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On the Locality Ideal In the Algebra of Test
Functions for Quantum Fields

By

Jakob YNGVASON*

Abstract

Some basic properties of the locality ideal in Borchers's tensor algebra are established.
It is shown that the ideal is a prime ideal and that the corresponding quotient algebra has
a faithful Hilbert space representation. A topology is determined for which the positive
cone in the quotient algebra is normal, and it is shown that every w-point distribution satisfy-
ing the locality condition is a linear combination of positive functional which also satisfy
that condition.

§L Introduction

The locality ideal in Borchers9 tensor algebra [1, 2] is the two-sided ideal
generated by commutators of test functions with space-like separated supports.
Its importance comes from the fact that quantum fields satisfying the require-
ment of local commutativity can be regarded as Hilbert space representations
of the tensor algebra annihilating this ideal. Equivalently, such fields define
representations of the corresponding quotient algebra. Among other things
it will be shown that the states on this algebra separate points, and consequently
that it has a faithful Hilbert space representation. For the tensor algebra
itself this was first shown in [3]. The question whether this is also true for
the quotient algebra was posed in [2], but has remained unsettled till now.

The present paper is a sequel to [4, 53 6], and we refer to these papers and
also to [2] for definitions and further references. Borchers9 tensor algebra
will be denoted by ^; it is the completed tensor algebra over the Schwartz
space tf(Rd). The locality ideal 3*c is generated by elements of the form f®g
—§®f with /, g^ff(Rd) satisfying the condition f(x)g(y)=Q whenever (x— y)
e Rd is not space-like. The method used for the investigation of 3f

e and the

Communicated by H. Araki, December 15, 1983.
* The Science Institute, University of Iceland, 107 Reykjavik, Iceland.



1064 JAKOB YNGVASON

quotient algebra ffj&^i/l is based on a discretization: we map ^ and A

onto tensor algebras over finite dimensional spaces where the corresponding
problems are essentially of a combinatorial nature. Besides proving that
the states on A separate points, we also obtain more refined results analogous
to Thms. 1 and 4 in [6] and Thm. 4.1 in [5]. We show that the positive cone
7<7+ is normal for a certain topology which is slightly coarser than the Mackey
topology on A. This result (Thm. 4.7) is not optimal. However, an explicit
description of the finest topology on A for which d+ is a normal cone seems to
be complicated.

The paper is organized as follows: Section 2 contains general remarks
on ideals in topological ^-algebras. These remarks are mainly intended to
show the equivalence of various definitions of "good" ideals and to point out
the deviations from the case of C*-algebras. In Section 3 we study partially
symmetric tensor algebras over finitely dimensional spaces, i.e. tensor algebras
with a finite number of generators, where some pairs of generators are assumed
to commute. In Section 4 the results obtained for this discrete case are applied
to the algebra /7. The main results of the paper are contained in Thms. 4.4-
4.7.

§2. States and Ideals

In this section we want to make some simple remarks on the ideals in ^9

or more generally, ideals in an arbitrary locally convex ̂ -algebra SI over C. We
assume that the multiplication in SI is at least continuous in each factor sepa-
rately, that the ^-operation is continuous and that SI has a unit element 1.
The positive cone Sl+ is defined as the closed convex hull of the set of elements
of the form a*a, aeSl. (For the algebras if_ and A this cone consists of con-
vergent sums of such elements.) In the dual space ST the positive functionals
form the dual cone Sl+/. A functional r<ESl+/ is a state if r(l)=l.

We associate three closed subspaces of SI with every
The kernel K(T) = {a \ T(a) =0} .
The left kernel L(T) = {a \ T(a*d) -0} .
The kernel of the GNS representation defined by T:

I(T) = {a\ab^L(T) for all

Clearly

I(T)dL(T)nL(T)*c:L(T)+L(T)*ClK(T). (2.1)
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By the Cauchy-Schwarz inequality we have also

L(T) - {a | ba e K(T) for all b e SI} (2.2)

and by polarization

7(T) = HOT) (2.3)
b

where Ji(a) : - T(b*ab). From (2. l)-(2.3) we immediately get

2.1 Proposition, (i) K(T} is ^-invariant, and if S 01fl,-eJ£(r), then

^a{+af^ic:K(T)for all i,

(ii) L(T) is a left ideal and if S afafeL(r)+L(r)*, rft^ a^L(T)for all L

(iii) 7(J) L a ^-invariant two-sided ideal, and ^afa^I(T) implies a^^T)

for all i.
Also, L(T) resp. I(T) are the largest left- resp. two-sided ideals contained in K(T).

By using the GNS-construction9 the bipolar theorem and (2.3) one obtains

2,2 Proposition* The following conditions are equivalent for a closed,
two-sided ideal J C SI :

(i) 7 is ^-invariant and the quotient algebra SI/.?' has a faithful Hilbert
space representation1^.

In a C*-algebra (more generally in an LMC*-algebra [7]) every closed,
two-sided ideal has these properties. Because of Prop. 2.1 a necessary condi-
tion for an ideal to have these properties is

implies ai^37 for all /. (2.4)

From (2.4) the *-invariance of y follows: If ae.9% then aa*e^ because y
is a right ideal. Hence a* ̂ y by (2.4).

In contrast to the C*-algebra case, there are closed, two-sided ideals in ^

which are not ^-invariant, e.g. ^-^©(©^J with ^C^ closed and not
«=2

^-invariant. Examples of ^-invariant, two-sided ideals that violate (2.4) are
CO

y= 0 <fn with N^2, and the ideal generated by all anticommutators of ele-

1) i.e. a weakly continuous ^representation by linear operators (in general unbounded) on
a dense domain in a Hilbert space.
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ments in fflm In these examples, ^ fl tf+' consists only of trivial functionals.
It is not known whether condition (2.4) characterizes the good ideals in SP,
i.e. those with the properties stated in Prop. 2.2.

§3. Partially Symmetric Tensor Algebras

Let E be a finite dimensional vector space over C. Denote by E_ the tensor
algebra over E, i.e.

with EQ=C9 En=E®n. A basis {el9 ••-, eN} for E generates a basis for E: If

f=(h, •"> Q, h^ {1, — : N} we define

and also ^: =l^E0. We also write

/*:=(!„, -,10

and define a ^-operation on E by antilinear extension of

(*/)*:=*/*

£ is thus a *-algebra; equipped with the direct sum topology of the En~CnN

it becomes a topological ^-algebra with a jointly continuous product.
Now suppose p is an arbitrary set of pairs (i9j) with /, 7 e {1, ••• , ̂ V}. De-

fine yp to be the two-sided ideal in E generated by the commutators [eh e}] =

ei®ej—€j®ei with (i,j)£ip. Without restriction we can assume that (/, i)^p
for all i and that (ij)^p implies (7, /)ep; p is thus a symmetric, reflexive, but
not necessarily transitive relation on {1, •••, N}.

The partially symmetric tensor algebra corresponding to p is defined as
the quotient algebra E]3f

9.

Remark. The ideals 3*p are generated by commutators of linearily inde-
pendent elements in E. More generally one could consider ideals generated
by arbitrary sets of commutators of elements in E. The latter case cannot
always be reduced to the former by a linear transformation. A counterexample
is e.g. provided by the set [el9 ez], [e39e^], [e5,e2+ej with el9 -",e5 linearily
independent. For the present purpose, however, the J '̂s defined above suffice.

The algebraic classification of partially symmetric tensor algebras of the
kind considered here is for a given N the same as the classification of symmetric,
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reflexive relations on {1, • • - , N}. Such relations can be pictured by graphs
with N vertices. The number of non-isomorphic graphs and thus of algebrai-
cally distinct partially symmetric tensor algebras is a complicated expression
and grows rapidly with N [8].

E/3r
P inherits the ^-operation and the topology from E. The dual space

(E/¥py can be identified with ̂ c£' and its positive part with E+f fl 3*$. Since
dim E<oo every linear functional on E or E/^P is continuous.

It will be convenient to describe 3*p and 3*^ in terms of the basis {er}.

We define an equivalence relation for multiindices: Write I~J9 or more pre-
cisely 7~/3 if / and / can be transformed one into the other by a sequence of
transpositions of adjacent pairs of indices in p, in other words, if 7=(f1, ••• , in)9

J=(j\, -',jn) and there is a finite sequence of multiindices IK=(ilK9 •••,/„«),
ic=09 • • - , & such that /0=/, 7ft=/ and 7K and 7K+1 differ only in a single pair
(iriC9 ir+itK)=(ir+itK+i9 irjK

3.1 Lemma, (i) Let Tt=E'. Then T^3f^ iff T(er) = T(ej) for

(ii) S a/e/^-^p iff S af=Qfor all J.
i i~jp

Proof, (i) Suppose I~*J and let 709 •••9Ik be a sequence leading from
7 to /. Then er— ej — S elK—er and clearly T(el—eI )=0 for

The other direction is obvious,
(ii) The functional

1 if 7 e [/]: ^equivalence class of J

0 otherwise

form a basis for J~^ by (i), and (J^y-=Jp.

The algebras ^ and £/^p have a natural grading. Equivalently we may
talk about a grading of multiindices: If 7=(/i, • • - , i J, we define

Deg 7 ==(*/!, — ,i^)

where ^;-e^VU {0} counts how many times the index y'e {13 • • • , AT} appears in
7. Obviously

Deg7-Deg7*. (3.1)

If 7=(/!, • • - , in) and /=0'i> — JJ we write

IJ = (ii, —, 4sj"i, —,7"J

and we have
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, (3.2)

Note also that by lemma 3.1 (ii) we have that S^/^/G-^P implies
i

^ for all v=(vi, ••• , VN), i.e. 3f^ is a graded ideal with respect to
Deg/=v

this grading.
The following simple lemma is crucial for the subsequent considerations.

3,2 Lemma, If IK~ JL and Deg /=Deg /, then 7~ J and K~ L.

Proof. Let (IK)K9 £=0, ••• , fc be a sequence of multiindices leading from
IK=(IK)Q to JL=(IK)k such that (IK\ and (IK\+l differ only by an admissible
transposition,, i.e. a transposition of an adjacent pair in p. Clearly we need
only consider such pairs (1,7) with i^j9 so we can uniquely link each index
in (IK)K to an index in / or in K by tracing back its "path" through the sequence
of admissible transpositions. If I = (h, •••,/»), define ilK, ••• , /„« to be those
indices in (IK)K which are linked to indices in I, numbered according to their
position in (IK)K from left to right. IK:=(ilK, -"9inK) is then a permutation
of 7, and we contend that 7K and 7K+1 differ at most by an admissible transposi-
tion. In fact, if the transposition leading from (IK)K to (IK)K+1 does not affect
the indices linked to 7, or if it permutes an index linked to / and an index linked
to K, then 7K=7K+1. If on the other hand it permutes two adjacent indices
linked to /, then IK and 7K+1 differ by an admissible transposition. Hence IK~I
for all K. Now because Deg J=Deg /, / consists of the same indices as /.
By our convention of never permuting two identical indices we conclude from
(IK)k=JL that J=Ik^L In the same way K~L.

As a last preparation we now order the degrees of multiindices, i.e. the
^-tuples v=(y^ •••,*'#), by first ordering according to their length z^H ----- \-VN

and then lexicographically. In other words, we write

if either v^-\ ----- h^^<^iH ----- h/^jv? °r the lengths are equal and there is a
{1, ••• , N} such that Vj=#j forj=l9 * • - , k—l but vk<^
Note that

v<tJL and A^R imply vJ
r2.<jj.+K . (3.3)

If a=^aIeI^E9 a 4=0, we define Deg a as the highest Deg/ such that
O. Because of (3.2) and (3.3) we have

Deg (ab) = Deg a+Deg b (3.4)
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provided a,b^Q. Using this ordering and Lemma 3.2 we can now establish
some simple algebraic properties of 3*p.

3.3 Theorem,, (i) The algebra E/^p has no divisors of zero.

(ii) The only invertible elements in E/^p are multiples of the identity.
(iii) If% is the subalgebra of E/^p generated by el9 - ° ° , ek9 k<N, then the corn-

mutant 23' is generated by the e/s, such that (i,j)^pfor i=l, ° ° < i , fc.

Proof, (i) We have to show that if a,b^E and ab^J?, then either
or b^yp. Write a=^ alel and b=^ /?/£?/• Because of (3.3) the term

of highest degree in ab is

Degl=v
Deg J=|*

where y^Dega, #=Deg6. Since ^p is a graded ideal, this term belongs also
to yp. By Lemma 3.1 (ii) we have therefore

S *iftj=Q
Deg J=v

for all 70, JQ with Deg /0=^, Deg J0=ju. Because of lemma 3.2 this means that

r~/0 j~j"0

Now suppose a&yp and b^yp. Since ab^^p and .7^ is a two-sided ideal,
we can subtract terms belonging to y? from a and 6 if necessary and thus as-
sume that the terms of highest degree in both a and b do not belong to J?.
This contradicts (3.5) by Lemma 3.1 (ii).
(ii) The proof is essentially the same as in (i) with 3*? replaced by 3f

p-\- {X-1}.
(iii) Suppose 0=S aleI commutes mod ^p with e{. This means by lemma
3.1 (ii) that U~Ji for all / such that 2 a/^O. Hence, (ij)^p for all 7

contained in /9 so modulo ^p a belongs to the algebra generated by ej with

We turn next to a construction of positive, linear functional on
or equivalently, functional in ̂ n^+/. For every re^n^+/ the matrix

(3.6)

has the following properties :
1) Mltj is positive semidefinite, i.e.
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2] ^/M7>/>0 for all finite sequences {<*/} in C , (3.7)

2) If /*/~#*L, then MrJ=MKtL. (3.8)

Conversely, every such matrix defines by (3.6) a functional in 3f^ fl £+/. Note
that (3.8) means in particular that the matrix elements MItj depend only on
the equivalence classes [/], [/] of multiindices.

To construct matrices satisfying (3.7) and (3.8) we use a simple method
which we now describe. It goes back to [9] and has been used in a similar
context e.g. in [6] and [10]. Suppose we want to construct an infinite, her-
mitian matrix A=(aij)itj<=N such that

1') S^o->S^Myl2 (3-9)
for all finite sequences {^-}, where the cy>0 are some given numbers.

2') ann=a{j for certain ij depending on n. (3.10)
Consider the matrix B=(f)i^itjeN with bij=aij—dijcj and let Bn denote the
submatrix (6,-y),-f ,-<;,». Then (3.9) is certainly true if det Bn>0 for all n. Now

det£w+1 = tetBn.(bn+lin+l-Vn-B;lVT
n) (3.11)

with Vn=(bn+lfl, •••,bn+lin). We can therefore define the matrix elements of
B by induction over n, such that (3.9) and (3.10) hold, provided the constraint
(3.10) satisfies the following condition:

If ij^pnn is such that (3.10) requires ann=aij to hold, then either i>n or

In fact, Vn will then only involve bkk with k<n. If det Bn>Q and the
off-diagonal elements not fixed by (3.10) are arbitrarily defined (e.g. as zero),
then det Bn+l>Q for bn+1>n+1 large enough, in virtue of (3.11).

In order to apply this to the problem at hand we must show that it is
possible to order the equivalence classes [/] into a sequence, such that
whenever I*I~J*K, then either [/] or [K] appear later in the sequence than [/].

We define such an order relation < by requiring [/]<[/] if Deg 7<Deg /
and choosing an arbitrary linear ordering for classes with fixed degree. This
ordering has the right properties :

3.4 Lemma. If I*I~ J*K and [I] =4= [/],[/] 4= [K], then either [I]<[J] or

Proof. There are three possibilities :
1) Deg /<Deg / which implies [/]<[/].
2) Deg /> Deg / which implies Deg /<Deg K because
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2Deg /-Deg /+Deg K9 and thus
3) Deg /= Deg / which implies [I]=[J] and [I]=[K] by Lemma 3.2.

By the preceding discussion, we can thus for any choice of C[7]>0 define

a positive linear functional T^E+f fl 3*t such that

for all a = S a/e/- The seminorms an-»(2 c[7]| S «/|2)1/2 form a basis for
i j~i

the family of continuous seminorms on E which vanish on yp. Another way
of stating this result is thus:

3.5 Theorem. For any continuous seminorm ||°|| on E, vanishing on yp9

there is a T^E+'fty^ such that \\a\\2<T(a*d)for all a^K

3.6 Corollary, The ideals yp satisfy the conditions stated in Proposition

2.2. Moreover, (E/^p)+ is a normal cone in (E/3f
p).

Proof. This follows immediately from the preceding theorem, cf. Thm.
4 in [6]. Note that the product in E is continuous in both factors jointly,
so the analogue of the topology A/ in [6] is here the original topology.

§4. The Locality Ideal

The locality ideal ^CC^ is generated by commutators f®g—g®f with
i and/(jc)g(.y)=0 for (x— j)2>0. Jc is a graded ideal w.r.t. the canon-

ical grading of £ i.e. if f=(f0, •»,/„, 0, -)^C5 then fn^3F
enffn=3f

e.n for
all n. 7C is also ^-invariant and the quotient algebra A=$_\y ' c is again a graded

*-algebra:

where ^»:=y,,/^r
c>n. Equipped with the quotient topology tf is a nuclear

LF-space.
It will be convenient to have a more explicit description of J c^ dn and

the duals d'n~y-}rtnm To this end we generalize somewhat a construction
called "space-like symmetrization" in [1]. Define first an equivalence rela-
tion between points in Rd'n :

(xl9 —9xn)~>*(yl9 —,yn)

if one ft-tuple can be transformed into the other by a sequence of transpositions
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of the components, such that one transposes at each step a pair of adjacent
components, that are mutually space-like. To simplify the notation we also
denote such ^-tuples by capital letters, X=(xl9 ~',xn). If n is a permutation
of { 1 , • • • , n} we write X^=(x^, • • • , x«n). For every X we have a set of permuta-
tions:

Pz: = i*\X«~X}
and

{Y\Y~X} = {X«\n^Px}.

Note that Px is in general only a subset and not a subgroup of the symmetric
group, Moreover, if Y^X, say Y=X^9 then

PY = P-rO^ and Px = PyCTuf1 . (4.1)

Next we define 2 K(M-1)/2 open sets Off<=Rd'n as follows: Let a = Kv} be a
set of signs, i.e. ̂ . = ±1 for i,j=l, •••,/!, /<y. Then

a^-Ulfo- xtf-OtjX) for /</}.

Denote by SP(0«) the space of ^-functions Off-*C, such that

: = max sup | H DVfo, -, xJ-H (1+ l^|*)| (4.2)
\<Xi\<ZkX€=Ov i j

is finite for all k. These seminorms define a topology on 9^(0^. The sets
Co- are regular open sets in the sense of Whitney. It follows (cf. e.g. [12] pp.
77-79) that (f(0v) is isomorphic to the quotient space of <f(Rd'n) modulo
functions with support in COV. The isomorphism is given by restricting func-
tions in <f(Rd'n) to Ov. As a consequence of this we have also that the dual
space y(Q$ is isomorphic to a subspace of y(Rd'n)r namely to the space of
tempered distributions with support in Q0.

If Xe.R*'*9 the set of permutations Px depends only on the sign of the
(Xf—Xj)2, Hence, for a fixed, Px is independent of X^Off and we can write

Pff instead of Px. If n^P^ define no by (7j:^)ij=a^~1i,^~lj' Then

If /is a function defined on a subset of Rd'" and n is a permutation, we write

(f •*)&)= AX j.

For distributions T we define
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Then Ton has support in 0,,. if Thas support in O** and
After this preparation we can now state

4.1 Proposition, (i) A distribution T<=tf(Rn'dy annihilates JCin if and
only if T can be written as

with supp T^Og. and T^T^on for all
(ii) If T runs through an equicontinuous set in ^^«, then the T^ can be chosen
from equicontinuous sets in

The proof is an application of standard facts from distribution theory. It is
given in the appendix.

From this proposition one obtains a characterization of 3*Ctn and dn. DQ-

(4.3)
Card Px

Note that / can have discontinuities on dC^fldCv if Pv*Pj. However,
/| 0^0,) for all a.

4.2 Proposition, (i) f^yc>nifandonlyiff=0.
(ii) The mappings

define an isomorphism of An onto the closed subspace of ®$f(0a) which con-
<r

sists of {g^} satisfying gtr=g1fffon for all n

Proof. This is the dual version of Proposition 4.1 and follows by com-
bining it with the bipolar theorem. Note that / = 0 is equivalent to
S(/°*) 1(3^0 for all a.

*eP<r

In order to apply the results of Section 3 to the algebra /7, we now define
homomorphisms of /? onto partially symmetric tensor algebras over finite
dimensional spaces.

Let {ex} x<=Rd denote the natural basis in the (infinite dimensional) vector
space CRd. If x = {xl9 • • • , xn} is a finite subset of Rd, {ex}x^^ is then a
basis for a finite dimensional subspace E^=^C^. Define a relation on the set
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and let J ^ be the corresponding two-sided ideal in the tensor algebra E#, gen-
erated by the commutators [ex9 ey] with (x—y)2<Q.

If #c^5 we have natural projections E^E^ which extend to #-homo-
morphisms q\ E „->£#, satisfying

From Lemma 3.1 (ii) follows that 3f^ is mapped onto ^ under q^ which
thus induces a *-homomorphism/7^: ^L-»^ where /J^ denotes the quotient
algebra E^Jy^ Again we have

if *C?C;? . (4.4)

Consider now the following linear maps

They extend to *-homomorphisms ^: !f -*£}#, and it is clear that l
c^. The ̂  thus give rise to *-homomorphisms Q^.A-^A*. The C2>^
clearly satisfy

i f ^ C ^ , (4.6)

and the family of all 0^ separates points in /J:

4.3 Lemma, n Ker 0* = {0} .

Proof. Suppose f ^ f f ( R d ' n ) and ̂ (/)e^ for all *. By Lemma 3.1
(ii) and the definition of p^ we have

for all X<E.Rd'n. Hence /=0, so/e^c>B by Proposition 4.2 (i).

Combining Theorem 3.3, Lemma 4.3 and using (4.4) and (4.6) we obtain

4 A Theorem, (i) The algebra A has no divisors of zero.

(ii) The only invertible elements in d are multiples of the identity.

(iii) Let O C Rd be an open set and Oc its causal complement, Oc={x\ (x —y)2 <0
for all y^O}. Let /7(0) be the subalgebra of d generated by functions with

support in O and /J(O)' its commutant. Then /t(O)§ =

Proof, (i) Suppose <z^0, 64=0. By Lemma 4.3 there are # and ^ s.t.

and (Z>^(ft)=|=0. If ^D^U^5 we have ^(d)=p^o0^a) and (Z>^(ft)=

9 so ( Z > a = t = 0 and < Z ( f t ) = | = 0 . Thus 0(a)-0b) = &(<£) *0, so



ON THE LOCALITY IDEAL 1075

(ii) If a<=id has an inverse In d, then ®#(a) ^as an inverse in /^ for
all ^. Thus <^^(a)=c^0^(l) with c^e£7, and we have only to show that c#

is independent of #. But if ^ is another finite subset of Rd and ^Z>^U^ ?

we have ^^=p^°^>^ and 0^Pt??0®? anci thus c^=c^=c^,
(in) Using Prop. 3.2 we may for every open set OdRd identify d(Oc)n with
the space of all symmetrized functions / with f ^ f f n having support in
OcX"-xOc. This space is obviously closed in dn w.r.t. pointwise con-
vergence of functions. It follows that ae^(0c) iff 0#(d) e 0*04(0*)) for all
finite subsets ^dHd. Now suppose a^tf(O)'. If *c:Rd Is finite, there is a
^=)^ such that (?nO)cn? = Ocn?. From Thm. 3.3 (iii) we deduce that

so

We now come to the question whether /4 has sufficiently many states.
Combining the (continuous) homomorphisms 0^ with the states on /7^ we
obtain by Corollary 3.6 and Lemma 4.3 a separating family of states on /4.
Hence we have

485 Theorem* The locality ideal satisfies the conditions of Prop, 2.2.
In particular, the algebra A has a faithful Hilbert space representation.

This result can be strengthened considerably, and the rest of the section
will be devoted to this task. Let ||-||A, k=!9 2, •°8 be a basis of continuous

seminorms for the topology of y(Rd). The seminorms |HI&®s""®slHL= :

|| • | |f then form a basis for the topology of if(Rd'n}, A convenient explicit
choice for the present purpose is

- max sup | jy*f(x) • (1 + I x \k) \ (4.7)

which implies

(|/| \k = max sup | n ^*''/(*i> • •• •> *n) ° IX (1 + I Xj I *) I - (4.8)

The direct sum topology on £P can be defined by the collection of seminorms
of the form

.{*11)=supcJI | |/J|Z i i (4.9)

with cK>0 and kn^N for all n. A strictly coarser topology, called r^ in [13]
and subsequent papers of the Leipzig group, is defined by allowing only bounded
sequences {kn} in (4.9). A basis of seminorms for this topology is also given
by
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(4.10)

with k^N independent of n. By abuse of notation we shall also denote the

corresponding quotient topology on d by !•«,. Some simple properties of

this topology are as follows :

1) TOO induces the original topology on $fn resp. /?H.

2) (/[TOO] resp. ^[r^] is a nuclear space.

3) The multiplication on ^[r^] resp. ^[r^] is jointly continuous in both
factors.

The announced refinement of Theorem 4.5 is now

4.6 Theorem, •&+ is a normal cone in ^[r^].

We recall (cf. e.g. [14]) that the statement is equivalent to the following:

For every r^-continuous seminorm ||-|| on /7 there is a r^-equicontinuous set

of positive functional, C+C/7+/
? such that ||a||< sup 1 T(a)\ for all a^d.

T<=€+

Proof of Thm. 4.6. The first step is to reduce the considerations to the

homogeneous components /?n in /^. Let ||a||c+ denote the seminorm sup | T(d) \ ,
T<=C+

if C+ is an equicontinuous set in /7+/. We claim that for any such C+ and any
sequence {cn} of positive numbers there is an equicontinuous set

such that

for all a=^an, an^tfn. This can be shown in the same way as Lemma 3.2
in [5], with |[r||c+= sup \T(b)\ replacing the function F(co) in [5], or more

directly as follows: We have

where the sup is taken over all sequences {pn} of real numbers with | ftn \ <

2n+1cn. By a result of Boas [9] we can write j9n=a(
n
1)—a(

n
2} where the o4° are

sequences of positive type, i.e. such that (atf+m)n,m is a positive definite matrix.
Moreover, an inspection of the proof in [9] shows that the bound \pn\ <2w+1cw

leads to a bound for the o4°: There are constants dn, depending only on the

sequence {cn}, such that one can choose | o^01 ̂ dn. Since T^j : =(a0T09 a^Tlt

•••) is a positive functional if T is positive and {an} is a sequence of positive

type ([2], Lemma II. 4.3), we conclude that
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with D+={S^<f+'\S=T{an], TeC+
3 I a, I < 24,}.

In view of this it is sufficient to show that for every k there is an equicon-

tinuous set C+C/7+/ and a sequence {cn} such that

\\a«\\l<cn\\an\\c+ (4.11)

for all an^/?n. We have here denoted the quotient seminorm corresponding

to (4.8) again by |H|J. By Proposition 4.2 (ii) we may equivalently consider

the seminorms

(4.12)

for some k\ where the seminorms on ^(CU are as in (4.2). In principle kf

could depend on n, but a closer inspection of the proof (which uses extension

theorems for C°°-functions, cf. the appendix) shows that one can in fact take

k'=k.
In order to prove (4.11) we generalize the homomorphisms d>^ slightly.

Let * = {*!, ~°9xN} again be a finite subset of Rd and suppose k^W\J {0}.
Let E^k be a finite dimensional vector space with basis {exa}9 x^^9

, \<*\<k. Define ^k: (f-*E«tk by

= S S

In the same way as before this induces homomorphisms ®xtk°. ^-^^,&: =

.k9 where the ideal 3^ is generated by [exa, ey$] with (x—y)2<®9 x,

|a|, | /?|<fc. Now if an=f+3f
Ctn^^n=yj3f

e9H9 we have for any

?-^< KH 0*<)(*i, -, ^) II 0+ l

for some xi^Rd
9 |a f- | <fc, f=l , • • • , w . By Lemma 3.1 (i) and the definition

of/ we can write the right hand side as

where *: = {xl9 • • - , 3cM} and j is the linear functional on ^^ taking the value

1 on (the equivalence class of) e-x^i®'"®e-Xna,n and 0 on the other basis ele-

ments. By Theorem 3.5 we can split s into positive functional, so

for some positive functional t on ^&. Now T: =t°®#sk is a positive func-

tional on /7 and is continuous w.r.t. the seminorm ||°||Z. Although s and /
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depend on an, they do so only in a trivial way. In fact, the functionals de-
pend only on the particular choice of a basis element in d^.k which one has
to make for each an. Changing an may change the set « and thus the algebra
rf#9k- F°r fi^d ^3 however, there are only finitely many isomorphism classes
of such algebras, and for a fixed isomorphism class one has only to consider
finitely many basis elements. Altogether there are only finitely many different
functionals s and t to be taken into account. It follows that the functionals
T=to@#tk belong to an equicontinuous set of positive functionals, independent
of an, so we have established (4.11).

From Theorem 4.6 follows that every Too-continuous functional on /? is a
linear combination of functionals in d+'. Because the topology r^ induces

jr
the original topology on 0 dn for N<o°9 Theorem 4.6 thus has the following

H = 0

corollary:

4.7 Corollary. If T=(T09 T» -)e3^ and Tn=Q for n>N with
then T belongs to the linear span of 7^ fl £P+/.

As already remarked, Theorem 4.6 states that r^ is the topology of uniform
convergence on roo-equicontinuous sets in /7+/. Since ^[r°°] is a nuclear al-
gebra, we may equivalently consider order bounded sets in ^[r00]

+/:

4.8 Theorem. For every r ̂ -continuous seminorm ||e|| on A there is a
T ̂ -continuous, positive functional T on d, such that \\a\\2 <T(a* a) for all

Proof. By [16], Prop. 4.1.4, there exists an equicontinuous sequence
{S^ in /tffrj' and a summable sequence { -̂} in R+ with ||a||< S 4,- 1 5,-(a) |
for all a. The St can be chosen hermitian, and by Theorem 4.6 each St can
be split, Si=T1

i—T2
iy where {T}} and {Tf} are equicontinuous sequences in

^[TOO]+/. Hence by Cauchy-Schwarz :

| r?(a)|)<const. S ^(T\(a^a)
< const. T(a*a)1/2

4.9 Concluding remark. TOO is not the strongest topology on /<7 for which
T^+ is a normal cone. In fact there exist functionals in 7t fl ̂ +/ that are not
r^-continuous, cf. Theorem 3.7 in [5]1}. The strongest topology for which /?+

1) There exist even Wightman functionals that are not Too-continuous [17]. Explicit examples
can be constructed by taking suitable superpositions of functionals corresponding to
free fields with different masses and different normalizations of the field operators. Other
examples are provided by generalized Wick powers of generalized free fields (E. Briining,
private communication).



ON THE LOCALITY IDEAL 1079

is normal should have some similarity with the topology r in [5]5 but its ex-
plicit description seems to be considerably more involved.

Appendix

Proof of Proposition 4.1. It is obvious that a T^if'n having the stated
properties annihilates J Cln> Suppose conversely that Te.?^. By [15] p. 97
we can decompose T:

with supp T^dOa- This decomposition is unique only up to terms with
support in U dC^, so the T£O) need not yet have the required symmetry prop-er
erty. We define their symmetrization by

f (°> =

Then T^°7i;=fw for all n^P* because of (4.1). If /has support in {?„ we
have moreover T2\f) = T(f) = (Tox)(f)=(T%*x)(f) for *&PV. Thus,

has support in U dO^. T(1) might still be different from zero, because of pos-
<r

sible terms with support in dQ^QO^ for a, a' with P^P^.

In order to deal with this ambiguity, consider those points X^dO^ which
have the same symmetry as 0^ i.e. for which Px=Pff holds. These are pre-
cisely the points X = (xl9 • • - , xn)9 where (xi—xj)

2 = Q for some pairs ij with
ai}.=-}-l} the sign of the other (Xi—Xj)2 being the same as for points in O^

Let B(^ denote the set of those X^.dOff where (xi—xj)
2=Q for exactly k such

pairs. The following properties are easily verified:

1) 5(
cr*

+1)c5c5F=aO<r, and B(^=0 for some k<n+l.

2) W\^ C ̂ +1)
? and if a =|= a ', then ^ n W C ̂ ^ for some a/7.

3) £(*>:= u ̂  is a closed regular set in the sense of [15], p. 98-100, for
all k.
Because of 3) we can now decompose r(1) :

wtth supp T^CJ^^dOa.. The decomposition is unique up to terms with
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support in U ̂ H^c^. Suppose /e 9" is such that supp

\ We can then write /=#+/* with supp gf}B(1)=0 and supp h con-

tained in the open set

Note that T(1) has support in iP~ and P^dPx for all XdOv. Hence we have
T?\g)=(T%on)(g)=Q and T^(h) = T^n(h\ and thus T^(f) = T^n(f} for

all n^Pff. Defining

Card P, "6F,

we conclude that

r(2) = T(1) — 2

has support in UCB^VB^C.^. Next we decompose T(2) into terms with

support in B(J} and by repeating this procedure we obtain for k=2, 3, ••• dis-

tributions ff} with support in W^dOff satisfying f^on=f^ for weP,

and supp (T— S S f?/})c^(*+1). Since ^*+1)=0 for fc>« we finally get the

desired decomposition of T:

j1 — V T—

with Tff = 2 A)- At each step the decomposition can be done in such a way
k

that an equicontinuous set of distributions is decomposed into equicontinuous

sets. This follows from the proofs of the decomposition theorems pp. 98-100

in [15], and we give here only a sketch of the argument. First, if FdRn is

a sufficiently regular, closed set (e.g. if F is Lipschitzian) one can by Whitney's

extension theorems extend C°°-functions on F (that decrease rapidly at infinity)

to functions in $ without increasing their Schwartz-norms by more than a

constant factor. Using this, one shows in the same manner as in the proof

of theorem XXVII in [15] that every T^tf' with support in F can be written

as
T= 2

with tempered measures &# having their support in F.

Moreover, if T runs through an equicontinuous set, we may take the jua

from an equicontinuous set of tempered measures and also choose N indepen-

dently of T. If {Fv} is a finite covering of F by closed sets, we can define a
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covering of F by disjoint Borel sets Gv with GVCFV for all v. If x^ is the
characteristic function of Gv, we have

for all a, and Tv= S D*(fJL*xJ has support in GvcFv. This splitting of T
|*I£JV

obviously respects equicontinuity, and the subsequent symmetrization does
not alter this.
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