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The invariant subspace structure of nonselfadjoint crossed products was
studied in [2, 3, 4, 5, 6, 7, 83 9, 11, 13]. These algebras are certain subalgebras
of von Neumann algebras constructed as crossed products of von Neumann
algebras by ^-automorphisms.

In this paper, our setting is the following. Let If be a finite von Neumann
algebra with a faithful normal finite trace 03 and let a be a ^-automorphism of
M such that $00.=$. Let L\M, 0) be the noncommutative L2-space associated
with M" and 0. Then a uniquely extends to a unitary operator u on L\M, <f>)
such that a(x)=ux, x^M. Form the Hilbert space L2=P(Z)®L\M9 0) and
consider the operators Lx, x^M, and Ls defined on L2 by the formulae Lx=I®x

and L8=S®u where S is the usual shift on l\Z). Then the von Neumann
algebra crossed product determined by M and a is defined to be the von
Neumann algebra 8 on L2 generated by {Lx: x^M} (=L(MJ) and Ls? while
the subalgebra which we call a nonself adjoint crossed product is the a-weakly
closed subalgebra S+ generated by L(M) and the positive powers of Ls. Let
H2 be the subspace 12(Z+}®L\M, 0) of L2 and let 3(M) be the center of M,
We shall denote by Lat (S+) the lattice of subspaces under S+ such that
0 Ugm= {0}. If every subspace Wl in Lat (£+) is of the form TO- VH2, where

Communicated by H. Araki, April 22, 1983. Revised April 2, 1984.
* Department of Mathematics, Bradley University, Peoria, Illinois 61625, U.S.A.

** Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, U.S.A.
*** Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-21,

Japan.
** The second author was supported in part by a grant from the National Science Foun-

dations.
*** The third author was supported in part by a Grant-in-Aid for Scientific Research from

the Japanese Ministry of Education.



1120 MICHAEL McAsEY, PAUL S. MUHLY AND KICHI-SUKE SAITO

V is a partial Isometry in the commutant 3! of 8, we shall say that the Beurling-

Lax-Halmos theorem (hereafter abbreviated as the BLH theorem) is valid

In [8], we proved that the BLH theorem is valid if and only if a fixes the center

,8(-M) of M elementwise. Therefore, if a does not fix the center 3(M ) element-

wise, then the invariant subspace structure is very complicated. Our aim in

this paper is to study it in case a ergodic on 3(M).

As the generalization of [7] and [8], Kawamura in [2] has recently studied
the invariant subspace structure of a family of shift operators on a Hilbert space,
in particular, a family of shift operators given by a nonselfadjoint crossed product
(cf. [3, 4]). His setting is not always in standard form. If it is not in standard
form, then it is very difficult and very complicated to describe the form of all
invariant subspaces. But, if a von Neumann algebra is in standard form, then
the underlying Hilbert space has many good informations from the structure
of the von Neumann algebra. Therefore, we could investigate the invariant
subspace structure of nonselfadjoint crossed products more precisely and so,
in this paper we suppose that all von Neumann algebras are in standard form.

In [6], the first author introduced the notion of canonical models for
Lat(S+). That is, a family of left-full (see § 2), invariant subspaces {SK,-}^/ in
Lat(S+) constitutes a complete set of canonical models for Lat(8+) in case (a)
for no two distinct indices i and j, P^. is unitary equivalent to P^m by a unitary
operator in 91; and (b) for every 9JI in Lat (S+), there is an i in / and a partial
isometry Fin 91 such that VPm. V*=Pm, so that 3Jl=F3J^ The motivation
for this concepts stems from the BLH theorem. If a fixes the center 3(M) of
M elementwise, then the singletone {H2} is a complete set of canonical models
for Lat(S+). Let M=l°°(X\ where X is a finite set with elements r0? fl9 ° - ° 9 tK^
and let a be a ^-automorphism of /°°(X) induced by the permutation r of X
which is defined by T(tt)=ti+l (i^pK— 1) and T(tK^i)=t0. Then, the first author
in [6] studied a complete set of canonical models for Lat(S+) which consists of
two-sided invariant subspaces of L2. On the other hand, Solel in [13] studied
a complete set of canonical models for Lat(8+) in case M—L°°(XS ja) is non-
atomic and a is ergodic on M. However, in this case, he also showed that
a complete set of canonical models for Lat(8+) does not consist of two-sided
invariant subspaces of L2.

In this paper, we consider a complete set of canonical models for Lat(8+)
in the following setting. Let X be a standard Borel space with a finite positive
measure /* and let r be an ergodic, invertible measure-preserving transformation
on X. Let N be a finite factor with a faithful normal tracial state 00 and let a0
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be a ^-automorphism of N. Then we consider M=L°°(X, ju)®N and a=r® a0

where f is a ^-automorphism of L00^, #) induced by r. Using Solel's idea,
we prove that if TV" is a Ilj-factor, then9 for every non-negative measurable

function m on X such that I m(t)dju.(t)^jLt(X), there exists a left-full, invariant
Jx

subspace 2JI (of H2) in Lat(S+) with multiplicity function m (Theorem] 5.5).
Therefore, in this case, we choose a complete set of canonical models for
Lat(8+) which consists of left-full, invariant subspaces of H2 in Lat(S+) cor-

responding to nonnegative measurable functions such that I m(t)dju(t)=ju(X),
Jx

Further, we consider the case that N is a Iw-factor (n<oo) and that Xis a finite
set.

In §2, we define the nonself adjoint crossed products and invariant sub-
spaces. In § 3, we show that certain equivalence classes of invariant subspaces
for S+ can be identified with the multiplicity functions of them using the reduc-
tion theory in von Neumann algebras. In § 4, we consider the constant fields
of finite factors as a preparation of §§ 5, 6 and 7. In § 5, we seek a complete
set of canonical models in the case that L°°(X, ju) is non-atomic. In § 6, we
consider the case that X is a finite set. Finally, we remark a complete set of
canonical models.

§ 2o Preliminaries

Let M be a finite von Neumann algebra acting on a separable Hilbert
space H. That is, there exists a faithful, normal, finite trace <t> on M. Let
L2(M, $) be the noncommutative L2-space associated with M and 0 ([12]). Let
lx (resp. rx) be the left (resp. right) multiplication on L\M, 0): that is, lxy=xy
(resp. rxy=yx). Put l(M)={lx: x^M} and r(M}={rx: x^M}. Also, we
fix once and for all a ^-automorphism a of M which preserves 0; i.e. ^oa=<f>a

Thus there is a unitary operator u on L\M, 0) induced by a. To construct a
crossed product, we consider the Hilbert space L2 defined by

where ||-||2 is the norm of L\M, 0). For x^M, we define operators LX9

Ls and Rs on L2 by the formulae

(L,/)(ii) = lj(n) ,

(RJ)(n) = ra^f(n) ,

= uf(n-l)
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and

(R8f)(n)=f(n-l).

Put L(M)={LX: x^M} and R(M)={RX: x^M}, We set %={L(M\ Z,8}
and Sft=fR(M), Rs}" and define the left (resp. right) nonself adjoint crossed

product £+ (resp. 3t+) to be the a-weakly closed subalgebra of S (resp, 31)

generated by L(M) (resp. R(MJ) and Ls (resp. J?s).
The automorphism group {pt}teR of £ dual to a is implemented by the

unitary representation of R, {Wt}teR, defined by the formula (Wtf)(ri)=

e2*intf(n)J<=L2; that is, pt(T)=WtTW?9 TeS? by the definition. It is ele-

mentary to check that the spectral resolution of {Wt}teR is given by the

formula Wt= S e2*intEn, where En is the projection on L2 defined by the
«= -00

formula

ri), k=n,

Furthermore, we define H2={f^L2: f(n)=0, n<Q}. We refer the reader to

[7]? [8], [9] and [11] for discussions of these algebras including some of their

elementary properties.

.1. Let SUi be a closed subspace of L2. We shall say that TO is:
left-invariant, i/&+3JI cz 3K; left-reducing, z/STOciTO; left-pure, if TO contains

no non-trivial left-reducing subspace; a«rf left-full, if the smallest left-reducing

subspace containing TO w a// 0/ I/2. TAe right-hand versions of these concepts

are defined similarly, and a closed subspace which is both left and right invariant

will be called two-sided invariant.

In this paper, all results will be formulated items of left-invariant subspace.

We leave it to the reader to rephrase them to obtain "right-hand" statements.

As in [7] and [8], we are interested in certain wandering subspaces for the

bilateral shifts L8. Let TO be a left-invariant subspace of L2 and let P^ be a

projection of L2 onto §=3Jl0Z,53Ji. By [7, Proposition 3.1], P^ lies in L(M)r.

Then we have the following proposition.

Proposition 2o20 Let TO be a left-invariant subspace of L2 and let P^ be a

projection of L2 onto TO0LSTO. Then P~ is a finite projection in L(M)',

Proof, Assume that P^P^P^ in L(Af)'. Then there exists a partial

isometry w in L(M)f such that ww*=Pl^LPg and w*w=Pg. Put V= 5] L^wLf9
9
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2= S LlPcrLf" and 2i=S Ln
8PiLf\ respectively. Then It Is clear that V is a

n^Z ^ »^Z
partial Isometry In Sft, and, Q and gx are projections of 91. Then we have

= 2
ft,m,n€=

= 2 i

Therefore, Q^ 2i^2- since ^ is finite
5 2=2i- Tlms ^g^A- This implies

that Pg Is a finite projection In L(M)'. This completes the proof.

In this section, our aim Is to show that the equivalence classes of left-
invariant subspaces of L2 can be Identified with certain equivalence classes of
projections as a generalization of [5]. Moreover, each such a equivalence class
can be identified In terms of a multiplicity function. To do this, we use the
reduction theory of von Neumann algebras (cf. [1, Part II]).

Let M be a finite von Neumann algebra acting on a separable Hilbert space
H and let B(M) be the center of M. By [15, III, Proposition 1.21], 3(M) Is
generated by a single selfadjomt operator h. We consider the abellan C*-
subalgebra C of 3(M) which Is generated by {a*(A)}neZ and 7M. Then It Is
clear that C Is separable and a(C)=C. Let X be a maximal Ideal space of C
such that C= C(X). Then X is a compact metrizable space and there exists a
komeomorphism T of X onto X such that a(f)(t)=f(T~\t)),f&C(X). Such 0
Is a faithful positive linear functional on C, there exists a standard finite positive

measure ju. on X with support X such that $(/)= I f ( t ) d j u ( t ) 9 f ^ C .
JX

Now we consider a direct Integral of M with respect to C according to [1],
By [1, Part II, Chapter 6? Theorems 1 and 2], there exists a ^-measurable field
t->H(t) of nonzero complex Hilbert spaces over X, a ^-measurable field t-^M(t)

!

©
H(f)d/j,(f) which trans-

forms M into J0M(0^(0- Therefore, we Identify JT, M and 3(M) with

S © r ©
H(f)dfi(t\ \ M(f)dfjL(t) and the space of diagonal operators, respectively. By

j
[1, Part II, Chapter 5, Corollary of Theorem 2], there exists a /^-measurable

S ©
0f*
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Let L\M, 0,) be the noncommutative L2-space associated with M(t) and 0,.
Then the field t-*L\M(t), <pt) of complex Hilbert spaces over Xis ^-measurable

and L\M, <j>)= L\M(t\ <j>t)dj>j.(t). Further, by [1, Part II, Chapter 4?

Definition 1], the field t->M(t) of archived Hilbert algebras over X in

5©
L\M(t), <f>t)d#(t) is ^-measurable. Let lx^ (resp. r^u)) be the left (resp.

right) multiplication on L\M(t\ <f>t) and put l(M(t)) = {lx(t}: x(t)&M(t)}

(resp. r(M(/))= {rM : x(t) e Af (r )}). Then the field f ->/(M(0) (resp. r-*r(Af(0))

Se
l(M(t}}djj.(t} (resp. r(Af)=

Next we define the Hilbert space L} by

and define the operator L,w on Z/f by (Lx(t)ft)(ri)=lx(t)ft(ri). Then the field

S ©
jLf^XO

and the field t->L(M(t)) of factors over X is ^-measurable and L(M)=

i@L(M(t))djLt(t), Therefore, by [1, Part II, Chapter 3, Theorem 4], the field

t-*L(M(t)y of semi-finite factors over X is /^-measurable and L(M)'=

By the definition of Lx (resp. Lx^)9 we may identify L(M) (resp. L(M(t)))
with the von Neumann algebra tensor product CfrZ)®l(M) (resp. C^(z^®

l(M(t))) where CfcZ) denotes the algebras of scalar multiples of the identity
acting on 12(Z). From this, we can identify the commutant of L(M) :

= B(l\Z))®r(M} ,

where B(P(Z)) is the full algebra of operators on P(Z). Analogously, we
can identify the commutant of L(M(t)):

L(M(t)y = B(l\Z))®r(M(t)) .

Then9 we have L(M)' = (/2(^))® r(M(t))dv(t). Put $(rx) = <{>(x)

(resp. 0^(/i
jC(/))=0f(^)). Then 0 (resp. 0^) is a faithful normal finite trace on

r(M) (resp. r(Af(0)). Let Tr®0 (resp. Tr(g)0f) be the tensor product of Tr
and 0 (resp. 0,) on 5(/2(^))®r(M) (resp. B(l\Z))®r(M(t))\ where Tr is the
canonical trace on B(P(Z)). Then t->Tr®(j>t is a ^-measurable field of faithful
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f®normal semi-finite traces over X and Tr®<j> = \ Tr®<t>tdju(t).
J

Next we define a multiplicity function of a left-invariant subspace,, Let

3M be a left-invariant subspace with the wandering subspace §=3EJl0Ls3Jio By

[1, Proposition 3.1], we know that the projection Pg onto the space % lies in

Se
P(t)djtt(t), where

P(f) is a projection in B(l\Z))®r(M(t}) for almost all f. The multiplicity

function of 501 is the function m defined by the equation w(f )=(Tr(g)0,)(P(f ))•
Since the field t-^P(t) of operators is ^-measurable, m is a non-negative

measurable function over X. Since Pg is finite in L(M)r by Proposition 2.3,
m(t)< oo a.e. Then we have the following theorem as in [5, Theorem 3.4].

Theorem 3.1. For /=!, 2, /er 50lf- £e a left-pure, left-invariant subspace of
L2 with a multiplicity function mia Let P^ be the projection of L2 onto %t =
3Jlf-©L850l,-. Then the following assertions are equivalent:

(1) there exists a partial isometry V in 3t such that Pm = VP^ V* where
Pspj. is the projection of L2 onto 2Ji,-;

' (2) /WiCO^^aCO, a.e. ;
(3) Pgi£PgiinZ<M)'

Furthermore, if the condition (1) w satisfied, then 3Ji1=

Proof, (l)->(2). Since 3tcL(M)', F is a decomposal operator. Thus

K=(V(*XXO> where V^ is a Partial isometry in B(l\Z})®r(M(t)) for

S®
Pf(t)djsi(t)9 where Pf-(f) is a

projection of B(l\Z))®r(M(t)) for almost all t. By (1), it is clear that

pgi= FPg2F*0 Therefore, Pi(0== ̂ (OA(0^(0*, a.e. and so /w1(

(Px(0) - (Tr ®^)(F(0^2(OnO*)^(^®0,)(P2(0) ^ WzCO- Thus
a.e.

(2)->(3). Since m1(t)^m2(t), a.e., by [1, Part III, Chapter 2, Proposition

13], Pi(f)^2(0» a-e« Therefore, by [1, Part III, Chapter 1, Exercise 15], P^P^
in L(MJ.

(3)->(l). It is clear by [7, Theorem 3.2]. This completes the proof.

Further, as in [13, Proposition 2.3], we can easily prove the following
proposition and so the proof is omitted.

Proposition 3o2e Keep the notations and assumptions as in Theorem 3.1.
Then the following assertions are equivalent:
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(1) there exists a partial isometry V in 5R such that P^, = VP<^. F* and

(2) m1(t)=m2(t) a.e.; and

(3) Pgi~PSi in L(M)'.

§ 4 of Factors

In this section, we consider the constant fields of finite factors over X, that

is, the tensor product of L°°(X, ju) and a finite factor N.

Let X be a compact metrizable space with a finite measure p.. Let r be an

invertible, ergodic, measure-preserving transformation on X. Let N be a

finite factor with a faithful, normal tracial state 00, and let a0 be a *-automor-

phism of JNT. Put ?(/) (f^/fr"1*)* * e^- Let r®a0 be the tensor product of f

and o:0 on L°°(Z, ju)®N. Put M=L°°(X9 v)®N5 a=T®a0 and 0= \ °dju(t)®<t>Q,
Jx

respectively. Let L2(J^, 00) be the noncommutative L2»space associated with N

and 00. We denote the operators in the left regular representation of N onto

L2(N, 00) by 4, x^N, and those in the right regular representation by rx. Put

l(N)={lx: x^N} and r(N)={rx: x^N}. Since 00°ao=^oj there is uniquely
a unitary operator i/0 on L2(W, 00) induced by a0. In this paper, we identify

L°°(X, &)®N with L°°(X, N). Using the product of the counting measure on Z

and the measure v on X, we can realize ZxX as a measure space. Then we

can identify L2 with

{/: ZXX-»L\N, 00)I
«

where ||°|| is the norm of L2(N9 00). For xeM, we can calculate L,, -
and R8 on I^2 as follows ;

/)(/I, 0 -

and

We recall that the space L2 may be identified with the direct integral

!

©
12(Z)®L\N, 00)d/*(0- Since L°°(X, JLL) is a maximal abelian von Neumann

algebra on L\X, &), we can identify the commutant of L(Af ); that is,
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L(M)r = (L~(X9

Put $0(rx)=$Q(x)9 x^N. We consider the tensor product Tr®00 of Tr and 00o

Then 7>(g)00 is a faithful normal semifinite trace on B(l\Z))®r(N). Thus,
as in § 3, we can define the multiplicity function of invariant subspaces.

§ So Cases L°°(x, /*) is Non-Atomic

Keep the notations in § 4. Throughout this section, we suppose that
L°°(X9 /*) is non-atomic. Let XE ^e a characteristic function of a measurable
subset E in X and let p be a projection of N. We define a projection p in

)' by

Since P^E0, where ^ is defined in §2, and since {LlEQLfn}n^z is mutually
orthogonal, {Ln

8PLfn}neZ is mutually orthogonal. Thus, we define a closed

subspace 3R(£, /?) of i2 by TO(E, /?)= f] (LlPLf*)L*. Then we present in

Solo (1) 9Jl(E,p) w ^ left-pure, left-invariant subspace of H2 with

the multiplicity function zE(t)<f>0(p).

(2)

Proof. (1) is clear by the definition of Wt(E9 p).
(2) Since (,P^)(0, i)=xE(i)p and (P^)(n, 0=0» ^^0, we have

= 23

. 0

, t).

Thus P^^3K(^, ^) and so [8+/V]2c9Jl(£, p). Let /e3K(E, p) n i", where
L"=2.^. Put /;(* ) =/(A:, 0 e M. Then we have
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LjJVX", 0 = S

r-*i)p = XB(i:-nt)ra«({>}f(n, t)

Therefore, 9K(£, />) fl L°° c [S+P^]2. By [10, Theorem 1], we have 2Jl(E, />) =
- This completes the proof.

Since r is ergodic on X3 we have the following lemma,,

Lemma 5.2 ([1 3, Lemma 3.3]). Let E, F be measurable sets ofX with #(E)=
ju(F). Then there are measurable subsets {£„}"=$ and {Fn}n=o satisfying:

(1) E=fl En and F=^ Fn; and
»=o »=o

(2) Fn=T«(EH) for each n^Q.

Lemma 5.3. Keep the notations as in Lemma 5.2. Let p be a projection of
CO

N. Then U=^LV ^fc/^Lj is a partial isometry in £+ with initial projection
k=0

and final projection

Proof. Since L^L?" = 1 a n d L L Q f o r

, we have by Lemma 5.2,

CO

= y1 L L k
CO

= 'SH T Ts i •*-'« A, — •*-'*
k=Q

Since L^L^ ak(p)L
k
sLfJLz ay(^L^"=0 for k 4= J, we analogously have

^^^ =11 Vo<^w^^^ = S V^> •
This completes the proof.

Lemma 5.4. Let E, F be measurable subsets of X such that ju(E)=ju(F)
and let p be a projection of N. Then there exists a left-pure, left-invariant sub-
space 2J1 of 3Jl(J£, p) such that the multiplicity function of 501 is
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where S=5

Proof. As in Lemma 5.2, we take measurable subsets {En}n=Q and {Fn}n-o.
CO

Hence, by Lemma 5.3, we define a partial isometry C/"=S L ^(^l in £+„
& = 0 ^Ffg ° ^

Let e0el,2 be defined by: eQ(k, t)=zE(t )p, fc=0, and e0(^9 r)=0, A:^0. Then
we have, for A:^0,

(Ue0)(k, 0 = (S ̂  cftffte&k, t)

0

Thus we define a projection Pl in L(MJ by

I 0,

2. Then it is clear that (LfP^f^L^Lf^Q, for n,
This implies that PL is a wandering projection in L(M)'. Therefore, we define

a closed subspace TO by TO^QT] L^Lf*)!*2. Then it is clear that TO is left-

pure and left-invariant. Further,

= S xF,(t}<t>,(p) = xF(t}<t>,(p) •

Thus, the multiplicity function m of 2J2 is Xp(t)<t>0(p).

Next we shall show that a3ft=[8+(£/e0)]2, where [8+C/e0]2 is the closed linear
span of 8+C/e0 in L2. At first, we have, for k^n^Q,

, 0 = uK

" )̂̂ -",

ea)(fc, 0
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Since (XsPi-Lf ) (Ue0)(k, 0=0, for «>fc, we have, for k^O,

(S LSPiLftCCfeaX*, 0 = 23 L^L^Ue^k, t)
»=0

Thus £/"e0e2H and so t8+C/e0]2c2Ji0 Further, we note that /e2Ji if and only

^S^^^CO^^O^^O, *^0, and/(fc, 0 = 0, ^<0. By [10,

Theorem 1], 9K n ^°° is dense In 9K. Thus, If ge2Ji n ^°°, then we put

k

»=o
Thus gk>n^M. Then Jlgktn(t)=g(k, t). Hence we have for 772, k^n^O,

, t)a'S(p)

Thus we have

(23 23 (L.LXUeMm, 0 = 2 23 sh,mgm,n(t)k = Q « = 0

co k

k = Q

Hence this implies that 9JI n L°° c [S+(C7g0)]2 and so 2Ji c [S+(C/e0)]2. Therefore,

Since C/e8+5 by Lemma 5.1, Wtc:[&+e^2 = Wl(E9p). Further, since
, 0=0, for Jfc>m3 we have
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, t)

, t)

!c, t) = R^k, t) .

This completes the proof.

As In [13, Lemma 3.1], we have the following lemma.

5o5o Let {9Jif-}fe/ is a finite or countable collection of left-pure,

left-invariant subspaces such that 3Jir- is orthogonal to 2Jly, for i =(=J. £e£ w»(0

be the multiplicity function of 3Jif.. Then 50i = S02Jif. fr a left-pure, left-

invariant subspace with multiplicity function m(J)=S

Next we consider two cases, that is, (1) TV" Is a IIrfactor and (2) /V" Is a In-

factor, n<oo. Let 2Ji be a left-pure, left-Invariant subspace of L2 with the

multiplicity function m(t). If ^V Is a finite factor, then m(t)^R+ = {s^R:

5^0}5 a.e. In particular, If N is a IB-factor, «<oo3 then m(t)<=(l/ri)Z+ =

\k/n: k^Z+}a For, since TV is a Iw-factor, TV Is identified with an nxn matrix

algebra Mn on a Hilbert space K (dimK=ri). Then B (l\Z}) ® r(N) =

B(l\Z)}®Mn = B(l\Z}®K), Since Tr®n^ Is the canonical trace on
B(l\Z)®K\ (Tr®n$Q}(P^(t))^Z+. Since Tr®n$0=n(Tr®$0\ m(t)^(l/n)Z+.
Conversely, we present in

Theorem 5.6o (1) Let N be a IIrf actor and let m(t) be a measurable

function on Xwith values in R+ such that \ m(t)dju(t)^ju(X). Then there exists
Jx

a left-pure, left-invariant subspace 9Ji of H2 with multiplicity function m(t).

Moreover, if { m(t)dju(t)=iu(X), then m is left-full
Jx

(2) Let N be a In-f actor and let m(t) be a measurable function on X with

values in (l/n)Z+ such that \ m(t)dju(t)^ja(X). Then there exists a left-pure,
Jx

left-invariant subspace 9J1 of H2 with multiplicity function m(t). Moreover, if

{ m(t)dja(t)=ju(X), then 2JI is left-full
Jx

Proof. (1) Suppose that TV Is a Ilj-factor. Let m be a measurable
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function on X with values in R+ such that I m(t)dju(t)^ju(X)e Then there
Jx

exist measurable subsets {En}n=\ and {Gn}n=i of X such that

m(t) = fj ^.(0+S (1/2)X(0 .
8=1 »=1

Since # is non-atomic, there exist measurable subsets {/sJ^i such that
ju(EH)=ju(Fn) and Fn n Fm=<j), n^pm. As in the proof of [13, Theorem 3.6], by
Lemma 5.4, there exists a left-pure left-invariant subspace TOW of *$!l(Fn, 1) such
that the multiplicity function of Wln is XE (0 and S £3^ Lfn=Rv , where

** = ^** ^

Next, since ju. is nonatomic, there exist mutually disjoint measurable subsets
{Gn>i}ti such that Gn = Gntl+Gn.2+-+Gn# and ju(GnJ) = (1/2>(GJ, 1^
^2n. Since TV is a H-factor, there exist mutually orthogonal equivalent pro-

2n

jections {pnj}
2"=i of JV such that ^pnj=l. Since /« is non-atomic, there exist

mutually disjoint measurable subsets {Hn}£.i such that S Hn<^.X—^ Fn and
»=i »=i

(l/2H)ju(GH)=ju(Hn). By Lemma 5.4, there exists a left-pure, left-invariant sub-
space Sft^y of *>Hl(Hn9pnj) such that the multiplicity function of SRW>;- is
XG .(rXl/2") and 2L;Pa .£?"=*, . , where S3,,y = ̂ ,,0L5^,;, Put

n>3
 2n nt=Z n'3 tRf*'!

j. By Lemma 5.5, 3ln is a left-pure, left-invariant subspace of

, z?w ,) (—2H(jyw, 1)) with multiplicity function %G (t)(\l2n) such that
j=l oo " oo

S LIP^ Lf=R , where a3,=9l.eL,SR.. Set SUt=S©2Ji;.©f]®5JJ),. By
»e^ ^« ^^ y = i »=i

Lemma 5.5, it is clear that 3Ji is a left-pure, left-invariant subspace of H2 with
multiplicity function m(t) and S Ln

sPc,Lfn=Rv «, oo where g=

If ( mOXKO=M^)= then f] F,+f] FB = X and so S£PWLf=l.
JX » = 1 * = 1 »e^

Therefore TO is left-full
(2) Suppose that N is a IB-factor. Let m(t) be a measurable function on

X with valus in (l/ri)Z+ such that I m(t)dju(t)^ju,(X). Then there exist
JxJx

n~measurable subsets {Ek}^=l and {G>}*~} of X such that

m(t} = S x

Then as in (1), there exists a left-pure, left-invariant subspace TO! of H2 with
CO

multiplicity function S ^CO such that S L^P^Ll = R <*, where ?&=
A=I * ^ez m y y
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Further, since TV" is a IM-factor, there exists a family of mutually

orthogonal equivalent projections {PJ}*,\ in N such that S j^-=l and <f>Q(pj)=

l/n. On the other hand, since ju is non-atomic, there exists measurable subsets

{Gk.,}*-\ of Gk such that Gk=Gk>1+Gkt2+-+Gk>n_1 and (l/nK^*)=XG*.A
l^j^n— 1. Then for every k, l^k<^ n—\9 there exists a family of mutually
disjoint measurable subsets {Hk}l~\ of X such that ja(Hk)=(lln)jLt(Gk) and

CO

HkdX— S Jv By Lemma 5.4, there exists a left-pure, left-invariant subspace
A = l

;) such that the multiplicity function of $lkj is %G ,(t)(l/n) and

• /? wiiprp -jv —^y? (^ T ^y? . "Pnt ^!JL—^• JL\ v L , VVII tlt O jfe 7 ~ *£ 7 xlx -^S & J ~^ *
ke=z ~ °*'j " sk J' ~ *=1 ^'=1

Then, by Lemma 5.5, 9JI is a left-pure, left-invariant subspace of H2 with
multiplicity function m(t) and 2 Lk

8Pc,Lfk=R «, M_! , where S^1

k<=z
 tf c yi v

L83Jl. This completes the proof.

As in [13, Theorem 3.1], we have the following theorem.

Theorem 5,7. Let 3Ji be a left-pure, left-invariant subspace of L2 with multi-

plicity function m(t). Then \ m(t)dju(t)^ju(X). Furthermore, \ m(t)dju.(t)=
Jx Jx

y,(X) if and only ifWl is left-full

§ 6= Case: L°°(X9 p) is Atomic

Throughout this section, we suppose that L°°(X, &) is atomic. Since r is
ergodic on X, let X be a finite set with elements ?0, rl9 • • - , tK_± and let r be the
permutation of X defined by r(ff-)=ff-+i, i^pK—l, and r(tK_l) = t0. Further,
we suppose that /*({/.})=l3 Q<:i<^K— 1, and so ju(X)=K.

For tf ^Xand a projection/? in JV, we define a projection P in L(M)' by

,2. Then 3R({*,.},/>) is a left-pure, left-invariant
»=o

subpace of Zr2 with multiplicity function X(ti](t)<f>0(p). Then we have the fol-
lowing lemmas.

Lemma 6,1. For tj&X, there exist a left-pure, left-invariant subspace
SJiy of 3Jl({tt}9p) such that multiplicity function of 3M;- is X(tj}(t)<t>u(p) and
I] LJPLf=S LlP~Lf=RXn p, where g,.=

J f
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Proof. lfi^j^K—l, put k=j- i and, if 0 ̂  j < i, put k=j+K~ L We
note that

*^***™'*' n=k>
0, n^k.

Put 2Jly=S LZPLfL2. Then 501, is clearly a left-pure, left-invariant subspace
n^k

of 5Di({f ,.},/?) with multiplicity function ^{^}(0*o(ao(^)) = ^{^}(0*o(^)- This

completes the proof.

Lemma 6.2. LeJ £, J7 /3e subsets of X such that ju(E) = ju(F) and let p be
a projection of N. Then there exists a left-pure, left-invariant subspace 501 of

such that the multiplicity function of 501 is
RX p9 where g=50i0L85K.

Proof. LetE={tiQ,:^ti.}andF={tkQ,.~,tkj}. We note that 50i(£3 p) =

, }»/*)• Then by Lemma 6.1, there exists a left-pure, left-invariantl

subspace 501/ of 50l({ff.},/?) such that the multiplicity function of 3JS/ is
Zftu iCO^oO) and 2 Ln

sPmLfn =Ryr^fi. Since {501;} |=0 are mutually orthog-
*• *o-* ^ «ez ' ^{tij^

onal, put 5K=S050i/. Then, by Lemma 5.53 5K is a left-pure, left-invariant
7 = 0

subspace with multiplicity function xF(t)$o(p)' This completes the proof.

Theorem O0 (1) Let N be a Il^f actor. Let m(t) be a function on X
having values in the non-negative real numbers. If m(t) has the property that
^m(t)^K, then there exists a left-pure, left-invariant subspace 501 of H2 with

ttEX

multiplicity function m(t). Moreover, if^ m(t)=K, then 3Ji is left-full.
tex

(2) Let N be a In-f actor and let m(t) be a function on X having values in
(l/ri)Z+. Ifm(t) has the property that 2] m(t)^*K, then there exists a left-pure,

t<=x
left-invariant subspace 50i of H2 with multiplicity function m(t). Moreover, if
S m(t)=K, then Wl is left-full.
t<=x

Proof. (1) Since TV is a IIrfactor and S m(t)^K9 there exists a family
tez

of orthogonal projections {pj}J~o in N such that <f>Q(pj)=(l/K)m(tj) and p0+
Pi-i ----- \~PK-I ^ 1 • For every j9 0 ̂  j ^ K— 1 , we consider a family of left-pure,
left-invariant subspaces {3K( {/,-}, ^OJ-fTo1- Then, by Lemma 6.1, there exists a
left-pure, left-invariant subspace 50l;-ff of 50J({^-},^) such that the multiplicity
function of 50ly,f. is Xit^t^Pj) and SLJP«. Lf*=R .., where g.ff.=

* ' X P

Since {i0i- {}?~Q are mutually orthogonal, put 50ly=S (
i=0
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K-l
By Lemma 5.5, 50iy is a left-pure,, left-Invariant subspace of

«=

(=501 ,̂ py)) with multiplicity function Kx{tJ}<l>0(pj)=X(t,]m(tj) and 2 Ln
8PrLfn

n^Z 3

=RPJ9 where %j=WljQLJBlj. Since {SK^/^fro1 are mutually orthogonal,

j} is so. Thus, put 5K=;a 050iy. By Lemma 5.5, 3Ji is a left-pure, left-
JC-l y = ° K-l

Invariant subspace of S05Dfi(Ar,/?f-) (=9KC3f, Sp,-)c ^2) with multiplicity
y=o y=o

function m(t) and S! LJP^Lf '=£*_i , where g-TO0Ls2JL
«e^ ^ ^ jy

y=o
(2) Let TV be a In-factor. Then there exists a family of mutually orthogonal

n-l

equivalent projections {e/}/~J in N such that S ^/=1. Since m(f) has values
J = 0

in (\lri)Z+9 there exists subsets {^/}f»i and {Gj}/zJ such that

w(0 - S3 ^7(0+si — ̂ (0 •1=1 L 1=1 n

K
Put 2 ju(El)=L. As in the proof of Theorem 5.5(2), by Lemma 6,2, there

1=1
exists a left-pure, left-Invariant subspace Tli of 2Jl({f03 • • - , ^_i}9 1) such that

the multiplicity function of ^ Is SI XE (0 and SS^a^L?'=l?v
^=1 ' ^ 6l ^o,-,^-i}

where g^^e^a^i.

On the other hand, S— v(G^K— L. Put ju(G!)=dl and G/={^/1, B ° e ,

•1. Further, set 50iw;-+J

^n—l. For k such that 0<fc^^, 1^/^n—1, there exists a left-pure left-

Invariant subspace 3lltk ofTld^+d2+...+d _ +k with multiplicity function Xrt }(!/«)•

Put SR;=Sj®5R/,A- Then 5JZ/ is a left-pure, left-invariant subspace with multi-

plicity function %G (t)(ljri). Therefore, set 50i=50li®2©5W/. By Lemma 5.5,
7 / = !

there exists a left-pure, left-invariant subspace of H2 with multiplicity function

m(0 such that ^Ll
sP%Lfl=Rz +2{;r <?/:o^*y+/^/1+ -+^_1}3

where §—50l0L850i.
If S m(t)=K, then it Is clear that 501 Is left-full. This completes the proof.

As In Theorem 5.7, we have the following.

Theorem 6040 Let TO be a left-pure, left-invariant subspace of L2 with

multiplicity function m(t). Then S] rn(t)^K. Furthermore, S m(t)=K if and
t&X t^X

only J/3K is left-full



1136 MICHAEL McAsEY, PAUL S. MUHLY AND KICHI-SUKE SAITO

Keep the notations and the assumptions In §§ 4, 5 and 6. In [6], the first

author introduced the notion of canonical models defined to be a family of

left-full, left-pure, left-invariant subspaces {50i,-}f-e/ with:

(a) for no two distinct indices i and j9 P^.. Is unitarily equivalent to P^.
by a unitary operator in 31; and

(b) for every left-pure, left-invariant subspace 2JI, there is an /e/and

a partial isometry Fin Sft such that VPm.V*=Pm, so that 501=7501,.

In this section we consider the canonical models of Invariant subspaces

in the settings of §§ 4, 5 and 6. Thus we consider the following four cases:

(1) L°°(X9 u) is nonatomic and N is a H-factor;

(2) L"(X9 ju) is nonatomic and N Is a IK-factor, TI< oo;

(3) L°°(X, /O is atomic and TV is a Ilj-factor; and
(4) L~(X9 fji) is atomic and TV is a Iw-factor, n<oo.

Case (1). Put S = i?n:X-^M+: measurable function on X such that

!
m(t)dju(t)=ju(X)}. By Theorem 5.6, for every m^S5 there exists a left-pure,

x
left-full, left-invariant subspace 3Jl(m) of H2 with multiplicity function m(t).

Theorem 7.1. The family {5W(m)}wes of left-pure, left-full left-invariant

subspaces of H2 is a complete set of canonical models in L2.

Proof, (a) is clear by Theorem 3.1.

(b) Let 3Ji be a left-pure, left-invariant subspace of L2 with multiplicity

function m(t). By Theorem 5.75 I m(t)dju(t)^ju(X). Then there exists a
Jz

measurable function m^S such that mty^m^t) a.e. By Theorems 3.1 and

5.6, we are done. This completes the proof.

Remark 7.2. Let 9JJ be a proper two-sided invariant subspace of L2. By

[11, Theorem 3.2], TO is left-pure and left-full. Put g=3JlQL^. Then P%e
L(M)'nR(My. By [11, Lemma 3.1], there Is a family {En}n<=z of measurable

sets such that (P~J)(n,t) = xEn(t}f(n,t). Therefore, iw(0 = S xBn(t)^Z+.
n^Z

Since there exists an me S such that m(t)^Z+ a.e., we cannot find a complete

set of canonical models among the two-sided invariant subspaces.

Case (2). Put S={mi X-+(l/ri)Z+: measurable function on X such that

m(t)d/jt(t)=ju(X)}. By Theorem 5.6, for every m^S, there exists a left-pure,
x

left-full, left-invariant 3Ji(w) of H2 with multiplicity function m(t).



NONSELFADJOINT CROSSED PRODUCTS 1137

Theorem 7.3. {9Jl(w)}JMes is a complete set of canonical models in L2.

Remark 1 A, If w=l, then Solel In [13] proved that a complete set of
canonical models does not consist of two-sided invariant subspaces of L2. As
In Remark 7.3, in case «=f= 1, we cannot find a complete set of canonical models
among the two-sided Invariant subspaces.

Case (3). Put S= {m : X-^E+ : 2 m(t)=K} . Then, by Theorem 6.3, for
t^X

m<=S, there exists a left-pure, left-full, left-invariant subspace 2Jl(m) of H2 with
multiplicity function m(t).

Theorem 78§0 {3Ji(w)},Kes is a complete set of canonical models in L2.

Case (4). Put S={m: X-*(l/n)Z+: 3 m(t)=K}. By Theorem 6.3, for
*ex

m^S, there exists a left-pure, left-full, left-Invariant subspace 3Jl(m) of H2 with
multiplicity function m(t).

Theorem 7060 fffi(m)} mes is a complete set of canonical models in L2,

Remark 7.7. If «=1, that Is, N=C? then the first author In [6] proved that
a complete set of canonical models consists of two-sided Invariant subspaces.
We now suppose that <XQ=I. By the proof of [1 1 , Lemma 4.2], we have L(M)' fl

R(My<i.r(X)®lN®B(P(Zy)=^®(lN®B(l2(Z)). Let TO be a two-sided
/&r

Invariant subspace of L2, then PgeL(M)' n ^(Af )', where f$=27i0L83Jl. Thus
the multiplicity function m(i) of 3JI has values in JT+. If n^p 1, then we cannot
find out a complete set of canonical models among two-sided invariant sub-
spaces.

Additions. After this paper was finished independently, the authors received a paper from
B. Solel entitled by "The invariant subspace structure of nonself adjoint crossed products"
which is published in Trans. AMS, 279 (1983), 825-840. His work is more general than
ours. However, canonical models of invariant subspaces from the point of view of a numerical
valued function allows us for a more understandable method of constructing the actual sub-
spaces if less general. After that, the authors also received a paper from S. Kawamura and
N. Tomimori entitled by "Some families of shift operators and invariant subspaces" which is
published in Bull. Yamagata Univ., 11 (1984), 17-31. Their paper is a generalization of [6]
to their setting and so overlaps § 5 in our paper.
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