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On Exceptional Cases of Cauchy Problems
for Fuchsian Partial Differential Operators

By

Takeshi MANDAI*

§0. Imtroduction

Cauchy problems for Fuchsian partial differential operators have been
investigated by several authors, in the space of holomorphic functions ([2],
[6], [9]) or in the space of C* functions ([8], [10]). To guarantee the unique
solvability of the problem, they impose a certain condition, the condition (C)
in Proposition 1.1, on the indicial polynomial. This condition is equivalent
to that the Taylor expansion of the solution is uniquely determined by the
Cauchy data. In the space of C* functions, the procedure to solve the Cauchy
problem is divided into two steps: First, to find the Taylor expansion of the
solution and then to solve the flat Cauchy problem. As for the flat Cauchy
problem, the unique solvability is independent of the condition (C). Thus,
under the assumption that the flat Cauchy problem is uniquely solvable, we
want to consider the case when the condition (C) is not satisfied, by extending
the space of admissible solutions.

In this article, for simplicity, we shall consider only Fuchsian equations
in the space of C~ functions. Our arguments are, however, essentially how to
get formal solutions, hence similar arguments go well in various other situa-
tions: Fuchsian equations in the space of holomorphic functions ([2], [6], [9]),
parabolic equations of “Fuchs type” ([1], [7]), etc.

Our program is as follows. In Section 1, we state the main result. After
reviewing some basic results on Fuchsian equations in Seetion 2, we prove
the main result in Section 3. Finally, in Section 4, we treat Fuchsian systems.

§1. Main Result

Let 2=[0, T]x R" (T >0), where the variable is denoted by (¢, x). We
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use the notation 8,=0/0t, ,=(9,,, -+, 8.,), 6,,i=8/6xj. Consider the follow-
ing operator (0=<k=<m).

k . . m .
P =at"07+ X a(t, x; 0907+ 33 ay(r, x; 007, (L1)
j=1 j=k+1

where g, is a non-zero constant, a,(t, x; 8,) (1= j=<m) are partial differential
operators with respect to x with coefficients in C=(2) and ord. ;< j (1=j<m).
We say that P is a Fuchsian differential operator with weight m—k, if
a;(0, x; 9,)=a;(x) (1= j <k) are functions of x.

We consider the Cauchy problem and the flat Cauchy problem for P:

Pu=f in 2, (1.2)
(C.P.) { Odupyeg = g; in R"0=j=<m—k—1), (1.3)
where /€ C>(£2) and g, C~(R") (0= j =<m—k—1) are given.
Pu=f in @, (1.4)
uEC7(2) = {p=C=(2); ¢ is flat at =0} (1.5)

(F.C.P) . ,
= {pEeC>(2); 8i9;-=0 for any j},

where f € C7(2) is given.

We say that (C.P.) (resp. (F.C.P.)) is well-posed, if for any f & C=(£) and any
g;EC>(R") 0= j<m—k—1) (resp. any f&C7(2)), there exists a unique
ue C=(2) satisfying (1.2) and (1.3) (resp. (1.4) and (1.5)).

The indicial polynomial of P is

Co(2; %) = ﬁo 4,(MA—1) -+ Gemtj+1) . (1.6)

Note that if we write t* *P=p(t, x; t9,, 8,) where p(¢, x; 4, €) is a polynomial
of (2, £), then Cp(2; x)=p(0, x; 2, &) for any £. The relation between (C.P.)
and (F.C.P.) is as follows. (The proof is given in § 2.)

Proposition 1.1. The Cauchy problem (C.P.) for P is well-posed if and
only if the flat Cauchy problem (F.C.P.) is well-posed and P satisfies the follow-
ing condition.

(©) Cp(2; x)==0 for any x= R" and any integer A =m—k.

Remark 1.2. As is stated in Section 0, the well-posedness of (F.C.P.) for
P is independent of the condition (C). For example, the followings hold.
(i) The flat Cauchy problem (F.C.P.) for P is well-posed, if and only if the
flat Cauchy problem for another Fuchsian operator P[z]=¢"**""*oPot* is
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well-posed, where z is an arbitrary complex number and o denotes the composi-
tion of operators.

()  Crra(2; x)=Cp(2+2; x).

From now on, assume the following conditions on P.
(A.1) The flat Cauchy problem (F.C.P.) for P is well-posed .
(A.2) There exist integers m—k <2, <--- <2, such that
Cr(2; X) = jrll(x_x,.)c;(z; x), where C3(2; x)==0
for any x& R" and any integer 2A=m—k .
We call 2, -+, &, the exceptional (characteristic) exponents of P.
Since we want to consider solutions including logarithmic terms, we also
extend the class of data. Let L,={F ='Efo filog t); £ C=(2)YO=I=h)} and
Lz:(:JOL,,. Consider the following Cauchy_problem for P:

PU—=F=3f(ogt) in (0, TIXR", (L.7)
=0
im 8iU = g, i 0L i<m—k—
(CP) :Elg iU = g; in RRO=j=m—k-1), (1.8)
where f;&C=(2) (0</=<h) and g;=C~(R")
\ 0==j=m—k—1) are given.

Now, we state the main result.

Theorem 1.3. (i) For any f,=C~(2) O=I/=<h) and any g, C~(R")
0= j=m—k—1), there exist u;c C~(2) (0! =<h-ys) such that

U = 3} uytmH(log £+ 3 t, M(log 1) (19
=1 =1

satisfies (1.7) and (1.8). Although this solution is not unique, we can take
{u;; 0ZI<h-+s} such that the map (fy, ***, 33 o> ***» Em-p1) = (Whgy *+*, Up ) IS
continuous linear from C=(2)"*' x C*(R*)"* into C=(2)""*1,

(i) Let Ker"P={U&€L; PU=0 and lim3{U=0 0<j<m—k—1)},

1>+0
then Ker~P is parametrized by C =(R")* as follows. There exists a closed sub-

space K of C*=(£2) such that K is isomorphic to C*(R")’ and
Ker"P = {U = :V‘_J u_tM(log 1) (ug, +o0, u_ ) EK}. (1.10)
I=1

Example 1.4 (Euler-Poisson-Darboux equation). Consider the E-P-D
equation:
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(6?—4,-1—%6,)1; =0 in (0, )XR", (1.11)
Uy = P9(X) in R*, (1.12)
Oy =0 in R, (1.13)

n
where k is a non-zero constant and 4,=> 6§j .
i=1

We can apply our result to the following modified equation.

{ (t0:—td,+kdu=0 in 2, (1.14)
Uy =@(x) in R". (1.12)

If k(==0) is not a negative integer, then (C) is satisfied and hence for any
pe C~(R"), there exists a unique solution of (1.14) and (1.12). If k is a nega-
tive integer, then (1.14) and (1.12) have a solution u=u,+u,t'"*log ¢, where
u, u,=C=(2). In both cases, (1.13) is necessarily satisfied. Thus, we have a
solution of the equations (1.11), (1.12) and (1.13). For the E-P-D equation,
many authors have investigated the exceptional cases and constructed solu-
tions explicitly ([3], [4], [5], [11], etc.). They say that the equations (1.11), (1.12)
and (1.13) are exceptional only when k is a negative odd integer, because (1.11),
(1.12) and (1.13) otherwise have a C* solution for any o= C~(R"). But the
case when k is a negative even integer is also “‘exceptional” in our context. In
this case, actually, the solution u of (1.11), (1.12) and (1.13) is not unique,
further, there may be no C* solution if the right hand side of (1.11) is not zero.

Remark 1.5. The assumption (A.2) seems to be too strong. But, if this
condition is not satisfied, then the behavior of solutions of (C.P.) is compli-
cated, as is shown in the following example.

Example 1.6. Consider the operator P=t8,—t9,—(¢t-+x). The C* solu-
tions of Pu=1 in (0, T]x R are

1 +C@t+x)ttts (if t+x%0),
u=4 ttx 1.15)

log t+C(0) (if t+x=0),

where C(s)eC=(R) is an arbitrary function. The behavior of this solution
u when t—-40 is very complicated, whatever the function C may be.

In Theorem 1.3, if the data Fand g; (0= j=m—k—1) are “good” data,
then there exists a “good” solution.
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Definition 1.7. For an integer p =m—k or p=oco, we say that the
data FeL, and g;eC~(R") (0= j<m—k—1) are p-compatible in L, if there
exists U~ €L, such that F—PU~€¢t? "k x [, and :lirg iU =g; 0L j<m—
k—1). (If p=co, then regard t* X L, as C7(2).) This U~ is called a p-approxi-
mate solution (of (C.P.)")in L,. Let A,,,=occ and let j(p)=min{je {1, -,
s+1}; ;= p}.

Corollary 1.8. (i) If the data FE L, and g,=C~(R")(0Zj=m—k—1)
are p-compatible in L,, then these data are 2;)-compatible in L,. Especially,
any data are A;-compatible.

(i) Let the data F €L, and g, C~(R") (0= j=<m—k—1) be p-compatible in
L, and let U~ &L, be a p-approximate solution. Then, there exist u;& C>(£2)
O=ZI=h+s—j(p)+1) such that

h s=jlp)+
U= U+ wtrlog )+ > sy, trinsi-(log 1)+ (1.16)
=0 =1

satisfies (1.7) and (1.8).

§2. Review on Fuchsian Operators

In this section, we review some basic results on Fuchsian operators. Most
of the results in this section are well-known or elementary, and their proofs
are omitted.

Let P be a Fuchsian operator defined by (1.1). First, consider the equa-
tion Pu=f for u, f € C>(2).

Lemma 2.1. For P, there exist B/2; x, 0,) (j=1, 2, --+), which are differ-
ential operators on R" and polynomials with respect to 2, such that the equations
3i(Pu));=g=0% fi;=0 (=0, 1, --+) are equivalent to

j .
C(Jjs x)u; =fj—m+k—§ B(j—i; x, 0)u;—;
(j=m—k, m—k+1, ), 2.1
where f_‘. u;t’ (resp. )3 f;¥9) is the Taylor expansion of u (resp. f).
j=0 j=o
From this lemma, we get Proposition 1.1.

Proof of Proposition 1.1. (I) Assume that (C.P.) for P is well-posed. In
(2.1), for any {f;;j=0, 1, -} and any {uy, --*, u,_,_,}, there exists {u;;j
=m—k, m—k-+1, ---}. Hence, P satisfies the condition (C). Let f&C7(£2).
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There exists a unique solution u of (C.P.) for g;=0 (0= j<m—k—1). By (2.1),
this solution u belongs to C7(£2). Thus, the flat Cauchy problem (F.C.P.) for
P is well-posed.

(I1) Assume that (F.C.P.) for P is well-posed and that P satisfies (C). Let
fEC=(2) and g;&C~(R") (0= j <m—k—1). The system of equations (2.1
has a unique solution {u;;j=0, 1, -}, where jlu;=g; 0=j=m—k—1).
There exists v& C=(£2) such that io u;t/ is the Taylor expansion of v. Noting
that Pv—f €C57(L2), there exist; a solution weCy7(2) of Pw=f—Py, and
u=v-+w is a solution of (C.P.). On the other hand, if Pu=0 and g;=0 (0=j
<m—k—1), then ucC7(£) by (2.1), hence u=0. Thus, (C.P.) for P is well-
posed.

Definition 2.2. (i) For P, we can write f’=t'”“”P:p(t, x; t9,, 0,), where
p(t, x; 2, €) is a polynomial of (2, £). Put P[z]=t"*oPot*=p(t, x; 18,4z, 8,)
for a complex number z and put P,=py(t, x; t9,, 8,) where p,;(¢, x; 2, )
=33p(t, x; 2, ). Note that Cpr,1(2; X)=Cp(2+2; X) and Cp (25 X)=8:C5(; X).
k- N
(i) Put F<k> =C=(2)/(tF X C=(2))== EBIC""(R”)t’. We can regard P as an
=0
operator on F<k> (k=0, 1, --*).
Lemma 2.3. (i) For any veC>((0, T)X R"), there hold the following
Sformulas.

P(t*y) = £*PIAM) @2)
a k
P(v(log 1)) = g(h>(Plv) (log £)*, (2.3)
=0\ /
| . B\ bt
here h -negative int W\ )= ma—nr
where h is a non-negative integer an <l> N(h—D)!

(ii) If k=m, then the operator P: C=(2)—C=(8) is an isomorphism modulo
tM.  In other words, the operator P: F{2,>—F<{2,> is an isomorphism.

Gii) If k=m, 2y=--+=2,=0<2,,,, then as operators on F{1>, we have
P,=0(/=0, 1, :--, r—1) and P, is an isomorphism. In other words, (P;u);—-q=0
O=I=r—1) and (Pu));—g=c(x)(u);—,) for any us C=(82), where c€ C~(R") and
c(x)=£0 for any x= R".

The representation U =§ u(log t)' of UE& Ly is not unique, but the fol-
lowing holds. =

H
Lemma 24. Let y,cC>(R") 0=ZI<H), U=>ulogt) and let d be a
=0
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non-negative integer. Then, there holds lim 8iU=0 (0= j=d) if and only if
. t>+0
0%uy,—o=0 (0= j=d, 0=<I<H).

Finally, we state the reduction procedure of (C.P.)~ for P to (C.P.)~ for
another Fuchsian operator P[m—k] with weight 0.

Proposition 2.5. For the initial data (g, ***, &u-p-1) in (C.P.)~ for P, put
"V Lg.ti. For UEL, the initial condition lim 0} U=g,; (0< j<m—k—1)
=0 j! t>+0

is equivalent to that U=G+t""*U"~ for some U~EL. Putting F~=F—PG, we
can reduce (C.P.)~ for P to the equation P[m—k)U~ =F~. Especially, the
Cauchy problem (C.P.) for P is well-posed if and only if the Cauchy problem for

P[m—k] is well-posed.

G=

If P satisfies the conditions (A.1), (A.2), then P[m—k] also satisfies the
same conditions. Further, the exceptional exponents of P[m—k] are X,—m--k,
-+, A,—m-~+k. Thus, we have only to consider the case with weight 0. 1In this

H H (H-1 l+j
case, for U=120 u(logt) (h<H), we have Pu=>3) { Z( ' )(P,-u,+j)}(log t)
= J

=0 | j=0

by Lemma 2.3 (i). Therefore, we consider the system of equations:

Pact et (NPt ot (F V=1, 0zizm), Q4
J H—I
where ;=0 if />hA.

§3. Proof of Main Result

We may assume that P has weight 0, as is shown in the previous section.
First, we prove Theorem 1.3 by the induction on s.

Proof of Theorem 1.3. (I) The case s=0. If s=0, then P satisfies the con-
dition (C), hence (C.P.) for P is well-posed. By the system of equations (2.4) for
H =h, the solution {u;; /=0, 1, -+, h} is uniquely determined from {f;; /=0,

H
1, -+, i}. Conversely, if U= u(logt)’, y;C=(2) and PU=0, then by
1=0

Lemma 2.4, the system of equations (2.4) holds for some f,& C7(2) (0=/<H).
By Lemma 2.1, we have ;e C7(2) (0</=<H), hence U= C7(£2). By (A.l),
we have U=0. Thus, Theorem 1.3 holds if s=0.

(IT) Reduction to the case 2,=0. Let s=1. By Lemma 2.3 (ii), the system
of equations (2.4) is uniquely solvable in F{2,>. That is, we have (8iu,),-,=0
(I=h+1,0=j<2,—1), furthermore the functions (8u,),—, (<h, 0<j<2,—1)



1014 TAKESHI MANDAI

are determined by {f;; /=0, 1,---,h}. Put U~= 2‘, Z —(6,u,),, oti(log t),
=0 j=o0

then F—PU~ =tMF~, for some F~ = Ef, (log t), f1 EC“’(.Q) By U=U~
+tMV, the equation PU=F is reduced to P[A,]V=F~. Since we can take
{fr;1=0, 1, -+, h} such that the map (f;, :-*,f,)— (f5, >+, f#) is continuous
linear, we may assume that 2,=0.

(IIT) The case 4,=0. Let 3;=+-=21,=0<2,,, (r=s5). Considering (2.4)
modulo ?, we have (Uy));—o=Ug_)i=o="""=,+4+1)1:=0=0 and the functions
Wy n)ii=0> ***> (U,)11=0 are uniquely determined from {f;; 0=</=<h} by Lemma
2.3 (111) Put W= Z(u,+,)1t o(logt)*!, then F—PW=tF~ for some F~
_Z‘, fr(ogt) EL,+,, Putting U=W--tV, the equation PU=F is reduced to

P[I]V—F". We can take {f7; /=0, 1, :--, r+h} such that the map (fy, -+, f3)
—=(f¢, =+, fr+s) is continuous linear. Further, the exceptional exponents of
P[1] are 2,,.,—1, ---, 2,—1. Thus, by the induction hypothesis, we get (i).

To prove (ii), let f,=C7(2) for any I In (2.4), we have ug,_o=":-

r—1
=u,,-o=0. For any a,, ---, a,_,€C=(R"), put G=>) e,(log¢)’. There holds
1=0
PG=tF for some FEL,_, by Lemma 2.3 (iii). Putting U=G—tV, the equa-
tion PU=0 is equivalent to P[1]V=F. By the result of (i), this equation has a
solution V=§ v(log t)’—i—sz_}’ V-1t Ylog 1) 7, where v,eC~(2) (0=
1=0 =1
s—1). We can take this solution such that the map (ag, -+, @,_1)—=(vg, ***, V5_1)
is continuous linear. For 0=</=<s—1, let S, be the map from C=(R")" into
C=(R2) given by Syay, -, @,_)=a;—v;t O=ZI=r—1)and =—v, r=ZI=s5-1).
By the induction hypothesis, there exists an isomorphism 7'~ from C=(R")*"" into
C=(2)" such that Ker~P[l]={W=3)T7_(8)t*+(log t)'"}; p= C=~(R")""},
=1

where T~(B)=(T5(8), +**, Ts_,_1(f)). For 0=</=<s—1, let T, be the map
from C>(R")° into C=(2) given by T,(a -+, a_1; B)=SKay, -+, & _))—
T7(B)trr+1+17M41 where T7(8)=0 if [ =s—r. Note that Ty(a,, -+, @_1; Air=o
=a; (0=/=r—1). Itis easy to see that the map T=(T, :--, T,_,) is an iso-
morphism from C=(R")" into C=(2)". Thus, we get (ii).

Remark 3.1. Our solutions obtained above have the following property:
If ,€C7(2) (0=/=h)and g;=0 0=j=m—k—1), then y,€C7(2) 0=/
=h+s).

Next, we prove Corollary 1.8.
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Proof of corollary 1.8. Let F—PU~ =t?F~, where F~L,. Putting
U=U"~-1t?V, the equation PU=F is reduced to the equation P[p]V=F".
Since the exceptional exponents of P[p] are ;) —p, **+, A,—p, this equation has

i s-ilp+1
a solution V= u,(log t)'+ > u,,,triw+i-17¢(log t)**! by Theorem 1.3 (i).
=0 =1
Therefore, we get (ii).
In the solution obtained in (i), put Uy=U"+ ﬁ} u,t?(log t)'. Then,
=0

PU,—Fet*®» X L, hence U, is a 4;,)-approximate solution of (C.P.)™ in L,.
Thus, we get (i).

§ 4. Fuchsian Systems

In this section, we consider Fuchsian systems. Consider the operator
Q=10,Iy—A(t, x; 9,), where Iy is (NX N) unit matrix and A(z, x; 9,)
=(a;, (t, x; O =i, jsy- Assume that a; (¢, x; 9,) are differential operators
with respect to x with coefficients in C*(£) and that a; ,(0, x; 9,) are functions
of x. Put Ay(x)=A4(0, x; 3,). (We make no assumption on the order of
a; /(t, x; 8,).) Consider the Cauchy problem and the flat Cauchy problem
for Q.

(C.P.){ Qu=f in 2, . 4.1
where f & C~(2)" is given .

Qu=f in®, 4.2)
(F.CP){ usCy7(@2)", 4.3)

where f e C7(2)" is given .

We make the following assumptions on Q.

(A.3) The flat Cauchy problem (F.C.P.) for Q is well-posed.

(A.4) There exist non-negative integers 0= u; <<#,<<--- <<#, and positive
integers ry, ry, -+, ¥, such that det(Ay—A4y(x)) = f[ Q@Q@—u))iC~(@; x),
where C~(2; x)=0 for any x R" and any integerl;llgo.

Now, for a fixed x&R", let the Jordan’s normal form of 4y(x) be
a 1

Ji(x) .
[ O O ], where each J;(x) has the form 01 . Let the size of

Jn(z)(x ) a

J(x) be ox). For 1<j=d, put m;=max{o,(x); xER", 1=<i=«(x), the
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eigenvalue of Ji(x) is #;}. In other words, m; min{m' the rank of (u;ly
—Ay(x))" is N—r; for any xER”} Put 2;=p, if 2 m;+1=j SZ‘m 1=k
=d) and put s= 2 m;. Letr= 2 r;and ro=N—r.
We consider the following problem for Q.
k
QU =F = Z(‘,)f,(log t) in (0, TIXR", 4.4
1=

(C.P)"
where ;€ C=(2)" (0=/=h) are given.

Theorem 4.1. (i) For any /= C=(2)Y (0=1=h), there exist u;= C=(2)¥
(0=I=<h-}s) such that

h s
U = uyt 23y (log £)' -2 sy 17 (log 1)*™ 4.5)

satisfies (4.4). Further, we can take {u;; 1=0, 1, -+, h-+s} Such that the map

(fos =5 S (U, ==+, Uyss) i continuous linear from C=(2)¥*X*D  jpso
CN(‘Q)NX (h+s+1)-

(i) Let Ker~ Q={U&L"; QU=0}, then Ker~ Q is parametrized by C*(R"Y as
follows. There exists a closed subspace K of C=(2)"*°, isomorphic to C*(R"Y,
such that

Ker™Q = {U = 3}t (log 1)~ € C=(2)"
1=1
(uO’ °°% us-l)EK}' (46)
We begin the proof of Theorem 4.1 by the following lemma.

Lemma 4.2. There exist C* (N X N)-matrix S(x) and C* (r; X r;)-matrix

Bj(x) (0= j=d) such that
i) S(x)! exists,

By(x) o
(i) there holds S(x) ™ Ay(x)S(x) = By(x) tris

0 mwhn

(iii) for 1=j=d, B(x) has only one eigenvalue p,,
(iv) no eigenvalue of By(x) is a non-negative integer.

The proof of this lemma is left to readers. Note that (ujl,j—B,-(x))’”i=0
(1=j =d) by the definition of m;.
We have the similar results as Proposition 1.1, Lemma 2.1, 2.3.

Lemma 4.3. (i) There exist matrices of differential operators Ax, 9,)
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(i=1,2, ---) such that the equations 3i(Qu));.g=0}f;—o (j=D0, 1, -+*) are equi-
valent to

Uly—Adobt; =35 Ass 0w, G=0,1,), @D

where i u;t’ (resp. fj f;1%) is the Taylor expansion of u (resp. f).
j=0 j=0

(ii) The Cauchy problem (C.P.) for Q is well-posed if and only if the flat Cauchy
problem (F.C.P.) for Q is well-posed and (A.4) for d=0 holds.
(iii) For any ve C=((0, T1X R")N, there hold the followings.

{ O(t*v = t*Qlklv,
O(v(log t)') = (Qv)(log t)'+Iv(log £)'
where Qlkl=t0 1 y+kly—A(t, x; 0,).
(iv) Let F<k>=C=(2)¥/(t*x C=(2))N. The operator Q can be regarded as an
operator on F<k>. The operator Q is an isomorphism on F{u;> and Q=—Ay(x)
on F{1>=C>(R"".
H
By (iii) in the above lemma, we have Q(i y;(log t)’):Z0 Qui+(+1) x
1=0 =

u;.) (log t)', where uy,,=0. Therefore, we consider a system of equations

Ou+(+Du =f; (O=I=H), (4.83)
where Uy, =f,11="=fzy=0. We shall prove Theorem 4.1 by the induction
on d.

By(x) 0
Proof of Theorem 4.1. We may assume that 4,(x)= O , Wwhere
By(%)

Bj(x) (0= j =d) have the properties stated in Lemma 4.2.

(I) The case d=0. If d=0, then Theorem 4.1 holds by the argument similar
to that in (I) of the proof of Theorem 1.3.

(II) Reduction to the case #;=0. Let d=1. We may assume that #,=0, by
the argument similar to that in (IT) of the proof of Theorem 1.3.

(III) The case #;,=0. Let #,=0. If u,is given, then u,, --+, u; are uniquely
determined by (4.8) and the system of equations (4.8) is equivalent to the single
equation

QF Iy L3 (— 1) NIQE-1f, — 0. 4.9)
1=0
Take H=m,+h and consider (4.9) modulo ¢, that is,

A" g 1) = —é;; DA™ fr1=0) - (4.10)
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By(xy
_ 0
Since Ay(x) = By(x) for j=m, and B,(x)’ is invertible for
.Bd(x)j

k=1, the equation (4.10) has a solution uy,-,. If we take uy,-, in the form
*\} 1o

0l}r,

# [, then the map ([fg ;¢ ***> fhls=0)Uois—o 1S continuous linear. Thus, there
*

m+h

exist v;€C=(R")Y (0=j=<m,+h) such that V= E vi(x)(log t) satisfies

QV—F=tF~ for some F~ = Eﬂf, (log t), f7 EC""(Q)N (0ZI<h). Putting
U=V-+tW, the equation QU= —F is reduced to Q[1]JW=F"~. Since we can take
{fr;1=0, 1, ---, m-+h} such that the map (fy, ==, /) (G, =**5fm, +1) is con-
tinuous linear, we get (i) by the induction hypothesis.

To prove (ii), consider (4.9) modulo ¢ for H=h and f;=0 (0<I<H=h).
That is, Ay(x)¥ " (uy;=o)=0. If H+1=m,, this is equivalent to that there holds

0 Y}ro
a(x) |}n
Upii=o=| O for some a=C>(R"Y1. For any e C=(R")1, put uy,—, as
0

above, then uj,—y, ***, Uy, -111= are uniquely determined and u;,-,=0 for / =m,.
m-1

Put G= 3 (4;,0)(log t)’, then there holds QG=tF for some FEL, ;. By
i=0

U=G—1V, the equation QU=0 is equivalent to Q[1]V'=F. By the result of (i),

m—-1 Ss—m.
this equation has a solution V= Z v,(log t)'+ 2 Vg1~ (log ¢)mt
We can take {v;; I=0,1, ---,5—1} such that the map a—(v, -+, v,_;) is con-
tinuous linear. By the induction hypothesis, Ker~ Q[1] is parametrized by

/ d .e . -
C=(R")", where r'=>)r;. Hence, we get (ii) by the argument similar to that
=2
in the proof of Theorem 1.3.
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