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Abstract

By analogy with C*-dynamical system, we define a C*-groupoid dynamical system (A,
F, p) where A is a C*-algebra, F is a locally compact groupoid, and pi r-»A.ut(A) is a con-
tinuous groupoid homomorphism. The groupoid crossed product AxPF is defined and
is shown to have similar properties as the case of a group action. As a special case of this
situation, if p is a continuous homomorphism from F to a locally compact group G, we ob-
tain groupoid dynamical system (C0(<7), F, p). In this case, there exists a co-action p of G
on C*(F) and the groupoid crossed product C0(G) x P F is isomorphic to the co-crossed product
C*(F) *£ G of C*(F) by G, The results in this paper is obtained by the analogy with our
previous results for the case of PF*-systems.

§1. Introduction

In our previous paper [8], we defined a FF*»groupoid dynamical system
and its groupoid crossed product based on the analogy with the case of a group
action together with the several basic ideas. In this paper., we shall give the
C*-algebraic framework of groupoid dynamical system and its groupoid crossed
product. Because we consider only the regular representation based on the
canonical Hilbert /"-bundle out of the transverse function (see [2])? all
the crossed products are in the reduced category. The whole discussion is
parallel to those of W*-algebraic case.

In Section 2, we define C*-groupoid dynamical system and its groupoid
crossed product. In this section, we also describe the general properties of
the groupoid crossed product. In Section 3, we shall discuss the C*-groupoid
dynamical system (C0(G)? F, p) defined by a continuous groupoid homomor-
phism p: F->G for an auxiliary locally compact (not necessarily abelian) group
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G. For the examples, see [8], Section 7.
Throughout this paper, we use a non-commutative integration theory

in terms of a locally compact topological groupoid which admits a faithful

transverse function v={vx}xs=r<-® (see [2], [4], [10]),

§2. C7*-Groupoid Dynamical Systems

We shall start with the definition of a C*-groupoid dynamical system.

Definition 2.1. The triplet (^4, F, p) is called a C*-groupoid dynamical
system (or C*-groupoid system, for short) if A is a C*-algebra, F is a locally
compact groupoid with a faithful transverse function v = {vx}xer<o-)9 and p:

F-*Aut(A) is a continuous homomorphism.

The associated crossed product is defined as the completion of the set
Ce(F9 A) of all ^4-valued continuous functions over F with compact support
by the C*-norm defined below. The set Ce(F, A) is a #-algebra by:

(2.1) C/i*/.) <r) = wOKr1 r))/2(f) </"*(«, * = r(r) ,

(2-2)

where /!, /2, /s Cc(r, A). The C*-norm on Cc(r, A) is defined by

(2.3) 11/11= sup \\xtf)\\, f^Cc(r,A),

(2.4)

where ^T is a faithful representation Hilbert space of A. In view of (2.4),

II ^*(/) IL f^Cc(r> A) is independent of the choice of representation Hilbert
space H so that the norm (2.3) is independent of the choice of representation
Hilbert space H.

Definition 2.2. AxpF or C*(A, F, p) denotes the C*-algebra obtained by
the completion of Ce(F, A) by the C*-norm given by (2.3).

Example 2.3. The definition of a groupoid algebra given by A. Connes
is as follows. The set CC(T) is a *-algebra by

(2.5) C/

(2.6)



GROUPOID DYNAMICAL SYSTEMS AND CROSSED PRODUCT, II 961

where fl9 /2, /e Cc(r). The C*-algebra C*(r) is defined by the completion of

CC(F) with respect to the norm on CC(T) defined by

(2.7) 11/||= sup |
*erco)

(2.8) K(/KHr)-( /(r1

Jr*

Now, we define for A=C bijection R: Cc(r, A)-*CC(F) by

Then, R is a *-algebra isomorphism between CC(T9 A) with A=C and Cc(r)
preserving C*-norm (cf. (2.3), (2.4) and (2.7), (2.8)). So, our definition with

A=C actually gives the usual Connes algebra C*(F).

Example 2.4. Let (A9 G, a) be a C*-dynamical system. The crossed

product Ax#G associated with the C*»dynamical system (^4, G, a) is defined

as the C*-completion of L\G9 A) with the ^-algebra operations defined by

(2.9) (/[*/£) (g) = \ A(K) ah(f2 (h-1 g)) dh ,
JG

j1, ^4), and with the C*-norm defined through the *-representa-
tion

(2.11)

where f<=L\G, A), £<=L2(G)®H and H is any faithful representation Hilbert

space of A. It is known that due to inequality H/Hc^ll/IL1 (which follows
from (2.11)), the C*-completion of CC(G, A) gives AxaG. For the purpose of

comparison with our formulation, we define A x aG in a different manner. We

define the *-algebra operations in CC(G, A) by

(2.12)

(2-13)

for/l5/2,/eCc((j3 A) and the C*-norrn through the ^-representation

(2.14)

where /e C/G, ^), S<=L2(G)®H. Then we obtain ^X^G by taking the C*-

completion of CC(G, ̂ 4), In fact, the mapping R defined by
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(2.15) [Bf] (g) = AG(g)-w o^/GT1)), f^L\G, A)

is a ^-isomorphism of Ll(G, A) (* and $ given by (2.9) and (2.10)) onto

Ll7m(G, A) (* and $ given by (2.12) and (2.13)), which is the Z^-space with respect
to the symmetric Haar measure dfj,(g)=AG(g)~l/2dg. The unitary mapping R:

L2(G)®H->L\G)®H defined by

(2.16) [Rf\ (g) = AG(gYl/2 t(g~l\

implements this isomorphism and intertwines TT(/) (n given by (2.11)) with

(* given by (2.14)).

Proposition 2.5. (1) Let /eCc(r, A). Then the family of operators

{7r«(/)}*erco:) is covariant in the sense that

(2.17)

where Aduw = U(r)- U(r)* and [U(r) f] (f)-f(r"1 f),

(2) If P, o: r-*Aut(A) are cohomologous in the sense that there exists

continuous mapping r: r(0)->Aut (^4) such that /?y=rrWoayor7(y). Then AxpF

(3) If p9 a : F— >Aut (^4) are one-co cycle equivalent in the sense that there

exists a unitary valued mapping u: F-*M(A) such that r^u^a and r^au^ are

continuous for all a^A and

(2.18)

(2.19)

(4) If F is the graph groupoid of topological transformation group (X9 G, a),

then Axpr is isomorphic to a crossed product of C$(X)®A by G with the action

(2.20) pg[f] (x) =

(Note that C0(X)=C(X) ifXis compact)

Proof. (1) Let?EEr£andfeL2(rV>)®#. Then

(2.21) [(Ada fa 0/ij) (*,(/•)) f\ (r)
l (t~l r))) e(f f) ds (f)
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1(/OT1 r)K(r.) ̂  (ri)
= [*,(/) f ] (r) .

This shows (2.17).

(2) We define a mapping 0 by

(2.22) <*>[/] (r) = rrA, (/(r)), feCJT.A).

Then <Z> gives a bijective mapping of CX/7, ̂ 4) onto itself and the following
relations hold:

(2.23) »[/,]*„ (P[/J = (Dt/iip/J, /b/2e Cc (r, A) ,

(2.24)

where #„., ($, <r) and #p, ($, p) are convolution and involution of CC(T9 ^4) with

respect to the actions a and p respectively. Moreover,

(2.25) K(0[/]) f] (r) = a y o r C / C f - 1 r)) *(f) rfv1 (f)

-1 r))) f (f) Jv* (f),

where fe.C^T, A), ? eL2(rx, v1)®/?. Hence we obtain K(0[/])1H !<(/)! I
for any jce/I(0) where n:0' and 7rp are representations relevant for u and p,

respectively. This implies the desired isomorphism.

(3) We define a mapping V by

(2.26) y[/](r) = «»/(r), f*=cj(r,A).

This gives a bijective mapping of CC(-T, A) onto itself and the following rela-

tions hold:

(2.27) y [/j*p y [/j = y L/i*,/j, /„ /2 e cc(r, j) ,

(2.28)

where we use (2.18), (2.19) and Mj,=l, which follows from (2.19). We define
a family of unitary operators U={Ulc\.lSl<m by

(2.29) [U,S] (r) =

Then, we obtain

(2.30)
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for aU jcerw. Hence IK(^[/])IHK(/)II and we obtain the desired iso-
morphism.

(4)

(2.31) (/; *p/2) (x, g) = ( Pc^/ifo-**), A"1 g))/2(*, A)
JG

(2.32)

(?-')](*),

where p and /3 in the subscripts for # and in the subscripts for % indicate the
convolution and involution in Axpr and in C0(X9 A)x$G, respectively. Fur-
thermore,

(2.33) K(/) f] (x, g) = ( PC
JG

for feL2(r? H)=L2(G, L2(X)®H). In view of Example 2.4, these formulas
agree with the defining relations (2.12)3 (2.13), (2.14) of C*-crossed product
C0(Z, A)x$G through the action (2.20). Hence we obtain the assertion by
the density of Ce(X, A) in C0(X9 A). Q.E.D,

Remark 2.6. In the situation of (4), if p: T->Aut(^) is of G-split type
(see Remark 4.8 of [8]), then the action (2.20) of G on CQ(X)®A is of product
type.

Now remember the definition of a locally compact transformation
groupoid which is introduced in analogy with the skew product, see [8], §5.

Lemma 2e?0 Let (&, F, p) be a locally compact transformation groupoid
and r=£xpr be the associated graph. Then,

(2.34)

(Note that C0(J3)=C(J3) if £ is compact.)

Proof. By definition, CQ(@)XpF is defined by the C*-completion of the
#-algebra CC(F, CQ(£J). By definition of the relevant C*-norm, we may assume
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that C0(£)xpr is generated by Cc($xr)=Cc(r, Cc(£)) c CC(F , C0(£)). In
view of the definition of groupoid crossed product after Definition 2.1, the
^-algebraic structure and the C*-norm on CC(Q X J1) is

(2.35) (A */2) (o>, r) = ^/ifo-iO*), r1 r)/2(«, f) ^*(f), * = r(r) ,

(2.36) /*(«, r) =

(2.37) I I /H = sup |K(/)||, /ec.(flxr),

(2.38) K(/) f] (o>, r) = ^/for -<«), f -> r) f (a,,

where £^L2(@)(g)L2(rx
9 vx) with respect to a suitable measure on £.

(C0(£) is a concrete C*-algebra on L2(J2).) In view of (2.38), IK(/)|| =

sup | k(«f, )(/)||, where

(2.39) [*(..,)(/) f] (r) = /(py-iH. f1 r) f(f) ^(f),

where £ e L2 (FX
9v*). Hence 11 /11 = sup 117zr(&) $ (/) 11 . These expressions

te,xit=Qxr™
agree with the definition of the ^-algebraic structure and the C*-norm of
r1 (Jr\ IT o v F1 r& TH "PH^A1 )y * —*™ X - P 1 ' \l*Ei.LJ.

§3e Groupoid Crossed Product and Co-action

In this section, we shall discuss the co-action on a groupoid algebra by
a locally compact group arising from a groupoid homomorphism. Firsts we
recall the definition of co-action and the associated crossed product in the
C*-algebraic framework (see [3], [5]9 [6]3 [7], [9]). Let G be a locally compact
group. The Kac-Takesald operator W is a unitary operator on L2(GxG)
defined by

(3.1) [WS] (g, h) = t(g9 gh\

Then we define an isomorphism dG: W*(G)-*W*(G)®W*(G) by

(3.2) dG(x) = W*(x®l) W, x^Wf(G)

where Wf(G) is the l^*-algebra generated by the left regular representation

38lo The co-action of G on a C*-algebra A is defined as the
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isomorphism

(3.3) d: A-*ML(A®C*(G))

satisfying

(3.4)

where

(3.5) ML(A®minB) =

for b, c<=B,

and L$ denotes the left slice mapping by <p. The co-action d is said to be

non-degenerate if {L^(d(a))i a^A, (p^A(G)} generates A, where A(G) is the

Fourier algebra of G (see Theorem 5 of [6]). If this is the case, the co-crossed

product C*-algebra A*8G by the co-action d is defined as the C*-algebra gen-

erated by (I®/) d(a) on H®L\G), a(=A, /eC0(G), where # is a faithful re-

presentation Hilbert space of A.

Now, let F be a locally compact topological groupoid with a faithful trans-

verse function v={v*}xer<*'> and G1 be a locally compact group.

Theorem 3.2. Let p: P-^G be a continuous homomorphism. Then there

exists a continuous co-action fi of G on C*(T) such that the associated co-crossed

product C*(F)*£(r is isomorphic to the groupoid crossed product CQ(G)xpr.

Proof. By choosing a suitable faithful Borel measure fj, on jP(0), C*(F)

is a concrete C*-algebra acting on a Hilbert space L2(F, (ju°v)). The action of

(3.6) K/)f|(r) = f(rl r) f(f)1/1*

where f eL2(F, (/t°v)). Now, we define a mapping /$: Ce(T)-*B(I}(r, (t*°v))

®L2(G)) by

(3.7) [^(/) fl (r, g) = { /(f-1 r) f(f , Xf V) *) rfAfX * = r(r),
Jr*

where /e Q(r), f e L2(r, ^10 v))® L2(G). Then /3(/) = PFP(?r(/)(g) 1) fT* where

Wf is a unitary operator (analogue of Kac-Takesaki operator) defined by

(3.8) [wf e\ (r, g) = ffr,
Hence ft extends to a *-isomorphism C*(r)^>B(L\r, (v°v))®I?(G)) which is
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also denoted by /3. To see that equality (3.4) holds, let W^, j=l, 2 be unitary
operators on L\r, (u.ov))®L\GxG) defined by

(3.9) \W? S} (r, g, K) = S(r, p(r)g, K) ,

(3.10) [W? f ] (r, g, h) = ft, g, P(r)h) ,

, (tJL°v))®L\GxG). Then (^®l)°/5(/)=^1) Wf\K(f)®\®\) W™*
W™*, (l®8e)°fi(f)=(l®W*) W^'M/)®!®!) W™\l®W). Equality (3.4)
for 8= ft is obtained by the direct computation.
Let /e Cc(r) and <f> <= CC(G). Then

(3.11) [^(/) (1®^)) f] (r, g)

] (r, «), x = /-(r) ,

where f SEL2(r, tJi<>v)®L\G),f<=Cc(r) and/*0eCc(/
1, Q(G)) is defined by

(3.12) (

Hence ftf) (1®^(0))=(»®^) (/*?s)- Similarly,
where 0*/e C.C/1, Ce(G)) is denned by

(3.13) (#*/) (r, g) -

Hence (l^^^+^flXlO^eC^^OC^G) for aeC*(P), 4, ceC*(G).
Next, let /e C«(D and </> e C*(G)* . Then,

(3.14)

where

(3.15) (**/) (r) = ^^OKr)-1)) /(r) •

This shows L^(^(C*(r))) c C*(r). Therefore /5(C*(r))cML(C*(r)®C*(G!)).
By (3.15), the set {</>*/: </><EC*(G)*, /eCc(r)> exhausts Cc(r). Hence
{Lf (/5(/)) : <f> e C*(G)*, /e C*(r)} generates C*(JT) and the co-action is non-de-
generate.

Lastly, we show C*(r)*gG^C0(G)xpr. By the definition of the co-
crossed product, C*(r)*£G is the C*-algebra generated by
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0 e C0(<7), /e C*(r) and hence generated by /$(/) (1 ® 0) by taking adjoint. By
the density of Cc(r) in C*(F), C*(r)*£G is generated by fi(f) (!®0),/eCe(r),
0eQ(G). Now, we define an unitary operator JFP: L\G)®L\r, (#o^))-^L2

(P, (#*»))®L2(G) by

(3.16) [^Pf](r,*) = £Wr)fcr), ^

Then,

(3.17) [W*£(f) (I ® 0) PFP f] (g, r) - ( /(f -
Jr*

^ = r(r) ,

where /e Cc(r), 0<E CC(G\ f eL2(G)®L2(r, (^ov)). Now, in view of the defini-
tion of C*(r), f=Gxpr5 the right hand side of (3.17) is equal to [£(/) f] (g, r),
where 5r is the representation of f on L2(/\ ((Jg®^)ov))=L2((j)®L2(r5 (pav))
and /(g, r)=/(r) #(g). The linear combinations of such / belong to CC(G)
®aigQ(-r) which is dense in Cc(f) with respect to the I^-norm topology on
Cc(f) defined by

(3.18) ||/||Li = max { sup ( |/(r)|^(r) , sup { I f(r~l) I dv\r)} 9
OoJr co:>J^"

/e Cc(r) (see [10]). This implies the norm density of {£(/): /(g, r)=/(r)
/e Q(r), 0 e CC(G)} in C*(r). Q.E.D.

Remark 3.3. If <? is abelian, then we obtain a C*-dynamical system
(C*(r), <J? ^) where the G-action p is defined by the relation

(3.19) Mf] (r) = <P(r)5 fc>/(r), k^G,f^Cc(r) .

By using L^norm, this action is shown to be continuous. The continuity
of the action also follows from the non-degeneracy of p as a co-action^ see [6].

Now9 we shall give an explicit correspondence between C*(r), f=GxpF
and C*(jT)Xp(j for abelian G. By the definition of a crossed product (see
Example 2.4) and the density of Cc(r) in C*(r)5 C*(r)xj(? is given by the

s\
C*-completion of Cc(GxP) with the ^-algebraic structure

(3.20) (/;*/2) (k, r) = </KrV), f>M-l+k, rlr)ffi, f)

x = r(r) ,
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(3.21) /% r) - <Kr), £>/(-£, r"1) ,

and with the C*»nonn given by the following regular representation

(3.22) K/) f] (k, r) = x

x = r(r) ,

where /l5/2,/eCc(GxF) and f eL2(G)®L2(F, GMOV)). Now, we define twisted
inverse Plancherel transformations as follows :

(3.23) [F/] (g, r) - jfc <-p(r)+g, k>f(k9 r) dfc,

(3.24)

Then, F(CC(G X F)) c CC(F? C0(G)) (the image is dense in Z^-nonn) and further
F gives a *-homomorphism, where CC(T9 C0(G)) is a * -algebra by

(3.25) (/i*/2) (g, r) =

A; = r(r) ,

(3.26) /*(g, r) =/(-

where /15 /2, /e Cc(r, C0(G)). It also holds that the unitary operator F defined
by (3.24) intertwines the * -representations of Cc(GxT) and Ce(r, C0(G)) de-
fined by (3.22) and

(3.27) [7t(f) f] (g, r) - /(-P(f )+g, r-V) ffe f ) ̂ (f) ,

x - r(r) ,

where f^Cc(F, CQ(GJ) and £^L2(G)®L\r, (f*°v)\ On the other hand, the
operations (3.25), (3.26), (3.27) agree with the definition of C0(G)xpr. Hence

the mapping F defined by (3.23) gives the concrete isomorphism C*(r)xjG
->C0(G)XPF.

Remark 3.4. If we consider the case that F is a locally compact abelian

group, then C0(G) X PF^ C*(F) x JG^ C0(F) X JG. This duality can be viewed
as the Plancherel transformation of abelian groupoid, see Bellissard-Testard
[1] (see also Remark 6.2 (3) of [8]).

385e Assume that G is abelian. If p, a : F-^G are cohomolo-
gous in the sense that there exists a continuous mapping r : F(0)— >G such that p(r)
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=r(r(r)) a(r) T(S (r))"1, then the two G-actions fi, a are one-cocycle equivalent

i.e. there exists a unitary valued mapping u: G->M(C*(.T)) such that k->uka

andki-*auk are continuous for «eC*(r) and

(3.28) A(«)

(3.29)

Proof. The unitary operator uk on L2(F, (#°y)) defined by

(3.30) femr)=<r(r(r)),fcX(r), eeL2(P, Cao*))

satisfies the condition. Q.E.D.
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