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Groupold
Product, I—The Case of FF*-Systems

By

Tetsuya MASUDA*

By analogy with H7*-dynamical system, we define a P^*-groupoid dynamical system
(M, F, p) where M is a von Neumann algebra, P is a locally compact measured groupoid,
and p: F-^Aut(M) is a continuous groupoid homomorphism. The groupoid crossed pro-
duct MXpF is defined by making use of the non-commutative integration theory of A.
Connes, i.e. integration theory over singular quotient spaces, and is shown to have similar
properties as the case of a group action. As a special case of this situation, if p is a
continuous homomorphism from F to a locally compact group (7, we obtain groupoid
dynamical system (L°°(G), F, p). In this case, there exists a co-action p of G on End^/1)
and the groupoid crossed product L°°(G)XpF is isomorphic to the co-crossed product
EndXr)*0(r of EndXr) by G in the sense of Nakagami and Takesaki.

§ 1.

Since the work of Murray and von Neumann, the group measure space
construction is well studied (for example, [15], [21]) and discovered to be im-
portant for the construction of concrete examples of von Neumann algebras.
All known approximately finite dimensional factors are constructed from ergodic
non-singular transformation groups. Also, the group measure space construc-
tion was extended to crossed product and served as an important tool not only
for the construction of examples but also for the structure analysis of von
Neumann algebras [2], [7], [29].

On the other hand, the non-commutative integration theory developed by
A. Connes ([8], [9], [10], [11]) not only yields examples of operator algebras out
of foliated manifolds, but also proposes a method of studying foliated manifolds
via operator algebras constructed from the holonomy groupoid. In this paper,
we present an extension of crossed product from group to groupoid on the
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basis of the non-commutative integration theory of Connes.
One of our basic ideas is the extension of random operator field (in the

sense of Connes), which takes values normally in type I-factor, to the case
taking values in a more general W*-algebra. To formulate this idea, we first
summarize the direct integral theory of the field of Hilbert spaces and of
operator algebras over singular spaces in Section 2. In Section 39 we discuss
the standard representation of a singular direct integral algebra. In Section 4,
we shall describe a PF*-groupoid dynamical system and its properties.

Another basic idea in our approach is a generalization of the cocycle con-
struction of skew products to groupoid. This is discussed in Section 4 in the
general case, and in the special case of an abelian algebra in Section 5,

Third basic idea is the Poincare suspension which is a standard method of
constructing a unimodular measured groupoid from a non-unimodular measured
groupoid (the measured groupoid is called unimodular if the module d corre-
sponding to the transverse measure is trivial). The Poincare suspension of a
groupoid is known to correspond to Takesaki duality of the corresponding von
Neumann algebra (see for example [9]3 [26]). In the above discussion, the
module function d plays an important role. The module function d is a
groupoid homomorphism from T to multiplicative group R+ and hence log d:
F->R is a groupoid homomorphsim. In this situation, the Poincare suspension
f of F corresponds to the skew product of R and F by log d in our for-
malism, and the associated PF*-algebra is isomorphic to the modular crossed
product of EndA(F). This situation is generalized to the continuous groupoid
homomorphism p from a locally compact groupoid r to a locally compact
(not necessarily abelian) group G in Section 6.

In Section 7, we describe some examples.
In Section 8, we shall give a brief discussion.

All the formalisms work well also in the C*-algebraic framework which
will be discussed in [22]. We shall describe in Appendix A cocycles and grou-
poid homomorphisms which yields some concrete examples of groupoid homo-
morphisms via cocycles (see also [25], [27], [30]).

Throughout this paper, we use the Tomita-Takesaki theory (see [29]) and
relative modular operators (see [2]). We also use the non-commutative integra-
tion theory of Connes on a measured groupoid which admits a faithful proper
transverse function v = {vx}x<=p«» and a transverse measure A with a module
d (see [9], [20]).

We restrict our attention to loaclly compact separable topological groupoids.
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The local compactness assumption holds in many cases where a measured
groupoid is constructed as a graph of transformation group or as a holonomy
groupoid of a smooth foliation. Actually a measured groupoid which is
analytic as a Borel space has an inessential reduction to a locally compact
topological groupoid (see [24]). Av denotes a measure on the unit space F(0)

corresponding to the transverse function v and transverse measure A . In this
paper, we call the triplet (v9 A, S)9 a Haar system of F. We assume that all
the measures are regular.

§ 2o Direct of BEfoert Spaces over Spaces

In this section, we describe the concept of a direct integral of Hilbert spaces
over a singular space. Our scheme of construction and notion are the same
as those of Connes [9], Kastler [20], and Bellissard-Testard [5]. Throughout
this section9 we fix a measured groupoid F with a Haar system (y, A, d). We
don't use the local compactness of F in this section. We also use the nota-
tion "c*4^" to denote the category of Hilbert spaces with unitary mappings as
morphisms.

2.1. We call <Jf = {~#s}xer«» a Hilbert F-bundle if Jf =
{<*#x}xer™ is a measurable family of Hilbert spaces over F(0) and there exists a
measurable co variant functor U: P->Jfilb with U(x) = <*#x. It means that

(i) if r^Tx, then U(r) is a unitary mapping of Jtx onto <^y9

(ii) U(rW(ri) = U(rTi) if r and n are composable.
(iii) r^-*(U(r)£sM> ^rwXcv) i§ measurable for measurable section f =

{£*}*ei*»> ? = -foJ-*erCo> of *#={-#,} xel*».
Let J f j = {^i}xe=r™ with covariant functor Uj,j = l,2 be Hilbert F-

bundles. Then ^®<^={<^®e^}jcerc<» with U=U1®U2 is a Hilbert T-
bundle.

2e20 A Hilbert T-bundle Jtc consisting of ^c
x^L\r\ i/) with

Uc(rY L\r*, vx)-^L2(Fy, vy) determined by [^(r)f](f)=f(r"1f) will be called
a canonical Hilbert T-bundle or a canonical bundle for short. Similarly, a
Hilbert F-bundle <^s=<=4c®Jfc will be called a standard Hilbert T-bundle or a
standard bundle for short (We call it "standard bundle" because the resulting
singular direct integral Hilbert space gives rise to a standard representation of
End^F), see Corollary 2.8 and Section 3.)

230 A measurable section £ = {f*}*^05 °f a Hilbert F-bundle
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is said to be covariant if U(r)^y=^(r)1/2^x, y=s(r\ x=r(r), for
almost all r ^^ with respect to (/fvoy).

The remainder of this section is devoted to the study of Hilbert -T-bundles

of the form, Jfc®Jf~ {«=^®^*}*erco)» where <^= {^}^er
co:> is a Hilbert

F-bundle. Let £ = {<f(r)}?e=r f°r a measurable section in ^—Jf0®^, <^x^
L2(PX, <*#x, v

x\ where £ (r) is a ^C7) -valued measurable function satisfying

(2-1)
Jr*

for almost all *eF<0) with respect to Av. Let U be the covariant functor for
otf. The covariance condition for ^ is

(2.2) U(r)£(r~lf) = ^(r)1/2f(f), r, f^rx, %eF(0)

for almost all r, f- (see Remark 2.11). Recall that the measure /* on F<0) is
said to be ^-symmetric for v (see Connes [9], Kastler [20] § 5) if

for any non-negative measurable function / on F. It is known that Av is
^-symmetric for v.

By the properness of the fixed transverse function v9 there exisi
satisfying

(2.4)

for almost all r^F with respect to (^ivov) (partition of unity for v)9 where
£?+(F) is the set of measurable functions on F with values in [0, +°°).

In the following, we shall identify a covariant measurable section

of ^c®Jf with a measurable section {f (r)Hs=r whenever £(r)=£*(r) for ;

Lemma 2»4. Le^ f={f*}*erco) ^^ a covariant measurable section of
Jf= ^c® c^5 a«^ p.be a ^-symmetric measure on F(0). 7%^ rAe integral,

(2.5)

w independent of the choice of the partition of unity f i.e. /e£F+(F) satisfying

(2.4) associated with the proper transverse function v, where <\ , X denotes the
inner product in the fiber <^x of the Hilbert P-bundle Jf.
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Proof. Let /1; f2 be two partitions of unity associated with the transverse
function v, i.e.

(2.6)

for almost all r^r,j=l,2. Then,

(2.7)

= 14L 5(f)"
Xrfv*(f )}<//<*)

V), f (f -V».cf )/i(f -Vy,(rX"*0-)]

)}<//»(*)

where we used Fubini's Theorem for the second equality (integrand is non-nega-
tive, see Remark 2.11), cJ-symmetry for the f -integral to obtain the third
equality, and the left covariance property of transverse function under the re-
placement of variable fr by r for the last equality. Because £ is a covariant
section of Jt (see (2.2))

(2.8)

It follows that the right hand side of (2.7) is equal to

(2.9)

where we used (2.6) for /j. Hence by (2.7) and (2.9), we obtain the assertion
Q.E.D,

Definition 2.56 The singular direct integral Hilbert space of a Hilbert T-

bundle ^f=^c®^ is denned to be the set of all covariant measurable sections
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<?={<f*herC(» of Jf with a finite L2-norm ||f||^ where the square of L2-norm
| |f ||3 is defined by (2.5) for fi = A*. We denote this direct integral Hilbert space

by the same notation for the Hilbert F-bundle *#:

(2.10)
JQ

= {f = {f,}Jcerc<D: covariant section3

where @ is a symbol for the singular space associated with the groupoid F0

(We also denote F^/r or r<°V~ instead of Q.)

20£ Let ^=={-fJ*er
c°> be a Hilbert F -bundle and J=

Then,

(2.11)
co)

where the right hand side is the usual direct integral.

Proof. Let f = {f J-,eJr
Cl° t>e a covariant measurable section with ||f |L

For (Jvo^)-almost all r^F^ we define

(2.12) ^g(r) - ^(r)"iy2y(r)f.w(r

Then5

(2.13) ^(rf) - ^rrt-^t/W^rtf.cy )(f-
1r"1)

for almost all r? f9 where we used the covariance in the second equality. It

follows that Vf(r) depends only on x=r(r) (except for r in a null set), so we

write VK*) instead of /^ig(r). We show that the mapping f f->^ is the desired
isomorphism. Let/ be a partition of unity for v. As the first step, we show

that the following two functions

(2.14) F(x) =

(2.15) (W

coincide for ^-almost all ̂ er(0). Let x be in the conull set such that (2.14)

is finite (note that I „ F(x)dAv(x) = \\£\\2
A< oo and the 5-symmetry of Jv)3 then

J r co:>

there exist jeF^0) and f er^ such that (2.2) holds for almost all
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(2.16)

holds and

(2.17)

By replacing r by f "Vi, n^^ in (2.14), and using the left invariance property

of transverse function as well as the homomorphic property of d9 we obtain,

(218) F(x) = \
j

Hence,

(2.19)

This shows that the mapping f i—>^ is an Z,2-isometry. To show the surjectivity
f®of this mapping, we construct the inverse mapping. Let ^e I <*#xdA^(x) i.e.
Jrco:)

ir is a measurable section of {^}jcerco) satisfying

(2.20) C<DJrco:)

We define,

(2.21)

Then it is easily checked that f ^, is a covariant section and the mapping

actually gives the inverse mapping of £ i—^g- This proves the assertion,,

Q.E.D.

Corollary 2B7e Let ^f=- {^} x^r^ be a Hilbert F-bundle with constant fiber

(2.22)

Corollary 2.8. Let ^c={L2(rx, yz)}^erco) be the canonical bundle. Then
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<=^c is a standard bundle and

(2.23) J® J%dA(*) ^ \^L\r\ vx)dAv(x) - L2(F, (A,*v)) .

Remark 2.9. In the setting of Corollary 2.8, let f = {^herco) be a
covariant section. Then <f is represented by a scalar-valued function (<f (n, r2)
=f*(ri, T2)? Ti? r2

e^*) on F = |J (FxxPx) and the covariance condition is
written as

(2.24) f(r-Vi, r"V2) = %)1/2f(n, r2) , r, n,

By symmetry in n and r2? we have two different unitaries from the set of such

S ©
L2(r*5 v

x)dAJx), These are shown to have a relation with the
r(0)

symmetry of Tomita algebras and will be discussed in the next section.

Remark 2.10. If v and n are faithful transverse functions, then there
exists a F-kernel X such that p.~v*l (see [20]9 Proposition 4). So, the theory
changes isomorphically for the change of faithful transverse function.

Remark 2.11. The set F= II (r'x/1*) is actually a measurable space
*er«»

with a Borel structure generated by the family

(2.25) iPT^B), P2\B)i B is measurable in T}

where Pji P-+r9j=l9 2? are given by the projections P*: rxxrx-*Fx, j = l92
into first component and second component. Then a measure A^o(v®v) on f
is determined by the integral

(2-26)

where / is a non-negative measurable function on f. (The equality in (2.26)
follows from the fact that there exists A^-null set JVcr(0) such that for

(2.27)

holds due to Fubini's Theorem.)
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Now, the meaning "almost all r, f" in (2.2) is the following sense i.e. there
exists A-null set #cr<0) such that for jcer<0)VV, (2.2) holds for almost all

* with respect to

§ 30 Modular Hilbert Algebra and Operator Field

In this section, we shall give the description of a modular Hilbert algebra
constructed from the W*-groupoid dynamical system and the ]^*-algebra of
random operator field associated to it. Our description in this section is spe-
cialized so as to apply for a FF*-groupoid dynamical system and its associated
W*-algebra. It is possible to present the theory in a more general form, which
will however be discussed in another occasion.

Definition 3.1. The triplet (M9 F5 p) is called a PF*-groupoid dynamical
system (or FF*-groupoid system for short) if M is a PF*-algebra, F is a locally
compact measured groupoid with a Haar system (y9 A, d) and p: F-»Aut(M)
is a continuous homomorphism.

Throughout this section, we fix a FF*-groupoid dynamical system (M, F5 p)
with a Haar system (y9 A, d) on F. As already stated in Section 1, the
groupoid F is assumed to be a-finite and further, we assume M* to be separable,,
We fix a faithful normal semifinite weight 00 on M and identify ^0(M) with M.
We also use the notation $y=<f)0opy-i and TJ^\ N^->H^ for the GNS-mapping
associated with the weight 0Y. The construction of a modular Hilbert algebra
is parallel to that of Digerness [13], [14]. Here we consider M to be a topologi-
cal space by ^-strong * topology.

3«2e We denote by 31 the linear space of continuous functions
/: F->M with compact support such that

(2) the functions r^0o(/(r)*/(r)) and r|~>0o°^iy(/(r~1)/(r~1)*) are mea-
surable and integrable.

Remark By the triangular inequality and the normality of 00, we can
see that the set 3t is a linear space.

For /e 31, we define Il /H^oo) =ess. sup||^(/)||< oo, where nx(f) e

B(L\r\ v*)®H40) defined by *erC<°

(3.1) [
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For/^/g^Sl, we define product (convolution) by

(3.2) C/i*/a)(r)

and involution by

(3.3)

i 33o The set 3l is closed under the involution (33),

Proof. It is easy to see/%) e JV*0 n N ̂  for (^vo i/)-almost all r e F8 Let
. Then9 by using Fubini's Theorem3

(3.4) (^(/)fs C) = PV (/(f -

So, we obtain ||/§||Wi.> = ||/||a.). We also have 00(/*(r)*/8(r)) =
). Hence /*eS if

Q.E.D.

Remark 3.4. For/eS, ^(/*)==^(/)*.

Lemma 3=5. £e*/i,/2e$. Thenrcx(f^f^=

Proof. Letfe^,. Then, by using Fubini's Theorem,

(3.5) K(/!)

= ( ft ^-(/Kf-
Jr* Ur*

Q.E.D.

Lemma 3.6, For flt f2 e S,
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(3.6) \ Wi
Jr

(3.7) 00°Pv((/i ̂ Xr-^/i

Proof.

(3.8)

rCO) II^C/OIHI^C/i)!!

= \\A\\lA,-)

(3.9)

= t ^o(
Jr

= 11/2 !!£,.,..) ( ^oJr

where we used Lemma 3.3 and (3.8). Q.E.D,

Lemma 3B76 TOe linear space & is an involutive algebra by (3.2) and (3.3).
Further, the mapping itx\ S->5(J?J is a *-homomorphism.

Proof. Let/1?/2et. By Lemma 3.63 (f^f^r^N^nN^ for almost

all rer. By Lemma 3.5, we obtain II^C/i^H^lk.C/i)!! ll^(/2)il and hence,
ll/i*/2llu.-o)^ll/illu-o)||/2ll(^oo). Again by Lemma 3.6, condition (2) in Defini-
tion 3.2 holds for f=f$f2. So, we obtain /i^eSl. Hence, by Lemma 3.3
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and (/i*/2)*^/f*/*5 we conclude that §t is an involutive algebra. By Remark

3.4 and Lemma 3.55 ns is a #-homomorphism. Q.E.D.

Definition 3.8. We define a GNS-mapping TJA: §t-^#=Z,2(F, (A^v))®H^

=L\r9 jyv (4,0*)) by

(3.10) [^(/)](r) = ^0(/(r))5 /€=«.

We set 31 = (̂§1) and define a Hilbert algebra structure in §1 by the involutive

algebraic structure of §t and the pre-Hilbert structure as a subset of H.

We note that the algebraic structure of SI is well-defined because ^ and

hence yA is faithful.

Notation 3.9e We denote by 7(F) the set of all continuous functions

/: F->C with compact support satisfying the conditions of Definition 3.2 with

M replaced by C. The set 7(r) is actually a modular Hilbert algebra associ-

ated with EndA(F) (see Remark 4.2, [9], [20]). Hence, 7(r)*7(T) is dense in
L2(F? (4o*0). We denote by ^ the *-homomorphism TT: 7(r)-*B(L\r, (A^v)))

defined by (3.1).

Lemma 3.10. Ife set «*H fr rf^e /« L2(r,

Proof. Let ^, bk<=N^, Fk^7(r), k=l,2. Then, it is easy to see that

the mappings r^-^Fk(r)p^(bf)ak=fk(r), k=I, 2 are in St. Now, we assume that

e<EL2(r, (Aov))®fl^0 satisfies (£, ^C/i*/a))=0 for aU/ lf/2 of the above form.

Hence,

F*

By taking ^-strong nets bk-*l, k=l, 2 and ^-^l, we obtain

By the density of 7(F)47(r) in L2(F, (A^°v)\ we obtain

(3.13) (<?(r), ^Ofe)) = 0 for (/lvo*0-almost all r e r .

By the density of ^0OV$o) in /jfy0, we obtain £=Q in L2(r, (yivoi/))<g)ff^0. Q.E.D,

We use the notation U(<f>l9 <f>2) for the intertwining unitary mapping H^ZZ

H^ identifying representative vectors of states in the natural positive cone in the

standard representation Hilbert spaces H$k9 k=!9 2 constructed from faithful
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normal semifinite weights 4*^ k=l,2 (see [3], [16]). We also use the notation

£/^o(r) for the canonical unitary implementation of p^eAut(M) on the Hilbert
space #v

Now, we define

(3.14)
(3.15)

The operator AA is positive self-adjoint and generates one parameter group of

unitaries ^i-^^", [^'f](r) = 5(r)~"^.*0f(r)- The operator JA is conjugate
linear and conjugate unitary.

Lemma 3.11. The set S[ is a modular Hilbert algebra.

Proof. By Lemma 3.10, 31&SI is dense in L\r, (A^v))®H^,a. By Lemma

3.4 (or by (3.5)), (3.10) and [^/^Ito^/iX^t/DXr), *=r(r), we obtain
(f*d, f j)=(C1) f**Q for £ , d, C2eSl. By Lemma 3.6 (or by (3.6)), the map-

ping <rf-»f*C is bounded by ||£||oi(oo). Now, we show the preclosedness of the
mapping fi->f*. By (3.14) and (3.15),

(3.16)

Hence, £ !-»£* is preclosed. Q.E.D.

Remark 3.12. In view of (3.14), it is easy to see that the associated modular

automorphism group {aty tes is

(3.17) K(/)](r) = »(r)-"(/W,: ^o)^X/(r)) , /et .

Remark 3.13. We denote by S10 the linear space of continuous functions

/: F-*M with compact support. Then ?10 is an involutive algebra by the same

S
m

nsdAv(x) is the
rCO)

representation of S10 on L2(F, (^fvo^)) and the prime denotes the commutant.

Hence, 7z:(SI0) also generates the left von Neumann algebra. The proof of

Lemma 3.4 also shows that the linear space S10 is an involutive algebra by (3.2)

and (3.3).
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Remark. If the module function is continuous, then SI0 is {a j} -invariant

(see (3.17)). In Definition 3.2, we can replace 3l by the set of all continuous

functions with compact support satisfying (1).

Next, we shall give a description of the associated left von Neumann algebra

as a random field of operators associated with a Hilbert T-bundle. We define

a Hilbert r-bundle Jt by

(3.18) Jt, = L\F\ vx

with a unitary representation of F by

(3.19)

By Lemma 2.6 and Corollary 2.85 we obtain

(3.20)

By (2.15) and (2.24),

(3.21) ^(r) - S(fYl/2£(r-\ f'V), (independent of

(3.22) f (rif r2) -

give the isomorphic correspondence of (3.20)

Lemma 30148 /» ^/ze description of S by the covariant section of

(3.23) [^'fKn, r2) - ^(rrVi)1'^-^ , *0f (n, r2) ,

(3.24) [/^](n, r2) - tf*

(3.25) K/)f](n, r2) -

where /eH0 and f is a covariant section of ^f=

Proof. The assertion is the direct consequence of (3.14), (3.15), (3.1),
(3.21) and (3.22). Q.E.D.

Now we define a Hilbert T-bundle <=^° by

(3.26) J% = L\r\ **)®#*0

with a unitary representation of F by

(3.27) [ t/°(r)£ Kf ) ^

By Corollary 2.79 we obtain
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(3.28)
J Q

In this case, by (2.12) and (2.23),

(3.29) ^(r) = d(fr1/2U*0(f)t(f-\ f -V) ,

(3.30) f (n, T2) = 5(ri)-1/2^0(ri)^(rrV2)

give the isomorphic correspondence of (3.28), By looking at (3.21), (3,22) and

(3.29), (3.30), we obtain a unitary mapping W from the co variant sections of

<*# to the covariant sections of JtQ by

(3.31) [Wf](ri9 r2) - tf*0(riX(n, r2) .

3ol5e In the description of S by the covariant section of

(3.32) [JA£}(n,T2)=J^(r2,n)

(3.33) K/XKn, r2) = r*

and £ w a covariant section of ^°a

Proof. By Lemma 3.14 and (3.31). Q.E,B0

3ol60 The W*-algebra associated with the Hilbert algebra SI is

isomorphic to the W* -algebra of random operator fields:

(3.34) {T={Tx}x^r^; essentially bounded measurable field of operators

on JQ such that Tx^B(L\r\ vx)®L\F\ v*))®M

and (AduS^®p^)(TK) = T,9 rer/>,

where Us(r) = Uc(r)® Uc(r) is the unitary representation of F on the standard

bundle. In this expression, ||r||=ess. sup \\TX\\.

Proof. By (3.33), </) = K(/)},src« for/<E§I0 belongs to (3.34). On the

other hand, since the action of \®B(L\r*9if)) on L2(F*, v*) ® L\rx, vx)

commutes with the operators given by integral kernel which involves only the

first component of the tensor product L2(F*, vx)®L\Px, vx), by using (3.32)

and (3.33) it is easy to see that the each element in (3.34) commutes with the

operators of the form JAn(f)JA, /^3t0- So we have only to show that the set
(3.34) is a PF*-algebra. The set (3.34) is actually a weakly closed *-subalgebra

of B(L\r\ vx) ® L\F*9 ^)) ® MdA,(x) onoj

^(x) due to the weak continuity of the covariance condition. Q.E.D.
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§40 Crossed Product by Groupoid

In a close analogy with the W*-dynamical system defined by a locally
compact group, we defined a JF*-groupoid dynamical system (M, P, p) in
Section 3. In this section, we shall discuss about the corresponding crossed
product by a groupoid which is given as the left von Neumann algebra as-
sociated with the modular Hilbert algebra discussed in Section 3.

Definition 4.1. MxPP or W*(M, r, p) will denote the left von Neu-
mann algebra associated with the modular Hilbert algebra SI of Lemma 3.11
and will be called the groupoid crossed product.

Next, we shall give the description of this crossed product in a different
manner. Note that the FF*-algebra End//1) is isomorphic to the FF*-algebra
generated by the left multiplication of the modular Hilbert algebra 7(T) (see
Notation 3.9) associated with the measured groupoid r with Haar system
(y, A, d) on the (standard) representation Hilbert space L2(r, (Jvo*/)).

Remark 4.2. In the usual description of modular Hilbert algebra 81 or
Tomita algebra associated with End//1), the convolution is defined by

Jrx

and the involution is defined by

(4.2) /«(r) - SO-r'/lr1)

(for example, see Kastler [20]). This modular Hilbert algebra is isomorphic
to our description by R: 2t-»7(r) where

(4.3) [Rf](r) =

Lemma 4.3. The W*-algebra MXPF is isomorphic to the W*-algebra
generated by J(/)®1, /e7(JT), and n0(a), a^M on H=L2(F,
where

(4.4)

(4.5)

Proof. We define an involutive unitary operator R on H by

(4.6)
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Then,

(4.7) [R(*(fi® l)**£)](r) = ( /(f-V)f(f XAf) , x = r(r) ,Jr*
(4.8)

Hence by (3.1) and (3.15), the operators R(l(f)®l)R* and Rx0(a)R* commute
with JJK&^JA- Therefore they are in M X pr. We define a unitary operator

(4.9) [tfp£]00 = £^(r)*f 0-) , f e # ,

where £/^,0(r) is the canonical unitary implementation of pTe Aut(M). Then,

(4.10)

(4.11)

(4. 12) [t/p*(/)t/P*f](7-) = Ut0(r-lf)f(f-lf)?(f)dS(f) , x =

Hence the operator U^t(f)Uf, /e§I0, is the weak limit of linear combina-
tions of the operators of the form C7p^(/)(g)l)^0(a)^*f/*, fe7(F), a<=M.
Hence we obtain the assertion. Q.E.D.

Remark 4.4. We define ^,1={d-^f, /<E7(f)}, where
~l'2f(r~l). Then Slj is a *-algebra in a usual manner and the generators of

Mx pr are n0(a), aeM, and *t(f)®l, f ^3^, where

(4.13)

The generators of this form look similar to that of usual crossed product.
It is also noticed that the representation space H$Q of M may be replaced by an
arbitrary representation space. (The resulting FF*-algebra is algebraically
isomorphic to the one above.)

It is also noticed that if v is also a faithful proper transverse function,
then v is of the form ^5 where I is a suitable T-kernel (see [20], Proposition
4). Then, the corresponding FF*-algebra End^F) is isomorphic. Hence the
groupoid product M XPP is isomorphic.



946 TETSUYA MASUDA

Lemma 4.5a

(1) I f p , o : F-»Aut(M) are mutually cohomologous in the sense that there
exists a continuous mapping T: F(0)->Aut(M) such that ^=rr(Y)ot7Yor7(y). Then

(2) If p, o: F->Aut(M) are mutually one-cocycle equivalent in the sense
that there exists a strongly continuous unitary valued mapping u: F-+M such

that

(4. 14) p^(d)

(4.15) u^2 = U^G^(U^ , s(rd = r(r2)

Proof, (1) Let WT = {Wr
x}xer«» be the canonical implementation of

{r*}*e=rco:> °n H$Q
 and define unitary operator Wr on H by

(4.16)
In view of Remark 3.13, we define

(4.17)

where St(
0
p)is the set of all M-valued function on F such that ^p(/) is bounded.

Then we obtain

(4.18) ^ V(<Z>T/1)C^)* = ^P(/) ,

where n* and TTP are the corresponding ^-representations on H with respect to
the actions o and p9 respectively. Hence /eSl(

0
p) if and only if (Z>T[/]eSlir;.

We also obtain ^~l ^'r[f}=f9 f ^^\ fl>To(Z>T"1[/]=/, /^Sl^. Hence we
obtain the desired isomorphism.

(2) We define unitary operator U on H by

(4.19) [^f](r) = M,-if(r),fe5.

Then by (4.4), l7(^(/)®l)U*=^(/)®l,/e7(r), and I7w;(fl)y*=w5(fl), «^M0

Hence by Lemma 4.3, we obtain the isomorphism.

Remark 4.6. Under the situation (1), we obtain

(4.20) 0T[/iK<T[/2] = (D 1/A/J ,

(4.21) 0T[/<*-p>] = (Z>T[/](lf0i) ,

where *<„ (fl, a) and *p, (#, p) are the convolution and the involution with
respect to the actions o and p, respectively.
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Lemma 487«, If F is the graph groupoid X X & G of topo logical transforma-
tion group (X, G, a) with a nonsingular Borel measure on X and r(x, g)=x9
s(x> g) — a

g~
l(x) for (x> g)^A then Mxpr is isomorphic to a crossed product

ofL°°(X}®M by G with the action

(4.22) pg\f\(x) = Pc^)(/K-i(*))) ,

Proof. By Lemma 4.3, generators of M X PF are:

(4.23) [JW)® !)**£](*, g) = \ /(<Vi(*), A-^)f (Jc, /7XA , /e 7(JT) ,
JG

(4.24) [Rx0(d)R*£](x, g) = p(,.,)(fl)£(*, g) ,

where d/i in (4.23) is the left Haar measure of G (which we assume to give the
transverse function of J1). Now, tiansform the generators by the involutive
unitary operator V on H defined by

(4.25) (V£](x, g) = AG(g)-^ (x,

where AG is the modular function of G. Then we obtain

(4.26)

(4.27) [K&r0(a)3*K*£](x, g) - P(jrf,-i)(fl)£(x, g) ,

The FF*-algebra generated by the family of operators (4.26) is the crossed
product L°°(X)X(&G, hence it is also generated by the following families of
operators :

(4.28) [«/)£](*, g) -/K*)f(x, g) ,
(4.29) [«A)f](jc, g) - e(x, r xg) , A e G ,

On the other hand, in view of (4.22), (L°°(Jr)(g)M) X f G is generated by (4.29)
and

(4.30) [7r(/)f](*, g) - \flg

Now, /el®Af in (4.30) corresponds to (4.27) and f^L°°(X)®l in (4.30)
corresponds to (4.28). Hence we obtain the isomorphism. Q.E.D.

Remark 4. 8. Let a be an action of G on X and r=Xx&G. If
p: T— >Aut(M) is of (7-split type in the sense that there exists a continuous
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homomorphism ft: G-»Aut(M) such that the diagram

(4.31)

P
G

commutes, where p: P^(x, g)\-^>g^G is the canonical projection, then the
action of G on L°°(X)®M is of product type a®ft,

§5. Generalized Skew Product

The concept of skew product was originally introduced by Anzai [1] in
the construction of non-isomorphic ergodic measure-preserving automorphisms.
We present here a new viewpoint for this concept: a dynamical system con-
structed by skew product is viewed as a special case of a transformation groupoid
with groupoid which is a graph of some transformation group.

Let r be a locally compact groupoid with faithful proper transverse func-
tion v. If we say that F is "measured", then we consider a Haar system
(", 4, 3).

Definition 5.1. We call the triple (@, F9 p) a locally compact transforma-
tion groupoid if & is a locally compact space and the mapping p: rx$3
(r, G>)h->pj(G>)e£ is a continuous action of P on Q. Furthermore («0, F9 p)
is called measured if T is measured, Q is equipped with a Borel measure & and
the action p preserves #-null sets.

Remark 5.2. Let (£, F, p) be a locally compact measured transformation
groupoid, then we obtain a PF*-groupoid dynamical system (L°°(<05 #), ^ P) *n

a natural manner. But the converse is not true in general.

Definition 5.3. For a given locally compact transformation groupoid
(J2, J7, p), we construct the product system as a locally compact groupoid
r = & Xpr. The groupoid f is defined as the product of Q and P as a topo-
logical space with the unit space r(0) = £ x r(0) and {f = (o>5 r)} =r is given by
the following groupoid structure: r(f)=(o>, r(r))ef(0), 5(f)=-(

and f-^Goy-iCo), r~l\ fif2=K, rir2) for f,•=(<»,., rj),j=l, 2 with
o>2. We have a natural continuous homomorphism of groupoids n:

(o>, ̂ ^rer. The transverse function v={v(t*'X}}(»iS)<=r™ of ^ is naturally
constructed from the pull back of the transverse function v on F by n i.e.
dv(t**x\f)=dvx(r) if f=(cy, r). By construction, V is proper if v is.
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Lemma 5-4 Let (@, r, p) be a locally compact measured transformation
groupoid. Define A by A- =ft® Av and d by

(5.1) g(«. r) = Jfr)

Then (p, A, §) is a Haar system for the product groupoid F=

Proof. It is readily seen that d is a homomorphism of f and A~ov is
^-symmetric (c.f. (2.7)). Lemma then follows from the characterization of
transverse measure by its ^-symmetry (see A. Connes [9] or D. Kastler [20])0

Q.E.D.

Proposition 5.5» Let (Q, P, p) be a locally compact measured transforma-
tion groupoid and F=J2xpjP be the associated product. Then

(5.2) End3(r)«I--(0,*)Xpr.

Proof. By Remark 3.13, Z,"(^3)Xpr is generated by the set of all map-

pings/: r-»L-(fl) with ||/||cii-)<«> where,

(5.3) 11/lb.o.) = ess. sup|K(/)|| ,
^6r

co5

(5.4) [*,(/)£ ] («, r) = /((«, f )-1(o), r)X(®, f M^(f )

f )^I(f ) , x = r(r) ,

f e L2(fi, A)®!-2^*, v1). In view of (5.3),

(5.5) ll

(5.6) [^,,)(/)f](r) = r/(py -i(o>)f f " VX(f V^(f ) , * = r(r) ,

£<=L\rx, v*). Hence ||/||^.«)=ess. sup||w(Wi,)(/)|| and /agrees with a gene-
Cco,^erco:>

rator of Endj(r). Q.E.D.

Remark 5.6, For the purpose of the discussion of W*-algebra9 we need
not assume that the space J2 is locally compact and the homomorphism p is
continuous. We only have to assume that (L,°°(Q9 A), F9 p) is a W^*-groupoid
dynamical system.

Remark 5.7. Let r be a (locally compact) measured groupoid with a Haar
system (^ A, d). Then the Poincare suspension F of F is equal to -Kx log8 J\
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the graph of transformation groupoid (R, F, log £), and the associated W*-
algebra Endz(r)^L°°(M)Xios8r is isomorphic to the modular crossed product
of EndA(r). (See [9], [26], [31]. See also Remark 6.2 (1).) Here log d is an
action of F on R such that t\-*t+log d(r).

§ 6, Groupoid Crossed Product and Co-action

In this section, we consider the following situation i.e. we consider a W*-

groupoid dynamical system (M, r, p) with M=LCO(G) where G is a locally
compact group, together with the action p determined by the left translation
of G through a continuous groupoid homomorphism p: F\->G i.e.

(6.1) [p,(X)](g) = X(p(rYlg) ,

Throughout this section, we use the notion of co-dynamical system in the sense
of Nakagami and Takesaki, see [23].

Theorem 6.1. (1) Let p: F-*G be a continuous homomorphism. Then
there exists a coactoin p of 'G on End^(jP) i.e. p is an injective ^-homomorphism

p: End/F)-»End^(r)® Wf(G) such that the following diagram commutes •;

(6.2) End^r) —^> EndA(F)®Wf(G)
P P® I

End/F)® W*(G) — — >End/4(r)® W*(G)® W*
l®dG

where Wf(G) is the W*-algebra generated by the left regular representation
ofg^G and ̂ G(^(g))=^(g)®l(g\ g^G. Furthermore L°°(G)xPF^EndA(r)^G
where *£ denotes the crossed product by co-action $.

(2) If G is abelian, p gives an action of G on End^(r) such that L°°(G) X p r
/\

^End^(r)x^G. Let G, H be locally compact abelian groups with T/T: G-*H a
continuous homomorphism. Then po^=(^op)^ as an action ofH on EndA(F),

Proof. (1) We define a unitary operator F on L\r, (A^v))®L\G) by

(6.3) [Ff](r, g) = f(r, p(rYlg) ,
By Remark 4.4 (4.8), End^/1) is generated by the following set of operators,

(6.4) P0(/)® l)f] (r, g) = \ xf(f )£ (f - V, g)dv\f\ x = r(r) 9Jrx

f eL2(r, (A^v))®L\G\ /€=»!. Now we set PO(/) =F(^(f)® l)F*. Then
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by (6.3) and (6.4), we obtain

(6.5) [£,(/)£] (r, g) = /(f)£(r V, P(f r W(f ) , x = r(r) ,
Jr*

<f eL2(F, (Avov))(8L\G)9 /eStj. Hence, the mapping PQ extends to an injective

^-isomorphism EndA(r)-*B(L2(P, (Avov)}®L\G)} which is denoted by p. The

fact p(End^(F))cEnd^(F)®PF*(<j) is easily seen by the commutativity of

p(End^(F)) and the commutant (JA EndA(F)JA) ® (right translations) of

*(G). In view of (6.5) it is easy to see that the diagram (6.2) for

i commutes. Hence we obtain the commutativity of the diagram

(6.2) by the density of 3^ in End^F). The ^*-algebra F(L~(G)xpr)F* is

generated by the family of operators P0(/X /^Sli of (6.5) and

(6.6) [F7r0(X)F*f ](r, g) = X(g)S(r9 g) , X^ L~(G) ,

by Remark 4.4, £ eL2(F, (yiv°
i;))®F2(G:) These are exactly the generators of

the co-crossed product End^(F)*£G.

(2) We define a Plancherel transform U: L2(F?

L2(F, (^vov))®L2(G) by

(6.7) [Ue](r, p) = \ <g~pX(r, g)* , ^ e G .
JG

Then we obtain

(6.8) [u$(f)u*e](r, P) = <e(fr\ P>f(f}S(rlr, ^X^(f) , x = r(r) f

(6.9) .
G

where/eSll5 eeL2(F, (/ivo^))(g)L2(G) and X^L°°(G) is such that

(6.10) X(g) =

In view of (6.8) and (6.9) together with the definition of crossed product, the
/\ ^
G-action p is generated by

(6.11) [flt(f)](r)=<p(rlp>f(r)
/\

or the adjoint action of the unitary representation [V(p)]p&& of G on

L2(F, (Avov)) determined by

(6.12)
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Let q^H. Then <p(r)9 SK#)>=<^°P(r)5 £>5 r^F. Hence, we obtain (2).
Q.E.D.

Remark 6.2. (1) Let F be a locally compact measured groupoid with a
Haar system (v, A, d) such that d is continuous. Consider G = M, p = log £.
Then F=Rxiog8F is the Poincare suspension of the measured groupoid r (see

/N ^C. Series [26]). In this case, the co-action p gives rise to action of R^R, which
coincides with the modular automorphisms of End^(r). (See [9], [26], [31].)

(2) In the same situation, suppose that End^r) is a factor of type III10

It is known that the ̂ -crossed product of End^(r) through the restriction of the
modular action by Z^lt-*(2n/L)^R is a factor of type IIIX, A=exp(— (2njL))
(see A. Connes [7], [8]). This ^-action is interpreted as the co-aciton of S1

given by the groupoid homomorphism F-^S1 obtained by the composition of
log d: F-*R and the quotient homomorphism R-+S1 by period L, This S1

with JS-flow corresponds with the flow of weight associated with the above
factor of type IIIA (see Hamachi-Oka-Oshikawa [17], [18]).

(3) If we consider the special case that I7 is a locally compact abelian
group, then L°°(G)xPF^ W*(F) x$G^L°°(F) x$G. This duality can be viewed
as the Plancherel transformation of abelian groupoid, see Bellissard-Testard [5].

Lemma 6.3* Suppose G is abelian. I f p , a : F-+G are cohomologous in the
sense that there exists a continuous mapping T: r(0)-»G such that p(f) =
r(r(f))o(r)^(s(r))~l - Then the two G-actions p, o are one-cocycle equivalent i.e./\
there exists a strongly continuous unitary-valued mapping u: G-*EndA(F) such
that

(6.13) $k(a) = ukak(a)uf ,
(6.14)

Proof. We define a unitary operator by

(6.15) fofKr) = <r(r(r))f

Then it is easy to see that the operator uk commutes with the commutant
JAEndA(F)JA of End^J1). The intertwining property (6.13) and the cocycle
condition (6.14) easily follows from (6.11) and (6.12) Q.E.D.

Remark 6.4 In the situation of Remark 6.2 (1), a coboundary change of
cocycle corresponds to a change of measure on the unit space within the same
measure class and the corresponding cocycle in Lemma 6.3 is exactly the one-
cocycle derivative of A. Connes.
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§ 7o Examples

In this section; we collect some examples of FF*=groupoid dynamical
systems (also valid for a C*-algebraie framework) and their crossed products.
The first one is an example of A. Connes.

Example 7.1. (See [6], [8], [11].) Let F be a locally compact measured
groupoid constructed as the graph of an Anosov foliation 3A on a unit sphere
bundle Ii(£) of a compact Riemann surface Q with genus g^2. This foliation

3A on Ti(G) is defined as the orbits of H={\e* S 1: s, t(=R} on
S_0 e * J

under the identification L\PSL(2, t£)^Tl(Qi)9 where Ls£nl(Q')9 a uniform lattice
subgroup of PSL(29 R), and the //-action is the right multiplication on
L\PSL(29 K). It follows that the groupoid F is actually a graph of trans-
formation group and is locally compact. Any transverse function comes from

a Haar measure of H in each orbit and the transverse measure is defined by the

restriction of the Haar measure of PSL(2, R) to the fundamental domain of L.

It is known that this groupoid F defines a hyperfinite factor of type III10

Now, let (K9 R, 6) be an ergodic measure preserving J2-dynamical system on a

compact manifold K with a probability measure. We construct a new foliated

manifold (K X 7i(i0), 9?A) defined by the product type action of H where the

jfiT-action on K is defined by the composition of the homomorphism

K: H^\e' S i->f e JR and 6. Then the graph f of this foliation is identical

with Kxpr, p(x, h)=6o7u(K) for (x9 /z)er, and the resulting von Neumann

algebra End;sr(r)^L00(J£) X pr defines a type Ill-factor with the smooth flow of

weight isomorphic to (K9 R, 6) (see [12]). If we take K=S\ 6 is the translation
action of R on S1 via a quotient homomorphism with the kernel LZ (L>0) and

F=Slxpr, then EndA(r)^Lea(S1)Xprs**En.dA(r)x$Z, where the action p

(see Section 6) agrees with the restriction of modular action on End/F) to Z and

the resulting J^-algebra is the hyperfinite factor of type IIIA, ^=exp(— 2njL)

(see also [7]). This mechanism works for a more general measured groupoid

defined by a non-singular transformation group, see [18], Theorem 4. It is

noticed that in the above example of A. Connes, the W*-algebra W*(KxTi(Q)9

3?A) for the foliated manifold (Kx T^(Q)9 3?A) is actually the usual crossed pro-

duct of L°°(Kx Ti(Qy) by H (see Lemma 4.7). But in general, we can not

expect that End^(^Txpr) is expressed as a crossed product.
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Example 7.2. Let G be a locally compact group with closed subgroups
H and K. We assume that the group has a continuous factorization G^
(G/K)xK as a topological space i.e. we assume that jK-quotient homomor-
phism is continuous (for the ^-quotient homomorphism, see Appendix A).
Let (M, K, a) be a ^*-dynamical system and (M, G, a)=m&(M, K, a) be the

.£f<?

induced system in the sense of Takesaki (see [29]). Let F=(G/K) x H be a local-
ly compact measured groupoid defined by the topological transformation group
((G/K), H, left multiplication). Then the crossed product of M by H through
a is isomorphic to the groupoid crossed produtc MxpF where p: F-> Aut(M)
is the composition of ^-quotient homomoprhism and the ^-action a. It must
be noticed that this groupoid F may fail to be principal in general. (Many of
concrete and important foliations arise in this way, though without continuity
of the quotient homomorphism.)

Example 7.3 (Discrete modular lift of non-unimodular groupoid). Let F
be a locally compact measured groupoid with Haar system (v, A, d). Assume
that the range of log d is contained in kZ. (For example, F is the graph of
topological transformation group defined by the ^-action on T^ti) in Example
7.1, where Hd=RxsZ(2RxsR^H. In this case F = Tl(^)xaHd defines the
Powers factor.) Now we define F = (kZ)XioS8F and take a suitable measure
on kZ. Then it is easily checked that f is unimodular groupoid (the same
mechanism as the construction of Poincare suspension works), and W*(r)£*
W*(F)x$Sl is a crossed product ^*-algebra by compact modular action.

§ 8, Discussion

The concept of an action of a groupoid on ]^F*-algebra is discussed also by
Jones and Takesaki [19] for the purpose of classifying discrete automorphisms
of an operator algebra of the form L°°(X)®M. Although they discuss the
groupoid with discrete countable equivalence relations, they don't discuss the
resulting "crossed product algebra" in terms of groupoid. Our approach is
algebraically the same with theirs, but direction is different. We are discussing
our theory in the locally compact category with continuous groupoid homomor-
phisms.

Nevertheless, it seems to be possible to discuss under a more non-restric-
tive condition.
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Appendix A

In this section, we show the relation between the continuous groupoid
homomorphisms and the continuous cocycles of skew product (see [1]).

Let (X, G, a) be a topological transformation group and let Q be an aux-
iliary topologiacl space with a topological structure group H. The continuous
mapping W: XxG->H is called a cocycle of (X, G, a) if

(A.1) V(x, glg2) = W(ag2(x\ gl)V(x, a) , x^X9 gl9

Then the topological space Q X X is a (/-space (skew product) by a, where

(A.2) 2,(o>, x) = (V(x, g)a>, ag(x)) .

Put

(A.3) p(x, g) = V(x, g-1)"1 .

Then p gives a continuous groupoid homomorphism r=XxaG-*H. (Further,
all the continuous groupoid homomorphism F-*H arises in this way.) In
this situation, (£, r, p) is a transformation groupoid and Q xpr=(£xX)x*G.

By making use of this fact, we obtain an example of groupoid homomor-
phism as follows. Let G be a locally compact group with a closed subgroup
K. Assume G has a continuous factorization G^(G/K)xK&s a topological
space. (For example, Iwasawa decomposition gives such an example.) Now
G and G/K are left (/-space such that there exists a continuous groupoid
homomorphism W: (G/K)xG-+K. We call this homomorphism ^-quotient
homomorphism. So, we obtain groupoid homomorphism p : F=(G/K) xH->K
where H is any closed subgroup of G. As a concrete example, let G=SL(25 R)
with K=Sl. Then G/K is the upper half plane H+ with the (/-action by frac-
tional linear transformations, and the cocycle is given by

(A.4) V(z, g) =

where g=(a }^SL(2, R) (cz-rd is known as the automorphic factor).
Vc d*
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