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Introduction

In recent years it has been realized that the Monge-Ampere operator plays
an important role in many problems in the theory of several complex variables.
In particular, the existence of solutions with certain properties for the homo-
geneous complex Monge-Ampere equation was used by Stoll [7] to characterize
the ball in Cm. In this note we shall deal with the case of strictly convex
domains. For such domains Lempert [5] defined exhaustions which satisfy the
complex homogeneous Monge-Ampere equation outside a preassigned point. These
exhaustions are closely related to the hyperbolic geometry (in the sense of
Kobayashi) of the domain. On the other hand, for strictly convex domains it is
also possible to define solutions for the real homogeneous Monge-Ampere equation.
The interplay of these solutions gives interesting informations on the classifica-
tion of the domains. In Sections 1 and 2 we present the results on the real
and the complex Monge-Ampere equation which we will use. The main result
of Section 1, Theorem 1.2, is due, in an equivalent form, to Foote [2]. Here
we give an outline of the proof for the sake of completeness. In Section 3 we
give our applications. In Theorem 3.1 we characterize the strictly convex domains
which are circular and in Theorem 3.3 we give conditions for a strictly convex
domain to be biholomorphic to the ball. Also in Theorem 3.4 we apply our
results to the classification theory of tube domains in Cm whose base is strictly
convex.
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§ 0. Notations

Let DdRn be an open, bounded, connected subset. We say that D is a
strictly convex domain if there exist a neighborhood U of dD and a function r :
U->R of class C00 such that Ur\D= {x^U\r(x)<0} and dD= {x^U\r(x)=0}
with dr(x)^Q if x^dD and the property that the real Hessian Hr of r is
positive definite.

We shall work with domains in Cm and real and complex derivatives will
appear. Whenever possible we shall simplify the notations as follows. If / is
a function of class C* on an open subset of Cm, (x1, ••• , x2m) are real coordinates
and (zl, ••• , zm} are complex coordinates, then latin subscripts will denote real
derivatives and greek subscripts will denote complex derivatives :

__
^ '" ̂  / lor

Also Einstein's summation convention will be used if no confusion arises. In
this notation the real Hessian form for a function r of class C2 on an open set
Ud.Rn at p^U for X, Y^Rn is given by:

(0.1) Hr(p,X,Y)=rJk(p)X'Y*,

and the Levi form for a function M of class C2 on an open set VdCm at
for Z, PI/reCfm is given by :

(0.2) Lttfo Z, W)=M^

We also define the rea/ Monge-Ampere operator for r by

(0.3) Na(r)=det(r,*),

and ^/ze complex Monge-Ampere operator for M by

(0.4) Nc(M)

§ 1. The Real Case

Let DdRn be a strictly convex domain and p^D. Denote D*=D—{p} and
D^—D—{p}. A proper continuous function r: D — » [0, 1] is called a radial ex-
haustion of Z> with center /> if it satisfies the following assumptions :

(1.1) r(/>)=0, r-1 on dD and 0<r<l on D* ,

(1.2) r is of class C3 on D*,

(1.3) if R=r2 then H*>0 on £*.
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(1.4) N*(r)=0 on D*.

Lemma 1.1. Let GdRn be an open set and r : G —> R be a function of class
C2. // R=r2 is such that H jR>0 then the following statements are equivalent

(1.5) N*(r)=0 on G,

(1.6) ranker/*) = n — l on G,

(1.7) R3R**Rk=2R on G where we set (RJk}^(R3kY
l.

Proof. The proof is an easy calculation and we give here just an outline.
Clearly (1.6) => (1.5). Let T=NR(R) and let Tjk be the minor determinant asso-
ciated to Rjk- Then since 4cR

3/zrJk=2RRjji—RjRk, using some matrix manipula-
tions one gets

which proves (1.5) $=$ (1.7). On the other hand, since J?J*=2(rr<7ft+rJr*), if we
denote tjk the minor determinant associated to rjk, we obtain Q^T~2nrn~1rJt

ikrk

which shows (1.5) => (1.6). q.e.d.

If as above DdRn is a strictly convex domain and p^D, we define the Minkoiv-
ski functional mp of D at p in the following way :

(1.8)
mp(q)=mt{l/t\t>Q and p+t(q-p)&D} if q-=pp.

Since we assume 3D to be smooth of class C°°, ??zp is proper and continuous on
Rn and of class C°° on Rn-{p] (cf. [8]). We also set

(1.9) Mp=m% .

Theorem 1.2. Let DdRn be a strictly convex domain and p^D be any point.
Then mp \s is a radial exhaustion of D with center at p. Conversely if r : D — >
[0, 1] is a radial exhaustion of D with center at p, then r=mp\D>

Proof. Put m—mp and M=MP and assume, without loss of generality, that
£=0. Trivially (1.1) and (1.2) hold for m. Let q^D-{Q}. Then, since m(tq)

for all ^0 we have by differentiation

(1.10) m,(q)q'=m(q)>Q,

so that m.,k(q)qj-\-mk(q}=mk(q) and hence

(1.11)

from which it follows that m satisfies (1.4). Let s=7n(q) and define Ds

= {x^D\m(x}<s\ . Then Ds is strictly convex. Since the tangent space of 3D3

at q is given by
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(1.10) implies q&Tq(dDs) and hence Rn=Rq-rTq(dDs). Let Xs=Rn-{Q}. Then
t^R and Y^Tq(dDs) exist uniquely so that X=tq+Y. As Mjk=2(mmjk+m^nk\
we have using (1.10) and (1.11)

Hu(q, X, X)=

=2(sHm(q,Y,

so that if F^O then Hm(q, Y, F)>0 since Ds is strictly convex, if Y=Q then
t>Q and hence UM(q, X, Z)>0 in either case. This shows that m satisfies (1.3)
and hence m is a radial exhaustion of D with center p.

Conversely assume that r is a radial exhaustion of D with center p. We
can assume p=Q. Define R=r* and let (Rjk)=(Rjk}~\ A vector field £ : D*->Rn

of class C1 is defined by

(1.12) p

so that

Rj
(1-13)

#

Using (1.7) we have

(1.14) r£>= i " = 1 a n d 7?^=2r.

Then, since 2rr,,£1=R,,£1— 2rJ$
]r/t=2rk— 2r,,^0, we have

(1.15) r,*e'=0.

From (1.13) and (1.14) it follows that #J/tf'f*=2 and hence differentiating

(1.16) Rika^ + Rj^i^+R^'R^.

Therefore using (1.13) and (1.15)

(1.17) /?,*«S=0 and £,*„?£*=<).

Also from (1.13) we have

(1.18) /?,*e{f0 + ̂ *.^a=2r*.eo=0,

so that using (1.17)

(1.19) /?,*&£"=<).

Since (/?;;;) is invertible, we conclude from (1.19)
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(1.20) f{fa=0 for all j=l, • • - , n.

Because of (1.14) there exists a flow <p : (0, l]x£>* -> D* such that for all
and fe(0, 1]

(1.21)

But then

dr

and hence for all x there exists a constant C(A-) such that no f. A'))

Since l = rf- '-r-Wr(0(l, AO^l + cU'), we have c(x)=Q for all A' and

(1.22) r(<p(t, x)) = t.

Also by (1.20) and (1.21) we have

$(t, x)=£*(0(f, xW(p(t. A-))=0.

Then there are vectors <fi(x) and X(x) so that

(1.23) $(t, x)=<f>w+aw.

But, since r(<p(x)+t"X.W) = r((p(t, x))=t, from (1.22) taking limit as -> 0 we get

r(6(x)) = Q i.e. c^U) = 0. Then (1.23), for t=l, gives Z(x)= '" . Hence
' '/z .r;

&(m(x\ jc) = 777(A')X(A') = A- and

77z(j) = 7'(^(?72(j), jr)) = 7-(j:). q. e. d.

Corollary 1.3. Ler DdRn be a strictly convex domain. If Jicre exists a
radial exhaustion r : D —> [0, 1] of D such that R=rz is of class C~ al the center
p of r, then R is a positive definite quadratic form and there exists _4=GL(n, R)
such that D = A(B) + p where B is the unit ball in Rn.

Proof. Without loss of generalit}^ we can assume that p=Q. Let 772 be the
Minkowski functional of D at the center p=Q. If M~nf then R=M\5 and
hence for all x^D and t^R small enough we have R(tx)=M'tx) = tzM(x}
=t2R(x}. Thus

^2

2R(x) = ~^rR(tx)=ER(tx, A-, x),

and hence R(x)=-y-HR(Q, x, x} and the result follows. q. e. d.

Remark. Corollary 1.3, which is a real analogue of Stoll's characterization
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of the ball in Cn ([7]), has been proved in the more general setting of affine
manifolds by Burns [1] and Foote [2] under a little stronger differentiability
assumption on r.

§2. The Complex Case

An explicit solution for the complex Monge- Ampere equation Nc(w)=0 on a
strictly convex domain outside a preassigned point was given by Lempert [5].
Applications to the theory of parabolic manifolds are given in [6]. Here we
limit ourselves to definitions and statements of the basic properties.

Let Dc:Cm be a strictly convex domain and p^D be any point. If J=
{z^C | \z\ <!} is the unit disk in C and S is the unit sphere in Cm, then there
exists uniquely a surjective map F: 3xS-*D of class C°° with the following-
properties :

(2.1) F(n, b): J— >D is proper of class C°° and F(n, b)\ A — > D is holomorphic
with F(0, fr = p and F'(0, &)=||F'(0, b)\\b for all bt=S.

(2.2) A function P: 9JxS-»(0, oo) of class C1/2 exists so that the map F: dA
xS->Cm defined by F(z, b) = zP(z, b}n(F(z, b)), where n denotes the
euclidean normal to dD, extends continuously to a map F: dxS—>Cm

with FCZ, b}\ A-*Cm holomorphic for all b^S.

The map F is related to the hyperbolic geometry of D in the following way.
Let K be the Kobayashi metric on D and for q^D denote by d(q) the Kobayashi
distance from p to q. Then identifying S with the unit sphere in the tangent
space we have :

(2.3) K ( p , b } = -,~--~>Q for all

(2.4) d(q]=-^-log }_}
Z\ for all q^D where q=F(z, b] for some (z,

L 1 \Z\

Using the fact that F(D, b) is the unique holomorphic map which satisfies (2.3),
it is easy to show that if ^e3J then F(z, M)=F(te, b) for all (z, b)^3xS.
Moreover if 61? b^S and L3=F(U, bj)(2) for j=l, 2, then either L1r\L2={p}
or Li=L2 and there exists //e9J with b1=^b2. A function T=TP: D — » [0, 1],
called the Lempcn exhaustion of D at p, is well defined by

(2.5) c>G?)=|z|2 if Q=F(z, b) for some (z,b)s=JxS.

Theorem 2.1. Let DdCm be a strictly convex domain and p^D be any point,
Then the Lempert exhaustion T at p has the following properties :
( i ) T is continuous and proper, of class C°° on D~{p] with r(/?)=0,

if q^D— {p} and r=l on dD.
( i i ) Lr>0 on D-{p}.
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(in) Llogr^0 on D — { p } .
(iv) Nc(logr)=0 on D-{p}.

Proof of ( i ) , (iii) and (iv) is in [5] and (ii) is explicitly proved in [6].

§ 3. Applications to the Classification of Domains

In this section we will assume the notations developed in the previous two
sections. A domain GdCm is said to be circular if there exists zQ^G, called
the center of G, such that if X^C with \A\=1 and z^G then 2(z— z0)+z0eG.
We have the following characterization of the strictly convex domains which
are circular.

Theorem 3.1. Let DdCm be a strictly convex domain. Then D is circular
if and only if there exists a point p^D with MP=TP.

Proof. Assume D is circular and let p be its center. Without loss of gene-
rality we can assume p=Q. Set M=MP and T=TP. To show _\/=r it will be
enough to prove that the mapF: JxS-^D defined by F(z, b}=zm(b)~lb satisfies
(2.1) and (2.2). Clearly (2.1) holds for F. Define P: dJxS — -0, ^) by 2P(z,b)
= \\!7M(F(z, &))|] where VM denotes the euclidean gradient of M. Then, if
F:ddxS->Cm is defined by F(z, b)=zP(z, V)n(F(z, b}\ we have F^(z, b]

= — - — - - . Since D is circular, for all zeCm and z = C we have M(zZ)

= \z\*AI(Z) and hence Mlt(zZ}=zM^(Z}. But then F^(z, b} = M ,Mn(bYlb} is con-
stant for all i* and thus F satisfies (2.2) too.

Conversely, let MP=TP for some p^D. Without loss of generality we can
assume p=Q and set M=M0 and r=r0. If F: 3xS-*D is the map defined by
(2.1), (2.2) for D at 0, then given any £e(0, 1] and b^S we have M(F(t, 6)) = f2

and thus - - - ^ d D . Then also F'(0, b)^3D for all b^S. Let ws=dD and

c = w/\\w\\. Then Fr(0, c)^3D and

Since J/(FX(0, c))=M(w) = l, we have ||F'(0, c)|| = ||i6-|| and w = F 0. c ;. We con-
clude dD= {F'(Q, b)\b^S}. But then

D={ze=Cm\z=tw with f€E[0 , 1) and

\z=tFf(0} b) with ie[0, 1) and b^

Therefore if Z^D with Z=tF'(Q, b) and ^eC with |^ i=l , then, since
=F(z, W) for all (z, b)^4xS, XZ=ltFf($, b)=tF'(Q, lb}^D and D is circular.

q. e. d.

Because of (2.4), Theorem 3.1 has the following interesting reformulation.
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Theorem 3.1'. A strictly convex domain DdCm is circular if and only if
there exists p^D such that

1 1 l+mp(q)
— - - ~-— - - ~
2 l—mp(q)

is the Kobayashi distance from p to q for all

Using Theorem 1.2 it is also possible to characterize in terms of the real
Monge- Ampere equation when a strictly convex domain is circular.

Theorem 3.2, Let DdCm be a strictly convex domain. Then D is circular
if and only if there exists a point p^D such that the Lempert exhaustion T=TP

of D at p satisfies N/z(Vr~)=0 on D*=D—{p}.

Proof. In light of Theorem 2.1 and Theorem 3.1, we have only to show
that if there exists p^D so that the associated Lempert exhaustion r satisfies
Njz(Vr)=0, then r=V^ is a radial exhaustion for D. Since T satisfies (1.1),
(1.2), (1.4), only H r>0 has to be proved. Let q^D and define s=r(q). In [6]
it is shown that Ds-= {x^D\T(x}<s2} — {x^.D\r(x}<s} is strictly convex. Then
it follows that Hr is strictly positive on Tq(dD) and rankR(rJk)=2m—l. If O^X
^R2m=Cm, we can choose Y^Tq(dD) and V tangent at q to the foliation gene-
rated by r so that X=V+Y. Then at q

Hr(*, *)=2(r;r,V'V*+sHr(r, F))>0. q.e.d.

Using the above results we can give the following characterization of the
unit ball J?cCm.

Theorem 3.3. Let DdCm be on strictly convex domain. Then we have the
following facts.

( i ) Assume there exists p^D such that mp is of class C2 at p. Then D is
biholomorphic to B if and only if MP=TP.

(ii) Assume there exists p^D such that mp is of class C2 at p. Then D is
biholomorphic to B if and only if NjB(Vr^)=0 on D*=D—{p}.

(ill) Assume there exists p^D such that TP is of class C2 at p. If NR(^TP)
=0 on D*} then D is biholomorphic to B.

Proof. (iv Because of Corollary 1.3, if mp is of class C2 then D is an
ellipsoid. By a theorem of Webster [9], then D is biholomorphic to B if and
only if it is circular. Theorem 3.1 gives then the conclusion.

(i i) The same proof of (i) together with Theorem 3.2 yields (ii).
(iii) If 7P is of class C2 and N#(Vz>)=0 then Theorem 3.2 and Corollary

1.3 imply that D is a circular ellipsoid and hence biholomorphic to B. q.e.d.

Another application of Theorem 1.2 is in the classification theory of tube
domains in Cm. Let D be a strictly convex domain in Rm. The tube domain
ST(D)cCm with base D is defined by 3(D)=D+iRm. Denote the Minkowski
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functional of D at p^D by mD>y. We have the following.

Theorem 3.4. Let D, D'dRm be two strictly convex domains. These two

facts are equivalent :

( i ) 3(D) is biholomorphic to 3(D'\

(i i) There exists p<^D, q^Df and an ajfine isomorphism A of Rm such that

Proof. Assume that (i) is true. We can assume that OeD. By [4] and

[10] it follows that ^(D) and £T(Z)') are affinely equivalent and therefore there

exists an affine isomorphism A of Rm such that A(D)=D'. If A(ty=q then A

=q+B where B^GL(R, m). Define r=mD>iq°A. Then r is a radial exhaustion

of D with center 0 and hence, by Theorem 1.2, r=mDiQ i.e. (ii) holds.

Conversely assume that (ii) is true. Then, since mD,p(x)=Q if and only if

x=p and mD'iQ(x}=0 if and only if x=q, we have A(x)=q+B(x—p') where B

eGLCff, m). Then the map L : Cm -> Cm defined by L(z)=L(x+iy)=q+B(x-p}
+iB(y) gives a biholomorphic map between <Z(D) and %(D'). q.e.d.
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