On the Algebraic K-Cohomology of Lens Spaces

Dedicated to Professor Nobuo Shimada on his 60th birthday

By

Koichi HIRATA* and Akira KONO**

§1. Introduction

Let F_q be a finite field of order $q = p^d$ and b_{F_q} be the 0-connected spectrum of algebraic K-theory for F_q . Then the homotopy groups of b_{F_q} are

$$egin{aligned} &\pi_{2k}(b_{F_q})=0\ ,\ &\pi_{2k-1}(b_{F_q})=\left\{egin{aligned} &m{Z}/(q^k\!-\!1)& ext{if}\quad k\!>\!0\ ,\ &0& ext{if}\quad k\!\leq\!0\ . \end{aligned}
ight. \end{aligned}$$

Let *l* be an odd prime number $(l \neq p)$ and $L^{n}(l)$ the standard 2n+1 dimensional lens space $S^{2n+1}/(\mathbb{Z}/l)$. We write $L_{0}^{n}(l)$ for its 2*n*-skeleton.

The cohomology groups $b_{F_q}^*(L_0^n(l))$ were studied by G. Nishida [6] in a special case. The purpose of the paper is to determine the cohomology group $b_{F_q}^*(L_0^n(l))$. The main theorem is Theorem 5.2.

This paper is organized as follows:

In Section 2 we state the splitting of algebraic K-theory for a finite field. In Sections 3 and 4, we study the topological K-group of a lens space and its generators. In the last section we state the main theorem and prove it.

§ 2. Splitting of b_{F_J}

Denote by Λ the ring of *l*-adic integers \mathbb{Z}_l . By X_{Λ} we denote the *l*-adic completion of a spectrum X. Let K (resp. bu) be the periodic (resp. 1-connected) spectrum which represents topological K-theory.

Communicated by N. Shimada, January 18, 1984.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. Present address: Department of Mathematics, Faculty of Education, Ehime University, Ehime 790, Japan,

^{**} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

Definition 2.1. Let $\rho \in \Lambda$ be a primitive (l-1)-th root of unity. Then for $1 \leq i \leq l-1$ we define $\Phi_i: K_A \to K_A$ by

$$\Phi_i = \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\rho^m}$$
,

where ψ^k is the Adams operation.

Then splitting of topological K-theory is as follows (see [1]):

Theorem 2.2. We have

(i) $\sum_{i=1}^{l-1} \Phi_i = id,$ (ii) $\Phi_i \Phi_j = \begin{cases} \Phi_i & \text{if } i = j \\ 0 & \text{if } i \neq i, \end{cases}$ (iii) $K_A(-) \cong \bigoplus_{i=1}^{l-1} \Phi_i K_A(-) \text{ and}$ (iv) $bu_A(-) \cong \bigoplus_{i=1}^{l-1} \Phi_i bu_A(-).$

Then $\Phi_i K_A(-)$ (resp. $\Phi_i b u_A(-)$) is a generalized cohomology theory and we write G_i (resp. g_i) for its spectrum. Theorem 2.2 (iii) and (iv) imply

(iii)'
$$K_{\Lambda} \simeq \bigvee_{i=1}^{l-1} G_i$$
 and
(iv)' $bu_{\Lambda} \simeq \bigvee_{i=1}^{l-1} g_i$.

Let $\iota_i: g_i \rightarrow bu_A$ and $\pi_i: bu_A \rightarrow g_i$ be the canonical inclusion and projection of the splitting (iv)'.

Let b_{F_q} be the 0-connected spectrum which represents the algebraic Ktheory for a finite field F_q . By Fiedorowicz-Priddy [3], we know that $(b_{F_q})_A$ is the homotopy fibre of $1 - \psi^q$: $bu_A \rightarrow bu_A$ where ψ^q is the Adams operation.

Definition 2.3. Let $(1-\psi^q)_i: g_i \to g_i$ be the composition $g_i \to bu_A \xrightarrow{1-\psi^q} bu_A \xrightarrow{\pi_i} g_i$ and $g_{F_{q,i}}$ the homotopy fibre of $(1-\psi^q)_i$. Let *r* be the least positive integer such that $q^r \equiv 1 \pmod{l}$.

Then we have the splitting of $(b_{F_q})_A$ as follows (see [4]):

Theorem 2.4.

(i)
$$(b_{F_q})_A \simeq \bigvee_{\substack{1 \le i \le l-1 \\ i \equiv 0 \pmod{r}}} g_{F_q,i},$$

(ii)
$$\pi_{2k}(g_{F_q,i}) \cong 0$$
,
 $\pi_{2k-1}(g_{F_q,i}) \cong \begin{cases} \mathbb{Z}/(q^k-1) \otimes \Lambda & \text{if } k > 0 \text{ and } k \equiv i \pmod{l-1} \\ 0 & \text{otherwise.} \end{cases}$

§ 3. Topological K-Group of Lens Spaces

Let η be the canonical complex line bundle of $L^{n}(l)$ and put $x=\eta-1$. By [t] we denote the greatest integer which is less than or equal to t.

Then the topological K-group of lens spaces is as follows:

Theorem 3.1. (Kambe [5]) Let M_i $(1 \le i \le l-1)$ be a cyclic group generated by x^i of order $a_i^{(n)} = l^{\lfloor (n+l-i-1)/(l-1) \rfloor}$. Then

(i)
$$K^{0}(L_{0}^{n}(l)) \simeq \mathbb{Z}[x]/((1+x)^{l}-1, x^{n+1})$$

 $\simeq \mathbb{Z} \oplus M_{1} \oplus M_{2} \oplus \cdots \oplus M_{l-1},$

(ii) $K^1(L_0^n(l)) = 0.$

We define the filtration $F^k \tilde{K}^0(L_0^n(l))$ of $\tilde{K}^0(L_0^n(l))$ as follows:

Definition 3.2. Let $L_0^k(l) \rightarrow L_0^n(l)$ $(0 \le k \le n)$ be the canonical inclusion, then we put

$$F^{k}\widetilde{K}^{0}(L_{0}^{n}(l)) = \begin{cases} \widetilde{K}^{0}(L_{0}^{n}(l)) & \text{if } k < 0, \\ \text{Ker} \left(\widetilde{K}^{0}(L_{0}^{n}(l)) \rightarrow \widetilde{K}^{0}(L_{0}^{k}(l))\right) & \text{if } 0 \le k < n, \\ 0 & \text{if } k \ge n. \end{cases}$$

Since Atiyah-Hirzeburch spectral sequence of $K^*(L_0^n(l))$ collapses, we have:

Corollary 3.3. The bu-cohomology group of lens space is

- (i) $\widetilde{bu}^{2k}(L_0^n(l)) = F^k \widetilde{K}^0(L_0^n(l)),$
- (ii) $\widetilde{bu}^{2k+1}(L_0^n(l))=0.$

By the cohomology exact sequence of the fibration $(b_{F_q})_A \rightarrow bu_A \xrightarrow{1-\psi^q} bu_A$ and $\tilde{b}_{F_q}^*(L_0^n(l)) \cong (\tilde{b}_{F_q})_A^*(L_0^n(l))$, we have the following exact sequence:

$$0 \to \tilde{b}_{F_q}^{2k}(L_0^n(l)) \to \tilde{b}u_A^{2k}(L_0^n(l)) \xrightarrow{(1-\psi^q)^*} \tilde{b}u_A^{2k}(L_0^n(l)) \to \tilde{b}_{F_q}^{2k+1}(L_0^n(l)) \to 0$$

The Bott periodicity and (3.3) imply the diagram

commutes. Then we have

Proposition 3.4. The b_{F_q} -cohomology group of lens space is

(i)
$$\tilde{b}_{F_q}^{2k}(L_0^n(l)) \simeq \operatorname{Ker}\left(\left(1 - \frac{1}{q^k}\psi^q\right)^*: F^k \tilde{K}^0(L_0^n(l)) \to F^k \tilde{K}^0(L_0^n(l))\right),$$

(ii) $\tilde{b}_{F_q}^{2k+1}(L_0^n(l)) \simeq \operatorname{Coker}\left(\left(1 - \frac{1}{q^k}\psi^q\right)^*: F^k \tilde{K}^0(L_0^n(l)) \to F^k \tilde{K}^0(L_0^n(l))\right).$

Recall that $K^0(L_0^n(l)) = \mathbb{Z}[x]/((1+x)^l-1, x^{n+1})$ and $(\Psi^q)^* x = (1+x)^q - 1$. To the generators x, x^2, \dots , and x^{l-1} of $\tilde{K}^0(L_0^n(l))$, the action of $\left(1 - \frac{1}{q^k}\Psi^q\right)^*$ is

$$\left(1-\frac{1}{q^k}\psi^q\right)^* x^i = x^i - \frac{1}{q^k} \{(x+1)^q - 1\}^i.$$

§ 4. On Generators of $\tilde{K}^0(L_0^n(l))$

To compute the kernel and cokernel of $\left(1-\frac{1}{q^k}\psi^q\right)^*$, we define new generators of $\tilde{K}^0(L_0^n(l))$.

Definition 4.1. We define the element ξ_i $(1 \le i \le l-1)$ of $\widetilde{K}^0(L_0^n(l))$ by $\xi_i = \Phi_i(x)$ and put $N_i = \text{Im}(\Phi_i: \widetilde{K}^0(L_0^n(l)) \to \widetilde{K}^0(L_0^n(l))).$

Then we have

Theorem 4.2. Let $a_i^{(n)}$ be the integer defined in Theorem 3.1, then

(i) $K^0_{\Lambda}(L^n_0(l)) \cong \Lambda \oplus N_1 \oplus N_2 \oplus \cdots \oplus N_{l-1},$

(ii) N_i is a cyclic group generated by ξ_i of order $a_i^{(n)}$.

Proof of (i) is clear by Theorem 2.2. To prove (ii) we need following two lemmas.

By y_i $(i \in \mathbb{Z}/l)$ we denote the element of $\tilde{K}^0(L_0^n(l))$ such that $y_i = (1+x)^i - 1$. This notation is well defined since $(1+x)^i = 1$.

When k is an element of \mathbb{Z} or Λ we write \overline{k} for the mod l reduction of k. Then $(\psi^k)^* x = y_{\overline{k}}$. Thus we can regard that the Adams operation $(\psi^k)^*$: $\widetilde{K}^0(L^n_0(l)) \to \widetilde{K}^0(L^n_0(l))$ is defined for $k \in \mathbb{Z}/l$.

Let k be an element of Λ such that $k \equiv 0 \pmod{l}$. Then there exists one and only one element m of Λ such that $m^{l-1} \equiv 1$ and $k \equiv m \pmod{l}$. We write \tilde{k} for the element m. Then we have

Lemma 4.3. $\Phi_i(y_k) = \tilde{k}^i \xi_i$ for $1 \leq k \leq l-1$.

Proof. By definition

1086

$$\Phi_{i}(y_{k}) = \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\rho^{m}} \psi^{k}(x) = \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\rho^{m} \tilde{k}}(x)$$

Since $\{\rho \tilde{k}, \rho^2 \tilde{k}, \dots, \rho^{l-1} \tilde{k}\} = \{\rho, \rho^2, \dots, \rho^{l-1}\}$, we have

$$\Phi_{i}(y_{k}) = \frac{1}{l-1} \sum_{m=1}^{l-1} \tilde{k}^{i} \rho^{-mi} \psi^{\rho^{m}}(x) = \tilde{k}^{i} \Phi_{i}(x) = \tilde{k}^{i} \xi_{i}.$$

Since ψ^k commutes with Φ_i we have the following corollary:

Corollary 4.4.
$$\psi^k(\xi_i) = \tilde{k}^i \xi_i$$
 for $1 \leq i \leq l-1$.

Lemma 4.5. Let $\overline{\Phi_i(x)}$ be the mod l reduction of $\Phi_i(x)$ and put $\overline{\Phi_i(x)} = c_1 x + c_2 x^2 + \dots + c_{l-1} x^{l-1} (c_k \in \mathbb{Z}/l)$. Then

(i) $c_k=0$ for $1 \leq k < i$, and (ii) $c_i \neq 0$.

Proof. Since
$$\{\overline{\rho^{1}}, \overline{\rho^{2}}, \dots, \overline{\rho^{l-1}}\} = \{1, 2, \dots, l-1\}$$
 we have
$$\overline{\varPhi_{i}(x)} = \overline{\frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\rho^{m}}(x)} = \frac{1}{l-1} \sum_{m=1}^{l-1} m^{-i} \{(1+x)^{m}-1\}$$

Inductively we define $f_k(x)$ $(0 \le k \le i)$ by $f_0(x) = \overline{\varphi_i(x)}$ and $f_k(x) = (1+x)\frac{d}{dx}f_{k-1}(x)$. Then, for $1 \le k \le i$

$$f_k(x) = \frac{1}{l-1} \sum_{m=1}^{l-1} m^{-i+k} (1+x)^m.$$

Therefore

$$k! c_k = f_k(0) = \frac{1}{l-1} \sum_{m=1}^{l-1} m^{-i+k}$$
$$= \begin{cases} 0 & \text{if } 1 \leq k < i \\ 1 & \text{if } k = i. \end{cases}$$

Proof of Theorem 4.2 (ii). It is clear that $\tilde{K}^0(L_0^n(l))$ is generated by y_1, y_2, \cdots , and y_{l-1} . Then $N_i = \mathcal{O}_i(\tilde{K}^0(L_0^n(l)))$ is generated by $\mathcal{O}_i(x) = \mathcal{O}_i(y_1)$, $\mathcal{O}_i(y_2), \cdots$, and $\mathcal{O}_i(y_{l-1})$. By Lemma 4.3, N_i is a cyclic group generated by $\xi_i = \mathcal{O}_i(x)$. By Lemma 4.5, the mod *l* reduction of ξ_i is

$$\bar{\xi}_i = c_i x^i + c_{i+1} x^{i+1} + \dots + c_{l-1} x^{l-1} \quad (c_i \neq 0) .$$

Theorem 3.1 implies that the order $a_k^{(n)}$ of x^k $(1 \le k \le l-1)$ has the following two properties:

- (i) $a_1^{(n)} \ge a_2^{(n)} \ge \cdots \ge a_{l-1}^{(n)}$ and
- (ii) $a_j^{(n)}/a_k^{(n)} = l$ or 1 if j < k.

1087

Therefore the order of ξ_i is that of x^i . This completes the proof of Theorem 4.2 (ii).

§ 5. b_{F_q} -Cohomology of Lens Spaces

Let $\nu_l: \Lambda \to \mathbb{Z} \cup \{\infty\}$ be the *l*-adic valuation, that is $\nu_l(\lambda)$ is the largest integer ν such that l^{ν} divides λ where λ is an element of Λ .

Lemma 5.1. Let
$$\xi_i$$
 be the element of $\widetilde{K}^0(L_0^n(l))$ defined in (4.1), then
(i) $\left(1-\frac{1}{q^k}\psi^q\right)^*\xi_i = \left(1-\frac{\widetilde{q}^i}{q^k}\right)\xi_i$,
(ii) $1-\frac{\widetilde{q}^i}{q^k}$ is a unit of Λ if $i \equiv k \pmod{r}$, and
(iii) $\nu_l\left(1-\frac{\widetilde{q}^i}{q^k}\right) = \nu_l(q^r-1) + \nu_l(k)$ if $i \equiv k \pmod{r}$.

Proof. By Corollary 4.4, (i) is clear. (ii) holds since $q^k \equiv q^i \equiv \tilde{q}^i \pmod{l}$. To prove (iii), assume $i \equiv k \pmod{r}$. Since $\tilde{q}^i = \tilde{q}^k$ and $\nu_l \left(1 - \frac{\tilde{q}}{q}\right) \ge 1$, we have

$$\nu_l\left(1-\frac{\tilde{q}^i}{q^k}\right)=\nu_l\left(1-\left(\frac{\tilde{q}}{q}\right)^k\right)=\nu_l\left(1-\frac{\tilde{q}}{q}\right)+\nu_l(k).$$

On the other hand

$$q'-1 = q'-\tilde{q}' = (q-\tilde{q})(q'^{-1}+q'^{-2}\tilde{q}+\cdots+\tilde{q}'^{-1}),$$

where

$$q^{r-1} + q^{r-2}\tilde{q} + \dots + \tilde{q}^{r-1} \equiv q^{r-1} + q^{r-1} + \dots + q^{r-1} \equiv rq^{r-1} \equiv 0 \pmod{l}.$$

Therefore

$$\nu_l\left(1-\frac{\tilde{q}}{q}\right)=\nu_l(q-\tilde{q})=\nu_l(q'-1).$$

This completes the proof of the lemma.

Theorem 5.2. The b_{F_q} -cohomology of lens space is

$$\tilde{b}_{F_q}^{2k}(L_0^n(l)) \cong \tilde{b}_{F_q}^{2k+1}(L_0^n(l)) \cong \bigoplus_{\substack{1 \le i \le l^{-1} \\ i \equiv k \pmod{r}}} Z/(l^{m_i}Z)$$

where m_i (for $i \equiv k \pmod{r}$) is the integer defined as follows:

$$m_{i} = \begin{cases} \min \{\nu_{l}(a_{i}^{(n)}), \nu_{l}(q^{r}-1)+\nu_{l}(k)\} & \text{if } k \leq 0, \\ \min \{\nu_{l}(a_{i}^{(n)})-\nu_{l}(a_{i}^{(k)}), \nu_{l}(q^{r}-1)+\nu_{l}(k)\} & \text{if } 0 < k < n, \\ 0 & \text{if } k \geq n. \end{cases}$$

1088

Proof. Since $\{a_i^{(k)}\xi_i\}_{1\leq i\leq l-1}$ is a basis of $F^k \widetilde{K}^0(L_0^n(l))$, it is easy from Proposition 3.4, Theorem 4.2 and Lemma 5.1.

References

- [1] Adams, J.F., Lectures on generalised cohomology, Lecture Notes in Math., 99, Springer-Verlag, 1969.
- [2] , Infinite loop spaces, Ann. of Math. Studies, 90, Princeton Univ. Press, 1978.
- [3] Fiedorowicz, Z. and Priddy, S., Homology of classical groups over finite fields and their associated infinite loop spaces, *Lecture Notes in Math.*, 674, Springer-Verlag, 1977.
- [4] Hirata, K., On the cohomology of algebraic K-spectra over finite fields, *Publ. RIMS*, 19 (1983), 743–752.
- [5] Kambe, T., The structure of K_A-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
- [6] Nishida, G., On the algebraic K-group of lens spaces and its applications, J. Math. Kyoto Univ., 23 (1983), 211-217.