
Publ. RIMS, Kyoto Univ.
20 (1984), 913-927

Convergence of the

By

R.F. STREAMER*

Abstract

Consider the Boltzmann equation of degree d>2 for a discrete sample space Q and
discrete time; in one step it defines a non-linear map T on the space of measures on Q. We
show that the entropy increases under r.

When the energy levels of Q are equally spaced and scattering conserves energy, the
iterated map {rmj^}m=1)2- converges in lt to a canonical state fi^ for any initial measure fi, if
the scattering matrix mixes each energy shell. If Q is finite, /? depends only on the energy
of /«. Under other mixing conditions, rw# converges to the microcanonical or grand cano-
nical ensemble.

§ 1. Introduction

1.1 A discrete system can be described by a sample space & = {®9 19 2, •••}
together with a probability measure JU=(JUQ, &19 •••) on & defining a state of the
system. The numbers {/*,-} obey the constraints

(1.2) ^.>09 7 = 0 ,1 ,2 , - . .

(1.3) 2/*/ = !•
/ = !

We interpret ju3- as the probability that the system in hand is in state 7. In this
paper we study the time-evolution of ju, determined by a non-linear map r
similar to one obtained from the Boltzmann equation. We interpret TJU, as
the state of the system after one unit of time has passed, if ju, is the state at the
start of the time-interval. We call r a Boltzmann map; our main interest is to
prove that Tmp converges in /x to an equilibrium state as m-»°o? and we achieve
this under natural conditions on # and r. The technique is the usual one:
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we show that the entropy increases at each step, unless we are at equilibrium;
this can then be used to improve on the abstract fact that {^/4m=i,2,- bas a

weakly convergent subnet, to show 4 convergence to equilibrium of the se-
quence itself. Our techniques can be applied easily to Boltzmann maps of any
degree, but we illustrate the method first in the quadratic case, defined as
followSo

1.4 Definition. A quadratic Boltzmann map is a map /JL\-^TJJ.=/J,' of the form

(1-5) /4=*/+S S Tfi

Here, the numbers Tjk ; !m, called the scattering probabilities obey

(1.6) Tjkjm = Tlmjk = Tkjtm!^0

(1.7) S r,w.<l-
l,m*j,k

Equations of the form (1.5) are used in population dynamics [1,2], especially
for species with well-defined generations. Our main interest is in kinetic theory
of identical particles, in which case (1.6) expresses symmetry and time-reversal
invariance not so natural in population dynamics.

We interpret jLtjjuk as the probability that two samples drawn independently
from Q are respectively in states j and k, so TJkilmjLtj/jtk is the probability that
the pair scatter out of that state as (/, m)=£(j, k). Let us define

This is the probability of no scattering, and motivates condition (1.7).
Define the entropy of the state ju. to be

(1.9)

when this is finite, with the convention that 0 log 0=0. If this diverges, we
put »S'(^)=oo. Let <5M. denote the set of probability measures on Q. The
main part of the paper is devoted to proving the theorems below:

Theorem 1. A quadratic Boltzmann map r maps M into itself.

Theorem 2. S(rfi) > S(v) for any

Theorem 3» (a) If Q is finite and 1 is a simple eigenvalue of the doubly
stochastic matrix Tjki!m acting on Q X Q, and p.^<3&9 then
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(L10) (r"VOy -» 1/Ti as m-^ oo

where n=\Q\ .

(1.11) (b) If each Tjk . lw=0 unless j+k=l+m, then
00 00

(1.12) SjX- = Sj(r^)f (energy conservation)
y=o /=o

(/" 1 w a simple eigenvalue of the doubly stochastic matrix

(Ts.N-j;i.N-i)j.i=o,i.~Nfor each N, acting on RN+1 then for any PL with S7#y=

(1.13) rm/i -> 4 = f — ") in It asm-* °o
\ z //=o,i,-

/or some A w/zere z= S e~Sj', awrf ^ w a parameter obeying

=09 ^=00 ^ understood to

mean Ai = l, A = — =/iy = -- —0.

is finite, we have Q=& in (1.14).

1.15 Remark. We interpret j as the energy of state/ We recognise 4 as the
Gibbs state of temperature I/ ft and internal energy 8. The quantities #y/^ — juljam

are called the disequilibrium parameters. Obviously, if they are all zero, then
ju is a fixed point of r. So, jUj=l/n for all j defines a fixed point, the uniform
distribution. Theorem 3(a) states that this is the end result of repeated mixings
with T if the doubly stochastic matrix T on Q X Q has a simple largest eigenvalue.
Indeed, v.~\\n is the only solution of jLtjjLLk=jLiljLtm9 for all/ fe, /, w, and 2 #y=l.

In Theorem 3(b) we shall only be able to deduce that ^jMk~~^i^m=^ on the
"two-particle energy shell", i.e. if j+k=l+m, because we assume that Tdoes
not mix two-particle states of different total energy. These equations then have
a one-parameter family of solutions, A(J9). If | Q \ = °° we have not been able
to prove that the energy of the limit state is <?, even though the energy is 6 at
every stage of the iteration. Mathematically, this is because 2/^y is not an
4-continuous function of ft&tSM. It is possible that for special choices of initial
#, some energy "escapes up the energy ladder" as we iterate the map. This
would correspond to a vanishingly small number of particles carrying away a
macroscopic amount of energy, leaving the limit state in equilibrium at a lower
temperature. This phenomenon cannot occur if | @ \ < °o? since then G is con-
tinuous.
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We shall prove these theorems in § 2 and § 3, and discuss easy generaliza-

tions in § 4. A more general form of the finite case is proved in [2], which is

not so easy to generalize to the n-body case as ours.

§ 2. The Finite Case

2.0 Remark. The finite case is, of course, a special case of the infinite case

proved later; but it is worth while showing how easily the finite case follows

from Lemma 3.4, which is assumed in this section. Note that if T satisfies (1.6),

then TT*=T2i this means that if 1 is a simple eigenvalue of T then it is also a

simple eigenvalue of TT*\ thus Lemma 3.4 does apply to such a T.

2.1 Remark. We may write the equation as

lm*j,k

using (L3) gives

K/l — 53 Tjkjm}+ 2 WmTjkMm}

using (1.8).

2.2 Proof of Theorem 1. We see r as the composition of three maps. First,

a: #i->jM(g)jH defines for each & a probability on Q X Q. Then comes the map

] Tjkjm^ijum=ju/
jk say. Since

(2.3) S ryM>( - i

T! is a stochastic (indeed, a doubly stochastic) map, and so T-^JJ, is a probability

on £2. Finally, r2: jMy*i-»jMy=5] j«}* takes the marginal probability of juf
jk, and

so jtt} is a probability. This proves Theorem 1 .

2.4 Proof of Theorem 2. The entropy of ju®ju is double the entropy of #, i.e.

S(ju®jJi)=2S(jJi). Moreover, a doubly stochastic map does not decrease entropy

(Renyi [3], p. 556, but not accurately stated there). Hence

S(T1aja)=S(^k). Let /i} = 2 *}*, ^i = 2 ^V Then ([3], p. 557)

But by symmetry, n'j=v'j. Thus
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This proves theorem 2,

2.5 Proof of Theorem 3. Let | Q \ = n < oo . The sequence (r""jtO» > 0 lies in a
compact set in R'\ and so has a convergent subsequence (rXw2/e)s converging to
4 say. Since S(/i) is a continuous function,

(2.6) Mm S^SH) = S(A) .
W^.09

Now r is a quadratic polynomial., and so is continuous. Hence rorXMi/e—>r$ and
S(TOTKmjuL)-^S(rfjL). But {£(rm/f)};M=M>... is a bounded monotone sequence, and
so converges. Its subsequences {S(rx»«^)} and {*S(rorx'«/e)} therefore converge
to the same limit.

Therefore S(A)=S(rfi).

2.7 Proof of Theorem 3a. If 1 is a simple eigenvalue of the stochastic matrix
rl5 then there is only one fixed point of rl namely 7* with 7*ij=n~2. We now
show that Ai=n~1. If not, then 4®4^7«. So, by Lemma 3.4 below,

This gives 2S(rff) > S(r^l®fi))> 2S(ff) =2S(T/i) a contradiction. Thus any con-
vergent subsequence converges to Ai=n~1

9 so Tmt* must converge to 4= This
proves (a).

2.8 Proof of Theorem 36. If Tjk>lm=Q unless j+k=l+m=N say, the two-

particle energy, then let <?(/*) =S7/*y

(2.9) ry§/ = Tj>N.j;

Then

and
OQ 00 CO

- S $N -> where

(2.10) dN = 5}j
/ = 0

Replace j by N~j and / by N—I in the sums. Then

JF JT

j=o 1=0 J' 3 J

Use the symmetry Tjj=TN-j,N-i, so
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(2.11) *" - S (N-J)il

Add (2.10) and (2.11), giving

28» = S N s r

Use time reversal invariance T1jj = T^j giving 5^=0.

Hence £(TJU)=£(JU): energy is conserved.
Since 8 is a continuous function of ju, £(fi)=lim 8(rXmtJ)=lim 8=8.

We now show as in (a) that A® 4 is the equidistribution on each energy shell.
If not, Lemma 3.4 gives

2S(rjA)>S(r^®/9)>S(/l®/0 = 25(4) - 2S(rA) ,

a contradiction. Hence all "energy-conserving" disequilibrium parameters are
equal: /jtjAk=AiAm ifj+k=I+m. The only solution to thiss with 8($)=8, is

-
with

JLJ

Z = S e

and ft determined by

This is the only state with this entropy (and having energy £), so all con-
vergent subsequences converge to A, and as in (a)5 Tmja-^/l as m-»oo. This
proves 1.14 and Theorem 3 when | £ \ < ooa

§ 3S The Case

We shall use the following results.

fe=i

Then by Taylor's theorem

/O O\ nYV ^ ~/-A i /-- _A_/ / .A i A
\J*£) g\s

where ^<f^<xA or

Therefore summing wkg(xk) gives
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Apply this to g(x)=x log x where 0<*A< 1 :

(3.3) 2 wkxk log xk=x log *+ y S wAx-xtfe?

as £A<1.

3a4 Lemma (gafn m entropy under a doubly stochastic map). Let T be a

doubly stochastic map on RN and let p be a semi-probability, i.e. l^p^Q,

j=I, ••• N. Let the eigenvalue I of TT* be simple, with a gap A to the next

largest eigenvalue. Let #/=S Tklpk. Then

(3.5)

where pj^N-

Proof. Since rw>0 and 23 Tki=\, we may apply (3.3) for each j to give,

as /?,•<!,

23 r4/A iogA>?y log ?y+ 23

Summing over /' gives, as

23 A logft-23 ?y log <?y>y 23 23 Tkj(qj-Pk)
z

= y (23 «?-2 21 23 rw/»rfy+23/'I)

,> = y <(l-TT*Xp-p), (p-

since (l-7T*)Jp=0

since p=p®(p—p) and J is the smallest eigenvalue of (1— TT*) on the space

orthogonal to p.

This proves the lemma.

3.6 Remark. This shows that if J>0, Tnp-*p as w->oo; for entropy in-

creases and is bounded., so \\pn— p\\2-*Q where pn=Tnp.
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3.7. Now return to the Boltzmann map T and consider the entropy of r^/e.
This state has energy £=^JMJS and therefore its entropy is bounded by the
entropy of the thermodynamic state of this energy, which is given by

(3.8) S(€) = -S e-'fZ-'C?) logCZ-'e-") = pS+log Z(p)

where J5 is determined by

(3.9) <ff = Z-1Sye-*f

(3.10) Z = Se-^ = (l-e-p)-1-

Hence S(rm^) is an increasing bounded sequence and so converges as m->°o,
The increments S(rm+1/j,)~S(Tmju) therefore converge to zero, which a fortiori
implies that the gain in entropy under rl3 applied to each energy shell N of
Tmfj.®TmfjL, goes to zero as m->oo. This map T19 restricted to the energy shell
j+k=N, is a doubly stochastic map with a spectral gap, and so Lemma 3.4
applies with N+l points and the semi-probability p=(pl9 ••• PN+I) where

Pi = (^/Oy-l(*"/0*-y+l -

Since J>0 for each N, Pj—p-*® as m-»°o which implies that the disequili-
brium parameters

Pj-Pk = (^)y-i(^)^-,-+i-(^).-i(^)^^+i - 0

for each N, as m-^°o. That is, all the energy-conserving disequilibrium
parameters of rw/£ converge to zero.

3.11. Since the set of probabilities lies in a weakly compact set in 4(^)5 a
subnet say {^}, of {rmij} converges weakly to A say, i.e. ^— »4y. Since the
disequilibrium parameters of {rw#} converge to zero, they converge to zero also
along the subnet. Thus AjAk— 4/4m^lim(^A— vpm)=Q if j+k=l+m. Hence
there are parameters Z3 p such that

(3.12) /ly = ±-1e-^.

Obviously for any JV,

(3.13) I>,-<1,
y=o j=o

and so the limits (along the subnet) obey

for any
y=o
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Hence

(3.i4) f j 4 y < i , e = 'SjAs<e.
y=o j=Q

00

3.15 We now show that ^ f i j = l, i.e. no probability is squeezed out in the
limit. Choose £>0 and N large enough so that S/N<e/2; then proceed along
the subnet up to v such that

°° °° £ s
Now for all N and y, S / v ,• < £ and so YJ v ,- < - < — . Hence

' j" ' fti ' N+l 2

Hence S /L- >1 as N-*oo. This, together with (3.12), says that /I is a Gibbs
0

state of temperature 1//9,

3.16. We now show that J3<{1. Indeed

where / is the random variable J(j)=j and JB is expectation in the Gibbs
state of temperature /T1. Since G(P) =<£ <S=S(J3)9 it follows that

3.17. We now show that S(ft)<S(JS)9 where S(j3) is given by (3.8). We see

Since /9>^ it follows that

3.18. We now show that S(v)-*S({i) along the subnet. First we give an
elementary result.

3.19 Lemma* Let pn, pn+1, •'• be a sequence of non-negative numbers, with
00 00 00

=q and ̂ jp~E, Let s=— ̂ P logp. Then

(3.20) s^(y+q) log (y+q)— y logy~2q log q

where y=E~nq.
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For the proof, we maximise the function s(p) subject to the constraints by the
method of Lagrange multipliers. The right-hand side of (3.20) is the result

3.2L By the mean value theorem, ( y+q) log ( y+q)=y log y+q — (f log £),

Hence s <: —2q log 0+0(1 +log £ ) < — 2q log q+q(l +log E). This result means
that a small tail of a distribution, with q small, cannot contain much entropy.
This fact allows us to show that S(y) increases to S(fi) along the subnet.

3022 Theorem* S(v)-*S(fi) along the subnet.

Proof. Choose e > 0. Let q > 0 be such that

-20 log 0+0(1+ log £)<y.

Let N be chosen large enough so that

23 -4, log 4, <f, ,5><f .

With this AT, follow the subnet until each vlt ••• VN is so close to the limit that

| S "y log vj -fj /ly log /»y |< 4 and
0 0 J

hold for all v further down the subnet. Then

I 1 ~S V, | = | (1 -S 4y)-(l -

<_£+_!_ = q for aii further v.
2 2

Hence
00

—S *y log Vy< —20 log 0+0(1 +log (?)

Therefore
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S3 "/ log *y + S3 Aj log Aj I = I S3 4y log 4y- 2 *y log J>y

I S3 (Aj log AJ—VJ log »y) | +1 S3 AJ log AJ I +1 S3 ",- log *y

Since this holds for all v further on, we have S(v)-+S(fi) along the subnet.

3.23 Uniqueness of the limit.
If {v} is any convergent subnet of {r^/e}, the arguments given in (3.11) show

that v converges elementwise to some Gibbs state /*(&) and subsequent sections
show that S(v)-*S(J3^- But S(rmp) converges, so it and all convergent subnets
converge to the same limit. Hence S(fi1)=S(/3). But #(A) and v(p) are Gibbs
states, and for these, equality of entropy implies equality. Hence fii=fi and all
convergent subnets have the same limit.

3.24 Proof of Theorem 3b, infinite case. Suppose (r*V)y does not converge to
Aj for some j. Then there is s>0 such that the subset of m with \(Tmja)j~Aj\
> e is infinite, and so rmju will have a convergent subnet not converging to Aj,
contradicting 3.23. Therefore (rwjti)y-»/&y. To show /^convergence, choose

OQ

£>0 and N such that S3 Aj< e/2. Choose M large enough so that for w> M
J7"

Thenforw>M

1 1 - SV/O, I = 1 1 -

1 1 -s fit I + 1 (r-^-Ai I + • • • + 1 (*"*)*-, -^-i I

Then

! 1 (Tmft)j-Aj | < S I (T'tij-Aj I +S I (r"jM)y-4y I
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This proves the theorem.

3.25o We remark that while ^<0 is possible in the finite case, ft must be >0
in the infinite case.

§ 4. Generalizations

The method gives results for a Boltzmann equation of any degree d9 without
much extra work. We just consider the map a: #->/«®#® •••#, taking a
measure u on & to the product measure on Qd. Then the map TI of § 2 is
generalized to a doubly stochastic map on the space of measures on Qd

9 of the
form

(4-1) <-/d = (*i°tijr>id = Tj^Jd,kl...kd(o^)kl...kd

(summation convention) for some parameters T, abbreviated to Tjtk9 where
j=(ji> °*° Jd)> k=(ki, ••• kd). We assume that T obeys time-reversal symmetry

(4.2) TM = TkJ

and the physically natural symmetries

(4=3) Tj.k = T^sM

where n&Sdis the permutation

The generalized r2 is the marginal map

Then the generalized Theorem 1 is immediate, namely, ju' is a probability.

Eq. (4.2) ensures that T is doubly stochastic. Repeated application of the
method of (2.4) gives the generalized Theorem 2, namely

To proceed to Theorem 3 we must make some assumption about the mixing
properties of TV If J2 is finite and TI has a unique fixed point, then we get
the generalized Theorem 3(a). Now suppose TI conserves energy, i.e.

(4.4) Tj>k=0 unless Sy^Sfc,.
0>=1 QJ=1

Then it follows by an argument just like (2.10), (2.11) that
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(4.5)
0 U

holds, provided that (4.2) and (4.3) hold. Suppose that rl9 restricted to the

energy shell, S7«=S &«»=#, has a unique fixed point. Then, as before,
all the disequilibrium constants (now of degree d) converge to zero along a
subnet. Among the disequilibrium constants will be

J^c61 •" ^c6d.2(^j^k~^i^m) with j+/c — l-\-m .

Summing over al9 ••• ad_2 just gives /s^—#j^m-»0 along the subnet in the
finite case, and from here on, the proof is the same as in the quadratic case,
d=2.

In the infinite case, the argument of 3.15 shows that not all M/ converge to
zero, so along a subnet one of the #a is bounded away from 0. This then
implies that /jLjjj.k—/jilfjLm->^ if j+k=l+m:> and we follow the argument of §3
again to get Theorem 3(b).

4.6. On physical grounds we would expect Tjr..Jdtkii...kd to exhibit "cluster"

properties, in that T^j2jz...Jdikik2jy..Jd should be the probability of the two-

particle scattering, j\ +J2—*•&].+&2? the remaining particles acting as "spectators";
the same remarks apply to all the other possible subchannels. Only the

term with all j^s differing from the k^s gives an intrinsic d»body term in the

Boltzmann equation. The term with spectators can be collected together using

S #/=l to lower the degree of the scattering term, which can then be made to

correspond to a term in the Boltzmann equation of degree < d. The degree

d of the Boltzmann equation is thus not homogeneous: only the intrinsic J-body

term cannot be reduced in degree. We saw this phenomenon for d=2, in

that (1.5), containing linear and quadratic terms, is equivalent to the apparently

homogeneous equation in 2.1.

With this remark we see that the Boltzmann equation with larger d is a real

generalization of the equation with smaller d rather than a different equation.

4.7 If Q is described by a double sequence (j, fc), j=0, 1, 2, • • • ; k=Q, 1, 2, • • » ,

then we can use j to describe one random variable, energy say, and k to describe

another, such as particle number, if that can vary in the given region by scat-

tering into another, for example. We can model the exchange of energy and

particles between two regions by considering a scattering matrix T, on measures
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#®# (on £2), which is zero unless Ji+j2=J3+J41 and k1+k2 = k3+k4 where

r==*Jl*l./«**;'8*B..UV

These two conditions express the conservation of energy and particle number,

respectively. Following the same arguments as in § 2 or § 35 modified suitably.,

we find that the map T=TZTIG increases entropy except at a fixed point? and

mixes the probabilities on the energy-number shell J\+J2=E3 k1+k2=N. The

vanishing of the disequilibrium parameters obeying these conditions implies

that Ajk can be expressed as a grand canonical ensemble

which is therefore the limit of Tmp. as m-> oo . The parameters ft (inverse tem-

perature) and r (chemical potential) are determined by the internal energy and

the density

both of which are conserved by the map lim rm
5 at least in the finite case. In

the infinite case, we have again been unable to exclude the possibility of energy

or number being lost to oo .

§5e Final Remarks

5.1. We have been able to set up an analogous theory for the quantum Boltz-

mann equation [4]. Convergence is proved provided that the multiplicity

ra(j) of the jth energy-level is bounded by a polynomial:

for some £>0 and integer r. This result includes the commutative (classical)

case, and so gives a generalization of Theorem 3 to the case with multiplicity.

5.2. A map r of the type in this paper can be used to construct an associated

stochastic process for each initial probability /*. See [5], [6] for a similar but

much deeper problem with continuous time. In our case we have $ = {0, 1,

2, •••} and we seek a probability measure M on $ X « 0 X - " such that the

marginal probabilities of M coincide with the probabilities (Tmju), m=Q, 1, 2, • • • .

Explicitly, consider the event

(5.3) Am(i) = {a>=(a>l9 a>2, ...)e=0 X£ X - | o>m = i} .

Then we require M to satisfy
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(5.4) M(Am(i)) = (r"VO, , i > 0 , in > 0 .

This can be achieved if we introduce the symbol

(5.5) M-ftfc) = Sr,,.^"~VO/.

As in the linear case5 i.e. Markov chains^ this gives us an algorithm for
defining M, namely

(5.6) M{GKO>O - io, «! = ilf - com = ij = M\ilf i,}M\i2, Q - Mm(im, im.J.

Then it can be shown that M is a probability measure on the cylinder sets
of Qx£X'"9 with the correct marginal probabilities (5.4) and obeying the
Markov condition

(5.7) M {A™(i) | o> : o>0 = k • • • o^ = i^} - M(Am(i) \ Am-\im_$

= *£•(*, im.J,

showing that Mm(i, k) is in fact the conditional probability M(Am(i)\Am"\k)).
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