On the Domain of Existence for P-pluriharmonic Functions

By

Takeo Ohsawa*

Introduction

The domain of existence for a holomorphic function is pseudoconvex in the sense of Oka (théorème de la continuite (C) in [5]). In the present note we prove an analogous result for a certain class of harmonic maps:

Theorem. Let X be a Riemann domain and let h be a pluriharmonic map into the unit disc whose metric is the Poincaré metric. Suppose X is the domain of existence for h. Then X is pseudoconvex in the sense of Oka.

Definitions

Let u=u(z) be a function defined on a domain $D \subset \mathbb{C}$ into the unit disc $A \subset \mathbb{C}$. We call u P-harmonic if u is of class C^2 and satisfies the following nonlinear differential equation of second order:

$$u_{z\overline{z}} + \frac{2\overline{u}}{1 - |u|^2} u_z u_{\overline{z}} = 0.$$

This is the Euler-Lagrange equation for the energy functional with respect to a hermitian metric on D and the Poincaré metric $|dw|/(1-|w|^2)$ on Δ (cf. [2]).

Let X be a Riemann domain of dimension n and let $f: X \rightarrow \Delta$ be a function of class C^2 . We call f P-pluriharmonic if for any holomorphic map $g: D \rightarrow X$, $D \subset C$, $f \circ g$ is harmonic. Given a P-pluriharmonic function f on X, X is called the domain of existence for f if for any Riemann domain \tilde{X} containing X and a P-pluriharmonic function \tilde{f} which extends f, we have $\tilde{X} = X$. A Riemann domain X is called pseudoconvex (in the sense of Oka) if n=1 or

Received November 29, 1983.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

every holomorphic imbedding of

$$\Delta^n \setminus \{z_1; |z_1| \ge 1/2\} \times \{(z_2, \dots, z_n); \max_{2 \le i \le n} |z_i| \le 1 - \epsilon\}$$

into X is extended to a holomorphic imbedding of Δ^n into X, where (z_1, \dots, z_n) denotes the coordinate of Δ^n and $0 < \varepsilon < 1$.

Preliminaries

We recall basic facts concerning P-(pluri) harmonic functions.

Lemma 1. Let $u: D \rightarrow \Delta$ be a P-harmonic function and let K be a compact subset of D. Then,

$$\sup_{\kappa}|u|=\sup_{\vartheta\kappa}|u|.$$

Proof is immediate from the fact that $-\log (1-|u|^2)$ is a subharmonic function.

Proposition 2. Let $x \in D$ and let u be a P-harmonic function defined on $D \setminus \{x\}$. Suppose $u(D \setminus \{x\})$ is relatively compact. Then, there exists a P-harmonic function on D which extends u.

Proof. See [1].

Proposition 3. Let u_1 and u_2 be two P-harmonic functions defined on D. Suppose $u_1=u_2$ on a nonempty open subset of D. Then, $u_1=u_2$ on D.

Proof is immediate from the following proposition. See also [6].

Proposition 4. Every P-pluriharmonic function is real analytic.

Proof. See [4].

Proof of Theorem

We may assume $X \subset \Delta^n$. Let $G \subset \Delta^n$ be a non-pseudoconvex domain and \check{h} a P-pluriharmonic function defined on G. Then, for some $\varepsilon > 0$ we can choose a holomorphic imbedding $\iota: \bar{\Delta}^n \to \Delta^n$ such that the image of $\Delta^n \setminus \{z_1; |z_1| \le 1 - \varepsilon\} \times \{(z_2, \dots, z_n); \max |z_i| \ge 1/2\}$ is contained in G and that $\iota(\{(z_1, 1/2, 0, \dots, 0); |z_1| \le 1\}) \setminus G = \iota((0, 1/2, 0, \dots, 0))$, where $\bar{\Delta} = \{z; |z| \le 1\}$. Since $\check{h} \circ \iota$ is real analytic, we can expand $\check{h} \circ \iota$ into a power series in $(z_2 - 1/2, \bar{z}_2 - 1/2, \dots, z_n, \bar{z}_n)$ on a neighbourhood of $\{|z_1| = \delta\} \times (1/2, 0, \dots, 0)$ for $0 < \delta \le 1$. Namely

we put

$$h \circ \iota = \sum u_{IJ}^{\delta}(z_1) z^{\prime I} \bar{z}^{\prime J},$$

where $z'=(z_2', z_3, \dots, z_n)$, $z_2'=z_2-1/2$, and $z'^I \bar{z}'^J=z_2'^{i_2}\dots z_n^{i_n} \bar{z}_2'^{j_2}\dots \bar{z}_n^{j_n}$. Combining Lemma 1 and Proposition 2, we have a P-harmonic function h_0 : $\bar{A}\to \Delta$ such that $h_0=u_{00}^1$ on $\partial \Delta$. Now we are going to extend h_0 on a neighbourhood of $(0, 1/2, 0, \dots, 0)$. After an isometric coordinate change of Δ , we may assume that $h_0(0)=0$. First we consider a formal power series

$$h = h_0(z_1) + \sum_{|I|+|J| \ge 1} h_{IJ}(z_1) z'^{I} \bar{z}'^{J}$$

which satisfy

(1)
$$\begin{cases} h_{z_1\bar{z}_1} + \frac{2\bar{h}}{1 - |h|^2} h_{z_1} h_{\bar{z}_1} = 0 \\ h_{IJ} = u_{IJ}^{\delta} \quad \text{on } \{|z_1| = \delta\} \end{cases}.$$

Note that for sufficiently small δ , $1/(1-|h|^2)$ is well-defined as a formal power series. (1) is equivalent to the following equations;

(2)
$$\begin{cases} L h_{IJ} + c \bar{h}_{JI} = g_{IJ} & \text{on } \{|z_1| < \delta\} \\ h_{IJ} = u_{IJ} & \text{on } \{|z_1| = \delta\} \end{cases},$$

where L is a linear elliptic operator of second order, c is a real analytic function on $\{|z_1| \leq \delta\}$ and g_{IJ} is a convergent power series with respect to $h_{I'J'}$, $h_{I'J'z_1}$, $h_{I'J'z_1}$ and their conjugates, for the indices I', J' satisfying |I'| + |J'| < |I| + |J|. Thus we can determine h_{IJ} inductively by solving (2) (cf. [4]). Let $A(z_2', \bar{z}_2', \dots, z_n, \bar{z}_n)$ be Kodaira's power series, i.e., $A = A(z_2', \bar{z}_2', \dots, z_n, \bar{z}_n) := (a/16b)$ $\sum_{k=0}^{\infty} b^k (z_2' + \bar{z}_2' + \dots + z_n + \bar{z}_n)^k / k^2$. Then, for any $\epsilon > 0$ and a > 0, we can choose b so that

$$\frac{A^3}{1-A^2} \ll \varepsilon A.$$

Hence, applying a priori estimate for the equation (2) (cf. [4] p.148 Th. 5.4.2), we see that for a sufficiently small δ we can choose a and b so that $h \ll A$, $h_{z_1} \ll A$, and $h_{\overline{z}_1} \ll A$. Thus we obtain a real analytic function h on a neighbourhood U of $(0, 1/2, 0, \dots, 0)$. Since P-harmonic functions are uniquely determined by their boundary values (cf. [3]), $h = \check{h} \circ \iota$ on a connected component of $U \cap \iota^{-1}(G)$. Therefore, by the real analyticity of h, h is P-pluriharmonic on U. Hence \check{h} is

extendable across a boundary point of G as a P-pluriharmonic function. Therefore, if X is the domain of existence for h, then X should be pseudoconvex.

q.e.d.

References

- [1] Diederich, K. and Ohsawa, T., On disc-bundles over compact Kähler manifolds, to appear.
- [2] Earle, C.J. and Eells, J., Deformations of Riemann surfaces, *Springer Lecture Notes*, 103 (1969) 122–149.
- [3] Hamilton, R.S., Harmonic maps of manifolds with boundary, Springer Lecture Notes, 471 (1975).
- [4] Morrey, C.B. Jr., Multiple integrals in the calculus of variations, Grundlehren, Band 130, Springer, 1966.
- [5] Oka, K., Domaines finis sans point critique intérieur, Japanese journal of mathematics, 27 (1953) 97-155.
- [6] Sampson, H., Some properties and applications of harmonic mappings, Ann. Ec. Norm. Sup. XI (1978) 211–228.