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Groupoid Dynamical Systems and Crossed
Product, II—The Case of C*-Systems

By

Tetsuya MASUDA*

Abstract

By analogy with C*-dynamical system, we define a C*-groupoid dynamical system (4,
I', p) where A is a C*-algebra, I' is a locally compact groupoid, and p: I'->Aut(4) is a con-
tinuous groupoid homomorphism. The groupoid crossed product 4X,I" is defined and
is shown to have similar properties as the case of a group action. As a special case of this
situation, if p is a continuous homomorphism from I" to a locally compact group G, we ob-
tain groupoid dynamical system (Co(G), I', p). In this case, there exists a co-action g of G
on C*(I'") and the groupoid crossed product Cy(G) X p I' is isomorphic to the co-crossed product
C*(I") x5 G of C*(I") by G. The results in this paper is obtained by the analogy with our
previous results for the case of W *-systems.

§1. Introduction

In our previous paper [8], we defined a W*-groupoid dynamical system
and its groupoid crossed product based on the analogy with the case of a group
action together with the several basic ideas. In this paper, we shall give the
C*-algebraic framework of groupoid dynamical system and its groupoid crossed
product. Because we consider only the regular representation based on the
canonical Hilbert I'-bundle out of the transverse function (see [2]), all
the crossed products are in the reduced category. The whole discussion is
parallel to those of W *-algebraic case.

In Section 2, we define C*-groupoid dynamical system and its groupoid
crossed product. Tn this section, we also describe the general properties of
the groupoid crossed product. In Section 3, we shall discuss the C*-groupoid
dynamical system (Cy(G), I', o) defined by a continuous groupoid homomor-
phism p: I'—G for an auxiliary locally compact (not necessarily abelian) group
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G. For the examples, see [8], Section 7.

Throughout this paper, we use a non-commutative integration theory
in terms of a locally compact topological groupoid which admits a faithful
transverse function v={v*} .o (see [2], [4], [10]).

§2. C*-Groupoid Dynamical Systems
We shall start with the definition of a C*-groupoid dynamical system.

Definition 2.1. The triplet (4, I', o) is called a C*-groupoid dynamical
system (or C*-groupoid system, for short) if A is a C*-algebra, I' is a locally
compact groupoid with a faithful transverse function v={v*},c, and p:
I'—>Aut(4) is a continuous homomorphism.

The associated crossed product is defined as the completion of the set
C(I', A) of all A-valued continuous functions over I" with compact support
by the C*-norm defined below. The set C,(I", 4) is a %-algebra by:

2.1) (i} () = gr‘ o5(AFE T D) LF) (7)), x =1(),
22 i) = o™,
where fi, f5, f€C.(I", A). The C*-norm on C(I", A) is defined by
(2.3 I fll = surgo)llz,(f)ll » fEC(T, 4),

zel’
) =00 €10 = | v 1) 60) (),

rert, ee(Ir*, ") QH,

where H is a faithful representation Hilbert space of 4. In view of (2.4),
=) |l, feCAI", A) is independent of the choice of representation Hilbert
space H so that the norm (2.3) is independent of the choice of representation
Hilbert space H.

Definition 2.2. A X,I" or C*(4, I', p) denotes the C*-algebra obtained by
the completion of C,(I", A) by the C*-norm given by (2.3).

Example 2.3. The definition of a groupoid algebra given by A. Connes
is as follows. The set C,(I") is a *-algebra by

@3 ) @ = (D AC D) @), x=1),
26) @) =7,
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where f,, f,, f€C.(I'). The C*-algebra C*(I") is defined by the completion of
C,(I'") with respect to the norm on C(I") defined by

@7 /1l = sup llz NI, fECL),

zel

@y ENAO=| PR a@, rereera, ).

Now, we define for 4=C bijection R: C/(I", A)—C,I") by [RfI7N)=/GY).
Then, R is a x-algebra isomorphism between C,(I", 4) with A=C and C/(I")
preserving C*-norm (cf. (2.3), (2.4) and (2.7), (2.8)). So, our definition with
A=C actually gives the usual Connes algebra C*(I").

Example 2.4. Let (4, G, @) be a C*-dynamical system. The crossed
product 4% ,G associated with the C*-dynamical system (4, G, &) is defined
as the C*-completion of LG, A) with the =x-algebra operations defined by

2.9) (fif2) (&) = §Gf1(h) a,(f; (W' 8)) dh,
(2.10) &) = 4s(@)7" e, (f(e7)"),

for f1, fo fELXG, A), and with the C*-norm defined through the %-representa-
tion

@.11) [=(f)¢] (g) = 56 ag-1 (f(0) £ g) dh,

where f€ LG, A), E€[X(G)Q®H and H is any faithful representation Hilbert
space of 4. It is known that due to inequality || f]|c==||fl|;* (which follows
from (2.11)), the C*-completion of C,(G, A) gives 4 X ,G. For the purpose of
comparison with our formulation, we define 4 X ,G in a different manner. We
define the *-algebra operations in C,(G, 4) by

(2.12) (fi#f2) (&) = SG a,(fy (b7 8)) fh) dh,

(2.13) fHe) = a(feg™),

for f1, f, fEC(G, A) and the C*-norm through the *-representation
(2.14) [=(f) €1 (g) = gc a,(f(h™ ) &) dh,

where feC(G, A), E€L*(G)QH. Then we obtain 4x,G by taking the C*-
completion of C,(G, 4). In fact, the mapping R defined by
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2.15) [Rf1(g) = 45(8) " a,(f(g™), fELG, A)

is a #-isomorphism of LG, A) (*+ and # given by (2.9) and (2.10)) onto
Lg;n(G, A) (* and # given by (2.12) and (2.13)), which is the L'-space with respect
to the symmetric Haar measure du(g)=4,(g)"¥?dg. The unitary mapping R:
L(G)Q H—LA(G)Q H defined by

(2.16) [RE] (8) = 44(g) " &(g™), E€L(OQH
implements this isomorphism and intertwines =(f) (= given by (2.11)) with
{m,m(R(f)) (= given by (2.14)).

Proposition 2.5. (1) Let f&C,(I"', A). Then the family of operators

{7 ()} zero is covariant in the sense that

(2.17) (Adyy@oy) (xf)) = =,(f), rET,
where Adyq,=U(r)-Ur)* and [U(7y) €] (F)=E(G~' 7), FEI?, E€ LIV, V).

Q) If p, o: I'—>Aut(4) are cohomologous in the sense that there exists
continuous mapping t: I'©—Aut (A) such that py=t,yo0yotsy. Then AX,I"
~Ax I,

() If p, o: I'>Aut (A) are one-cocycle equivalent in the sense that there
exists a unitary valued mapping u: I'—M(A) such that r—uya and r—auy are
continuous for all ac A and

(2.18) oy@) = yoy(@uy, acE4,
(2.19) Uy, = "11"71(”-/2), 8(r) =r(r2) »
then AX,=AX,I.

(4) If I is the graph groupoid of topological transformation group (X, G, a),
then A X, I' is isomorphic to a crossed product of C(X)Q® A by G with the action

(2.20) Bl f1(x) = bip (f(p-1(x))), fEC(X) @4, gEG.
(Note that C(X)=C(X) if X is compact.)

Proof. (1) Let#?&rI'?and EeL¥ (I, v’) QH. Then

@.21) [(Adysy ®03) (=) €1 ()
B S e Pyorlf GEET ) EED @ (D)

|, s @D ) Een) a7 ()
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ZSF’ Pyl(f (7’{'1 7’)) 5(7-1) dv’ (71)
= [”y(f ) 5] (T) .

This shows (2.17).
(2) We define a mapping @ by

2.22) OLf] () = 7oy (f (7)), FECAT, 4).

Then @ gives a bijective mapping of C,(I', 4) onto itself and the following
relations hold:

(2.23) o[ filk, OLf] = OLfi% i), fu LEC. (T, 4),
(2.24) O[f1&7 = O[f*P], fECAT, 4),
where #,, (#, o) and %,, (#, o) are convolution and involution of C(I", 4) with
respect to the actions o and p respectively. Moreover,
@2 EOUDEA® =| aerire mem o @
— {57 s ) €) 4 )
= [{1®") z2(f)} €1 ()

where fE€ C,(I", 4), E€ L I'*, v")QH. Hence we obtain ||z5 (O] DIl =||=5(F)I|
for any x&I'® where z° and =" are representations relevant for ¢ and p,
respectively. This implies the desired isomorphism.

(3) We define a mapping ¥ by

(2.26) CIA10) =uy f(r), FECLT, 4).

This gives a bijective mapping of C,(I", 4) onto itself and the following rela-
tions hold:

2.27) Vil TSl = PLA% S fu LECLT, 4),
(2.28) VIO = P[f®7], fECT, 4),

where we use (2.18), (2.19) and u; =1, which follows from (2.19). We define
a family of unitary operators U={U,} <, by

(2.29) [UL] 1) =uy €0), EEL(TT, V)QH.
Then, we obtain

(2.30) =(¥LfD & =U, ni(f) UF &, fEC, 4), (€I, V)QH,
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for all x&I'®, Hence |[z3(Z[fDl|=|l=(f)|| and we obtain the desired iso-
morphism.
(4 For fy, fo fECAT, 4),

2.31) (fikef) (x, 8) = SG e (filen-1(x), h™* g)) fi(x, k) dh

= | 1605107 91 0.5 1y i,
~[(h %) @ @
(2'32) f(#'P)(x9 g) = p(x,g)(f(ag'l(x)’ g-l)*)

— [BLf1 € IFC0)
=1/%H (g™ (),

where o and 4 in the subscripts for % and in the subscripts for # indicate the
convolution and involution in 4 X,I" and in Cy(X, 4) X 3G, respectively. Fur-
thermore,

(2.33) [=2(f) €1 (x, 8) = SG e n(f(@y=1(x), B 8)) £Cx, h) dh

— | 116 91 e by an

= {I=5() €1 (@),
for EeLX(I", H)=IXG, [{X)®H). In view of Example 2.4, these formulas
agree with the defining relations (2.12), (2.13), (2.14) of C*-crossed product

Cy(X, A)x3G through the action (2.20). Hence we obtain the assertion by
the density of C,(X, 4) in Cy(X, A4). Q.E.D.

Remark 2.6. In the situation of (4), if p: I'>Aut(4) is of G-split type
(see Remark 4.8 of [8]), then the action (2.20) of G on C(X)Q®A4 is of product
type.

Now remember the definition of a locally compact transformation
groupoid which is introduced in analogy with the skew product, see [8], §5.

Lemma 2.7. Let (2, I', p) be a locally compact transformation groupoid
and I'=2 X ,I" be the associated graph. Then,

(2.34) CH(I") = C(2)x,I" .
(Note that C(2)=C(8) if £ is compact.)

Proof. By definition, Cy(£)X,I" is defined by the C*-completion of the
x-algebra C(I", C)(£)). By definition of the relevant C*-norm, we may assume
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that Cy(2)X,I" is generated by C/(2xI"=C(I', C(2)CC(I', C(£)). In
view of the definition of groupoid crossed product after Definition 2.1, the
x-algebraic structure and the C*-norm on C,(£ X TI") is

235 (fi%f) (@, 7) = gﬂfl(m?—l(w), P o, ) d(F), x=r@r),

(2.36) JH@, 1) =f(oy-x(@), r7),
(2.37) /1l = sup llz(Nll, fEC(LXT),
zel’

@)  [mDA@N = | fer), 7 ) 80, N dE),

where £ € LA(2)QLX(I'*, v*) with respect to a suitable measure on 2.
(Cy(2) is a concrete C*-algebra on LA(R).) In view of (2.38), ||z (f)ll=
Slélg ”n(w,x) (f)”a where

(2.39) (7.0 (f) €1 (r) = §Fxf (o7-1(@), 77 1) E(7) AV (7),

where £ L%(I'*, v*). Hence ||f]|= sup ||z@,»(f)ll. These expressions
(0,)ER x®

agree with the definition of the sx-algebraic structure and the C*-norm of

CAD), F'=2x,I. Q.E.D.

§3. Groupoid Crossed Product and Co-action

In this section, we shall discuss the co-action on a groupoid algebra by
a locally compact group arising from a groupoid homomorphism. First, we
recall the definition of co-action and the associated crossed product in the
C*-algebraic framework (see [3], [5], [6], [7], [9]). Let G be a locally compact
group. The Kac-Takesaki operator W is a unitary operator on LYGXG)
defined by
3.1 [WeEl (g, h) = &(g, gh), E=IH(GXG).

Then we define an isomorphism 84: W¥G)—W¥(G)Q W¥(G) by
(3.2) 34(x) = W*(x®1) W, x&W*(G)

where W¥(G) is the W*-algebra generated by the left regular representation
2(g) of g=G.

Definition 3.1. The co-action of G on a C*-algebra 4 is defined as the
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isomorphism

(3.3) 0: A—>M (AR CHG))
satisfying

34 (OQ1)od = (1R05)00
where

(35) ML(A®minB) = {aEM(A®minB): a(1®b)+(l®c) aEA®minB ’
Ly(a)E A for b, cEB, = B*}

and Ly denotes the left slice mapping by ¢. The co-action & is said to be
non-degenerate if {Ly(6(a)): a4, y = A(G)} generates A, where A(G) is the
Fourier algebra of G (see Theorem 5 of [6]). If this is the case, the co-crossed
product C*-algebra A+;G by the co-action ¢ is defined as the C*-algebra gen-
erated by (1Q f) 6(a) on HRQLAG), ac A4, f€ C|(G), where H is a faithful re-
presentation Hilbert space of A.

Now, let I' be a locally compact topological groupoid with a faithful trans-
verse function v={v"},<<» and G be a locally compact group.

Theorem 3.2. Let p: I'=>G be a continuous homomorphism. Then there
exists a continuous co-action 8 of G on C*(I') such that the associated co-crossed
product C*(I)#3G is isomorphic to the groupoid crossed product C(G) X ,I'.

Proof. By choosing a suitable faithful Borel measure # on I'®, C*(I')
is a concrete C*-algebra acting on a Hilbert space LA(I", (#ov)). The action of
fECL(T) on LA, (uov)) is

(36 =AM =| 167 nemar@, x=r0),

where é LXT", (zov)). Now, we define a mapping 4: C,(I")—B(LA(I", (#ov))
Q®LXG)) by
B7N [BNEG. 8= SF, FEDEF 0F) 8) AV (F), x=1(),

where fe C(I"), E€ LX(T", (#ov))QLXG). Then 4(f)=W,(=(f)Q1) W} where
W, is a unitary operator (analogue of Kac-Takesaki operator) defined by

(3.8) W, €] (r, 8) = &(r, 0(r) &), EELXT, (2ov)QLAG) .
Hence 4 extends to a s-isomorphism C*(I")—B(LXI", (#o¥))QL*G)) which is
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also denoted by 4. To see that equality (3.4) holds, let W¢?, j=1, 2 be unitary
operators on LX(I", (40v))Q LG X G) defined by

(3.9 W el (o, g b) = &, 0(n)g, h)
(310) [Wt(:z) E] (rs 8, h) = 6(7'; &> p(r)h) s

EE LT, (uov))@LY(G XG). Then (8Q1)os(f)=W’ WP(=(f)Q1RQ1) W
W, (1Q06)es(N)=(1Q W*) WP(=(f)@1®1) W (1®W). Equality (3.4)
for =4 is obtained by the direct computation.

Let feC,(I') and ¢=C/(G). Then

@3.11) [6(f) 1®4(4) €1 G, 8)
(77 [AQA(#)) €] (7, o(77'1)g) dv*(7)

I'IZ

s
[,.[], 777 0 €, im0tz r)g) an | v
)
I

I

II

[§, 7677 om0 €2, k9) | @)
z=®2) (f*9) €1 (r, &), x =r(7),
where é € LX(T", nov)QLXG), f €CT") and fxp = C(I", C(G)) is defined by
(3.12) (f*8) (r, &) =S (1)s(e(r)g) -

Hence 4(f) (1Q(#)=(®2) (f*¢). Similarly, (1Q(#)8(f)=(=Q)($*f)
where ¢xfe C(I", C,(G)) is defined by

(3.13) (8*f) (r, 8) = f()4c(o(r))b(go(r)) -

Hence (1Qb)46(a)+4(@)(1Qc)e CHIMNQRCHG) for ac C*(I'), b, cc CHG).
Next, let f& C(I") and ¢ = C}G)*. Then,

(3.14) Ly(4(f)) = yxfeCI),
where
(3.15) (@xf) @) = o)™ N @) -

This shows Ly(6(C*(I"))C C*(I"). Therefore 4(C*(I"))C M (C*IMQCHG)).
By (3.15), the set {y*f: ¢=CHG)*, feC(I")} exhausts C(I'). Hence
{Ly(8(f)): ¢ €CHG)*, f& C*(I')} generates C*(I') and the co-action is non-de-
generate.

Lastly, we show C*({I")*3G=Cy(G)x,I". By the definition of the co-
crossed product, C*(I")#3G is the C*-algebra generated by (1®¢) 4(f),
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¢ Cy(@), f€ C*(I") and hence generated by 4(f) (1®4¢) by taking adjoint. By
the density of C(I") in C*(I"), C*(I")*3G is generated by 4(f) (1Q¢), feC (I,
¢ C,(G). Now, we define an unitary operator W,: LYG)QLXT, (uov))—L?
(I, (#ov)QLHG) by

(3.16) W, €] (r, 8) = &(o(n)g, 1), EELADRQLNT, (uov)).

Then,

(B17) () (1Q¢) W, €1 (g,7) = szf #7'r) s(0(7)'g) (g, 7) dV'(7),
X=r (T) B

where f€ C(I), = C,(G), EELAG)RQ LA, (nov)). Now, in view of the defini-

tion of C*(I"), I'=G x,I", the right hand side of (3.17) is equal to [#(f) &] (g, 7),

where 7 is the representation of I' on LI, (dg@#)o %)) =LA{G)QLXT", (1ov))

and f(g, r)=f() #(g). The linear combinations of such f belong to C/(G)

®a1eC.(I") which is dense in C/(I") with respect to the L'-norm topology on
C,(I") defined by

(3.18)  [Ifllt = max {sup S,., | f)d7*(r), sup S*r £G4V ()},
eI eI

fEC(I") (see [10]). This implies the norm density of {#(f): f(g, r)=f() 8(g),

fec (), s C(G)} in C¥I). Q.E.D.

Remark 3.3. If G is abelian, then we obtain a C*-dynamical system
(C*(I"), G, ) where the G-action 4 is defined by the relation

(3.19) BLF1 () = <o), k> f (), kEG, fECAT) .

By using L'-norm, this action is shown to be continuous. The continuity
of the action also follows from the non-degeneracy of 4 as a co-action, see [6].

Now, we shall give an explicit correspondence between C*(I"), ' =G X ,I"
and C*(I")x ;G for abelian G. By the definition of a crossed product (see
Example 2.4) and the density of C(I") in C*(I"), C*(I’)xaa is given by the
C*-completion of Cc(@ X I') with the %-algebraic structure

(320 () G ) =, <0G, DA+, 777 £l P) dldF (),

x=r(),
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(32D fik, 1) = <o), K>f(—k, 17,

and with the C*-norm given by the following regular representation

(3.22) [=(f) €1k, 1) = S Bope <o(F), Df(—=1+k, #7'7) €(, 7) dldv(7) ,
x=r(r),

where 11, f5, f€ Cc(ﬁ xI') and & ELZ(6)®LZ(F, (#ov)). Now, we define twisted
inverse Plancherel transformations as follows:

623) 151N =, <) +e 1) dk, feCExD),

(329 [FEl &, 7) = |, <—pl)+8 KDk, 1) dk, ESIHORLAT, (wov) .

Then, F (cc(f;xr))cc,(r, C,(G)) (the image is dense in L'-norm) and further
F gives a #-homomorphism, where C(I", C(G)) is a *-algebra by

629 R @D = | A—e@)te 7 A P d D),
x=r@),
(3.26) fig 1) =f(—or)+g 17,

where f,, f;, fEC(I", C(G)). It also holds that the unitary operator # defined
by (3.24) intertwines the #-representations of Cc(/(\?xl“) and C(I", C(®) de-
fined by (3.22) and

(3.27) () €1 (g, 7) = S f(—o(F)+g, r7'r) &(g, 7) dV'(7),

I"Z
x=r(r),
where f€C(I", C(G)) and €= A(G)QLXTI", (uov)). On the other hand, the
operations (3.25), (3.26), (3.27) agree with the definition of Cy(G) x,I". Hence

the mapping F defined by (3.23) gives the concrete isomorphism C*(I“)><3/G\
—>Cy(G) X, T

Remark 3.4. If we consider the case that I" is a locally compact abelian
group, then Cy(G) X ,I'==C *(I’)xgl(\;z Co(f“) X4G. This duality can be viewed
as the Plancherel transformation of abelian groupoid, see Bellissard-Testard
[1] (see also Remark 6.2 (3) of [8]).

Proposition 3.5. Assume that G is abelian. If p, o: I'—>G are cohomolo-
gous in the sense that there exists a continuous mapping t: I'©—G such that o(r)
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=t(r(r)) o(r) =(s ()%, then the two G-actions b, o are one-cocycle equivalent
i.e. there exists a unitary valued mapping u.: /G\—>M(C*(1")) such that k—u,a
and k—au,, are continuous for a< C*(I") and

(3.28) 64(@) = wo (@uf, acC*I),

(3.29) Uprs = Uy0(1;) -

Proof. The unitary operator u, on LXI", (¢ov)) defined by
(3.30) [ €1 ) =<z (r 7)), kDEG), EELAT, (nov))
satisfies the condition. Q.E.D.
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