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On Exceptional Cases of Cauchy Problems
for Fuchslan Partial Differential Operators

By

Takeshi MANDAI*

§ (L Introduction

Cauchy problems for Fuchsian partial differential operators have been
investigated by several authors, in the space of holomorphic functions ([2],
[6], [9]) or in the space of C°° functions ([8], [10]). To guarantee the unique
solvability of the problem, they impose a certain condition, the condition (C)
in Proposition 1.1, on the indicial polynomial. This condition is equivalent
to that the Taylor expansion of the solution is uniquely determined by the
Cauchy data. In the space of C°° functions, the procedure to solve the Cauchy
problem is divided into two steps: First, to find the Taylor expansion of the
solution and then to solve the fiat Cauchy problem. As for the flat Cauchy
problem, the unique solvability is independent of the condition (C). Thus,
under the assumption that the flat Cauchy problem is uniquely solvable, we
want to consider the case when the condition (C) is not satisfied, by extending
the space of admissible solutions.

In this article, for simplicity, we shall consider only Fuchsian equations
in the space of C°° functions. Our arguments are, however, essentially how to
get formal solutions, hence similar arguments go well in various other situa-
tions: Fuchsian equations in the space of holomorphic functions ([2], [6], [9]),
parabolic equations of "Fuchs type" ([1], [7]), etc.

Our program is as follows. In Section 1, we state the main result. After
reviewing some basic results on Fuchsian equations in Section 2, we prove
the main result in Section 3. Finally, in Section 4, we treat Fuchsian systems.

§ 1, Main

Let £=[0, T]xRn (T>0), where the variable is denoted by (t, x). We
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use the notation dt=dfdt, dx=(dx^ ••- , dgj)9 dx,=d/dXj. Consider the follow-
ing operator (O^

P = a0t
kdf+ aj(t, x; 3,)r*->9r'+ S a#, x; 8,)0f-' , (1-1)

y=i y=*+i

where a0 is a non-zero constant, aj(t, x; dx) ( l^gjfgm) are partial differential
operators with respect to x with coefficients in C°°(£) and ord. a^j (1 ^j^m).
We say that P is a Fuchsian differential operator with weight m—k, if
a/0, x; dx)=aj(x) (l^j^k) are functions of x.

We consider the Cauchy problem and the flat Cauchy problem for P:

Pu=f in 0, (1.2)

dJ
tult=Q=gj in Rn (Q^j^m— k—1) , (1.3)

where/eC°°(J2) and gj^C°°(Rn) (Q^ j^m—k—l) are given.

Pw =/ in £, (1.4)

^); 9 is flat at ̂ -0} (1.5)

where /eC/(J3) is given

(C.P.)

(F C P )

We say that (C.P.) (resp. (F.C.P.)) is well-posed, if for any /eC°°(£) and any
gj<=C°°(Rn) (Q^j^m— k—1) (resp. any /eC/(£)), there exists a unique
w<EC°°C0) satisfying (1.2) and (1.3) (resp. (1.4) and (1.5)).

The indicial polynomial of P is

y=o 3

Note that if we write tm~kP=p(t, x; tdt, 9J where p(t, x; A, £) is a polynomial
of (/I, f), then CP(Xi x)=p(Q, x; /I, f) for any f. The relation between (C.P.)
and (F.C.P.) is as follows. (The proof is given in § 2.)

Proposition LL The Cauchy problem (C.P.) for P is well-posed if and
only if the flat Cauchy problem (F.C.P.) is well-posed and P satisfies the follow-
ing condition.

(C) CP(XI x)3=Qfor any x^Rn and any integer ,

Remark 1.2. As is stated in Section 05 the well-posedness of (F.C.P.) for
P is independent of the condition (C). For example, the followings hold,
(i) The flat Cauchy problem (F.C.P.) for P is well-posed, if and only if the
flat Cauchy problem for another Fuchsian operator P[z]=t~z+m~koP<>tx is
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well-posed, where z is an arbitrary complex number and o denotes the composi-

tion of operators.

(ii) Cfufc; x)=Cf(*+z'9 x).

From now on, assume the following conditions on P.

( (A.I) The flat Cauchy problem (F.C.P.) for P is well-posed .

(A.2) There exist integers m —k ̂ ^i^-"^^s such that

CP(X; x) = n (J— Jy)Cp(;i; x), where C ?(*;*) 4=0

for any x^Rn and any integer X^m—k ,

We call ^!, • B • , As the exceptional (characteristic) exponents of P.

Since we want to consider solutions including logarithmic terms, we also

extend the class of data. Let Ljk={F=S//(log f)/;//eC00(£)(0^/^/i)} and
~ /=°

L= U LA. Consider the following Cauchy problem for P:
h = 0

= F= S//(log O7 in (0, T]XR\ (1.7)

gy in tf"(0^7rgffi-A:-l), (1.8)
(C.P.) -^ '->+°

where //eC°°(^) (0^/^A) andgyeC°°(fi")

(O^j^m— fc— 1) are given .

Now, we state the main result.

Theorem 1.3. (i) For any f, e C°°(^) (Q^l^K) and any gj

^ j^m-k—l), there exist

l (1-9)
/=! 1=1

satisfies (1.7) «wJ (1.8). Although this solution is not unique, we can take

continuous linear from Ceo(Q)h+lxC"(RH)m-k into C°°(ti)h+s+l.

(ii) Let Ker~P-{t/eL;Pt/-0 o«J lim 9{£7=0 (O^j^m-fc-1)},
f-» + 0

r/7e^ Ker~P w parametrized by C°°(Rn)s as follows. There exists a closed sub-

space K ofC°°(@)s such that K is isomorphic to C°°(J2M)S and

(1.10)
/ = !

Example 1.4 (Euler-Poisson-Darboux equation). Consider the E-P-D

equation:
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• . . k u = 0 in (0, T)XR°, (1.11)

«UH> = ?>(*) in if, (1.12)

9i«i/-o = 0 in/2", (1.13)

»

where & is a non-zero constant and Ax=^l d2
x . .

j = l 3

We can apply our result to the following modified equation.

(td]-tAx+kdt)u = 0 in & , (1.14)

(*) in«". (1.12)

If ^(^0) is not a negative integer, then (C) is satisfied and hence for any
9?eC°°(J2B), there exists a unique solution of (1.14) and (1.12). If k is a nega-
tive integer, then (1.14) and (1.12) have a solution u=u1+u2t

1~k log t, where
ulf w2^C"%0). In both cases, (1.13) is necessarily satisfied. Thus, we have a
solution of the equations (1.11), (1.12) and (1.13). For the E-P-D equation,
many authors have investigated the exceptional cases and constructed solu-
tions explicitly ([3], [4], [5], [11], etc.). They say that the equations (1.11), (1.12)
and (1.13) are exceptional only when k is a negative odd integer, because (1.11),
(1.12) and (1.13) otherwise have a C°° solution for any <?<=C°°(Rn). But the
case when k is a negative even integer is also "exceptional" in our context. In
this case, actually, the solution u of (1.11), (1.12) and (1.13) is not unique,
further, there may be no C°° solution if the right hand side of (1.11) is not zero.

Remark 1.5. The assumption (A.2) seems to be too strong. But, if this
condition is not satisfied, then the behavior of solutions of (C.P.) is compli-
cated, as is shown in the following example.

Example 1.6. Consider the operator P=tdt—tdx— (t+x). The C°° solu-
tions of Pu= 1 in (0, T]xR are

u =
- + C(t+x)ti+* (if

(1.15)

log*+C(0) ( i f f+x=0) ,

where C(s)^C°°(R) is an arbitrary function. The behavior of this solution
u when J-»+0 is very complicated, whatever the function C may be.

In Theorem 1.3, if the data Fand gj (Q^j^m—k—l) are "good" data,
then there exists a "good" solution.
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Definition 1.7. For an integer p^m—k or p = &°, we say that the
eLfc and gj^C°°(Rn) (Q^j^m—k—l) are p-compatible in Lh if there

exists U~&Lh such that F—PU~<=tp-m+kXLh and Iimd{'tf~=g, (O^j^m-
*•>+<)

fc— 1). (If p=°°, then regard *°° X Z^ as C/ (£).) This £/~ is called a p-approxi-
mate solution (of (C.P.)~) in Lh. Let ^5+1 = oo and let j(p)=mm{j^ {19 ••-,

Corollary 1.8. (i) // ffc? <fota F e LA a/zrf gy e C °°(jr)(0 ^j^m-k~l)
are p-compatible in Lh, then these data are /I ̂ -compatible in Lh. Especially,

any data are ^-compatible.
(ii) Let the data F ^Lh and gj^C°°(Rn) (Q^j^m—k—l) be p-compatible in
Lh and let U~^Lh be a p-approximate solution. Then, there exist Ui£=.C°°(Q)

such that

s-KPl + ll+ S uh+lt
xKP^-i(logt)h+l (1.16)

1=0 1=1

satisfies (l.l) and (l.%).

§ 2. Review on Fuchsian Operators

In this section, we review some basic results on Fuchsian operators. Most
of the results in this section are well-known or elementary, and their proofs
are omitted,

Let P be a Fuchsian operator defined by (1.1). First, consider the equa-
tion Pw=/for

Lemma 2.1. For P, there exist Bj(%\ x, dx) (j=l, 2, •••), which are differ-
ential operators on Rn and polynomials with respect to X, such that the equations

u)\t=s0=dif}t=Q 0"=0, 1, — ) are equivalent to

; x)Uj =j-m+k- Bij-i; x,

), (2.1)

where S U:tj (resp. S/,-^0 is the Taylor expansion of u (resp.f).
y=o y=o

From this lemma, we get Proposition 1.1.

Proof of Proposition 1.1. (I) Assume that (C.P.) for P is well-posed. In

(2.1), for any {/}; j= 0, 1, •••} and any {MQ, — , wm-&-iK there exists {uji j
=m—k, m—k+l, •••}. Hence, P satisfies the condition (C). Let/eC/(0).
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There exists a unique solution u of (C.P.) for g/=0 (Q^j^m—k—l). By (2.1)5

this solution u belongs to C/(<0). Thus, the flat Cauchy problem (F.CP.) for
P is well-posed.
(II) Assume that (F.C.P.) for P is well-posed and that P satisfies (C). Let
/<EC°°02) and gj<=C°°(Rn) (O^y <^m— k— 1). The system of equations (2.1)
has a unique solution {Uj'9j = Q, !,•••}, where jluj=gj (O^g j^gm— -fc— 1).

CO

There exists veC"%0) such that S w.- f y is the Taylor expansion of v. Noting
y=o

that Pv— /eC/G0), there exists a solution weC/(£) of Pw=f—Pv, and
w=v+w is a solution of (C.P.). On the other hand, if Pu=0 and gj=Q (O^Sj
^m— k— 1), then weC/(£) by (2.1), hence w=0. Thus, (C.P.) for P is well-
posed.

Definition 2.2. (i) For P, we can write P=tm~kP=p(t, x; tdt, dx\ where
p(t, x; I, f) is a polynomial of (^, f)- Put P[z]= t~zopotz=p(t, x; tdt+z, dx)
for a complex number z and put Pl=pl(t9 x; tdh dx) where p/(f5 x; X9 f)
=9iX^ ^; ^5 0- Note that CpUy ; ̂ )-CP(a+z; x) and CP/C*; x)=9iCp(^; ^c).

(ii) Put F<A:> = C00(^)/(/*xC00(^))a©1C-(Jfl)//. We can regard P as an
/ = 0

operator on F<&> (fc=0, 1, — )•

Lemma 23. (i) For a^y veC°°((0, T)xRn), there hold the following
formulas.

P(tzv) = tzP[z](v) , (2.2)

P(v(log 0*) = i* (P|V)Oog O*-1, (2-3)

w a non-negative integer and ( ) = - - — .
\// l\(h— 1)1

(ii) Ifk=m, then the operator P: C°°(^)->C00(^) w an isomorphism modulo
txi. In other words, the operator P: F^^-^-F^^y is an isomorphism.

(iii) If k=m, ^1 = -"=^r=0<^r+1, then as operators on F<1>, we have
P/=0 (/=0, 1, ••• , r— 1) and Pr is an isomorphism. In other words, (Piu)\t=0=Q
(0^/^r-l) and(Pru)\t=0=c(x)(u\tssQ)for any weC°°(^), where c^C°°(Rn) and
c(jc)4=0/or any x(=Rn.

a
The representation C/=2 w/(log r)1 of U^LHis not unique, but the fol-

/ = 0
lowing holds.

Lemma 2.4 Lef iijeC^JB*) (0^/^F), l/=S ^(log r)1 *«</ fer rf
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non-negative integer. Then, there holds HmdJ
tU=Q (Q^j^d) if and only if

Finally, we state the reduction procedure of (C.P.)~ for P to (C.P.)~ for

another Fuchsian operator P[m— k] with weight 0.

Proposition 2.5. For the initial data (gQ9 •••9gm-k-i) in (C.P.)~ for P, put

G=m^l—gitj. For U^L, the initial condition lim d{ U=gs (Q^j^m-k-l)
j = Q j\ t+ + 0

is equivalent to that U=G+tm~kU~ for some U~^L. Putting F~=F—PG9 we

can reduce (C.P.)~ for P to the equation P[m—k]U~=F~. Especially, the

Cauchy problem (C.P.)for P is well-posed if and only if the Cauchy problem for

P[m—k] is well-posed.

If P satisfies the conditions (A.I), (A.2), then P[m— k] also satisfies the

same conditions. Further, the exceptional exponents of P[m— k] are ^— - m+k9

••• , ^— m+k. Thus, we have only to consider the case with weight 0. In this

case, for C7=fjM l(logO /(*^-ffX we have A/ = s(sT/+J'VpyM/+y))OogOl
/=o /=o U=o\ j I }

by Lemma 2.3 (i). Therefore, we consider the system of equations:

(2.4)

where /f=0 if l>h.

§ 30 of

We may assume that P has weight 0, as is shown in the previous section.

First, we prove Theorem 1.3 by the induction on s.

Proof of Theorem 1.3. (I) The case s=Q. lfs=09 then P satisfies the con-

dition (C), hence (C.P.) for P is well-posed. By the system of equations (2.4) for

H = h, the solution {u^ /=0, 1, •",/*} is uniquely determined from {/7; /=0,

1, •->,/*}. Conversely, if J7 = S u&ogt)1, n/eC"^) and PU = Q, then by
/=o

Lemma 2.4, the system of equations (2.4) holds for some/JeC/OS) (Q^l^H).

By Lemma 2.1, we have ut^CJ(^) (Q^l^H), hence C/eC/(J3). By (A.I),

we have 17=0. Thus, Theorem 1.3 holds if s=Q.

(II) Reduction to the case ^=0. Let s^l. By Lemma 2.3 (ii), the system

of equations (2.4) is uniquely solvable in F<^i>. That is, we have (dj
tuj)\t=Q=Q

^7^^—1), furthermore the functions (d{u^\t^(l^h9 O^j^^ — 1)
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are determined by {/,;/ = <), \,-,h}. Put cr=S S—
• '

then F-PU- = t^F~, for some F~ = S/7(log 0', /7 e C"(fl). By 17= V
1 = 0

+t^V} the equation PU=F is reduced to PyjK=F~. Since we can take
{/T; 7=0, !9—9h} such that the map (f09 •••,./i)i-*(/o, •••,/*) is continuous
linear, we may assume that ^=0.
(Ill) The case ^ = 0. Let ^ = — = Jr = 0 < *r+1 (r ̂  j). Considering (2.4)

modulo r, we have (w^)iM=(M^-i)i/=o='"==(wr+*+i)i*=o=0 and the functions
(wr+fc)i,=0, ••- , (wr)u=o are uniquely determined from {/7; 0^/^A} by Lemma

2.3 (iii). Put PF=i](wr+/)u=0(logOr+l
? then F-PW=tF~ for some F~

r+h

=S/rC°g 0 ^Lr+h- Putting £7= JF+fF5 the equation PU = F is reduced to
/ = 0

P[l]F-^~. We can take {/,~; 7=0, 1, — , r+h} such that the map (f0, — ,/A)
|->(/o'j '",fr+h) is continuous linear. Further, the exceptional exponents of
P[l] are ^r+1 — 1, •••, ^5— 1. Thus, by the induction hypothesis, we get (i).

To prove (ii), let //eC/(J3) for any /. In (2.4), we have uHlt=0='~
r-I

=ur{t=Q=0. For any a09 — , a^^C^JB11), put G^S «/(log /)'. There holds
1 = 0

PG=tF for some F^Lr^ by Lemma 2.3 (iii). Putting U=G—tV, the equa-
tion PU=Q is equivalent to P[1]F=F. By the result of (i), this equation has a

solution F=S ^(log/y+S Vr+z-i^^'^OogO1"^"1, where v/eC°°(J2) (0^7^
/=0 /=!

j— 1). We can take this solution such that the map (a0, ••• , ar_i)J->(v0, ••• , vs_j)
is continuous linear. For 0^/^s— 1, let *S/ be the map from C°°(Rn)r into
C°°(£) given by S/K, — , ar_l)=al-vlt (0^7^r-l) and =—v/ (r^l^s—l).
By the induction hypothesis, there exists an isomorphism T~ from C°°(Rn)s~r into

C°°(^)s-r such that Ker~P[l] = {FF=2rr-i(^)/Xr+'"1(log O1"1; ^eC°°(«")'-r},
/ = !

where T~(J3)=(T;(J3), — , rr_r_i(/?)). For 0^7^-1, let rf be the map
from C°°(^)s into C°°(^) given by ^(OQ, — , ar^\ p) = Sl(aQ, —, ar_i)-

TTWfr+H-i-^, where rrG*)=0 if 7^j-r. Note that T^ -, «r-i; ̂ )i/-o
=af (0^/^r— 1). It is easy to see that the map T=(TQ9 — , r^i) is an iso-
morphism from C°°(Rn)s into C°°(£)s. Thus, we get (ii).

Remark 3.1. Our solutions obtained above have the following property:
and gy = 0 (O^j^m-^-1), then

Next, we prove Corollary 1.8.
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Proof of corollary 1.8. Let F-PU~=tpF~, where F~^Lh. Putting

U=U~+tpV, the equation PU=F is reduced to the equation P[p]V= F~.

Since the exceptional exponents of P[p] are lj(p)—p, • • • , As—p9 this equation has
h s-XPl + l

a solution 7=2 «/ (log f) + 2 wA+/f
x**M./-i-*(log f)*+/ by Theorem 1.3 (i).

/=0 /=!

Therefore, we get (ii).
h

In the solution obtained in (ii), put UQ = E/~ + 2 w/^(log t) . Then,
/=o

PU0—F^txM>xL9 hence C/0 is a ^-(^-approximate solution of (C.P.)~ in Lh.

Thus, we get (i).

§4* Fuchsian Systems

In this section, we consider Fuchsian systems. Consider the operator

Q = tdtiN—A(t9 x; dx), where IN is (NxN) unit matrix and A(t9 x; dx)

= (aiiS(t, x; djfiisi.jgif. Assume that aitj(t, x; dx) are differential operators
with respect to x with coefficients in C°°(<0) and that aitj(Q, x; dx) are functions

of x. Put AQ(x)=A(Q, x; dx). (We make no assumption on the order of

aitj(t, x; dx).) Consider the Cauchy problem and the flat Cauchy problem

for Q.

Qu=f i n ^ ? (4J)

where f^C~(Q)N is given .

Qu =f in Q , (4.2)

(F.C.P.) (4.3)

where fsECJ(Q)N is given .

We make the following assumptions on Q.

(A.3) The flat Cauchy problem (F.C.P.) for Q is well-posed.

(A.4) There exist non-negative integers Q^ju1<ju2<-- <jud and positive
d

integers rlf r2, -
a,rd such that fat(UN — A0(x)) = JJ_ (X — fjL$iC~(l\ x),

where C~(^; x)3=Q for any x^Rn and any integer /l^O.

Now, for a fixed x^Rn, let the Jordan's normal form of A0(x) be

L where each J{(x) has the form '_' /', . Let the size of

Jf(x) be ofa). For l^j^d, put /w;-=max{a|.(x); xeJT, l^/^<x), the
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eigenvalue of J^x) is #y}. In other words, Wy=min{w; the rank of

-AQ(x))m is N-rj for any jtefi*}. Put X~/j.k if S/Wy + l^j^S /wy (l
"

^rf) and put j=S JH,-. Let f^S ry and rQ=N—r.
j = l 3 = 1

We consider the following problem for Q.

= p = S/, (log O1 in (0, T] X Rn , (4.4)
(C.P.

( where /ieC"^)" (O^/^ A) are given.

Theorem 4.1. (i)

such that

U = M 0 + ] M| (log O'+S K*+jfx'(log 0*+/ (4.5)

satisfies (4.4). Further, we can take {ut\ l=Q, 1, •••>A+5} jwcA rto the map

(fo> ' ' ' > fh) *~* (uo> ' ' ' 9
 uh+s) w continuous linear from C °° (£)N x c/z+1)

(ii) Ler Ker~ g = { £7 e L^ ; Q U=Q} , rt«i Ker ~ g w parametrized by C°°(Rn)r as

follows. There exists a closed subspace KofC°°(£)NXS, isomorphic to C°°(Rn)r,

such that

Ker~g - {# = SK/-i/

(«b,-,KI-i)eJr}. (4.6)

We begin the proof of Theorem 4.1 by the following lemma.

Lemma 4.2. There exist C°° (NxN)-matnx S(x) and C°° (ryXr^-matrix

BJ(X) (Q^j^d) such that

-\B°(X^ to °
. 0 Bd(:,,. _

(iii) for l^j^d, Bj(x) has only one eigenvalue jUj,

(iv) no eigenvalue ofB0(x) is a non-negative integer.

The proof of this lemma is left to readers. Note that (jUjIr,—Bj(x))mj=0

(1 ̂ j^d) by the definition of mj.

We have the similar results as Proposition 1.1, Lemma 2.1, 2.3.

Lemma 4.3. (i) There exist matrices of differential operators A^x, dx)
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(i=l, 2, •••) such that the equations dt(Qu)\t=Q=dj
tflt=Q (j=Q, 1, •••) are equi-

valent to

{jIN-AQ(x)}uj =//+ 2 Afyci 9>y_, (j = 0, 1, -..) , (4.7)

00 00

where S Ujt3 (resp. S/,-^0 w ̂  Taylor expansion ofu (resp.f).
y=o y=o

(ii) I7ze Cauchy problem (C.P.)for Q is well-posed if and only if the flat Cauchy
problem (F.C.P.) for Q is well-posed and (A A) for d=Q holds.
(iii) For any v^ C°°((0, T] x Rn)N, there hold the fallowings.

Q(tkv = tkQ[k]v ,

e(v(iog oo = (fivxiog /y+/vaog o1-1 ,
Q[k]=tdtIN+kIN-A(t, x; dx).

(iv) Ler F<ky=C°°(£)N/(tk X C00^))^. T/ze operator Q can be regarded as an
operator on F<fc>. The operator Q is an isomorphism on F^ju^ and Q = —AQ(x)

n n
By (iii) in the above lemma, we have Q(S ^/(iog 00 =S (6wi+(/ + l) X

/=0 /=0

w/+1)(logOlj where Wjy+1=0. Therefore, we consider a system of equations

Quf+(l+l)ul+l =/, (O^l^H) , (4.8)

where uff+1=fh+i = -'=fH=Q. We shall prove Theorem 4.1 by the induction
on

of Theorem 4.1. We may assume that AQ(x) = where

BJ(X) (Q^j^d) have the properties stated in Lemma 4.2.
(I) The case d=0. If d=Q, then Theorem 4.1 holds by the argument similar
to that in (I) of the proof of Theorem 1.3.
(II) Reduction to the case ^=0. Let d^l. We may assume that #1=0, by
the argument similar to that in (II) of the proof of Theorem 1.3.
(III) The case ^=0. Let ^=0. If UQ is given, then ul9 °°*,UH are uniquely
determined by (4.8) and the system of equations (4.8) is equivalent to the single
equation

fi*+1wb+2 (-l)l+1HQH-!fi = 0 . (4.9)
/=o

Take H=m1+h and consider (4.9) modulo /, that is,

1 = 0
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Since AQ(x)j =
o 0

for j ^m1 and Bk(x)' is invertible for
0

, the equation (4.10) has a solution uQ\t=0. If we take w0if=o in the form

0
, then the map (f0\t=Q9 •OQ

5//zu=0)h~*woif=o *s continuous linear. Thus, there

exist v, e C ""CR")" (0 ̂  j ^ /% + A) such that K = S v/x) (log t )j satisfies

QV~F=tF~ for some F~ = 2/r flog 0', fT^C°°(Q)N (0^7 ̂  A). Putting

U=V+tW9 the equation QU=Fis reduced to Q[l]W=F~. Since we can take

{//~; /=0, 1, ••• , nii+h} such that the map (/0, •••,/i)i-»(/05 "m
9fm^h) is con-

tinuous linear, we get (i) by the induction hypothesis.
To prove (ii), consider (4.9) modulo t for H=h and//=0 (Q^l<^H=h).

That is, A0(x)H+1(u0\t=0)=Q. If H+l ^ml9 this is equivalent to that there holds
0 }}

«(*)
0 for some aeC°°(jB*)ri. For any a^C°°(Rn)\ put wou=0 as

6 .
above, then Ui\t=0, •••, um^\t==Q are uniquely determined and Unt=Q=0 for l^mlf

Put G= 2 (w/u=0)(log r)7, then there holds QG=tF for some F^Lm^. By

U=G—tV, the equation Q£/=0 is equivalent to g[l]F=F. By the result of (i),

this equation has a solution V= 2 v/(log /)'+ 2 vw +/_1/Xwli+'~1(log ^)wi+/-1.
/=0 /=! 3

We can take {v/; 1=0, 1, ••• , j—1} such that the map ai-»(v0, ••-, v5_j) is con-
tinuous linear. By the induction hypothesis, Ker~g[l] is parametrized by

/ d

C°°(Rn)r, where r'=^ ry. Hence, we get (ii) by the argument similar to that

in the proof of Theorem 1.3.
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