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Brown-Peterson Metastability and
the Bendersky-Bavls Conjecture

By

W. Stephen WILSON*

Introduction

This paper represents the author's failed attempt to prove the conjectures
of Bendersky and Davis, [B-D]. They apply unstable BP operations to the
study of nondesuspensions of truncated real projective space. As immediate
corollaries they obtain nonimmersion results for real projective spaces. Un-
fortunately, most of their work remains conjectural. Let a(m) be the number
of one's in the binary expansion of m. Strong motivation to study [B-D] is
supplied by their elegant conjecture :

Conjecture l(s) ([B-D]). // a(m) =s+ 1 , then

Bendersky and Davis initially proved this conjecture and all of the remain-
ing ones for ,s<5. Using our approach and computer tables supplied by
Don Davis, we extended this to ,s<7. However, Bendersky and Davis really
did compute s=69 they were just overlooking a term in their preprint. Our
proof of s =1 does not use further calculations, but is actually a theorem which
depends on the s=6 case being true in a strong way. The cases, s=8 (by
computation) and s=9 (by theory from s=8), are within reach but there is
no motivation to carry out these computations. Don Davis informs us that
the lowest dimensional new nonimmersion we get is for m=4939 a(m)=l,

which gives J?P998^!21958, an improvement of two over [A-D].
Let gd(E) be the geometric dimension of the bundle E\ v2(«), the number
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of powers of 2 that divides n; Ek, the canonical line bundle over RPk. Con-
jecture l(s) is implied by Conjecture 2(s).

Conjecture 2(s) ([B-D]). // d>6s and ^j, then gd((2a+l)£2d)>

2d~6s-2. D

They show that this, in turn, is a direct consequence of their Conjecture
3(5). Let RPl be the cofiber

Conjecture 3(s) ([B-D]). / / d > 6 s a n d ^ , then

In a difficult reduction, Bendersky and Davis deduce Conjecture 3(s)
from a purely algebraic conjecture involving unstable Brown-Peterson homol-
ogy information. We need some terminology. The BP cooperations are

(4) BP*BP^BP*[h^ h2, -], where \hn\ =2(ptt-l) ,

and hn=c(tn)9 see [A]. For J=(jl9 J2, •••) we write hj=h^h2^ ••• and define
the length of /, 7(/)=S./V Let [2](x)=^ a{x

i+1 be the standard two sequence.
The p=2 reduced Brown-Peterson homology of RPZb+i is generated as a BP*
module by Tk^BP2k+lRP2bJri, k^b. The only relations are

(5) 2X-r*-,- - 0 (a0 = 2, a, = u,) ,
g = 0

Bendersky and Davis define VbdBP*BP®BPikBP*RP2b+1 as the left
module generated by all hj®urc with 2/(/)<|wrc|. Then they define

Note that Wb is a left-right BP* module. Bendersky and Davis show that
Conjecture 7(X) implies Conjecture 30?).

Conjecture 7(s) ([B-D]). For b large (2b^3s+ 1),

s^Wb. D

It is fairly easy to see that 7(s) implies 7(s— 1). We show this later. The
module Wb is where Bendersky and Davis do their calculations. In fact,
they set h2, h3, etc. equal to zero in Wb and can still show l(s) for ,s<6.

Theorem 8 (Bendersky-Davis9 [B-D]). Conjecture l(s) is true for
and Conjecture l(s)=^> Conjecture 3(s)=$> Conjecture 2(s)=$> Conjecture l(s).
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Rather than to show directly that the elements of Wb are nonzero, we
have concentrated on describing the entire structure of Wb through the neces-
sary range. A few calculations make this structure clear. Its simplicity
pulled the author into believing he would be able to prove the conjectures of
[B-D]. Difficulties arose. The attempt to prove it almost works, but the
way is blocked by one troublesome element. We describe this structure in
Section 2. This leads to our version of the conjecture. We have

( 9 ) BP^Zwfa, if* -] , | un\ = 2(/-l

As usual, [J-W], let BP<2y* = BP*/(u3, u49 — )• Define

(10) B'=BP<2>*®BPtB

Let x have degree —2 and define, for/? =2,

(11) B = hTlB'®BP^BP

Define RdB as the left BP(2y% module generated by all negative degree ele-
ments a® ex* with |a|<|o;'| except those of degree —2 with i=l.

Conjecture 12. 0 =2(1 ® x) e B/R. D

Our main result is

Theorem 13. (a) Conjecture 12 implies Conjecture 7 for all s.

(b) If Q = 2(l®x)^B/R modulo(x3k+2)9 then Conjecture l(s) is true for s<

2k+l.

(c) Q=2(l®x)<=B/Rmodulo(x13). D

Part (c) implies all of the previous conjectures for s<7. It was proven
by computations not represented in this paper.

In the process of our investigation, the idea of BP metastability became
clear and we hope it will be of independent interest. Let jBPn} be the £-
spectrum for BP, see [R-W] or [W]. Using the homology suspension, we
can identify QBP*BPn with its image in BP*BP. We get

(14)

Theorem IS (the metastable range). Let Mn=BP*BP/QBP*BP2n,

(a) Multiplication by h^ defines a left-right BP% module map
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(b) which is injectivefor degree s^2(p2—l)n9

(c) and subjective for degree s<2(p2~l)(n+l), D

BP*BP, and thus MM5 are "sparse", i.e., they are nontrivial only in degrees
which are multiples of 2(j?— -1). If we use "hyper-complex" grading (divide
the real grading by 2(p~lJ) we can rephrase Theorem 15 as 2Mn^-^Mn is
an isomorphism in "hyper-complex" degrees ̂ (p+l)n, which looks more like
metastability. The next result is a corollary of our study of the Mn.

Corollary 16 (the BP* module). Let M = lim 2!~2(p~^nMn.

(a) M is generated as a left BP* module by the hj, /(/)>0, where j\^Z.

(b) The element hj has order pl(n.

(c) There is a filtration of M with associated graded object E0M, with

(d) EQM is free as a BP*/(p) module on the hj, /(/)>0.

Define

Mn(k) = M^M^-i+'--+Vi^,-

We have a generalized metastable range.

Theorem 17. Multiplication by hk,

induces a left-right BP* module map which is

(a) injectivefor degree s<2(pk+1—l)n+2(pk—l), and

(b) surjective for degree s<2(pk+1 — l)(n+l). |_J

An analog of Corollary 16 is easy to state, and if true, is more difficult
to prove, and, at present, of far less interest than the metastable module.

We would like to thank Martin Bendersky and Don Davis for sharing
their insights into this problem. This paper owes a large debt to their work.
Also, our computation of the s =6 and 7 cases would have been impossible
without the tables supplied by Don Davis. We thank Douglas Ravenel and
Hirotaka Tamanoi for many conversations about the problem. Thanks also
to Professor Shimada and the RIMS, Kyoto University, for their hospitality
during much of this work. We gratefully acknowledge the generous support
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of the Johns Hopkins University, the N.S.F., and Ministry of Education in

Japan.

We prove our metastable results in Section 1 and we fill Section 2 with

our thoughts on the Bendersky-Davis Conjectures.

§ 1. The Metastable Range

When we need specific generators for BP%, we use Araki's [Ar]. Their
main property is :

(1.1) [/>](*) - SF u = S a^+1 , (£% = P = uQ9 a,., = Ml) .
8>0 |>0

To compute the right unit we have

(1 .2) S* ufjh^j = S* A/ W' +/ ,
i,J>V *,j>*

where the R indicates the formal group sum with coefficients written on the

right. This follows as in [R], see [B-D]. We use a similar notation, L, for

the formal group law written on the left. Sometimes we use F for L or when

there is no difference between left and right. There is a different, but equally

frustrating, formula for the right unit.

Proposition 13. S * (5]L u A^>% =2* (2* A,**')* V d

We use the formula, Theorem 11.111, p. 80, of [W]. After re-

arranging and inserting an x, it reads

S (fl(^))l+16t- - S (&W)'+1fl,- where
f>0 »>0

a(x = S fl,-x''+1 = SF iijjc*1 , and

The result follows by substitution.

Remark. There is a misprint in 11.111. The F was left out of c(SF^)«

Bendersky and Davis observe that [R-W] immediately implies:

Corollary 1.4 QBP*BP2nc:BP*BP is the left BP* module generated by

allhju, 2l(J)~\u\ <2n, u^BP*. Q

We see that QBP*BP2nC.BP*BP is also a right BP* submodule by this.

It is not really necessary to consider all of the above hju because QBP*BP2n
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has been thoroughly studied. It is a free left BP* module and two different
bases have been found. For this work we prefer Boardman's basis, ([B])5

over the original, ([R-W]). We stabilize Boardman's basis. Let u^ujiuj*'".

Theorem 1.5 (Boardman's basis, [B]). The left BP* module QBP*BP2nc:
BP^BP is free on generators',

tin1 ,

such that if

/' a nonnegative sequence, then

Jm<Pkm > ^>0, and

2n-2pk»<2l(J)- 1 ur | <2« . D

Proof. Boardman's basis is for the spaces, not after stabilization. We
have elements hi^BP2piBP2, z>0. For z>0, h{ stabilizes to /zz- while hQ stab-
ilizes to l^BP^BP. Boardman's basis for QBP*BP2n is, where J=(j0, ji, • • • )>
hjul, such that if /is as above, then jm<pkm, m>0, and /(/)— |w f | =2n. Since
VQ stabilizes to 1, we must alter the condition onj'0 to the new condition in
Theorem 1.5. D

Proof of Theorem 15 (a). Multiplication by h± is a left-right BP* module
map of BP*BP to itself which raises degree by 2(^ — 1). Using 1.4 we see that
/*! induces a map of QBP^BP^.^ to QBP*BP2n, which are left-right BP*
modules. D

Proof of Theorem 15 (ft). Define M'n = BP*BP/BP* W I /(/)<«}• We
have the commuting diagram

h
0

0 0.

The lowest degree relation, hjur
9 /^O, defining Mn, which is not divisible by

A! is, by 1.5, h\u±. This is in degree 2(p2~l)n+2(p—1). We show we have
an injection for lower degree. Let #eM£_i such that h^ reduces to zero in
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Mn and is of degree such that all hfu!, 74=0, are divisible by hv Then h^=
2 aijhjur, and by injeetivity #=S aijhj~^u! and x reduces to zero in Mn_P

Proof of Theorem 15(c). M'n is generated by A7, /(/)>«, so Afn is also.
The lowest degree hj withy^O and /(/)>« is AIT1 in degree 2(p2— 1 )(«+!).
The result follows. D

Theorem 1 7. Define Mi(fc) to be M'n\BP* {hj | j\+ • • • +J*-i> 0} -
Then the proof is the same as for 15 except that we must observe that Af+iwz-
is already zero in M£(fc) for i<k. D

We can now begin a more detailed study of the metastable range.

Lemma 1.6. In degree s^2(p2— l)n, the left BP* module generators of
QBP*BP2nC.BP*BP are given by all

A7, /(/)<« and all

hjuh i>0, 0 </(/) -/!</>'' . D

Proof. If we take a Boardman basis element from 1.5 with two or more
w's, say hJuk^JLku

l\ thenj^^i and our lowest degree hj with this a possible
Boardman basis element has hj =hfl~lh{*, with 2n— 2pko<2l(J)— |w j |<
2/(/)-|KAo«AJ=2(^i-l)+2y2-2(^o_l)-2(^i-l)=2^ so 2«-2
<2j2, i.e., j^^j but this is out of our range. So we can only have one u. In
this case the first condition in 1.5 is empty. The second condition becomes
2n—2pi<21(J)~ | HI | <2«, which easily leads to our condition. D

Definition 1.7. Order the / by, J'<J if /(/')</(/). If /(/')=/( A then
J'<J ifjk>jk whenjk+i=j'k+i, />0. We define a filtration of BP*BP indexed
by the /. Let FjBP*BP be the left BP* module generated by all hj\ J'<J.
This induces a filtration, FjMn, of Mn. Let EQMn denote the associated graded
object. Since we will always be working in a finite range our filtration is finite.

We need a fact about the right unit.

Lemma 1.8. For k> 0, J = ((pk-p)l(p-l), 0, 0, — ), v(uk) = (-l)*(jpA1-

) modui0 (^ pu^ FjB

Let /=(/?, wl5 w2, •••). In this degree we are working modulo
(/2

5 hz, h3, •••). Modulo I2, the formal group sums of 1.2 become ordinary

sums. Modulo (/?2, /*3J •••) the coefficient of xpk is
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We prove the result by induction. For k=l we have 7](u1)=u1—ph1. For
k>l, uk on the left implies we are in FjBP^BP for dimensional reasons, so
our formula degenerates to 7j(uk) = — Af*"1!^-!- The result follows by induc-
tion. D

Proposition 1.9. In degree s < 2(p2—l)n,

(a) PEQMtt=Q.
(b) EsMnisBP*l(p)freeonthehJJ(J)>n. D

Proof. From 1.8, the defining relations for MH9 as given in 1.6, are re-
presented in EQBP*BP by

A', /(/)</i , and (-l)l/>A'4Vi mod (/?2), /> 0 ,

where ki=p<-p)lp-l+l=tf-l(p--

For part (a) it is enough to show that the A/+Mi include all /z7', l(J')>n.

We know that ki+pi=ki+1, k^ = \. Find i such that £,•</(/') — n<ki+l. Then
0 </(/')— H— fci </>''• We claim that ji^kl If not, the lowest degree //
satisfying our conditions is Afr1/^*1 which is out of our metastable range.
We can let J=J'~kiAl. This concludes part (a).

For part (b) we must show that the /+Mi are all distinct and /(/+MO
>n. We are given that /(/)>« and &,->(), so /(/+^^1)>w. The argument
in part (a) shows that the J+ki^1 are all distinct. D

Proposition 1.10. In degree s<,2(pz—\)n in Mn, the order of the generators

-*. D

Proof. We show that

pHJ)-»hJ = Q and

p*A/ = u\hj~^ modulo Fj.^Mn , k=l(J)-n~l.

This last element is nonzero by 1.9(b) so these prove the result. From 1.6
and 1.8 we can deduce, for arbitrary /, that

phj = ufl-'i modulo (p2hj, pufl-'i, Fj.^Mn) .

By induction on the order of /, pkFj.^Mn=0 and pkhf~^=Q, so we are left
with plw-nhJ=aplw-»+lhJ, so pl^-nhf=0.

By induction on /, pk~lFj.^Mnc:Fj^k^Mn, pku1h
/"J^=09 and pk+1hf=Q, so
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^ modulo Fj_k.Mn by
induction. D

A convenient notation for 2~2(p~l}nMn in Corollary 16 is to subtract n
from ji in Mn. Corollary 16 now follows from 1.9 and 1.10.

§ 2. The Structure of Wb

We want to take advantage of the Boardman basis in our analysis of Wb.
In this section, p=2.

Lemma 2.1. F^S QBP*BP2e+l®rcCBP*BP®BPJBP*RPZ+l. D

Proof. QBP^BP^ — QBP^BPfr. From Corollary 1.4, this is generated
as a left BP* module by all hju, 2/(J) — | u \< 2c9 or 2c+ 1 . So the above group
is the left BP* module generated by hju®rc=hj®urc, 2/(/)< \u\ +2c+l =
\urc\, the same as the definition of Vb before (6) in the introduction. D

Remark. Bendersky and Davis obtain their definition from this fact,
their conjecture 7 takes place only in the metastable range of QBP*BP2c> so
we take a limit similar to the definition of M in Section 1.

The defining relations, (5), show that rc~*Tc+i gives an isomorphism

(2.2) BP+RPft-w - BP*

We extend this to a left-right BP* map, 24Wb-i~*Wb9 given by taking hj®rc

to hj+^®rc+i' In °ur range of interest we can use the results of Section 1.
This map takes generators to generators and relations among them to rela-
tions, all in a one to one fashion similar to the work in Section 1. We have
an isomorphism in our range.

Define

(2.3) W = limS-*b-lWb.
6^o»

We alter our notation so

(2.4) lim hj+b^®rb+c=hj®rc
6-^09

c > 0, | rc I =2c> A e Z. The defining relations are now hj®urc, 2/(/) < | u \ +2c.
The lowest degree non zero element is Km/z (/+1)®rA =hi®TQ, in degree 2.
We can rephrase the Bendersky-Davis Conjecture 7 as.

Conjecture 2.5. Q*25hls+1®Ts^ W. D
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Lemma 2.6. In W9

2shls+l®Ts = hls+l®ulr0 = ulhls+l®r, = ulhi®n • D

Remark. This shows that l(s) implies 7(^—1).

Proof. We show that 2s+1rs=0, by induction on s, using (5).

2"V. = 2*(2rs) = -2'(S a,;-...,) = 0 ,
«>0

by induction. Now, we show 2srs=usiro by induction on s.

2s
Ts = 2*-\2rs) = -2s~l& aiTs-t) = -2-V.-1 -

Since 0i=Mi and 2r0=0, we are done. This proves the first equality. Since
ri(u^=ul modulo (2), the second equality follows.

Modulo (2), rj(u^=u2+ulhl+ulhl. We show that us
1h

k
1®rQ = ̂  k^2s.

We use induction on both s and k. If k^2s— 2 we are done by induction on s,
ifk=2s-l,then

All terms are zero by induction except HI A?*"1® TO which must therefore also
be zero. The k=2s case follows similarly. We now show the last equality
of 2.6, by induction on s.

The first term is zero because | AJ < | u2rQ\ . The last is zero by the fact that

Q. D

Lemma 2.7. As a left BP% module, W is generated by all hj®rc, /(/)>
. The relations among these elements are given by all

hJ®uiTc, 0</(J)-c<2'- and A'®S a^-i . D
1 = 0

Proof. This follows from 1.6 and 2.1. D

Definition 2.8. Let W be the BP* module with generators and relations
as in 2.7 except do not use the relations hJ®Uirc, l(J)=c.

We have a surjection W'^-W. We believe that the elements hj®u1rc=
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u1(h
f®rc)+hj+^®2rc=hj+^®2rc, l(J)=c, are already zero in W and there-

fore that W — W. If this is true, the Bendersky-Davis conjectures would
follow from the next proposition because it shows that w!^i®r0 would be
nonzero (then use 2.6).

Proposition 2»9. There is a filtration on W with associated graded object

EQW such that

(a) (2, u^W'=Q9 and

(b) E0W is a free BP*/(2, u^ module on generators hj®rc, /(/)>c>0. D

Remark. Since W'-^W is surjective we have a similar filtration for W
and (a) holds.

Proof. Let Wl be the free left BP* module on hj®rc, /(/)>c>0. Define
a filtration by: FCW1 is the submodule generated by all hj®n, i<c. The
element h1®^ atfc-i is represented by 2(hJ®rc) i*1 ̂ o^i- Let W^2 be Wl after
setting the elements hj®^ diTc-i equal to zero. We have a filtration FCW2.
This shows that (2)£^fF2=0 and EQW2 is free over BP#I(2) on the hj®rc>
/(/)>c>0. We filter ^W^ by letting FjEQW2 be the submodule generated by
hJ'®rc-> J'<J- From 2.7, the elements used to obtain W from W2 are the
hJ®UiTc, 0</(/)-c<2'', />!, /(/)=c+l, /=!. They live in W2. Their re-
presentatives in EQEQW2 are given Wi/7 /+(2 '~2Mi®rC5 0< /(/)— c<21', i> 1,
Wi/z7®^, /(/)=c+l. This follows from 1.8 and 2E0W2=Q. Reindexing, these
elements are just ulh

j®rc, l(J)>c. Using these relations to define W from
W2 the results, both (a) and (b), follow. (We would have some redundancy
if we tried to use A7®i/irc, l(J)=c as well, and (b) would not follow.) Q

Our attention is now fixed on the elements 2hJ®rc, l(J)=c+\9 because
from the discussion before 2.9 we have:

Corollary 2.10. //, for all l(J)=c+l9 Q=2(hf®rc)<^W9 then W'—W
and conjecture 1 is true. D

We now throw away all of the elements which computations have taught
us are irrelevant, just as Bendersky and Davis did. Let

BP. W'/(h2, h3,

BPf W/(h2, h3, •

The following is an automatic Corollary of 2.7, 2.9 and 2.10.
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Corollary 2.12. (a) As a BP<£>* module, W is generated by h{®rc9

with relations h{®Uirc, 0<ij~c<2i andh'®^ atfc-i-

(b) W' is as in (a) but without the relations hc
l®ulrc=2hi+l®rc.

(c) There is a filtration on W' such that (2, u1)EQW'=09 and

(d) EQWf is a free Z/2[u2] module on h{®rc, j>c^ 0.

(e) If2hi+l®rc=®, c^Q, in W', then W'^W and Conjecture 1 is true.

More is actually true, because if 2/Zi+1®rc=0, then 2hi®rc-i=Q in W1.
We prove a stronger result.

Define Wfr^W'/Qh^1®^ c<k). Then W(k)~W for degrees less than

Proposition 2.13. If2h? +1®r3*=0 in W(lk\ then

(a) 2hl+l®rc=Q in W', c<3fc+2,

(b) W'—W in degrees less than I2(k+ 1)+2, and

(c) Conjecture 7(s) is true for s <* 2k + 1 . D

Remark 2.14. Hidden in this proposition is the fact that if we prove 7(^)
for 2k using our approach then it is true for 2fc+l as well, thus our s=6 im-
plies s=7.

Proof. We define

(2.15) p: S-* W(k) -* W(k-l) , p(hJ®rc) = hJ-^®rc-i , r-i = 0 .

It is easy to verify that this is well defined. The map ft can also be defined
on W', W, W and W.

Claim. 2A}fl®r*=0 in W(k) implies 2hc
1

+1®rc=Q in W'9

Proof of claim. We use induction on k. If 2Af+1®r&=0 in W(k), apply
p to deduce that 2h\®rk-i=^ in W(k—l). By induction we have 2h[+l®n
-0 in W', i<k. But now W(k)^Wf, so 2hk

1
+l®rk=Q in W1 as well.

Change k to 3k and we have proven (a) for c<3fc. We define another
map

(2.16) a: S^W1 -* W' , a(hj®rc) = hj~^®rc .

It is easy to show that this is well defined and exists on W, W, and W also.
We consider 2/z?*+2®r3&+1. By 2.12 (d),
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S

uniquely with a{j=0 or 1.
Apply a to both sides. The left side Is zero, so the only possible nonzero

coefficients on the right are ail9 so

i = S fl,-nS'Ai
i>0

Now apply ft. We already have that 2h\k +1®rM=0, so the only a,- that can
be nonzero is a0, so

Comparing the degree of the left hand side with the right we have 12A:+6=N

6fc0+2, so flb=0. The proof for 2h\k +3®rzk+2=® is the same.
Part (b) follows. Part (c) follows from (b). D

Proof of Theorem 13. Define B(K)/R = B/(R+(x3k+% map

B(k)IR -* 2^m+^W(3k)

by A{®^->A?*+1+'®r»+i-l-.
It is easy to check that the map is well defined. Furthermore, the map Is

an isomorphism in negative degrees. This is true simply because the generators
and relations go to the generators and relations. It may be helpful, however,
to observe first that

just from generators and relations.
The map takes \®x to /zf+1®r3*9 so If 2(l®x)=0, we can apply Pro-

position 2.13 (c) to prove part (b). Part (a) follows from (b). Part (c) is
gruesome computation actually carried out modulo xll

9 but the proofs of 2.13
and Theorem 13 imply that it is true modulo x13 also. G

The main differences In our approach to proving Conjecture 7 and that
in [B-D] are threefold. We like to eliminate powers of 2. They like to
eliminate powers of %. We like the left BP* module structure, they like to
move things to the right. We use Boardman's basis. Bendersky and Davis
told us before we began this project that the [2]-sequence played a nasty roll.

The only way to approach Conjecture 12 is to write 2(1®*) = — 1®S <*iX<+1
9

»>o

and it seems that we have reduced the entire problem to the nasty [2]-sequence.
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The only positive, non computational step we made towards a proof of Con-
jecture 12 is the following.

Proposition 2.17. In B/R,

Remarks 2.18. The term ulhil®x2 can easily be replaced with h1®(2x)2,
and the |2]-sequence rears its ugly head again. If we do not tensor with

*, this is

Proof. Set A,-=0, i>l and subtract the equal terms u0y and ^(uQ)y; 1.2
becomes

s>0

The dummy variable has degree —2. Substitute y=(hT1®x)1^2 and we have
a formula in B/R;

J}« UihT*''1®**^* S* u1hlr2i®x2i = S5 Ar2'"1®^"^^ 2^ I®!/,*2' .
i>0 i>0 ,'>0 »>0

The far right sum is 1®SFM|.^
2'=1®[2](^)=0. The terms of the other sum

•>0

on the right have \hT2t~1\^\uix
2t~1\ so they are all zero except hil®ulx,

which only has one power of x so it is not a given relation. The same thing
occurs in the very first sum. The first term of the second sum is 4(1®;*;).
Using [B-D] it is easy to see that this is zero. We have

4(1®*) = 2(1 ®2x) = -

= 0 ,

f>0

Now, 2 = —ulhT1+hT1u1, so this is

because we never use only one power of x. There is some checking to do to
see that the formal group sums do not alter these zeros. We have

= 2 «i'Arl'""y®«iJcl'+'flly, some a

Again, all terms are zero except hTl®ulx—ulhil®x which is u1hT1®x +
2(l®x)-u1hT1®x=2(l®x). D
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A mindless algorithm for computing with Conjecture 12 is as follows.
(1) Take the lowest power of x with a non-zero coefficient. (2) Use the
right unit to move w's to the left. (3) Eliminate 2 from the coefficient by
use of the [2]-sequence. (4) For a term with ul9 say auft&x', a
we must have i>j or it is zero. Find the smallest k such that | h [ ~ ( 2 k ~ 2 ) \
Then add ah{~(2k~2)®ukx

i=Q by using the right unit. From 1.8 we see that
this will get rid of the term with the u^ This is all of the algorithm, just re-
peat it. The reason this is all, is because, so far, we are never left with a term
uk

2h{®rj- If this ever happens then our concept of W is all wrong.
Moreover, we have shown that if it ever happens, the first case must be
u%khT3k®x3k+1, for some k. Computations can be shortened significantly
by using the "excess" in [B-D]. For example, to start, we take 2(1®^:) =
—S l®diXi+l. However, 2\a2k, so all terms I®a2kx

2k+1=® automatically.
i>0
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