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The Hopf for Morava K-Theoiy

By

W. Stephen WILSON*

Introduction

Morava ^-theories were first introduced and studied by Jack Morava.
For p a prime, and /i>0, K(ri)*(~) is a periodic generalized homology theory
of period 2(pn—1). The coefficient ring is K(n)*^Z/p[vn, v~l], \ vn\ =2(pn—l).
For 77 = 1, ^(1)*(—) is a summand of the mod p complex AT-theory homology.
For higher n, Morava proved a generalized Conner-Floyd theorem which
led to a solution of the Conner-Floyd conjecture, see [J-W] and [R-WJ.
Morava also developed the properties of the stable operations. This was
instrumental in the study of stable homotopy in [MRW]. Morava has several
unpublished papers on his work, for example, [MoJ and [MoJ. The purpose
of this paper is to describe the unstable Morava ^-theory operations.

Let K(n)* — {K(n){} be the ^-spectrum representing the n-th Morava

^-theory for a fixed prime p. Because this is periodic, i.e., K(ri)i~K(ri)i+2(p*-1),
we consider it as graded over Z/2(pn — l) instead of Z. Our goal is to com-
pute K(ri)*K(n\, which is dual to the unstable operations. We actually com-
pute E*K(ii)* for a wide class of generalized homology theories £*(—). Let
E be a multiplicative BP module spectrum, i.e., a ring spectrum with a multi-
plicative map fj,\ BP->E.
Let In=(p9 v1? •• ' , vn_-^dBP%. Our computations hold for all such E%(—)
where on the coefficient rings, ^(In)=Q. For p an odd prime, this class in-
cludes all P(m), B(m), k(ni), and K(m), in^n as well as the usual mod p
homology H*(—); see [J-W] for these theories. For p an odd prime, these
are all nice multiplicative spectra by [S-Y], [Wu], and [Mo3].

We show that E*K(ri)* is a Hopf ring, i.e., each E*K(ri)i is a (bi)com-
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mutative Hopf algebra with conjugation and product * ; and the ring structure
of K(ri)*(— ) gives a pairing o; E*K(n)i®E*E*K(ri)j->E3.K(ri)i+j. We make
continual use of the techniques in our joint work with Ravenel on Hopf rings:
[R-WJ, [R-WJ and Section 8 of [W]. We use these techniques and the
bar spectral sequence with Hopf rings from [T-W] to compute H*K(ri)*.
There are many non-zero differentials and the nontrivial algebra extension
problems all drop to the first filtration. We then use Hopf rings to show that
the Atiyah-Hirzebruch spectral sequence collapses, and to solve all extension
problems.

As with all of our previous calculations, E*K(ri)* is generated by few
elements. In Section 1 we define elements a(i)^E2piK(n)l, i<n, b({^E2ptK(n)2,

and el^ElK(n)l. For /=(/<>, il9 • • • , in-^ and J=(jQ, j\, • • • )> nonnegative finite
sequences with ik=Q or 1 andjk<pn, we define

arbf = al^o'-'oal^T^b^ob^o-'' ,

with the convention that arbJ=[l]—[G\ if / and / are all zeros. Let E(x) be
the exterior algebra with generator x and P(x) the polynomial algebra. Let
TPk(x) be P(x)/xp\ Let 1(1) be the / with all ik = l.

Theorem 1. Let E be a multiplicative BP module spectrum with ##(/») =0.
Let p be an odd prime. As E% algebras

jQ<Ptt-l

if 10=1
thenjQ<P"-l

where the tensor product is over E* and runs through all I and J (recall that I

and J are defined to have all ik=Q, 1, and jk<pn). The number p(/)>0 is the
smallest k with in_k=Q. D

The details of the Hopf ring relations are given in the text. For the prime
2, Theorem 1 holds as stated. Unfortunately the spectra of interest, e.g. P(ri),
K(ri), may not be commutative ring spectra. Even in these cases the AHSS
collapses giving E*K(ri)* for p=2. Because of the possible lack of commuta-
tivity of the multiplications on E and K(ri), this is not necessarily as algebras.

The author would like to thank David Johnson and Tony Bahri for their
interest and acknowledge the influence of the joint work with Douglas Ravenel.
Thanks are due to Professor Shimada and the RIMS, Kyoto University, for
their hospitality during much of this project. We gratefully acknowledge
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the support of the Johns Hopkins University, the N.S.F., and the Ministry
of Education in Japan.

In Section 1 we define the elements a a) and b^ and give the relations.
Then we deduce Theorem 1 for £#(— ) from Theorem 1 for H%(—). In Sec-
tion 2 we do the homology computation. Comments on p=2 are at the end
of each section.

§ 1. The Basics

The results in this section, coupled with Theorem 1, complete the descrip-
tion of E*K(ri)* as a Hopf ring.

The spectrum P(ri) of [J-W] has the property that P(ri)*^BP*IIn. For
p odd it is the universal multiplicative BP module spectrum with /*#(/«)— 0.
This fact follows from the work of Wurgler in [Wu] (see 6.8), where he com-
putes E*BP and E*P(ri). We crowd our basic facts into a long proposition.

Proposition 1.1. Let p be an odd prime. We have elements

2iK(n)i, i<pn, and bi^E2iK(ri)2 such that: (Let b({)=bpi and «(,-)= a
(a) They are natural with respect to E.
(b) e^ — is the homology suspension map.

(c) The coproduct is given by flf— >S 0,--y®fly, b{

(d) They are all permanent cycles in the AHSSfor
(e)
(f )

(g) 6«>*'=0.

(h) fl(,,*>=0, i<n~L

(i) au-1)**=/c*(vll)a(o)
(j) ^(V^i^c^-'o^.

(k)

(1) b lS=fJL*(v)bu>9 k>0, /y/**(v.+i.)=0, />0. D

Define s(J)=(Q, j09 j\, •••)• If i«-i=0, define jr(/)=(0, /0, • • - , /w_2). Let J,-
be the sequence with one in the fth place and zeros elsewhere. Define the
length of / to be /(/)=S ik.

Proposition 1.2. Let p be an odd prime and E as usual.
(a) Tjf iB_!=l, then, in E*K(n)*

^^ .
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(b) //X-i-0, then faW*=0 in E±K(n)*.
(c) In Theorem 1 for H*K(ri)% we have, up to signs, an equality of sets (I and
J as usual)

, andifi^l, thenj0<p"-l}

/„_, = ()}. D

Proof of Theorem 1 for general E. We assume Theorem 1 for H*(—).
The Ez term of the AHSS is E*®7/pH*K(ri)* because E* must be a vector space
over Zjp by our assumptions about E. Because P(ri) is universal and the
#(,-), 6(,-), el9 and the AHSS are all natural with respect to E, (1.1 (a))5 the ele-
ments #(,-), bw and e1 are all permanent cycles in the AHSS for E*K(ri)* by
1.1 (d). By Theorem 1 for homology, these elements generate the entire E2

term as a module over E* (using both * and o products). It follows that the
AHSS collapses. All of the extension problems are solved by 1.1 and 1.2;
and the number p(I) does not change. D

Corollary 1.3. E*K(ri)* is a Hop/ring. D

Proof. We have just proven that E*K(n)* is free over E*. This implies
a Kiinneth isomorphism for these spaces, so the coproduct can be defined.
That was the only structure missing. D

Proof of 1. 1. We define our elements for P(n) first and then use the uni-
versality of P(n) to define them for all E. In degrees less than 2pn— I we have

, 1)

because K(ri)\—KCZIp, 1) for dimensions less than 2pn— 1 and they are con-
nected; while P(ri)—H in stable dimensions less than 2(pn— 1). The groups
H^Z/p, 1) and H2iK(Zjp, 1) are isomorphic to Zjp with canonical generators.

We use the isomorphism to define el and a{ for P(ri)*K(n\. This isomorphism

is natural because it is induced by maps P(n)-*H and K(n\-^K(Zjp, 1). The

cohomology theory K(ri)*(-~ ) has a complex orientation, so we have a map

CP°°->K(n)2. Because P(n) is a BP module spectrum, P(ri)#CP~ is P(w)# free

on jSj^P^uCP00 (see [A]). Use these elements and the complex orientation

to define the bj^P(n)2iK(n\.

Part (a). Follows from the definition.

Part (b). The element el is induced from Sl-*K(n\.
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Part (c). The coproduct on the af is Induced from H*K(Z/p, 1). For
the bi9 it comes from CP°°, but only if E*K(ri)2 is a coalgebra. For E=H it
is, and so Theorem 1 and Corollary 2.3 are true, and E*K(ri)2 Is a coalgebra.

Part (d). The a{ and el must be permanent cycles for the same dimen-
sional reasons which give us their definition. The /?, are permanent cycles

for CP°°9 so by naturality the i,- are also.

Part (e). This is elementary.

Part (f). Same as 9.1, [R-W2].

Part (g). Again, we must prove this first for homology, then we have
1.3 and the same proof works for general £#(—). Multiplication by p Is zero
on K(n)*(—) so p: K(ri)2->K(n)2 is homotopically trivial. Thus 0=;?*: E*K(n\
->E*K(n)2. As in 7.1 of [R-W2], 0=p*b(i+v=FVb(i+v=fJ>M=bv*p.

Part (h). Same as (g).

Part (I). The only definable, possibly nonzero, elements in P(n)2pnK(n\

are the three In the equation; use the AHSS and dimensional arguments. We
must have a formula

where we have added the periodicity operator, [vj, to show that a^
really lies in P(n)*K(n\p«^. We need this in a moment. First we map

P(n)^K(n)1 -> K(n)*K(Zlp, 1) .

This map takes b($ to zero and the above formula to a(n_1)*
p=vna(0) (5.7 of

[R-W2]). So /•!=!. Now observe that P(n\—K(n\ in our range of Interest
(actually in dimensions less than 2pn+l— 1). We map our formula to P(ri)#P(ri)

by stabilization. By (b) this is just multiplication by e^ an infinite number of
times, remembering (e). Stabilizing kills * products, so our formula becomes

0 = vn im(a(0))+r2 im(a(o)K -

Because /„ is zero on both left and right, vn is the same on both left and right,
so this is 0=vM(l+r2)im(a(0)). Both Yagita [Y] and Wiirgler [Wu] have com-
puted P(ri)*P(ri) as

n)t E(im a(0), — , im a(n^} .
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This is P(ri)* free so (l+r2)im0Co)=:0, and r2= — 1. Note that in order to
solve this problem precisely in homology it is necessary for us to do the general
case first.

Part (j). The proof is similar to that for (i). These are the only two
elements in this degree and they are equal after stabilization.

Part (k). From [R-WJ, 3.11, we have [p](x)=^F vn+ix
ptt+l' for P(n\ and

*>o

[p](x)=vnx
pn for K(n). We apply the main relation of [R-WJ, 3.8,

Modulo * products, using the definition b(s)=^ biS\ the coefficient of spn+k

gives (k) as in 3.12 of [R-WJ.

Part (1). It is unnecessary to go modulo * products to prove this case
of(k). D

Proof of 1.2. We use the distributive law for Hopf rings, as in 7.1 of

[R-WJ.

The rest follows from 1.1 (i) and (f). Part (b) is the same using (g) or (h) of
1.1. Part (c) follows from iterating (a) for E=H. D

Modification for p=2.
Many things go through as stated for p=2. The elements el9 ah and bf

are all defined the same. However, to give the coproduct (part (c) of 1.1)
it would be better to incorporate el into the ai9 just as one would do for H^BZ/p;
i.e., let ai^HiK(n\ (then a1=e1). Part (f) implies fl(,-)0fl(f-)=0 for p odd, but
not for p=2. In fact, it is not zero for p=2.

The main problem for p=2 arises from the possible lack of commuta-
tivity for E of interest. This lack of commutativity also shows up in K(ri)*.

Since K(ri)* is an ^-spectrum there is no problem with the * product from it.
E, however, can mess up the * product if E is not commutative. For the E
of interest, E=P(ri), k(ri), etc., we show that o product commutativity holds.
From Wiirgler's work [Wu], we can still use the universality of P(n). We

show that for p=2, a(i^a(j)=a(^a(i) and fl(f-)
0i</)==i(/)°0(,> Wiirgler com-

putes the home of the obstruction to commutativity as (4= 1)
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the primitives of E*(P(ri)/\P(ri)). For E=P(ri), the Qk cover the Milnor primi-
tive in mod 2 cohomology. In P(ri)*P(ri)9—P(ri)*K(ri)2 (in our range), the
obstruction for noncommutativity of a^a^ factors through negative degrees,
which are zero. For fl(,-)°i(y), we see that P(n)^CP°° is even degree, so the Qk

are all zero. This argument works for all E with E'=Q, 0>z> — 2(pn—l).
There are no problems with mod 2 homology. Lack of commutativity

destroys the nice Hopf algebra structure for arbitrary E however.
In the stable object K(ri)%K(ri), see [R] and [Y], one of the defining rela-

tions is vntf
>=vftk. If we change generators we see that this relation occurs

in the defining space unstably by 1.1 (1); a slightly unexpected result

We prove Theorem 1 by induction on degree using the bar spectral se-
quence with Hopf rings [T-W]. Let K(n)j be the zero component. Then
KM^KMi, i= l=0. For /=0, J^Q—Z/pxK(n)'Q. We assume Theorem 1
for HjK(n)^ i<k. The bar spectral sequence determines H{K(n)^+l9 i<k,
and so H{K(n)^ /<&. This induction is implicit in this section. Let a be
the suspension in the spectral sequence. We use the notation and basic facts
of the spectral sequence from [R-WJ. Let m(J) be the smallest k with ^=1=0.
Define m(I) similarly. Let M(I) be the largest k with ik=l.

Theorem 2.1. Let p be any prime. In the bar spectral sequence,
^ we have

(a) Ej*H*K(n)*^ToT£3F&(Zlp9 Zip) =

thenjQ<Pn-l

where the tensor products are indexed over I and J.

(b) In the Hopf ring pairing of the bar spectral sequence, [T-W], we have the
following relations modulo decomposables and other terms mentioned in the
proof.

For J=NO and k=m(J), consider

(i) rXWi/-^1)o6Gb+.)=ry(afl/^1)f J0<pn-l.
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(ii) rjUrfV-'tyb^+^rpWb'), in^=0.
For J=Q and m(I)=k, consider

(iii) rp'(aaI-

(iv) rX*fl/"

(c) I^/?=37(/)=minO|ii,-J-=l} if I*0,andn+l if 1=0. Let I'=J-An_q

The differentials are determined by:

(i) ^f-VX^*/^=^/^f(//)Aff(/+'o)+(^'1)'«, /=NO, J0<p*-l, r7=t=0.

(ii) rf2^-1-V/-i(0a/AO=0^(^)+'f-1*-f(/)+c*"-1)'o, 7=1=0, 1,-jM), r7*05

(d) /« £"5^ (modulo things mentioned in the proof )
TP^aIbJe1)9j0<pn—l, represents ast(I)bst(f+^ where if /4=09 r/ze« /<??(/)

rpt(4>albj\ 4_!-0, represents as'+1(/)

M-1
9 represents (-

(e) ^5- #« algebra, E*% is

where the tensor product is over I and J.

Proof of Theorem 1 /or

All that remains to do is to solve the algebra extension problems for 2.1
(e). This is done by 1.2. Now we have to check that we have Theorem 1.
The exterior part is okay. By 1.2, we know that if a^ob*/"'1 divides arbj,
then arbj is not a generator; so our generators are correct. If 7=7(1), our
generator is a polynomial generator by 1.2. Likewise 1.2 allows us to com-

pute p(I) for 7=t=/(l). D

Proof of Theorem 2.1.

Part (a). See [R-WJ, 6.6 for basics. From the exterior part of Theorem
1 we get ® F(aaIbJe1). From the generators of the other two terms we

n

get ® E(oaIbJ). That concludes the polynomial algebra contribution.
if i0=

From the truncated polynomial algebras we also have a transpotence con-
tribution, which, by 1.2 (c), is our final term.
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Part (b). We prove these formulas for /=0. The />0 cases follow by

applying the iterated Verschiebung, V*9 see Section 7 of [R-W2].
For (i), we have easily;

On part (ii) we must be careful. For k=Q we have precisely

If &>0 we replace 6(1) with &a+D and 6(0> with b^. But now we could have
other terms in the coproduct. However., if fc>03 cfbj is a generator, and
never a p-th power, and we would be left with more than p terms, thus they
never contribute to the transpotences for elements with k>0. They may
interfere with the fc=0, jQ=pn— 1, cases, but we have solved them already and
can mod them out at this stage. The (Mi) and (iv) cases are now straightfor-
ward.

Part (c). Intuitively, all differentials follow from Hopf rings and a(w)->
ab(pn~v°. Of course there is no a(n), and this is precisely why More com-
plications arise because the differential aa^a^-^oa^ob^"1^ is shorter than
the first one. This set, however, does generate all differentials. We collect
the elementary differentials in a lemma whose proof we delay until after the
general case is derived from them. Recall that since the target of a differential
must be a primitive, and all of our generators above filtration one are even,
the only possible targets are the exterior generators of part (a). Thus our
only possible differentials are dpt~l and d2p'~l on ?y of a suspension and a
transpotence respectively.

Lemma, (i) dpi'lr^(oe^=Q.

(ii) dpi-lrPi(aa(k}ed=Q, j<n~k, k<n,
=rkob^-^(Pn-^\ j=n-k,

(iii) rf2*y-VX**c*))=°> j<n-k-l, k<n-\9

=qkoa(n-k^b<pn-V\ j=n-k-l,
(iv) d2pi-1rpi(^aI=:0)=Q9

=rab°($-\ i=n,

We now prove part (c) from these differentials. We use from [T-W],
the fact that d5(xoy)=d'(x)oy our pairings in part (b). First we show by in-
duction that if 1=0, jQ<pn— 1,
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Next, if /^O, /=NO, and J0<pn— 1 we compute, by induction on the length of /,

dt'-^WVed = ̂ l-1M^*/"'^i)0*c*+rt)

=^'-1M^6/-^i))0*c*-M)=0 if *«7,

and if i=q it is equal to

If /=0 we do a similar induction on /(/). We reduce to the lemma to
prove (c) (i) using (b) (iii), also seeing that lower ry are cycles. For the (c)
(ii) case we start with the lemma and use induction first on /(/) and then /(/)
along with (b) (ii) and (iv). Again this also shows the differentials are zero

ferry, i<q—I.
We must show that this determines all of the differentials. In P(x)®E(y\

if d(rti(x))-=y, then the homology is ® TP^r^x)). In our case, since the
j<i

targets are all distinct and the remaining rp'(x) are all cycles, the spectral
sequence must collapse after £%&.

We prove the lemma. Part (i) follows by comparison with

For the proof of part (d) note that this makes the identification for b^.
For the part (ii), ifj<n—k, we see that

and it follows from part (i). Ifj=n~k. Assume there is no differential, then

We have just shown that this is a permanent cycle (which cannot be in the
image of a differential) which is represented by —b(n-k-i)<>a(n-i). The
power of this is

by 1.1. We see soon that this is represented by rp
0(^d(0)

Qb(n^^ob^"~2oe1) which
is of even degree of filtration one so it survives nontrivially to E%*. We
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know that p%: H*K(ri)%->H*K(n)* must be zero because K(ri)%(X) is a
Z/p vector space. But p* = FV, see 7.1 of [R-W2]. Thus we must have
rf**"*-1(^H-*(aa(Jfe)e1))=f=0. We must discover the target. We know, 1.1 (j),
that b^'1oel=ab^-l=09 so in 2.1 (a), all of the aarbj with J0=pn-l, must
be hit by differentials. We have already shown a one to one correspondence
between such terms and F(x) terms in (a) where x^FoaIbJel9 I=Q. In this last
case we know they are permanent cycles anyway. The conclusion: the set
of atfb1 with jQ=pn—l, i03=l are precisely the primitives which are targets of
differentials! For the differential in question now3 the degree obJn-k+(pn~1)Jo

is the correct degree. Furthermore there are no other oarbj of this degree
with jQ=pn—I, iQ=Q- We are finished. The proof of part (iii) and (iv) of
the lemma is similar. First we identify rpj(^ar==Q) with a(y) by comparison
with BZ/p. These are permanent cycles. Then rpj(^ci(^}=Tpj(^aI=^a(k+j+l)

which is fl(;-)
0«a+;-+i) and is a cycles for j<n—k—l. If j=n—k—l we apply

p*=FV to 7y(0fl<fc)). As above, f%'(0fl<*))=7y-i(00(*)) which we have just
identified with a(M_ f e_2)°a(M_i). The p-th power of this is 0(0)° #(»-*-o^cof"1

which we know to be represented by r/(ff#(o)°^(«-£-i)0^(°of ~2°ei) and since it is
even degree in filtration one, is nonzero in E%%. Again, we must have a
differential and the only candidate is the one advertised.

Part (d). In the process of proving part (c) we located b^ and a^. The

rest follows by induction using part (b). This induction was essentially carried

out when we showed that they were all cycles in the proof of part (c).

Part (e). See the comments in part (c) and part (d). D

Modifications for p=2. Everything is fine for p=2, we are just using

unusual notation. We should incorporate el in the at so that the coproduct

is accurately reflected. For p=2, E(x)^^TP1(x), and as algebras, H^^TP^x)

—r(ax)—E(ax)®r(<l)x), so we could simplify 2.1 considerably if we only

did the p=2 case.
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