1)—1)

+0Qs0*(av(s1n-1)
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+:2: Quo*(las+aravisy ~2u+1-2)

+Qs0*(avcsn-2)

+Sq'Sq*Sq 0¥ (iys+348vs-2)-1) -
There is a commutative diagram

QK,

|/
e

X —> K —> K,

and f*@)=x, f(n)=y, If*)=x @ x+Diw).
In [2, 5, Sec. 4] the theory of Cartan maps describes how to compute D;(u).
Note there is a commutative diagram

Dy

Df w
XXX K K,

.Q}j(a
l

D?(z'):ZxEEZH*(X) R
D”}‘(’?)ijEEH*@ R.

Hence there exist generalized Eilenberg MacLane spaces A; concentrated in even
degrees and A, concentrated in odd degrees such that D, factors

xxx 2% pwn, " Lk

and m is a Cartan map. That is, there exist K;, K, and maps w;, n; such that
there is a commutative square

m w

A; XA, > K > K,
KX K,
Tn;an
(w1 X1)x(1 szL

AyX A XAy X A, KX A, XA XK,
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By [2, Theorem 4.1] if E, is the fibre of w,, there is a commutative diagram

LK,
-
Ly E1><E2 —'9'E

§

! 2
xxx L2y g~k

Hence Dy and l(fleg) both lift D, so
D¥w)=(Fy X [o)*1*()+-D*j*(v)

for some D: Xx X — 2K,.
By Theorem 4.1 of [2]

(FAQFHIFw)Cim f*Q H¥+H*Qim f%.

Now im f¥<S&H*, hence this part has no summand in an odd degree. We there-
fore concentrate on the contribution of (F¥® F¥)i*@) in H*@im f% in bidegrees
(282 4+20(s—1)—1, 2°*2+2u(s—1)—1).

Let FoR={zeR|4™z=0}. Let C(m) be the _i(2) subHopf algebra of H*
generated by F,R. Then H* is filtered

Z,cC(hHcC@)c --- cH*.

Assume x=C(m), x&Cim—1). By coassociativity JxeCim—1)QCin—1). We
can clearly choose ¢ so that <t, Cion—1)>=0.

Theorem 2.9. < ®t, (F¥Q FH)I*w)>=0.
Proof. We follow closely [2, Sec. 4]. Given a fundamental class 7

m*wi) =3 a,Q a,+ ’E b @b,
7 3

where d,cker f%, b,cker f%, fXb,)€éH*, [Ha)ER.

Define
K,=1I1K(Z,, deg d,) K,=TIK(Z,, degb,)
wy: A, —> K, wilaeg 3,)=14,
wy: Ay —> I, WH(igegh ) =0
n,: NixXAd, —> R, ni0)=2lseg 2,® @,
1y A XK, — K, 3@ =20, Qldegdy -

1, N, induce maps
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ki QK. NE, —> 2K,
ks E;ANRQK, —> QK,
RE(a*(@)= %3 0*(laeg 5,) Q pila,)
RE(e*(@)= % p1br) ® 0*(igegs ) -
From this we can compute k¥7*(v), k¥;*()
FI*w)=2r;& p¥(af
REj*w)=2 pt(ad) Qx7
where j*(v))=k;, j¥(y)={. From this
(FE@FHI0)= ) f1e))+ 2 [Ha) @ f1wy
modulo image (ff® f¥).

Clearly the second summation belongs to §H* @ H*. These operations annihilate
1@t for degree reasons.

Now consider the first summand. Let S; be the _(2) span of terms in the
second bidegree of m*(7) and let S, be the _4(2) span of terms in the second
bidegree of m*(y). By construction a}e&S,+S..

Case 1. If a}<S, then f#(aj)eC(im—1) and hence a term of this form an-
nihilates ¢t &) ¢.

Case 2. If a}<S, and <, f¥(a})>+0 we must have degree f3(a})=2°"2+
2v(s—1)—1.

Tracing backwards through the construction, we must have ;*(v;)® p¥(aj
appearing in

@skﬂf‘f*(in(sﬂ) ).

Since 40,=Q,® Q, and tQ,=0 we can reduce to the situation where the
secondary operations comes from

].*(U;):Qsa*gdeg QJ) .

But then f%¥(a)) must be an element in the second bidegree of a summand of
Jy. Because degree y is less than degree x, degree f¥(a/)<degree x. Hence

<&, fHa))»=0.

Finally, im f¥Q fCEH*@ R so this also annihilates ¢ Q.
We conclude ¢ ®t, (f’{‘ ® foHrw)>=0. Q.E.D.

It follows that
2, Frop=a®t, IF*w)
=@t xQx+(FEQFNI*W)+Dj*w))
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=1, xRt Dj*w)> by Theorem 2.9

=4, MA@, B im Sgrt -

+t®t, im Q>+t R, goim 0D
+<t®¢t, im Sg*SqSq*) .

Since ta=0 for deg « odd, only the first two terms besides <t, x>* can possibly
be nonzero.

Step 1. (¢t®t, 3 im Sg2**rwe-n-w@s  We must consider terms of the form

S+1 9y 3 S+14y —9) - -
tqu +20(8-2) zv(u)+l®tsq2 +20(8-2) —2v(u) -1

where —2v(u)</=<2v(u).

By Theorem 2.1(c) and the assumption ¢ S¢***'=0, ¢ is annihilated by K.
By checking degrees, Theorem 2.1(c) implies ¢ is annihilated by doubletons of
degree <s. Now if degree 2°"'+2v(s—2)—2v(u)+I/=2mod 4 Proposition 2.5(c)
implies

im Sg2* e -2l cim Se2' 4 im Sg2* ' 4-doubletons of degree<s
for some /<s.

If degree 25+*+2v(s—2)—2v(u)-+/=0mod 4, Proposition 2.5(c) implies

im Sg2**'+eves-n -2+l im Se2 ot doubletons of degree<i—1

for some 7<s.
In all cases

¢ ®t, im Sq28+2+w(s—2)—w(u)>:0 .
Step 2. tQ@t, im Q).
Q’s:[sqzs'H, Q-s—l]; (t®t)@.s:t@s®t+t®tés-

If tQ,+0 then Q,Q¥"''=S5¢>""'Q,,Q*"'"*. Hence tQ,#0 implies ¢ Sg>*'=0.
But by assumption t S¢***'=0. Therefore (¢®@¢, im Q,»>=0.

We conclude (%, f*@)>=7t, x>* which implies #*+0. This is the desired
contradiction.

We have proved the following theorem :

Theorem 2.10. Q¥ T*-26-D-1_Gp2¥* Qw1 fpe >1 Hence by Theorem
2.4, QUI=S8g*Qr",

§3. €H*X; Z,)

In this chapter we prove a theorem about algebra generators of H*(X; Z,)
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whose cup product square is nontrivial. The results derive from techniques
developed by Zabrodsky [6]. Because H.(2X; Z) is two torsion free it was
shown that

Torg+(x,z,y(Zs, Z,) is isomorphic to HYQX; Z,)

as a coalgebra [2].
If H*(X; Z2)=®/\(xi)®Zz[y]]/(y])2ff then there is an exterior coalgebra
7 J

ANe*y NS H*RQX; Z,). In He(L2X, Z.) this corresponds to a subHopf algebra
which is the kernel of &: Hu(2X; Z,) > H (2X; Z,).
Since

Torgex; zp(Z>, Z)=I(c%(x))® /\(0*(3’1'))®F(902f1(3’1>)

it follows that all generators of kernel & map monomorphically to Hi(X; Z,)
This implies the following theorem :

Theorem 3.1. Let yeH*(X; Z,) have degree v(s)+2°7*k, s=0, k>0 and
suppose y*#0 and dycEH¥NX; Z,)QH¥X; Z,). Then y=Sq**'*z for some z,
and yeim Sg¥* for i<s.

Proof. y projects nontrivially to QH*(X; Z,) because {y} €cH*X; Z,)//
EH*(X; Z,) is odd degree primitive. Hence o*(y) is nontrivial and is dual to
an element t€ H (X ; Z,) with >=0. Associated to the factorization

2 $+2 -
qu<s)+2s+ k. 215(12 k+2v(s-1) Wy
u==

is a secondary operation ¢. Now since Hy(2X; Z,) is even dimensional,
Qus10%(y)=0 for all u. According to Zabrodsky [6], since £X is homotopy
commutative,

(3.1 Z!gb(a*y)Ea*y@U*y—{— Z_Iim Sq28+1k+u<s—1>-v<u) ®qus+1k+u(s-1)—v<u> .

The proof now proceeds by induction. For s=0 the theorem follows because
Q***1=Sq¢** Q%+, Assume the theorem is true for s’<s. Then if degree y=
v(s)+25*2k.  Suppose y=Sq*’z for some i<s. Pick the smallest such 7. Then
2*#0 since y?#0. By induction z=Sg*'+ +2*~ 121y, for some w. But then by
applying Adem relations Sg**z=y is in the image of Sg!, ---, Sg**"". This con-
tradicts the assumption that the smallest ; was chosen.

We conclude yeim Sg?* for i<s. It follows that ¢*yeim Sq¢** for i<s,
because, if so, o*y=S¢*w and we@ji)/\(a*(yj)) which implies w=o%*z.

Now by (3.1), if
a*y EEE im Sq23+1k+v(s—1)—v(u)

then <#?, ¢(o*y)>+#0 which would imply 0. This can't happen, so

G*y = E im Sq28+1k+v(s—1)—v<u) i
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The only term not in the image of Sg?* for /<s is S¢g***'*. Hence g*y=
Sqg***'*g*z which implies y=Sg* "tz Q.E.D.

§4. Applications

There are several applications of the fact that Q!**'=Sg**Q***!. We des-
cribe a few which will be used in subsequent papers to deduce the action of
the Steenrod algebra on H*(2X).

Definition 4.1. Let n have dyadic expansion
n=2"142"4 ... 42"
where 0<s;<s,.;. We will call / the “length of n”.

Proposition 4.1. If 4k-+1 has length | and Q***' is nontrivial, then Q21
Is nontrivial.

Proof. From Theorem 2.3 and Theorem 2.1(a) we must have
Q*®-1 npontrivial .
By Theorem 2.2, Q*'-! is nontrivial. Q.E.D.
Proposition 4.2. PH'(QX)=E&(g*Q**1).
Proof. 1t is known that
PH*"QX)=g*Q*+*.
But Q*#*1=Sg**Q%**1, Q.

=
o

Proposition 4.3. Q%**5=Sg*Q%"**
P7'00f. Q8k+5:Sq1k+ZQlk-ri
=Sg2Sq EQ s
since Sg'***=S42Sq** modulo a Sg* doubleton. Q.E.D.

Definition 4.3. A coalgebra with squares is a coalgebra C together with a
map &: C— C of coalgebras such that degree &x—=twice degree of x.

Let &¢: H¥(X; Z,)— H*(X; Z,) be the cup product squaring map. Define
R={xeHNX; Z,)|dxctHXX; Z,)QHXX; Z,)} .

Note that since EH*(X; Z,) is a subHopf algebra, EH*(X; Z,)CR.
Further, by coassociativity,

JRCR®R

and in fact R is a coalgebra over the Steenrod algebra with squares.
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Let S(R) be the free commutative algebra on K. Then S(R) is a Hopf
algebra and there is a diagram

R——>H*X,; Z,)

7
270

S(R
where the dotted arrow is a map of Hopf algebras.

Theorem 4.4. Let ICS(R) be the ideal generated by elements of the form
x*—Ex. Then 0 induces an isomorphism § of Hopf algebras over the Steenrod
algebra

S(R)

N

S(R)/I —> HX(X; Z,)

Proof. @ is a map of Hopf algebras. Because the map
R — HXX; Z;) — QHX(X; Z,)

is an epimorphism, § is an epimorphism, with kernel £R. Filter both S(R)/I
and H*(X; Z,) by powers of the augmentation ideal. Then E(S(R)/I) is a
primitively generated Hopf algebra on generators R/ER. Since generators of a
Borel decomposition of H*(X; Z,) can be chosen in R, E(H*(X; Z,)) is also
primitively generated on R/ER. It follows that Fo(#) is an isomorphism. Hence
§ is an isomorphism. Q.E.D.
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