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Using the results of our previous papers [5] [8] [9] we shall construct the coarse moduli
space for non-uniruled polarized compact Kahler manifolds as a separated complex space.

§1. Statement of

(1.1) A polarized compact Kahler manifold is by definition a pair (X, oi) con-
sisting of a connected compact complex manifold X and a Kahler class o> GE
H\X, R) on X. Here a Kahler class is a class represented by a Kahler form,
i.e., the fundamental 2-form associated with a Kahler metric on X. An iso-
morphism of two polarized compact Kahler manifolds (X, o)) and (X\ o>')
is by definition an analytic isomorphism T/T: X->X' with ^-*cy'=a>.

Definition, i) A polarized family of compact Kahler manifolds (para-
metrized by a complex space S) is a pair (/, &) consisting of a proper smooth
morphism /: 3£->S of complex spaces with connected fibers and an element

®^r(S9 R2f*R~) such that
(1) CD induces on each fiber Xs:=f~\s) a Kahler class &S&H2(XS9R),

and

(2) 7?(a>)-0? where 7j=^f: r(S, R2f*R) ^F(S, R2f*0%) is the homomor-
phism induced by the natural inclusion M->0%; of sheaves on 3C. ((2) is a con-
sequence of (1) when S is reduced (cf. (2.3) and Lemma 1 below).) When no
confusion may arise we often call (/, a)) simply a polarized family.

ii) An isomorphism of two polarized families (/: 3£-*S, oj) and (/': 3£'
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-*S9 co') is an S-isomorphism ^: 3£->3£r of complex spaces such that
=& in

(1.2) We denote by 9JI the set of isomorphism classes of polarized compact
Kahler manifolds. For the simplicity of notation, howevers we usually write
(X, cy)e2Jt, identifying a polarized compact Kahler manifold (X9 CD) with its
isomorphism class.

Let (/: 3£-+S9 &) be a polarized family of compact Kahler manifolds.
Then for each s&S (Xs, a>s) is a polarized compact Kahler manifold. Thus
associating with each s^S the isomorphism class of (XS9 cos) we obtain a nat-
ural map p(f9 oj): \ S \ -> 3JI where | S \ denotes the underlying topological space
of S. We call p(f, co) the canonical map associated with (/, CD).

The canonical topology of 50i is by definition the finest topology for which
P(f> ™) i§ continuous for any polarized family (/, co) as above; thus a subset
E7£3Ji is open if and only if p(f9 &)~~\U) is open in |5| for any (/, to).

(1.3) Let (/: 2£-*S, co) be a polarized family of compact Kahler manifolds,
Let v: T-*S be any morphism of complex spaces. We shall then define the
pull-back (fT9 COT) of (/, co) by v. Let fT : 3£xsT-*T be the induced morphism,
Set COT=V*CO, where v*co is considered as an element of F(T9 R

2fT*R) via the
natural isomorphism v*R2f%R^I&fT*R. Then the pair (/r, COT) is again a
polarized family of compact Kahler manifolds; indeed5 (1) is clear and (2)
follows from the naturality of rjf (cf. (2.3) below). We call (fT9 COT) the pull-
back of (/, co) by v.

Let SS9JI be a subset. Then a polarized family (/, co) as above is said
to be a (polarized) ^-family if p(/3 S) (|^|)C§. It is clear that if (/, co) is
an ^-family, then (fT9 COT) also is an ^-family.

Let An be the category of complex spaces. Then with the definition of
the pull-back as above, for any subset §C50l we define the contravariant functor
£F : An -> Sets of An into the category of sets by

£F(S)=the set of isomorphism classes of polarized ^-families (/: 3£-^>S, co)
parametrized by S.

Definition* Let §£ 2JI be a subset. Then the coarse ^-moduli space is a
pair (F9 V) consisting of a complex space F and a morphism of functors ^:
EF-^hF : =Hom( , F) of 3" into the representable functor hF such that 1) the
underlying topological space of F is canonically homeomorphic to % where
the topology of % is induced from the canonical topology of 3J1, and 2) for
any complex space Fl and a morphism of functors ^i £F-»/zFi:=Hom( , Fx)
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there exists a unique morphism T: F-^Fl of complex spaces such that ^1=hr^,

Note that the canonicity in 1) means that the natural map %-^F denned
by V is homeomorphic.

(1.4) Let X be a compact complex manifold. X is said to be uniruled if there
exist a compact complex manifold Y, a holomorphic vector bundle E of rank
^2 on Y and a generically surjective meromorphic map TU: P(E)—>X which
is not factored by the projection P(E) — > Y, where P(E) is the projective bundle
associated to E (cf. [8]). Then our main result is stated as follows.

Theorem, Let $t = {(X9 cy)e3K; X is not uniruled}. Then the coarse

^-moduli space (A, ir) exists.

Remark 1. Actually, in the course of the proof we specify a subset S3S9JI
containing SI such that the coarse 33-rnoduli space (B, T/TB) exists except that
B is not separated (cf. Theorem 2).

Our proof of theorem follows in main line the method of Narasimhan-
Simha [24] in which they have shown the existence of the coarse Si-moduli
space (in the reduced category), where $t = {(X, &>)e3Jt: <w = — c?(X)}, cf(X)

being the real first chern class of X.
The arrangement of this paper is as follows. Section 2 is preliminary.

In Section 3 we give a kahlerian analogue of the separation criterion of Matsu-
saka-Mumford [22] essentially proved in [9]. Let Z={(X, w)e5K; Aut0X
is a complex torus}. Then in Section 4 we show the cohomological flatness
of the relative tangent sheaf for any polarized IE-family (Theorem 1). We
construct the local modular family for any (X, <a) in Z and study the local
structure of Z in Section 5. Then in Section 6 we define the subspace S3£3J1
and prove Theorem 2 mentioned above using the results of Section 5. Togeth-
er with the main result of [8] the proof of Theorem is immediate fiom Theorem
2 (Section 7). Finally in Section 89 as concrete examples we shall give an
explicit description of the moduli spaces for complex tori and K3 surfaces
by summarizing the known results in these cases.

The results of this paper were announced in [7] in a somewhat weaker
form. In the subsequent paper [12] we shall construct the coarse moduli
space for non-uniruled polarized algebraic manifolds as a separated algebraic
space.

Our thanks is due to the referee for a simplification of the proof of Prop-
osition 5.
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§2, Preliminaries

(2.1) a) Let S be a complex space. Let G-*S be a morphism of complex
spaces. Then G Is called a complex Lie group over S if there exist S-morphisms
(jXsG->(j, G-+G, S->G defining relative multiplication, inversion, and the
identity section respectively satisfying the usual axioms (cf. [233 Def. 0.1] or
[10, §1]). Let/: 3S->S be a morphism of complex spaces. Then a relative
action of G on IE over S is an iS'-morphism a: Gxs3C-*3£ satisfying the
usual axiom of actions (cf. [23, Def. 0.3]).

b) Let/: 3£-*S and/7: 3?'->S' be proper smooth morphisms of complex
spaces. Let D3Cx83?/s-*S be the relative Douady space associated with/xs/':
X X S3£'-+S. Let Isoms(^9 3?') be the Zariski open subset of D%x a3F/S which
represents the functor J: (An/*!?)0—> Sets defined by /(r)=the set of F-isomor-
phisms T^: 2£xsT->^£'XST9 where An/S is the category of complex spaces

over S (cf. [26]).
We set Aut 3?/,S=Isoms(3?, 3S)- Aut 3?/S has the natural structure of

a complex Lie group over S with a natural relative action on 3?. In the ab-
solute case, i.e., when S Is a point, Aut 3E/S reduces to the usual complex Lie
group AutJSf of biholomorphic automorphisms of X=3£. We denote by
AutgZ the identity component of Aut X.

c) Let (/: 3C-+S, 65) and (/': 3?'->S, &') be polarized families of compact
Kahler manifolds. Then define the functor Iw: (An/S)°-> Sets by

J"(r)=the set of isomorphisms of the pull-backs (/r, Sr) and (//, SJ-) as
polarized families.

Then I6* is represented by an open and closed subset Isoms((3f, &), (3£'9 &'))
of Isoms(3f, 3?') (cf. [10, 3.2] up to a change of notation). In particular the
closure 7" of Isoms((.!E, 3), (3?', 5')) in D3Cxa3?/s is analytic in Dxx83&/s.

In the absolute case we use the notations Isom((Jf, o>)? (Z', a/)), Aut(JT, cy)
etc. For Instance

Aut(X, CD) = {g^ Aut X\ g*co = o)} .

(2.2) (Grothendieck's criterion for smoothness [16, IV, Th. 3.1]). Let /:
3£->S be a morphism of complex spaces. Let x^^£ and s=f(x). Let ^4 be
a local C-algebra which is a finite 0s>s-algebra. Let m be the maximal Ideal
of A and J an ideal of A with m7=0. Let S^Specan ^4 and S2 the subspace
of 5X defined by /. Let v2: S2-*3£ be an iS'-morphisrn with v2(i)=x9 where
t is the unique point of S^ Then / is smooth at x if and only if for any Sl9

S2y v2 as above we can always find an extension v1: S^SE of v2.
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(2.3) The next result is due to Deligne [3].

Proposition 1. Let f: 3£-*S be a proper smooth morphism of complex
spaces with connected fibers. Suppose that X0 is Kahler for some o^S, Then

for any i^O and any morphism v. T-*S of complex spaces the natural homo-

morphism v*Rlf*0^£—>RlfT*0^F is isomorphic in a neighborhood of v~~\6).

Moreover R'f^O^c is free in a neighborhood of o.

Proof, See [3, Th. 5.5], where in the proof we may refer to [1, III, Cor.
3.10 and Th. 4.1] instead of (7.8.5) and (6.10.5) of EGA III, respectively.

Since v*R2f*R->R2fT*R is isomorphic, it follows that the commutative
diagram

u u
If*

gives the natural identification of ^O?/) and rjfT9 where rjf is as in (1.1).

(2.4) Let a: Z-*S be a morphism of complex spaces. Suppose that Z is
a dense Zarisld open subset of another complex space Z and a extends to a
propei' morphism a : Z-*S. Then there exists a unique maximal Zariski open
subset USiS such that a is proper over U, in fact, we have only to set U=S
~a(Z—Z). In particular if ZS=(Z)S for some point s^Ss then s^U and
a is proper over some neighborhood of s.

§30 A KaMerian Analogue ©f a Theorem of Matsesaka-Miimfori

In this section we prove a refinement of the kahlerian analogue of a theo-
rem of Matsusaka-Mumford [22] given in [9].

(3.1) Let X be a compact complex manifold. Then we shall denote a (local)
deformation of Xby the triple/: 3C-*S,X0=X,o^S, where/is a proper smooth
morphism and we always consider S as a germ of a complex space at o5 or
one of its representatives. In particular we have the natural isomorphisms

Let (/: 3£->S, &) be a polarized family of compact Kahler manifolds.
Then it is expected that for any point s^S there exist a neighborhood U of s
and a Kahler form ft on 3£n which induces & in r(U, R2fu*K). We shall show
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that this is the case when S is nonsingular and of dimension 1 and note that
this is even true when dim S> 1 (cf. Proposition 5 and Remark 2 below). But
for the moment the next lemma is enough for our purposes.

Lemma 1. Let (X, o>) be a polarized compact Kdhler manifold. Let f:
3E-+S, X0=X, o^S, be a deformation of X with S nonsingular. Let $e
H2(3£, R) and &^r(S9 R2f*M) correspond to a> with respect to the isomorphism
(*)„ Then the following conditions are equivalent. 1) 77^(3) =0 in F(S, R2f^O^d,
where rjf: F(S, R2f^H)~^r(S5 R2f^0^) is the natural homomorphism, 2) the
restriction o)s<=H2(Xs, R) of & to Xs is a Kdhler class and 3) Q is represented
by a real closed C°° 2-form fl on 3£ which is a Kdhler form when restricted to each
fiber off.

Proof. The implication 3)->2) is obvious. By virtue of (2.3) 1) is equiva-
lent to the condition that <3S is of type (1,1) when restricted to each fiber of/.
From this, the implication 2)->l) follows. We show that 1) implies 3). Fix
a Kahler form a on X representing the class o>. Then by Kodaira-Spencer
(cf. [18]) there exists a family {aj-ses of Kahler forms on Xs with a0=a which
depends differentiably on s. Since as are harmonic forms with respect to
the metrics gs associated to aS9 by [28, Lemma, p. 196] there exists a real closed
C°° 2-form ft on 3£ such that ft0=a and that fls is a harmonic form with respect
to gs. Clearly ft represents the class Q. Then since for each s^S, @s (the
restriction of Q to Xs) is of type (1,1) as a cohomology class by our assump-
tion and since fts is harmonic, fts is actually a (l,l)-form on Xs. Moreover
(if s is sufficiently near to o) fts are positive forms on Xs since so is j30. Thus
fts is a Kahler form on each Xs as desired. q.e.d.

(3.2) Using Lemma 1 we show the next proposition by reducing to an analo-
gous one established in [10].

Proposition 20 Let (/): 3£{->S9 Sf-), /=!, 2, be polarized families of com-
pact Kdhler manifolds. Then /~:==Isoms((.3?1, co^, (3£29 S2))~ is proper over S,
where /" is the closure of Isoms((3£l9 &J, (3£2, co2J) in D^x^/S (cf. (2.1)).

Proof. Since the problem is topological we may assume that S is reduced.
Let x: S-*S be a resolution of S. Let (/: j£f-»S, cwf.) be the pull-back of

A

(fh &i) to S by n. Then with respect to the natural isomorphism (D^x^g/s)
A A A A A

Xs*S^D^ix s^2/S9 1~ Xs$ is naturally considered as a closed analytic subspace
of Isom§((3£l9 (wj, (3£2, cy2))" (in fact they coincide). Hence it suffices to show

A A

the properness for (fh co^. So we may assume from the beginning that S is



COARSE MODULI SPACE 983

nonsingular. Then since the problem Is local on S9 by Lemma 1, 2)->3) we
may assume that there exists a real ^-closed C°° 2-form ftt on 3?,- such that (/9Z-)S

is a Kahler form and is a representative of the class (S-)s for each jeS1. Then
the proposition follows from Proposition 3 of [10]. q.e.d.

For later reference we record a special case where S is a point and where
X-3?2 and a^fy.

Corollary [6], For any polarized compact Kahler manifold (X, co), Aut(X5 CD)

has only a finite number of connected components.

(3.3) Let D = {t<=C; | f |< l} be the unit disc. Let D'=D — {0}. Let (/>
3?,—>A G>i), z = l, 2, be polarized families of compact Kahler manifolds over
D. The next proposition is a kahlerian analogue of Theorem 2 of Matsusaka-
Mumford [22], a little weaker version of which was established in [9].

Proposition 3» Let <p: 3£1—>3£2 be a bimeromorphic map over D which in-
duces over D' an isomorphism of the induced polarized families (/i,/^ S1>Z)/) and

(/B.D'J &2.D')- Then ifXli0 is not ruled, <p must be isomorphic.

Here a compact complex manifold X is said to be ruled if there exist a
compact complex manifold Y and a holomorphic vector bundle E on Y of
rank ̂ 2 such that X is bimeromorphic to the associated projective bundle
P(E).

Before the proof we first derive from this proposition the following:

Proposition 4e Let (ff: SC^S, S-)? /=!, 2, be polarized families of com-

pact Kahler manifolds with X1>0 non-ruled for some o^S. Then 7=Isoms((3?i,
si)? C3?2? ^2)) is proper over some neighborhood of o in S.

Proof. Since /" = Isoms((^1? SJ, (3£2, S2)) is proper over S by Proposi-
tion 2, it suffices to show that I7=I0 (cf. (2.4)). So assuming that I^^pI0

we shall derive a contradiction. Take a morphism h: D-*I~ with A(0)e
J-—J0 and h~\I-— /) = {0>, where D = {£<=C7; | r | <!}. Let h be the composi-

A A

tion of h with the natural projection I~-*S. Let (/J: 3£i-^D5 o>,-)3 /=!, 25 be
the pull-back of (/-, S£) by A. Then by our choice of h there exists a bimero-

A A

morphic D-map 9: 3Si->3?2 which is isomorphic over D'=D— {0}3 but not iso-
morphic over the whole D (cf. [10]). Moreover if <p': 3£{-*3£2 is the induced
isomorphism with l£i=fTl(D'), then we have <p'*Q>2=Q>i' It then follows
from Proposition 3 that <p must be isomorphic, which is a contradiction, q.e.d.

8 Under the above assumptions the set S1: =
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(X2s9 o>2s)} is an analytic subset of S in a neighborhood of o.

Proof, Si is the Image of Isoms((jEi, o^), (3^ ®z)) by a proper map. q.e.d.

(3.4) Let (X, CD) be a polarized compact Kahler manifold. Then a polarized
(local) deformation of (X, CD) is a polarized family of compact Kahler mani-
folds (/: 3£-*S, CD) such that (X09 G>0)=(X9 CD) for a point o(=S with S consider-
ed as an analytic germ at o.

Now Proposition 3 follows from Theorem 4.3 of [9] if CDI is induced from
a Kahler class $, on 3£f. This is indeed guaranteed by the following:

Proposition 5. Let (X, co) be a polarized compact Kahler manifold. Let
(f: 3£->S, CD), (X09 CDO) =(X, CD\ OSES, be a polarized deformation of (X, CD). Sup-
pose that dim 5=1 and S is nonsingular. Then the class @^H2(3£9 R) which
corresponds to CD, or <S3 in the isomorphism (#) is a Kahler class.

The proof which follows is suggested by the referee. (The original proof
of ours is by way of the harmonic theory of Kodaira-Spencer.)

We proceed in steps. Let £0^ be the sheaf of germs of C°° (0, #)-forms
on 3£ and set 8^=8^, the sheaf of germs of C°° functions on 3£. Let / be
the local parameter of S with center o. Let S=tO^£ and £=(t, f)G^£. Let
0^=lim 0%i 'Jn and <5^=lim 8^8*8^. Then the usual ^-operator ff£-*

SQ^1 induces a similar homomorphism G}g-*G^*1 (still denoted by ~S) with
respect to the natural homomorphism r°: G^-^G^. This then gives rise to
the "formal Dolbeault complex"

A

which turns out to be a fine resolution of O%>\ this is indeed a special case of
the formal Dolbeault lemma proved by Bingener [31] and the author [13] in-
dependently. As a consequence of this we note the following:

Lemma 20 The natural homomorphism HqF(X0, <SQ±\x)-*HqF(X0) £°£)

induced by r' is injectivefor any #2^0.

Proof. Let (B?f*O3?T=ton.S?f*OxI<SnS?f*Ox. Let /: ±-*5 be the
formal completion of/: !£->5~aiong X0. Let u: (Rqf^O^)0~^Rqf^6^ be the

composition of the natural injection (Rqf*O%;)0-* (Rqf*0%f and isomorphism

(Rqf*O%T-*R9f*Ox (cf. [1, VI, 4.5]). The lemma then follows from the com-
mutative diagram
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U H

where the vertical arrows are the usual and the formal Dolbeault isomorphisms
(induced by ($) in the formal case). q.e.d.

Using Lemma 2 we shall next show the following:

Lemma 30 Let ft be a ^-closed C°° (03 2)-form on 3£ whose restriction to
each fiber off vanishes identically. Then ft=da for some C°° (0, l)-form a (in

a neighborhood ofX0).

Proof. First we note that ft is written in the form fi=<p/\di for some C°°
(0, l)-form <p on 3£. Indeed., from the local consideration it is clear that we
may write ft=<p1/\df for some <p1^F(X, <SQc^/6^df) in the obvious sense and
then it suffices to take <p to be any lift of 9^ with respect to the natural surjec-
tion r(X9e"£)-+r(X9G^IG%df). Similar remark applies also to any C°°
(0, #)-form ^, q^l, with df/\^/r=0 and will be used without further mention.

Now we shall show by induction on 72^1 the following statement: (*)n,
There exist C°° (0, l)-forms an, <pn on 3£ such that ft is written in the form ft =

tn'd<pn+dan and that an+1 = an mod $n+l. First of all, when n=l, we have
only to take <PI=<P and al=—<pf. Suppose next that (*)ft are proved for any
l^k^n. Then dj3=nfn~1df/\d<pn=0, which implies that 9<pn=i/rn/\di for

some C°° (0, l)-form V^» on 3?. Then we have

Hence an+1:=an-l/(n-^l)r+1^n and 9n+1: = ll(n+iy^9 satisfy (*)w+1. Thus
(*)B are true for all n^l. Now &\ = {an} determines an element of r(X0, S°^)
with "8a=/§, where ft is the natural image of ft in r(X09S°^). The lemma
thus follows from Lemma 2. q.e.d.

Proof of Proposition 5. We have to show that Q is represented by a
Kahler form. By Lemma 1 there exists a real d-closed C°° 2-form ^ represent-
ing @ such that when restricted to each fiber it is a Kahler form and hence
in particular of type (1,1). Let /3=/32>Q+/3lil+ft°'2 be the type decomposition
of ft, where fiQ>2=fi2>° and dj3Q'2=Q. Moreover j3°>2 restricted to each fiber
vanishes. Hence by Lemma 2 we may write /30>2=da for some C°° (0, l)-form
a on 3£. Then ft':=ft—d(aj

r6t) is a J-closed (l,l)-form representing Q. More-
over ft\'l=ftf

s for each s. Thus ft' gives a Kahler form on each fiber. Finally
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replacing J3r by fi'+Ndt/\di for some sufficiently large constant N>Q we
get a Kahler form representing Q.

Remark 2, As pointed out by the referee the above proof also works
for the case dim S> I (with S nonsingular) by a suitable modification of the
proof of Lemma 3.

§4Q Cohomological Flatness of the Relative Tangent Sheaf

In this section we shall show the cohomological flatness of 03C/S for any
polarized family (/: ?£-*S9 &) of compact Kahler manifolds such that Aut0Xs

is a complex torus for any s&S, where 0%/s is the relative tangent sheaf as-
sociated to /, i.e., the sheaf of germs of holomorphic vector fields on 3£ which
are tangent to the fibers of/

(4.1) We begin with a general definition. Let /: 3£-*S be a morphism of
complex spaces and 3 an /-flat coherent analytic sheaf on 2£. Then £F is said
to be cohomologically flat (in dimension zero) at s^S with respect to / if the
following equivalent conditions are satisfied (cf. [1, III, Cor. 3.7]):

i) For any morphism v: T-*S of complex spaces, the natural map *>*/#£?
-»/r*P*£F is isomorphic at any point t^T with v(i)=s9 where £: 3£xsT->3£
is the natural morphism.

ii) Let m be the maximal ideal of Os at s. Then the restriction maps
f*(3lmk3)s-*H\Xs, 31*3) are surjective for all k>Q.

Moreover in this case/*£F is free in a neighborhood of s. Further, when S is
reduced, 3 is cohomologically flat at s if and only if d(s):=dim H°(XS9 3j^3)9

s^S, is constant in a neighborhood of s (cf. [1, Th. 4.12]). We say that 3 is
cohomologically flat with respect to f if so is 3 at any point of S. Clearly, if
£F is cohomologically flat with respect to /, then £*£? is cohomologically flat
with respect to fT, where v is as in i) above.

Now the purpose of this section is to prove the following:

Theorem 1. Let X be a compact connected Kahler manifold. Letf: 3£->S,

X0=X9 o^S5 be a deformation of X. Suppose that Aut0Z is a complex torus.^
Then the relative tangent sheaf &2C/S is cohomologically flat (in dimension zero)

at o. In particular dim H\XS, 0Xs) is independent of s in a neighborhood of o.

Remark 3. The last assertion is shown first by Matsusaka under the
assumption that there exists a relatively ample line bundle L on 3? and that

*) The case where Aut0^ reduces to the identity is included.
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(X, cf(L0)) Is in S3 (cf. §6, below), where cf(L0) is the real chern class of Le.

(See Corollary to Proposition 11 of [21].)

(4.2) First we note that for a proper smooth morphism /: 3£->S the cohomo-

logical flatness of 6?£/s has the following significance.

Proposition 6e Let f: 3£-*S be a proper smooth morphism of complex spaces,
Let s be a fixed point of S. Then the following conditions are equivalent.

1) @3£/S is cohomologically flat at s with respect to f,
2) a\ Aut 3£/S->S is smooth at any point of Aut^ with respect to the

natural inclusion Aut0Xs£(Aut 3E/S)S.

We first prove a lemma.

Lemma 4. a is smooth at any point of Aut0Z if it is smooth at e(s), where

e is the identity section of a.

Proof. Let a^Au.tQXs be arbitrary. We first show that there exists
a holomorphic section e: S->Aat 3C/S with e(s)=a. Let U be a neighborhood
of e(s) in Aut 3£/S such that a is smooth on U. Then we can find an integer
ra>0 such that the image of Uts'. = UxS"

a XSU (m-times) by the natural S-
morphism x: U™-^Aut 3£/S (induced by the relative multiplication of Aut 3£/S)

contains a. Take any point wet/f with x(u)=a. Since £/?->£ is smooth,
we can find a holomorphic section em: S-+U™ with em(s)=u. Let e=xem:
S-^Aui3£/S. Then e is a desired holomorphic section with e(s)=a. e(S)
then defines by translation an ^-automorphism e* of Aut 3£/S as a complex
space over S such that e*(e(s))=a. The lemma follows.

Proof of Proposition 6. (cf. Wavrik [29]) 1) -> 2). Suppose that
is cohomologically flat. We shall show that a is smooth. By Lemma 4 we
have only to check this at e(s). We use Grothendieck's criterion (2.2): in
the notation there for a given ^-morphism v2: S2-»Aut 3E/S with v2(t)=e(s),
we want to find its extension v^ *S'1-»Aut 3£/S. Let 3£i:=3£xsSi and e{\
S-- »Aut .fcilSi the identity section, i=l, 2. Let m{ be the maximal ideal of 8{

at t. Note the isomorphism Aut SS/SXsS^Aut 3£i/Si. Then v2 corresponds
to a holomorphic section V2^P(S2, Aut 3£2/S2) with v2(t)=e2(t).

Now we have the natural isomorphism of sets Pe(Si9 Aut 3Si/Si)^H°(3£i9

**iOx</St)9 where r.(Si9 Aut 3?,/S,) = {^er(S,., Aut ̂ ./S,); ^(0=^(0> (cf. [29,
§3]). On the other hand, by the cohomological flatness of Ox/S the natural
morphism H°(3£l9 ^iO^/s^-^H\2£2, ^2@3C2/S2) is surjective. Hence we can
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find an extension v{^re(Sl5 Aut XJS^ of V2, which in turn gives a desired
extension vl of v2.

2)-* 1). (cf. [29, Prop. 4.3]) Suppose that 9%/s is not cohomologically flato
We shall show that a is not smooth at e(s). Let m be the maximal ideal of 5
at s. By our assumption there exist an integer k>® and 6 e Jf/°(Jfs, ©Xs) which is

not in the image of the natural homomorphism f^(O^c/sI^kO^/s) ->H°(XS, ®Xs)>
Replacing S by the subspace defined by *** we may assume that **A=0 on S.

Let T-SxSpec q>] and 3T = -fa} x Spec C[e], where e is the dual number;
e2=Q. Consider T as a complex space over S via the natural projection T
->S. Let 0eSpec Cfc] be the unique point and « the maximal ideal of T at

(s, o). Then £0 is naturally considered as a section of fT'**&3£Tf/T' and it is not
in the image of the natural map /r*^0^/r->/T/*^0^/*/Tx. Since? in the same
notation as above, fY*("®%Y/Y\s,0^re(Y, Aut 3£Y/T) (Y=T, T) by [29], this
implies that a is not smooth at e(s) by (2.2). q.e.d.

(4.3) In general let S be any Artin space, i.e., a complex space with a unique
point, say o. Let /: 3£-*S be a proper smooth morphism with connected
fibers. Set X=X0. Since S is an Artin space, Aut 3£ and Aut S have the
natural structure of complex Lie groups (cf. [4]). Moreover / induces the
natural homomorphism Aut 3£-*Aut S, and hence AutQ3£ -> Aut0*S. (Con-
sider for instance S as a distinguished connected component of the Douady
space of 3£ (cf. [17, Lemma 3]) and consider the induced action of Aut 3? on
S.) Denote the last homomorphism by/#. Let G and N be the image and
the kernel of /* respectively. Let u: Auto^-^AutoZ be the natural restriction
homomorphism to X=3£ted. Then by associating to any g^G the coset of
u(f^(gy) we get a map w: G-*E of G into the coset space E:=Aut0X/u(N),
It is easy to see that u(N) is closed in AutgX and w is holomorphic.

Lemma §0 Suppose that X is Kdhler and that Aut^JT is a complex torus.

Then w is a constant map.

First we recall some terminology from [6], (See [6] for the more detail.)
A meromorphic Lie group is a complex Lie group with a bimeromorphic equiva-
lence class of its compactifications. An algebraic group is a special case of
meromorphic Lie groups if we consider its algebraic compactifications as the
corresponding equivalence class of compactifications. A homomorphism
G1-^G2 of meromorphic Lie groups is said to be meromorphic if it extends to
a meromorphic map G?->G? between any compactifications Gf of G{ in the
equivalence classes.
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Proof of Lemma 5, Since X Is Kahler, Aut^ has the natural structure of
a meromorphic Lie group (cf. [5, Th. 5.3], [6, Th. 3.5]). (See also Corollary to
Theorem of [11], where a gap in the argument in [5] is filled.) On the other
hand, since S is an Artin space, Aut S has the natural structure of a linear al-

gebraic group, e.g., as a closed subgroup of GL(A)9 where A:=0S,0 is con-
sidered a finite dimensional C7-vector space. Then by [6, Lemma 2.4], with
respect to these meromorphic Lie group structures /* is a meromorphic homo-
morphism. In particular the image G of/* Is a linear algebraic subgroup of
Aut S. Moreover by the standard arguments we see readily that for any al-
gebraic compactification G* of G9 w extends to a meromorphic map w* : G*->E,
It follows then that w is a constant map since E is a complex torus and G is
linear algebraic (cf. [6, Lemma 3.8]). q.e.d.

(4.4) Let X be a compact complex manifold. Let /: 3£->S, X0=X9

be the Kuranishi family of X [19]. Let m be the maximal Ideal of Os at o.
Let Sn be the subspace of S defined by mn+l

a Let !£,=!£ xsSn. Let /„:!£„->
Sn be the induced morphism.

Lemma 6, The restriction homomorphism un\ Aut^->Aut Jf is surjective
for any n^Q.

Proof. Take any AeAut X. The versallty of Kuranishi family Implies
that there exist morphisms h: 3£n-^3£n and hi Sn-*Sn such that h\Xo=x=h and
that the following diagram is cartesian

CV» _ CV3
-2CM -^«

fn\ I Ifn

Sn - > 5^ .

Thus it suffices to check that h, and hence h also, is an automorphism. Since
Sn Is an Artin space, this follows if we see that h Is an embedding, or the differ-
ential h* of h Is Injective. In fact, if h* is not Injectlve, there is an embedding
c: S^ Spec C[e]->Sn such that 3?»X5BS'8->5lg Is a trivial family, contradicting
the fact that / is the Kuranishi family, where C[e], e2=0D is the ring of dual
numbers. q.e.d.

Proof of Theorem 1. Clearly we may assume that /is the Kuranishi family
of X. Further by the (second) definition of the cohomologlcal flatness It suf-
fices then to show the theorem for each/;2 in the notation above. Let Aut03?B/5w

be the connected component of Aut 3£n/Sn containing Aut0X Then by Prop-
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osition 6 we have only to show the smoothness of AutQ2£n/Sn over Sn. First,
by Lemmas 5 and 6 we see immediately that AutQX=un(Nn), where Nn is the
kernel offn\Aut^£M- By definition Nn is just the group of automorphisms of 3£n

over Sn inducing those of Aut0X on X, or in other words, the group of holo-
morphic sections of an: AutQ3£JSn-^Sn. Thus for any a^Aut0X if we take
a local holomorphic section v of Nn-^>Aut0X defined in a neighborhood V
of a, v defines a holomorphic family of sections of an parametrized by VSiAut0X

=(Aut0jE'B/S'BX, which in turn gives an ^-isomorphism of a neighborhood of a
in AutQ3£JSn to Sn X V. Thus an is smooth. q.e.d.

Remark 4. Pushing the above arguments a little further, we can show
more generally the following: Let/: 3£-*S, X0=X, o^S, be a deformation
of a compact connected Kahler manifold X. Then dim T(XS) is lower semi-
continuous in a neighborhood of o, where T(Xs)=T(Aut0Xs) is the Albanese
torus of Aut0Zs (cf. [6]). The proof will be given elsewhere.

(4.5) Since Theorem 1 is important, we shall give an alternative proof in the
following special case using the notion of polarized Kuranishi family (to be

defined in §5).

Proposition 7. Let (/: 3£-*S, a>) be any polarized family of compact Kahler
manifolds with S reduced. Suppose that Aut0Jf0 is a complex torus for some

o&S. Then ®3£/s is cohomologically flat at o.

We first prove a lemma. Let (X, CD) be a polarized compact Kahler mani-
fold in general Let (/: 3?->r, <S)9 (X09 ®e)=(X, &\ o^T, be the Kuranishi
family of (X, o>) (cf. Remark 6 in §5). Let r{: TxT-*T be the projection

to the f-th factor. Let (/> 3?,—>7*xr, #/), /=!, 2, be the pull-back of (/, o>)
via rf-. Let 7=Isomrxr((3Ei, Sj), (3f2, &2)) and let r: /-»Tx T be the natural
morphism. Let / be the connected component of / containing Aut0JT with
respect to the natural identification of Aut(X, cy) with /(00). Let Q=r(J)-

Lemma 7. If Aut0X is a complex torus, then Q is an analytic subset of
TxT and r{\Q: Q->T is a finite morphism.

Proof. Since JM =Aut0Z, by (2.4) Tj=r\j'- J->TxT is proper (if we
restrict T). Hence Q is analytic. Then for the finiteness of rz-|Q it suffices to

show that Qo'=^T1(o)r\QIed reduces to the point (o, o). Consider Q0 as a
subspace of T=rT\o). Then X^X? for any t, t'^.Q0. Then by Schuster
[26]/£ : XxTQQ-^Q0 is a trivial family. Hence the constant map T: Q0->{o}



COARSE MODULI SPACE 991

is a versal map associated to /QO considered as a deformation of X. Since the
differential r* of r is zero and r^ is unique, the inclusion g0-^Tmust coincide
with r, i.e., Q0=(o, o). q.e.d.

In the above proof one can actually show that rjl(o) fl Q=(o5 o).

Proof of Proposition 7. Since S is reduced,, it suffices to show that dim H°
(Xs, Ox) is independent of s in a neighborhood of o. This clearly follows
from the same assertion for the Kuranishi family (/: 3£->S, &) of (X, cai)=(X0,
o}0) as above. So we shall prove the latter, using the above notations. For
any (t, t')&Q9 rjl(t, t') is a union of connected components of lsom(Xt9 Xtf)

4:0 and hence dim rl\t, t')=dim Aut0Xt==d(t):=dim H°(Xt9 OXJ- Since p^.
=rl\Q is finite by Lemma 7, there exist only a finite number of holomorphic
sections, say cl9 • • * , cm9 of pl defined on Tred. Let Qi=ci(Tn^^Q.

Suppose now that d(t) is not constant on T. Then by the first remark
the dimension of the general fiber of n' T~jl(Qi)-^Qi is less than d(o) on an
irreducible component of Qt. It follows that there exists a Zariski open subset
V of J(0i0) such that for any v e V and any i there is no holomorphic section of
Ti passing through v. On the other hand, let (£, v) be the automorphism of
(/, CD) associated to v^J(o>0)=AutQX as in the proof of Lemma 6. Then v is
naturally regarded as a holomorphic section of TJ defined over the graph i~V
S Tx r of v and passing through v. Since I\ defines a holomorphic section
of/?!, this is a contradiction. Hence d(t) is constant. q.e.d*

Remark 5. The above proof actually works also for the Kuranishi family
itself (not necessarily polarized). Indeed, the proof depends only on the fact
that TJ is proper and the corresponding fact can be proved by a method similar
to Proposition 2 using the C°° extension theorem of Kahler metrics due to Ko-
daira-Spencer [18].

§50 Local Modular Family

In this section we shall construct the local modular family for a polarized
compact Kahler manifold with AutoZ a complex torus and give some of its
basic properties.

(5.1) We start with the following:

Definition. Let (/: 3C-+S, 6>) be a polarized family of compact Kahler
manifolds. Let s&S. Then we say that (/, fi>) is locally complete at s if for
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any polarized deformation (/' : 3£"-*S", &'), (X'3,9 S{/)=(*,> S5), s'tES', of
(Xs, Ss) there exists a morphism T: S'-*S9 r(s')=s, such that (/', o>') is isomor-
phic to the pull-back (/s/, S5/) of (/, &>) to 5". If, further, r is unique for any
(/', &') as above, we say that (/, S), considered as a polarized deformation of
(Xs, <3S), is the local modular family of (Jfs, <3S). In this case r is called the
universal map associated to (/', &').

Proposition 8* For any polarized compact Kahler manifold (X, cy) such
that AutQX is a complex torus its local modular family (/: 3£-*S, 3), (X0, o}0)
=(X, o)\ o^S, exists. Moreover it is locally complete at every point in a neigh-
borhood of o.

Proof. Let f,: ^->51? Xlt0=X9 o^Sl9 be the Kuranishi family of X

[19]o Let SiG/XSi, P?f^M) be the element corresponding to co with respect
to the isomorphism (*) in (3.1) for /x. Let S be the subspace of S1 defined
by the equation 37(0^) =0, where rj\ F(Sl9 R2f1*H)-*r(S1, Rzfi*O%t) is the nat-
ural homomorphism. (Note that since R2f1^0^1^0®[ for some r^O by
Proposition 1, the equation is just a system of r ordinary equations.) Let
/: 3C-+S and o5er(S3 R2f*H) be the restriction of /i and ̂  to S respectively.
Then we claim that (/, &) thus obtained is 1) a polarized deformation of (X9 o>)9

2) locally complete at any point of s in a neighborhood of o, and finally, 3)
the local modular family of (X9 o>).

1) By our construction (/, &) clearly satisfies the condition (2) of Defini-
tion in (1.1). Thus it suffices to show that o)s is a Kahler class on Xs for any
s^S in a neighborhood of o. Let n: S-*STed be a resolution of Sied. Let
(/: 3C-+S, o>) be the pull-back of (/, CD) to S. Then (/, &) satisfies the con-
dition 1) of Lemma 1 at each point of n~\o). Hence by that lemma &$ is a
Kahler class on X$ for any s in a neighborhood of n~\o). It follows that
&s is a Kahler class for any s in a neighborhood of o.

2) Let (/': 3£'-+S'9 S'), (X',,, ®J=(X,9 55)9 j'eS', be any polarized
deformation of (JSrs, Ss). By virtue of the local completeness of the original
Kuranishi family /i (if s is sufficiently near to o) we get a versal map r: *S"->*Sf

induced by/': Sf-^' considered as a deformation of X's*= Xs with the differ-
ential T% unique when s=o. Then since ?7//(S

/)=0, by (2.3) we conclude that
r actually factors through S^S^ It is then immediate to see that the pull-
back (/s/, Ss/) of (/, S) to 5' is isomorphic to (/', to').

3) Finally in case s=o the uniqueness of r above follows from the co-
homological flatness of O^/s shown in Theorem 1 by (completely the same
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argument as) Wavrik [29] or Palamodov [25]. q.e.d

Remark 6. In the general case (i.e., the case where Aut0X is not neces-
sarily a complex torus) (/, CD) defined above is not necessarily the local modular
family (cf. [29] [25]). However, in view of the properties 1) and 2) proved
above we shall call it the (polarized) Kuranishi family of (X, CD).

Remark 7. The Zariski tangent space of the parameter space S at o is
naturally identified with the kernel H\X9 ®x}<* °f the linear map H\X9 Ox) -»
H2(X, Ox) defined by the cup product with GO, considered as an element of
H\X, 0i).

(5.2) Let (X, CD) be a polarized compact Kahler manifold such that Aut0X
is a complex torus. Let (/: 3£->S, o>), (X0, G>0)=(X9 CD), o^.S, be the local
modular family of (X, CD). Then the next lemma shows the topological signifi-
cance of considering local modular family in the study of the local structure
of an.

Lemma 8* Take S sufficiently small so that (/, CD) is locally complete at any
point of S. Then the canonical map p=p(f, CD): |*S|->3Jl is an open map so

that the image S:=p(\S\) is an open neighborhood of(X9 CD) in 2JI.

Proof. Let C7£Sf be any open subset. It suffices to show that for any
polarized family of compact Kahler manifolds (/': 3?'->S", &'), Ur\=p'-\p(U))
is open in S'9 where p'=p(f, &>'). Let s'^U' be an arbitrary point. Take
a point s&U with p'(s')=p(s):=m1. Let (Xl9 o^) be the polarized compact
Kahler manifold corresponding to m^ Let (/x: 3^i-^Sl9 SJ, (Xlt0l9 ®i,0l) =
(X19 CD^, o^Sl9 be the local modular family of (Xl9 CD^. (We may assume that
AutoZj is also a complex torus.) Let r: V-*Sl9 T(S)=OI (resp. T': V'->Sl9

T'(S')=OI) be the corresponding universal map, where V (resp. V) is a small
neighborhood of s (resp. sf).

On the other hand, by the local completeness of (/, CD) at s we have a versal
map TJ,: Vl-^S with TI(OI)=J, where V1 is a sufficiently small neighborhood
of o1 in 5i. Then by the modularity of (fl9 8)^ at ol9 TTI must be the identity
of Fx. Hence if we take V sufficiently small, r'(F')SF1£r(F). Now let
Pi= p(fi, o)^. Then we have p1T=plv and p1T

f=pf
lv^. Hence p' (V')^ p^V)

=p(V)9 and so V'^p'~1(p(U)) = U'. Since sr was arbitrary, U' is open, q.e.d.

(5.3) Let (X, CD) be a polarized compact Kahler manifold such that
is a complex torus. Let (/: 3C-+S, CD), (X09 &0)=(X9 CD), o^S, be the local
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modular family of (X, CD}. Let (/': 3£'-*S', &') be any polarized deformation
of (X'0t, 5>f

0,\ o'eS", with an isomorphism b: (X'0;, &>£/) ~ (X, cy). Then
there exists a morphism (?, r): (/', G)')^>(f, cy) of polarized deformations, i.e.,
morphisms f: ?£'-+3£ and r: ,S'-*S with rf=ff and r(0')=0, such that
V~&, where r0/: (X^/, S^/)->(Z0, w0)=(X, cy) is the isomorphism induced by
T. Moreover r is unique by the modularity of (/, cy)D We call this T the uni-

versal map associated with (/', cy') with respect to the isomorphism b.
When (/', o>')=(f, co) (so that 3C=T' and S'-S), b is an automorphism of

(X, cy) and the resulting f and r are automorphisms of 3£ and 5 respectively
(cf. the proof of Lemma 6). Thus letting d0(b)=r we get a map S0: Aut(Z, cy)
->Aut S (=Aut (S, 0))5 which turns out to be a homomorphisnL

Lemma 9. AutoZ is contained in the kernel ofdQ.

Proof. Let b^Aut0X be arbitrary. Since Aut^/5 is smooth along
AutoZC(Aut 3£/S)0 by Proposition 6, there exists a holomorphic section #:
S-»Aut 3C/S with fji(o)=b. This defines an automorphism T of 3£ over S. By
the definition of S0, this implies that dQ(b) is the identity of S. q.e.d,

Set H=H(X, co):=Aut(X9 cy)/Aut0Z. Then H is a finite group by Corol-
lary to Proposition 2. By Lemma 9 £0 induces a homomorphism 5 : #-» Aut S.

By the definition of d for any /ze£T there exists an automorphism (h, h) of

(f)

such that q(h0)=h, where X0eAut(JT, cy) is the automorphism induced by /z,
#: Aut(JT, G>)-*H(X, cy) is the quotient homomorphism and where h=d(h).

On the other hand, the quotient space S/H admits a natural complex
space structure so that the quotient map n: S-+S/H is a morphism of complex
spaces. Then the canonical map p(/3 o>) : | S \ -» S obviously factors as

In the next section we shall show that p is homeomorphic under a suitable
assumption on (X, cy).

§6. Definition and the Analytic Structure of §3

(6.1) Let (Jf, cy) be a polarized compact Kahler manifold such that
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is a complex torus. Let (/: 3C->S, a>), (X0, 3>0)=(X, <y)5 o^S, be the local
modular family of (X, cy). Let p{: SxS->S, i=l9 2, be the projection to the
i-th factor. Let (/>. ̂ -+8x8, Sf-) be the pull-back of (/, cy) via /?,.. Set I
=Isomsxs((jEi, cl^), (3£2, 52)). Let ri I-^SxS be the natural morphism. r is
up to isomorphism uniquely determined by (X, cy) as a germ over (o, o)^SxS.
By the definition we have the natural identification I(0t0)=Aut(X9 cy). Using
/ we shall define the subset S3 of 3Ji as follows.

Definition. S3={(!", cy)e2Ji; r is proper over SxS in a neighborhood

of (0,0)}.

In particular if (X, cy)e33, Aut(T, cy) is compact and Aut^X is a complex
torus. Further if Auig^C/S is the connected component of Aut 3£/S containing
Aut0XS=(Aut3£/S)0, AutQ3£/S is proper, smooth and with connected fibers
over 8 (cf. Theorem 1 and Proposition 6). We also remark that by Proposi-
tion 4 if (X, cy)e9K-S3, then X is ruled.

Now the purpose of this section is to prove the following:

Theorem 2, The coarse 58-moduli space (B, Vr) exists except that B is
not separated.

(6.2) In this and the next subsections we shall fix a polarized compact Kahler
manifold (X9 o>) in 95 and its local modular family (/: 3£-*S9 &), (X0, G>0)=
(X, cy), o<=S. We shall show that p: \ S/H\-»S defined in (5.3) is homeomor-
phic. We set

R = i(sl9 s J f = \ S \ X\S\; (XSi, $S^(XS2, o)S2)} .

Then R defines an equivalence relation on \S\, and the quotient \S\/R of \S\
with respect to this equivalence relation endowed with the quotient topology
is naturally homeomorphic to 8 (cf. Lemma 8). Let H=H(X9 co) be as in
(5.3). Then the set of connected components of Aut(X, CD) is canonically in-
dexed by H. Namely Aut(Z, cai)=]\_Ah with Ah=q~1(h), where q: Aut(X, G>)

h^ff

-*H(X, cy) is the quotient homomorphism. Let Ih be the connected compo-
nent of / containing Ah with respect to the natural identification I(o>0)=Aut(X,
cy). Then /=_[]_/*. (Recall that we are considering / as a germ over (o, o).)

h^ff

Lemma 10. For any h^H, r(Ih)=Rh, where Rh^SxS is the graph of
h;=d(h)G=Aut S. Moreover the induced morphism rh> Ih-*Rh is proper, smooth

and with connected fibers. In particular R= U & I ̂ * I •
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Proof. Let (fh a>{) be the pull-back of (fi9 o5.) to /* via rl/*. We have
the canonical /^-isomorphism ^ : (3£l9 a) x) — > (^2» ^2)- On the other hand, for
any <ze/f0>0) we have the canonical identification (X2tQ, G>2,a)=(X, <y). In
particular X induces an isomorphism Ia: (X1>a, &lta)~(X, aj). Let r: (Ih, a)
-» (S, o) be the universal map associated with (/19 c^) with respect to %a (cf.
(5.3)). Then we may write r^p^r and also r=p2r; indeed as the correspond-

A

ing morphism r: 3?1-*'3C which covers r as in (5.3) we can take, in the first case,
A fl „

the composition of the natural maps 3C1-*3C1-*'3£-*'3£ where h is as in (t),
and in the second case, X followed by the natural projection ^2-^2£2-^3S.

Thus hplr=p2r- Since a was arbitrary, this implies that r(Ih)^Rh-
For the other inclusion, we have only to show the existence of a holo-

morphic section b: Rh-*Ih. Let (h, h) be as above, i.e., any automorphism
of (/, &) defined by any element of Ah (cf. (t)). Then h induces an isomorphism
A A

h of (/!, 6^) and (/2, <S2) over Rh with h(0j0^Ah, which in turn gives a desired
holomorphic section b. Further the existence of such a section implies that
/* is a relative principal homogeneous space over Rh with respect to the relative
action of Aut0(jEi/5fxS)[Je*=/?fAut0jE'/S'|je* over S. Then, since Aut03£/S
is smooth and proper over S with connected fibers, and hence so is p* (Aut^
3£/S)\Rh over Rh, the same is true for Ih-*Rh. Finally, by what we have proved
above, the last equality follows from the relation R=r(I)- q.e.d.

From the last relation we get

Corollary- p : \ S/H \ -> S is homeomorphic.

In view of Lemma 10, in what follows we consider R as a complex sub-
space (not necessarily reduced) of SxS by the equality R=\JkR

k. Then r
induces a morphism I->R of complex space (which will still be denoted by r).
Then r is factored as

where the first arrow is given by ]\_hr
h and T\RH is the natural inclusion Rh->

R. Note that p{r : R->S is a finite unramified covering.

(6.3) We can now define a complex space structure on S (not necessarily
reduced) by transplanting that of S/H via the homeomorphism p: \S/H\-*>S.

We want to see that at any (Xr, o>')^S this complex structure on S is canon-
ically isomorphic to the one which is defined as above starting from the local
modular family of (X'9 (*>'). For this purpose we first note the following fact
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which is easily seen from our construction. Let s^S. Let H(X9 o>)s=
H(X, o>); hs=s}. Then there exists a natural isomorphism fa: H(X9 o>)52J
H(XS, &s) defined by fa(h)=q9(I*tttj)9 h^H(X, co)s, with respect to the natural
identification /(s>s) = Aut(Xs9 ojs)9 where qs: Aut(XS9 o)s)-*H(Xsy a>s)=Aut(Xs,
S}s)/AutQXs is the natural homomorphism.

In view of this remark our remaining task is to show the next proposition
which is indeed a special case of a theorem of Palamodov (cf. [26, 7°]). Since
his proof is rather involved (using his own construction of the Kuranishi fami-
ly), we shall give a simpler proof in our special case.

Proposition 9. For any s^S which is sufficiently near to o^S, (/, 5) gives

the local modular family for (XS9 <3S) also.

Proof. Take S small so that (/, &) is locally complete at any point of S

and that (XS9 Ss)eS3 for any s^S. Fix any s^S. Let (/' : 3£'-*S', &'\ (X'0,9
&'0')=(XS9 o)s)9 0'eS", be the local modular family for (XS9 3>s). Let r: (S,
s)-*(S'9 o') be the universal map obtained by considering (/, o>) as a deforma-
tion of (Xs, &s). Let T'I (S', o')->(S, s) be a versal map induced by the local
completeness of (/, 5)) at s. By the modularity of (/', &')9 TT' is the identity
of *S" at o'. In particular T is surjective.

Thus it suffices to show that T is an embedding, which in turn would follow
if we show that the natural inclusion Js£(rxr)~1(Js/) is an equality where
for Y=S, S', AY is the diagonal of Fx Y.

Let I and F be as in (6.2) (for (/, ti)\ where e is the identity of H=H(X9

o)). Then by Lemma 10 Ie is smooth over As with I^SiS)=AuiQXs with respect
to the natural identification I(s^=Aut(Xs9 o>a). Let (/<: jPJ-^S'xS', S{) be
the pull-back of (/', &') to S'xS' via p{ : S'xS'->S', the projection to the i-th
factor. Let

7 = Isoms,xs<(^? SO, (3%, &Q) .

We then get the natural decomposition 7=J17*, h^H(Xs, o)s) as in (6.2).
Further 7* is the unique connected component of 7* with 'Ie=Au.tQXs, where
we denote the unit element of H(XS9 &s) again by e. Let fI='IX(S^s^(SxS)
and '!*= 7ex(S'xs/)('Srx5)J where ^x^ is over S'xS' by rxr. Then T is
smooth over (r x r)"1^/). Since we must have a natural isomorphism /ss'7
which induces the identity I(SiS) = 'I(s,s) (=Aut(Xs9 Ss)) we get /'='/* over
Sx^. Thus 7e is smooth also over Js. Hence (rxr)~1(J5/)=Js as was de-

sired. q.e.d.
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In what follows when we speak of the local modular family (/: 3£-*S, o>)
we always assume that the condition of the above proposition is satisfied for
any s&S.

(6.4) Proof of Theorem 2. i) Existence of complex structure. By Lemma
8 and by Proposition 9 we see that S3 is open in 9JI. Let (X, o>) be any point
of S3. Let (/: 3C-+S, &) be the local modular family of (X, cy). By Lemma 8
S=p(f9 &) (| S |) is an open neighborhood of (X, co) in S3, and by Corollary to
Lemma 10 p(f9 &) induces a homeomorphism p: \S/H\-*S. Then we define
a complex space structure on S by transplanting the natural one on S/H via
p so that p(f9 <3) is induced from a morphism of complex spaces S-*S, which
we shall still denote by p(f9 5). By Proposition 9 together with a remark just
before that proposition it follows that for each (X'9 a)')^S the complex space
structure of S in a neighborhood of (X'9 &') by the above procedure is canon-
ically isomorphic to the complex space structure on S just obtained. Since
S3 is covered by open subsets of the form p(f9 &) (\ S \) with varying (X9 a>) and

(/> <fi)9 it follows readily that we get a global complex space structure on S3
in this way. Let B be the resulting complex space (not necessarily separated).

ii) Existence of the functorial morphism £B->hB. Let (g: c^—>T9 6>) be
any polarized 33-family of compact Kahler manifolds. Then for any t^T
there exist a neighborhood t^Ut and the universal map rt: Ut-*S*9 where
(/': 3£*-:>St

9 &*) is the local modular family of (Yt, 6)t). Composing this with
P(f*> &)'- St->St=St/H(Yt5 o)t)^B we have a morphism ?t: Ut-*B. For any
t'^Ut9 if we take a neighborhood Ut* of t' in T and obtain a morphism f^/:
Utf->B by the same procedure as above, then from Proposition 9 it follows
that ft and v coincide at t'. Since Tis covered by Ut as above with t varying
on T, from this we see readily that ft9 t&T9 patch together to give a global
morphism f: T-+B. Then the correspondence (g, &>)-»f defines a desired
morphism of functors ty: <B->hB: =Hom( , B).

iii) We show that the pair (B9 •$) is the desired coarse S3-moduli space.
Let B1 be any complex space with a functorial morphism n^: *B—>hB Take
any (X9 cy)eS3. Let (/: 3 -̂>5, &) be the local modular family of (X9 co). Then
•^i defines a unique morphism rx: S-^Bl associated to (/, &). We shall show
that TI factors through p(f9 CD) : S-+S. Take any automorphism (h, h) of (/, co)

as in (t). This then defines an isomorphism over S of (/, &) and the pull-back
A*(/, &>) of (/, S) by h. Since the universal map associated to A*(/, S) is z-jA,
we must have r1h=T1. Our assertion thus follows, (/z, A) being arbitrary.
Let f1=T1(X9 o)): S^Bl be the induced morphism. Then by the same argu-
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ment as in ii) all the ^(X, cy) defined for varying (X, o>) and (/, &) as above
patch together to define a global morphism fx: B-^B^ By our construction
of i/r we conclude easily that i^l=Hom( , f^. q.e.d.

§7. Proof of Theorem

(7.1) First we consider the problem of separation.

Proposition 10. Let R={(X9 o>)EE2Jl; X is ruled}. Then 2JJ-5R is sepa-
rated with respect to the canonical topology ofWl.

Proof. Let JC(3Jl-SR)x(50i-5R) be the diagonal. Let (ml9

where A~ is the closure of A. Take a sequence (mlk, m2k), k=l, 2, • •• , of points
of A (so that mlk=m2k)9 converging to (ml9 m2). Let mf-=(Ar

l-, o>z). Let (/)•:
3?,— >£,•, &,) be the local modular family of (^-, o>f) with the base point sio^Si.
Then by Lemma 8 there exists a sequence {.s1 }̂ of points of S{ converging to
siQ and with Pi(sik)=mik. Let S=S1xS2 and /?,-: S-*Sf be the natural projec-
tion. Let (/,-: 3£i-*S, cwf.) be the pull-back of (/-, Sf.) to 5 by p{. Then the set

Si={(si, ^2)^^; (-^isl5
 siSl)=(^2s2J

 52S2)} is a closed analytic subset of S by
Corollary to Proposition 4, Hence (j10, s^^Si since (%, s2k)^Si. Namely
mi=P\(si^=p2(s2^=m2. Thus A~=A since 50i x3Ji satisfies the first countability
axiom as follows from Lemma 8. q.e.d.

The following is a refinement of the main result of [8].

Proposition 11. Let (/: 3£->S, o>) be a polarized family of compact Kahler
manifolds with S connected. If X0 is uniruled for some o^S, then Xs is uni-

ruled for any

Proof. By [8] the proposition is true if each point s^S admits a neigh-
borhood s^U such that f~\U) is Kahler. We shall prove the proposition
by reducing to this result. Let D = {t eC; \t\ <!} be the unit disc. Fix an
arbitrary point £ ̂ D— {0}. Then, since S is connected, for any s^S we can
find a finite number of morphisms h{: D->S, i=l, • • - , m, such that //x(0)=o,
hi(()=hi+i(Q)9 l^i^m— 1, and hm(£)=s. Then it suffices to show inductively
that Xhi(£) is uniruled for any /. Then the pull-back by A,- reduces the proof
to the case where S= D, In this case, however, / satisfies the condition above
by virtue of Proposition 5. q.e.d.

Proof of Theorem, By Proposition 11 SI is a union of connected compo-
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nents of 3JI. In particular it is open in 3JI. Since §t£i2Ji— SR by the defini-
tion of SI and 5R, by Proposition 10 §1 is separated. Finally from Proposition
4 it follows that StCSS. Thus Theorem follows from Theorem 2.

(7.2) We shall give an immediate application of Theorem to local isomorphy
problem of polarized families of compact Kahler manifolds.

Proposition 12. Let (f^i 3£f- *T9 St-), i=l, 2, be polarized families of com-
pact Kahler manifolds. Suppose that Xiit is not ruled for any t^T, or Xift is
not uniruled for some t^T and T is reduced and connected. Suppose further

that there exists a dense subset FST such that (Xlt, &it)^(X2t, ™2t) for a^
t^V. Then (Xlt, a)lt)^(X2t, &2t) for all t^T. Further if T is locally irre-

ducible, then the two families are locally isomorphic to each other.

Proof. By our assumption and by Proposition 11 p(fi9 S.) (| T|)C33— fR.

Since S3— 91 is separated by Proposition 10 and since p(fl9 o^) (t)=p(f2, &2) (0
for all reF, p(/i, &i)=p(f2, &2) °n the whole T. This proves the first asser-
tion. Next, suppose that T is locally irreducible. Let t e T be an arbitrary
point. Let (/: -̂»*S', 5), (X09 o)0)=(Xlt, &lt), o^S9 be the local modular family
of (Xlt9 o>it). We have the associated universal map r£: U-*S, rt(t)=o9 i

= 1,2 (with respect to some isomorphism (X2t, o>2t)~(Xit> ®it) f°r T2 (cf. (5.3)),
where U is a small irreducible neighborhood of t. Let P=p(f9 <*>): S->S^S/H
be the canonical map, where H:=H(Xlt9 o)lf). By the first assertion we have
pTl=pT2. This implies that (^xrj (U)SiR=\JRhSiSxS in the notations

h ear

of (6.2). Since U is irreducible, (^xrgX^SjR* for some h. Since Ik-+Rk

is smooth by Lemma 10, TIXTZ lifts to a morphism A: U-*Ih. Hence the
two families are isomorphic over U.

Remark 8. The final assertion is clearly false if T is not locally irreducible
(cf. [15, Cor. 7.3]). For a related result see [30].

We also prove the next result concerning a jumping phenomenon of com-
plex structures, which is actually an application of Theorem 1.

Proposition 13. Let D={t^C'9\t\ <!} be the unit disc. Let f: 3£-*D

be a proper smooth morphism with connected fibers. Suppose that X0 is Kahler

and Xt are isomorphic to each other for all t^Q. Then either XQ^Xt,t=£Q,
or XQ is ruled.

Proof. Suppose that X^Xt. Then we have dimH°(XQ, OXQ)>dimH°



COARSE MODULI SPACE 1001

(Xt9OXt) for f= l=0 (cf. [14, Prop. 5.6]). Then by Theorem 1 Aut^ is not a
complex torus. Then by [6, Prop. 5.10] we see that X0 is ruled. q.e.d.

Note that the above proof gives more information than the proposition

itself.

§8. The Case of Complex Tori and K3

We are interested in the coarse moduli space for non-algebraic manifolds.
Typical examples of such are complex tori and K3 surfaces. In these case
the coarse moduli space can be obtained directly by considering the period
maps. Let %JIT = {(X9 <y); X is a complex torus} and *$1K={(X, cy); X is a K3
surface} . Then 9Jtr and *$$1K are union of connected components of SI in Theo-
rem. In this section we shall give a rather explicit description of the structure
of the corresponding moduli spaces 9Jlr and 2Jt# by summarizing the known
results on these spaces.

(8.1) Case of complex tori (cf. [15]). Fix once and for all a real vector space
W of even dimension 2n. Let Q be a non-degenerate skew-symmetric bilinear
form on W. Let WC = W®RC. Q extends naturally to Wc. Let Gr(n, Wc)
be the Grassmann manifold of w-dimensional complex linear subspaces of Wc,
We identify a point S^Gr(n, Wc) with the corresponding subspace S'E Wc.
We define a submanifold Z)Q of Gr(n, Wc) by

DQ = {S^Gr(n, Wc); Q(S, S) = 0, Q(S, S)>0} .

Here Q(S, S)=Q means that Q(wl9 w2)=Q for any wl9 w2<=S and Q(S, S)>0
means that the Hermitian form \/~-—lQ(wi, vP2), wl9 w2&S, is positive definite
on S. Let GQ be the orthogonal group of Q; GQ = {g^GL(W); Q(gw9 gw)
=Q(w, w), w&W}. Then GQ acts naturally on DQ. Since Q takes the form

Q=[___T nw) with respect to a suitable base of W, the pair (DQ, GQ) is iso-

morphic as a transformation space to the pair (Hn9 Sp(n, R)\ where Hn is the
Siegel upper half space of degree n on which the real symplectic group Sp(n,R)
acts in the usual manner. Fix now a lattice A in W. Let

r = {g^GL(W); gA = A} and rQ = r n GQ .

Then FQ is a discrete subgroup of GQ so that its action on DQ is properly dis-
continuous. Hence MQ:=DQ/rQ is naturally a normal analytic space.

Let O be the set of all nondegenerate skew-symmetric bilinear forms on
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W. Q is a homogeneous space under the natural action of GL(W)\ the sta-
bilizer at Q e jQ is just GQ.

Proposition 14. For any Q e Q, MQ w isomorphic to a connected compo-
nent of 9Jir. Conversely, any connected component of 2Jir w isomorphic to MQ

for some Q e O ivA/cA w determined uniquely up to the action of r on Q. Thus
MT= \\_qMQ, where the sum is taken over a complete set of representatives of
Q//1.

We omit the proof, only indicating how one associates to each point of
MQ a polarized complex torus. For each S^DQ we have the direct sum de-
composition WC=S@S. Let As be the projection of A to S which is a lattice
in S. Then T:=S/AS is a complex torus with the natural isomorphism Wc =
A®R^H1(TS, R), and then Q, as a skew-symmetric form on W, defines an
element a>s<=H2(Ts, R)^ /\2H\TS, R). Moreover the condition that S(=DQ

implies that o)s is a Kahler class. Then we associate to the point n(S) GE MQ the
polarized complex torus (Ts, o>s) whose isomorphism class is uniquely deter-
mined by n(S)9 where n: DQ->MQ is the natural projection.

(8.2) Case of K3 surfaces. For general facts on K3 surfaces we refer the
reader to [2] and [27]. Let (L, < , » be an even unimodular Euclidian lattice
of signature (3,19), i.e., L is a free abelian group of rank 22 and < , > is an
even unimodular symmetric bilinear form on L such that its extension to L®R
has signature (3,19). Such an (L, < , » is up to isomorphisms unique. Let
P(L®C) be the projective space of lines of L®C. Let Af={xeP(L®C);
(x9 ;t>=0, <X ^>>0}, where the natural extension of < , > to L®C is still
denoted by < , >. M is a locally closed submanifold of P(L®C) of codimen-
sion 1.

Let V={o)^L®R\ <cy, cy>>0>. For any a^L®R we set Da = {x<=M;
(a,xy=fy. Da is an analytic submanifold of codimension 1 in M if a =£0.
Let G0={g(EGL(L®R); <jgx, gx>=<x, x>, x^L®R}. Let Ga = {g<=G0; ga
=a}. Then Ga acts naturally on Da. Further if a=o)^V we have an
isomorphism (Dm9 <7a))^(DIV, (9(2, 19)) as transformation spaces, where DIV

is the bounded symmetric domain of type IV (cf. [14]). Let r=GL(L)S>
GL(L®R), FQ=rftG0 and r(a=G(anr, Then rn is a discrete subgroup of
(ju and hence acts properly discontinuously on D^. Let B(0={a^L; (a,a)>
= -2, <o>, a>-0} and !/.=/>.- UDa.fle5

w

Proposition 15. For awy cy e F, 17^ w a G^invariant Zariski open subset



COARSE MODULI SPACE 1003

of DM such that UJF^ is naturally isomorphic to a connected component o
Conversely, any connected component of *$SIK is of this form for some o>^V and
Q) is determined uniquely up to the natural action of FQ on V\ thus ^ff=J
where the summation is over a complete set of representatives of F/F0.

a. First we show that Um is Zariski open in Du, Let DMta=

Then it suffices to show that {A^Ke*. is locally finite, i.e., for any xeDw there
exists a neighborhood x^W such that {a^B^; Da fl W^F^} is a finite set. For
any x^DM let x' be any nonzero point on the line in L® C corresponding to x.
Then Re x'9 Im xf and o> span a 3-dimensional subspace Fx of L® R on which
< , > is positive definite, where Re, Im denote the real and imaginary parts
respectively (cf. [27]). Let EX=F^ be the orthogonal of Fx with respect to
< , >. Then {Ex}x€=Dta is a C°° family of subspaces of L®R on which < , > is
negative definite. Hence for any x0^Da and any relatively compact neighbor-
hood W of x0 in DM, B^CW is a finite set, where Cw= \JEX^L®R. Thus

*e=W

the assertion follows since, for x^W and ae J?u, xeZ>Wffl if and only if

b. A marked K3 surface is a pair (X, V) consisting of a K3 surface and
an isomorphism ^ : #2(X, Z) ->L of Euclidian lattices, where the bilinear form
< , yx on H2(X, Z) is given via the cup product. Define a functor F: An->
Sets by F(S)=the set of isomorphism classes (in the obvious sense) of the pairs
(/: 3C-+S, <p), where / is a proper smooth morphism of complex spaces with
each fiber Xs a K3 surface and <p: R2f%Z^LxS is a trivialization of the local
system R2f*Z. For any (/, 9)eF(S), let <pR: R2f^R^i(L®R)xS be the in-
duced isomorphism. For any o>eF let o}=<p^(o)xS)^r(S9 R2f*R). Let
a>s<=H\Xs, R) be induced by Q.

Define then the subfunctor Fw of F by FW(S) = {(/, 9»)eF(5); (/, &) is a
polarized family of Kahler K3 surfaces}. A complex space which represents
the functor Fw will be called the fine moduli space of polarized marked K3
surfaces with polarization a>.

Proposition 16. For any o) e V the fine moduli space for polarized marked

K3 surfaces of polarization type o) exists and is naturally isomorphic to U^ above.

Proof. By Burns-Rappoport [2] F is represented by a 20-dimensional
complex manifold T which is not separated. Let (/: 3£->T, <p) be the universal
family. Then define the subspace Tm of T by ?K<3) (t)=Q, where 97: R2f*R->
R2f*0%; is the natural homomorphism. Let r° = {f erw; &t is a Kahler
class} . Then T° is open in rw by Lemma 1 and it is immediate to see that T°
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represents Fta, where the universal family is the restriction of (/, 9) to r°. Let
p: T-^M be the period map associated to (/, <p). Then for the second asser-
tion it suffices to show thatXOS ̂ « and/?|T°: T° -->[/„ is isomorphic.

First, if p(t)^Da for some a^B^ then at\=<pll(a) is of type (1,1) in
H\Xt, Z) and then by Riemann-Roch either at or — at is represented by an
effective curve. Then <Sf, atyxt^p0 because S, is a Kahler class. This con-
tradicts the fact that a^BM. Thus Xr°)C Z/«. Next, /? is locally an embedding
by the local Torelli theorem (cf. [2]). Finally, the surjectivity can be seen
as follows. For any m e UU9 by Todorov [27] there exists a marked Kahler
K3 surface (X, i/r) with its period m. Since /»£{/„, by the proof of [27, 3.5],
by changing the marking if necessary we may assume that ^~\o)) belongs to
the Kahler cone Vx: = {x<^H\X, R); <x, x>p>0, <x, c>z>0 for any c^H2

(X, Z) with <c, cyx=~ 2 which is represented by an effective curve on X} of X.
Then by Theorem 3 of [27] (cf. [20] for the proof) ir~\co) is a Kahler class,
i.e., the point t^T corresponding to (X, -^) belongs to 7"° and we have p(t)
=m. q.e.d.

c. From the above proposition and the global Torelli theorem the first
and the second assertions of Proposition 15 follow. The last assertion follows
from the next remark. Let SK^ be any connected component of WIK. Let
^={o>eK; ^K^-Ujr^}. Fix any (X, c^eSTO*,,. Then o>e^ if and
only if there exists a marking ^: H\X, Z)->L such that

Remark 9. In Propositions 14 and 15 -T is countable so that for 'general'
QeD (resp. o>e K), the corresponding T0 (resp. rj reduces to the identity and
hence MQ^Hn (resp. MW^DIV). In particular there is no analytic compacti-
fication of MQ or Mw in contrast to the algebraic case where the Baily-Borel
compactification is available.
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