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On an of the

By

D.D. BAINOV*., A.D. MYSHKIS** and A.I. ZAHARIEV*

The paper considers one of the possible generalizations of the Volterra equations in
the case when the independent variable belongs to an arbitrary compact metric space and9

as a corollary of the obtained results, an abstract analog of the Bellman-Gronwall inequality
is proved.

Recently there has been a considerable interest in integral inequalities for
scalar functions of a vector argument and now many papers deal with that
subject. Extensive reference is given in [1], [2], The integral domain in the
above mentioned works is an /z-dimensional parallelepiped (see for instance
[3]). In the monograph [4] an analog of the Bellman-Gronwall inequality
for precompact domains in Rn is proved, which., in general, are not a Cartesian
product of intervals.

The aim of the present paper is to prove the Bellman-Gronwall inequality
in the case of a compact metric space.

Let @ be a compact metric space with a metric p and a Borel measure ja,
and let for each xe£ the mapping M: x-+Mx be defined where Mx is a closed
subset of Q. We shall suppose that the mapping M satisfies the following
condition :

Al. For each e>0 and each %eJ2 there exists a number d>® such that
for each jeJ25 for which p(x, y)<d the following inequality holds

Definition L The mapping M is said to be continuous with respect to
the measure ju, if it satisfies condition AL
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Consider the equation

(1) 9(x)=f
JMX

where the kernel K: J22— »{7 and the function/: Q-^C are continuous, and

Denote by C(Q) the Banach space of the continuous functions g: @-*C

with a norm ||g||=sup| g(x)\ and define the linear operator JTby the equality

(2) (Kg)(x):= K(X,y)g(y)d»y,

The operator /— IK9 ^eC7? ^l=f=0 is a canonical Fredholm operator. In order
to verify the above statement it is sufficient to prove that the operator K is
compact ([5]5 p. 110).

THEOREM 1, Let the mapping M be continuous with respect to the meas-

ure fj,. Then the operator K maps C(Q) into C(Q) and is compact.

This theorem is likely to be known but for the sake of completeness we
shall give its proof.

Proof. Since C(Q) is a Banach space then it is sufficient to show that
the image of the unit ball B^C(@) is a compact set. For each function
g&B, taking into account that ^ is a Borel measure,, we obtain

\\Kg\ | = sup | ( K(x, y)g(y)d»y \ £AvM ,
xs=Q JMX

where A= sup \K(x, y)\ , i.e. the norms of the functions belonging to the set
x.y^Q

K(B) are uniformly bounded. We shall prove that the set K(B) is equiconti-
nuous.

Let e>0 be arbitrary. The uniform continuity of the kernel K(x, y)

implies that there exists a number d==d(e)>Q such that for arbitrary x9 y,
if p(x,y)<d then

(3) \K(x,z)-K(y,z)\<

Besides, it can be easily verified that the mapping M is uniformly con-
tinuous with respect to the measure A, and hence there exists a number £*>09

d*<d, such that if p(x, y)<d* then
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( 4 ) »({Mt\M,} U {M3\MX}}

Therefore, for each function g^B and for x? y^Q, (3) and (4) yield the
estimate

\(Kg)(x)~(Kg)(y)\=\\ K(x,z)g(z)dvz
JMX

[K(x, z) -K(y, z)]g(z)dnt \ + \\ K(x,
^My JMx\My

JMy\Mx

which makes it obvious that the functions from K(B) are equicontinuous.
Therefore K maps C(Q) into C(Q) and it follows from the Ascoli-Arzela

theorem that the set K(B) is compact.
Theorem 1 implies that the Fredholm alternative holds for equation (1).

Suppose in addition that the mapping M satisfies the following conditions:
A2 (Transitivity). For each x^Q and each y^Mx the inclusion My^Mx

holds (in other words M2^M).
This enables us to consider, for an arbitrary point a^Q the restriction

Ka: C(Mfl)->C(Mfl) of the operator K where Ka is defined by equality (2). In
that case the restriction <p/Ma of the solution of the equation <p=

)5 is a solution of the equation p=f/Ma+MKap,

A3 (Semicontinuity from below). For each x^@ and each e>0 there
exists £>0 such that for each je$ for which p(x, y)<$ the inclusion
Mx<^ U(My, e) holds where U(My9 e) denotes the ^-neighbourhood of My.

Remark 1. This condition is very close to condition Al and in certain
cases is logically related to it. For example, it can easily be verified that if
the mapping M satisfies condition Al then it is semicontinuous from below for
every x^^ such that for each £>0 the inequality

holds.
A4. There exists XQ&@ such that jtt(MjCo)=0.

Remark 2. If conditions A1-A4 are fulfilled then equation (1) may be
considered as one of the possible generalizations of the Volterra equations.
This can be seen, for example, from the fact that if v/e consider the equation
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f^W
9(x) =f(x)+ K(x9 y)9(y)dy , ^ : [0, 1] - [0, 1] ,

Jo

conditions A1-A4 are fulfilled if and only if the function T/T(X) is continuous

and ®<T/T(X)<X for ^e[03 1]. It may be of some interest to describe the

structure of the mapping M satisfying conditions A1-A4 in the general case.

20 Condition (A) is said to hold if the conditions A1-A4 are

fulfilled and Q is a connected set.

2o Let condition (A) be fulfilled. Then equation (1) has

exactly one solution <p^C(@)for each function /

Proof. Consider the equation

(5 )
J MX

and let 9?e C(Q) be one of its solutions. Denote by H the set

H = {x\x^Q and for each y^Mx we have <p(y) = 0} .

We shall prove that If =1=0. It follows from A4 that there exists a point

*0e<£ such that /i(M,0)=0 and A/,^0 (the case Af,0 = 0 is trivial), and
therefore condition A2 implies that for each x^MXQ we have ja(Mx)=0. Then

(5) yields p(x)=0 for each x^MXQ and hence x^H.

The set JI is closed. Let us choose an arbitrary fundamental sequence

of points {xn}5 xHGH9 n = l, 29— and denote by x* its limit in Q, We

shall prove that x*^H. For this purpose it is sufficient to consider only the

case when all Mfn and Mjc*=t=0. Let z<^M%* be an "arbitrary point and e>0

be an arbitrary number. We denote by yn the point at which the minimum

of the distance p(z, x), x^M%n, is reached3 i.e. p(z3 y^=p(z, MX)) (This mini-

mum is reached because MXn are closed sets). There exists a number ^x>0

such that if p(x, z)<dly x<^@ then \9(x)—?>(z)\ <e. Condition A3 implies

that there exists a number S2>0 such that if p(xn9 x*}<d2, then Af,*c U(MSn, d^.

But since ]im p(xn, x*)=Q then there exists a number N>0 such that for
?2-3>co

?2>7Vr we have p^, ^*)<<52. Therefore for n>N we have z^U(MXn, dj.

Hence p(z9 MSi) = p(z9 yn)<^i and thus |9>(z)— ̂ J| <e. Since 9(^ = 0

then |p(z)| <e and hence 95(7) =0. Since zeAf,* is an -arbitrary point then

p(x)=Q for each x^M^ which implies that x*^H.

We shall prove that H is an open set as well

Let a^H be an arbitrary point and let e>0 be such that the inequality
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e\Z\A<— holds. There exists a number £>0 such that for each x^Q for

which p(a, x)<d, the following inequality holds

Let b^Q, p(a, b)<6 and consider the set

T= g\g^C(Mbl g(x)=Q for

Condition A2 implies that the operator &Rb maps T into T. Let gl5

be arbitrary functions. Then we have

\\M = U | sup | K(xy
b

< U | s u p { | { K(x,
xEiMb JMx\Ma

< \l\A sup
*e=M6

Therefore the operator XKb is contractive on the set T (it is easy to see
that the set T is closed) and from the Banach fixed point theorem it follows
that ZKb/T has exactly one fixed point gQ^T such that

(MTtfoX*) =&(*)> *eM*.

It is immediately verified that (5) has a zero solution and hence from the uni-
queness we get gQ(x) = 0 for x^Mb. On the other hand the uniqueness implies
that the restriction of <p(x) on Mb coincides with g0(x) and therefore <p(x) = Q
for x^Mb, i.e. b^H. Thus we proved that the set H together with all its
points a contains a neighbourhood of any of these points as well, i.e. H is
open.

Furthermore, taking into account that @ is connected? we obtain H=@
and hence (5) yields <p(x) = Q for x^ti, i.e. equation (5) for each ^eC has
only the trivial solution. The Fredholm alternative implies that for each
X e C equation (1) has an unique solution <p(x)^C(Q) for each function

Remark 3. The spectrum o(K) of the operator JT consists of the point
i=0 only.

Remark 4. The spectral radius r(K) of K is zero.
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The validity of the above statements follows immediately from theorems
1, 2 and from [6] (Theorems 39 4 of Section VIII.2 and Theorems 13 2 of Sec-
tion X.5).

Therefore the solution of (1) is given by the equality

( 6 ) ?(x) = ((I-lKYlf)(x) = *-W-1; *)/)(*) ,

where the resolvent R(X~li K) is presented in Neumann series convergent in
the operator topology for each X e C,

-1; K) =

or in a more expanded form

( 7 )

where the series (7) is uniformly convergent for each A e C ([6] Theorem 3 of
Section VII.2).

In particular if /(%) = ! and ^ = 1 we obtain from (7) a special solution
<t>(x) of equation (1):

(8) #(x) = l + ( K(x9y)dn, + \ K(x,y)(\
JMX JMX J

THEOREM 3o Let conditions (A) be fulfilled and let the continuous func-
tion i/r: Q—*M satisfy for each xEz@ the inequality

(9 )
MX

where the functions f: Q-*R9 K: &-^>R are continuous, and K(x, y)^0 for

. Then if we denote by <p(x) the solution of the equation

J MX

then for each x^Q the inequality

holds.

Proof. Iterating n times the right hand side of (9) we obtain

(10) ir(x)<f(x)+\ K(x,y)f(y)dti,+ \ K(x, y)(\
J My & MX J

K(x, j)-( f
J MyMx
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Taking into account (6) and (7) and passing to the limit ;?-> + oo in (10)

we obtain

K(x, y)f(y)d^+- = ?(*) .
X

Theorems 2 and 3 can be naturally applied to the case when Q is not
compact or connected but the mapping M satisfies certain additional condi-
tions. For example, it is sufficient to require that every nonempty set MX9

x^ti, should be compact, connected, have a finite measure (assuming that
fjL takes the value +00 as well) and., besides, should contain a point y=y(x)
for which /*(Mj)=0. In that case all considerations about the operator K
must be referred to its restriction Ka, where a<^@ is an arbitrary point.

Let us consider in particular the inequality

JMX

where C is an arbitrary constant, K: @->R is a continuous function, and
. Then Theorem 3 and equality (8) yield

(11) V>(*)^C0(JC), XE^@

where the function <f>(x) is a solution of the equation

(12) 0(*) =
JMX

and is presented in the form

(13) #(*) = ! + K(y)dti,+ - ,
JMX

where the series (13) is uniformly convergent.
In fact (1 1) presents an analog of the Bellman-Gronwall inequality,,
If we set K(y)=l in (13) then we have an analog of the exponent cor-

responding to the mapping M:

(x) = 1 + 1 dv,+\ (
JMX JMX

To illustrate the results obtained we shall consider a few examples in the
case when Q is finite dimensional.

I. Let Q=R+, Jg+=[0, +oo)9 Mf=[0,x]. Then expM(x)=e*
and in inequality (11) we have
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Example 20 Let £=M+, Ms = [0,T/r(x)], where ^(x) is continuously
differentiate and Q<ir(x)<x. Then expM(*) is a solution of the Cauchy
problem

), #(0) = 1.

If in particular ^(^)=^- then

+ 00 „#

expM (x) = S -—

Example 3Q Let i0=/8+, x=fo, *2)5 ^15

Then

Example 4 [4], Let £=.RJ, ^ = (%15 •'•9xtt)9 jc f->0, / = !, n and
[0,^JX-X[0,jfJ. Then

The following theorem is valid in the general case :

THEOREM 4 Let Q =Mn+, ju, be a Lebesgue measure and let the following
conditions be fulfilled:

1. For each x^@ and each y^Mx we have x^ yi9 i=l5 n.
2. The function K: @^>R is continuous and K(y) > 0 for y^@.
Then the solution 0(x) of equation (12) satisfies the inequality

MX
K(y)dy] ,

(A similar result in the case when K(y) is an integrable function but the mapping

M has a special form is obtained in [7]).

Proof. Let ze^+ be a point such that the w-dimensional parallelepiped
BZ=[Q, zJX"-X[0, zj contains Mz and let us choose an arbitrary function
K: BZ-*R+, K<=C(BZ\ such that K(y) = K(y) for y^Mz. Then the function

K(y)dy],
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satisfies the equation

(14) (̂*) = i

where Bx=[0, xj X ••• X [0, xn], while we shall clear up the form of the function
Fin the case n=2:

9
Jo Jo Jo \dy1

= i + pfexptpc r**(£i, ^X
Jo Jo Jo

ir- i>o L oy2 Jo Jo Jo

o Jo Jo Jo

!

xl ~ f*

^(Ji, ^2) 4Ki ° Io Jo

It is not difficult to verify that for an arbitrary n the function F is equal
to the sum of K and a polynomial with positive coefficients of integrals of K

with multiplicity from 1 to n — 1 and with integration bounds from 0 to X;,
Hence F(x)^K(x) for x^B2 and from equation (14) we obtain

MX

Therefore from Theorem 3 taking into account that <f>(x) is a solution of (12)
we obtain the inequality <t>(x)<i/r(x) which had to be proved.
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