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Equivalence Classes of Invariant Subspaces
in Nonselfadjoint Crossed Products

By

Michael McAsey*, Paul 8. MuHLY** and Kichi-Suke Sarro***

§1. Introduction

The invariant subspace structure of nonselfadjoint crossed products was
studied in [2, 3, 4, 5, 6, 7, 8, 9, 11, 13]. These algebras are certain subalgebras
of von Neumann algebras constructed as crossed products of von Neumann
algebras by *-automorphisms.

In this paper, our setting is the following. Let M be a finite von Neumann
algebra with a faithful normal finite trace ¢, and let @ be a *-automorphism of
M such that goa=¢. Let LA(M, ¢) be the noncommutative L*-space associated
with M and ¢. Then « uniquely extends to a unitary operator u on LXM, ¢)
such that e(x)=ux, x& M. Form the Hilbert space L*=I%Z)RQL M, ¢) and
consider the operators L,, x& M, and L; defined on L? by the formulae L,=I®x
and Ly;=S®u where S is the usual shift on /A(Z). Then the von Neumann
algebra crossed product determined by A4 and e is defined to be the von
Neumann algebra & on L? generated by {L,: x& M} (=L(M)) and L;, while
the subalgebra which we call a nonselfadjoint crossed product is the o-weakly
closed subalgebra &, generated by L(A) and the positive powers of L;. Let
H? be the subspace A(Z,)QL M, ¢) of L? and let B(M) be the center of M.
We shall denote by Lat (¥,) the lattice of subspaces under &, such that
nr; 0L§‘i)l)‘c‘.= {0}. 1If every subspace 0% in Lat(R,) is of the form M=V H?, where
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V is a partial isometry in the commutant R of £, we shall say that the Beurling-
Lax-Halmos theorem (hereafter abbreviated as the BLH theorem) is valid.
In [8], we proved that the BLH theorem is valid if and only if « fixes the center
B(M) of M elementwise. Therefore, if @ does not fix the center 3(M) element-
wise, then the invariant subspace structure is very complicated. Our aim in
this paper is to study it in case @ ergodic on 8 (M).

As the generalization of [7] and [8], Kawamura in [2] has recently studied
the invariant subspace structure of a family of shift operators on a Hilbert space,
in particular, a family of shift operators given by a nonselfadjoint crossed product
(cf. [3, 4]). His setting is not always in standard form. If it is not in standard
form, then it is very difficult and very complicated to describe the form of all
invariant subspaces. But, if a von Neumann algebra is in standard form, then
the underlying Hilbert space has many good informations from the structure
of the von Neumann algebra. Therefore, we could investigate the invariant
subspace structure of nonselfadjoint crossed products more precisely and so,
in this paper we suppose that all von Neumann algebras are in standard form.

In [6], the first author introduced the notion of canonical models for
Lat(®,). That is, a family of left-full (see § 2), invariant subspaces {It;},; in
Lat(2,) constitutes a complete set of canonical models for Lat(¥,) in case (a)
for no two distinct indices i and j, Pgy_ is unitary equivalent to PEIJE, by a unitary
operator in R; and (b) for every M in Lat (¥,), there is an i in 7 and a partial
isometry ¥in R such that VPgy, V*=Pgy, so that M=V, The motivation
for this concepts stems from the BLH theorem. If a fixes the center B(M) of
M elementwise, then the singletone {H?%} is a complete set of canonical models
for Lat(®,). Let M=I["(X), where X is a finite set with elements #,, f;, -, tx_;
and let @ be a *-automorphism of /*(X) induced by the permutation ¢ of X
which is defined by =(¢,)=t?;.; (i==K—1) and z(¢x_,)="t,. Then, the first author
in [6] studied a complete set of canonical models for Lat(¥,) which consists of
two-sided invariant subspaces of Z? On the other hand, Solel in [13] studied
a complete set of canonical models for Lat(¥,) in case M=L>(X, ») is non-
atomic and « is ergodic on M. However, in this case, he also showed that
a complete set of canonical models for Lat(¥,) does not consist of two-sided
invariant subspaces of L2

In this paper, we consider a complete set of canonical models for Lat(2,)
in the following setting. Let X be a standard Borel space with a finite positive
measure 2 and let = be an ergodic, invertible measure-preserving transformation
on X. Let N be a finite factor with a faithful normal tracial state ¢, and let «,
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be a x-automorphism of N. Then we consider M=L>(X, £)QN and a=7Q«,
where % is a x-automorphism of L*(X, #) induced by z. Using Solel’s idea,
we prove that if N is a II-factor, then, for every non-negative measurable

function m on X such that S m(t)du(t) < u(X), there exists a left-full, invariant
X

subspace M (of H?) in Lat(L,) with multiplicity function m (Theorem; 5.5).
Therefore, in this case, we choose a complete set of canonical models for
Lat(®,) which consists of left-full, invariant subspaces of A?in Lat(2,) cor-

responding to nonnegative measurable functions such that g m(t)d u(t) = u(X).
X

Further, we consider the case that N is a I,-factor (n< <) and that X is a finite
set.

In §2, we define the nonselfadjoint crossed products and invariant sub-
spaces. In § 3, we show that certain equivalence classes of invariant subspaces
for 8, can be identified with the multiplicity functions of them using the reduc-
tion theory in von Neumann algebras. In §4, we consider the constant fields
of finite factors as a preparation of §§ 5, 6 and 7. In § 5, we seek a complete
set of canonical models in the case that L=(X, ) is non-atomic. In §6, we
consider the case that X is a finite set. Finally, we remark a complete set of
canonical models.

§2. Preliminaries

Let M be a finite von Neumann algebra acting on a separable Hilbert
space H. That is, there exists a faithful, normal, finite trace ¢ on M. Let
LA(M, ¢) be the noncommutative Lspace associated with M and ¢ ([12]). Let
1, (resp. r,) be the left (resp. right) multiplication on L*(M, ¢): that is, Ly=xy
(resp. r,y=yx). Put I(M)={l,: x&M} and r(M)={r,: x&M}. Also, we
fix once and for all a *-automorphism « of M which preserves ¢; i.e. poa=a.
Thus there is a unitary operator u on L*(M, ¢) induced by a@. To construct a
crossed product, we consider the Hilbert space L? defined by

{f+ Z— (M, ¢)| éllf(n)llkoo}

where ||+||, is the norm of LM, ¢). For x& M, we define operators L,, R,,
L; and R; on L? by the formulae

L)) = L.f(@)

R ) = rann f0)
(Ls Y1) = uf(n—1)
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and
(Ref)) = fin—1) .

Put L(M)={L,: x&M} and R(M)={R,: x&6M}. We set L={L(M), Ls}"”
and R={R(M), R,;}" and define the left (resp. right) nonselfadjoint crossed
product 8, (resp. R,) to be the o-weakly closed subalgebra of & (resp. R)
generated by L(M) (resp. R(M)) and L; (resp. Ry).

The automorphism group {4;};cx of £ dual to a is implemented by the
unitary representation of R, {W,},cg, defined by the formula (W, f)(n)=
et f(n), f € L?; that is, (T)=W,TW¥, TS, by the definition. Tt is ele-
mentary to check that the spectral resolution of {W,},cp is given by the

formula W,= i‘, e E  where E, is the projection on L* defined by the

fH=—o0

formula

f,  k=n,

ES)K) = { A .

Furthermore, we define H’={j< L f(n)=0, n<0}. We refer the reader to
[71, [8], [9] and [11] for discussions of these algebras including some of their
elementary properties.

Defimition 2.1. Let I be a closed subspace of L?. We shall say that W is:
left-invariant, if &, MM, left-reducing, if M, left-pure, iff M contains
no non-trivial left-reducing subspace; and left-full, if the smallest left-reducing
subspace containing I is all of L’. The right-hand versions of these concepts
are defined similarly, and a closed subspace which is both left and right invariant
will be called two-sided invariant.

In this paper, all results will be formulated items of left-invariant subspace.
We leave it to the reader to rephrase them to obtain “right-hand” statements.

As in [7] and [8], we are interested in certain wandering subspaces for the
bilateral shifts L;. Let I be a left-invariant subspace of L? and let Py be a
projection of L? onto =M LM. By [7, Proposition 3.1], Pg lies in L(M)'.
Then we have the following proposition.

Proposition 2.2. Let M be a left-invariant subspace of L* and let Py be a
projection of IL? onto MMOLIR. Then Pg is a finite projection in L(M)'.

Proof. Assume that Po~P < Pq in L(M). Then there exists a partial
isometry w in L(M)’ such that ww*= P, < Py and w¥*w="Pg. Put V=3 LiwL}’,

nEzZ



NONSELFADJOINT CROSSED PRODUCTS 1123

0=3 LiPgL¥ and 0, =3 L*P,L¥", respectively. Then it is clear that Vis a
nEZz n€Z
partial isometry in R, and, Q and @, are projections of . Then we have
VQV* = (2 LiwLE) (X LiPg L") (35 Liw* L")
nEzZ nEZ nEZ

= 3 LIwLFLiPoLYLyw*LE"

kmunEZ

= 3 LiwPow* L} = 3 LiP,LY
reZ rEZ

= Q1 = Q .

Therefore, Q~Q, < 0. Since R is finite, 0=@,. Thus Pg=P,. This implies
that P is a finite projection in L(#)’. This completes the proof.

§3. Equivalence Classes of Invariant Subspaces

In this section, our aim is to show that the equivalence classes of left-
invariant subspaces of Z? can be identified with certain equivalence classes of
projections as a generalization of [5]. Moreover, each such a equivalence class
can be identified in terms of a multiplicity function. To do this, we use the
reduction theory of von Neumann algebras (cf. [1, Part II]).

Let M be a finite von Neumann algebra acting on a separable Hilbert space
H and let B(M) be the center of M. By [15, III, Proposition 1.21], 3(#) is
generated by a single selfadjoint operator 2. We consider the abelian C*-
subalgebra C of B(M) which is generated by {a"(h)},ez and I,,. Then it is
clear that C is separable and a(C)=C. Let X be a maximal ideal space of C
such that C=C(X). Then X is a compact metrizable space and there exists a
homeomorphism = of X onto X such that a(f)}()=/A=z"(¢)), fEC(X). Such ¢
is a faithful positive linear functional on C, there exists a standard finite positive
measure « on X with support X such that ¢(f )———SX J(DHdu(®), f=C.

Now we consider a direct integral of M with respect to C according to [1].
By [1, Part II, Chapter 6, Theorems 1 and 2], there exists a #-measurable field
t— H(t) of nonzero complex Hilbert spaces over X, a u-measurable field r—M(z)

of factors in the H(7)’s and an isomorphism of H onto §®H(t)dﬂ(t) which trans-
®
forms M into § M()du(t). Therefore, we identify &, M and B(M) with

® ®
S H()du(t), S M(2)d u(t) and the space of diagonal operators, respectively. By
[1, Part II, Chapter 5, Corollary of Theorem 2], there exists a u-measurable

@
field t—¢, of faithful, normal finite traces on M(¢),’s such that ¢=S b.du(?).
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Let %M, ¢,) be the noncommutative L*-space associated with M(¢) and ¢,.
Then the field ¢ —L*(M(¢), ¢,) of complex Hilbert spaces over X is x#-measurable

and IA(M, ¢)=S®L2(M(t), $)du(t). Further, by [1, Part II, Chapter 4,
Definition 1], the field ¢#— M(¢) of archived Hilbert algebras over X in
SQLZ(M(t), ¢,)du(t) is u-measurable. Let [, (resp. r,) be the left (resp.
right) multiplication on L*(M(z), ¢,) and put (M) ={l,: x() = M(t)}
(resp. r(M(2))=A{r,w: x(t) M(t)}). Then the field t —I(M(2)) (resp. t—r(M(2)))
of factors over X is u-measurable and I(M)=S®l(M(t))du(t) (resp. r(M)=

®
[ “roendate.
Next we define the Hilbert space L? by

Li = {f;: Z— L(M(1), %)Ig;”ff(n)ll% oo}

and define the operator L, on L2 by (L, f)m)=l,f;(n). Then the field
t— L? of complex Hilbert spaces over X is u-measurable and L2=§® Lidu@)
and the field #— L(M(¢)) of factors over X is u-measurable and L(M)=
SeL(M(t))d,u(t). Therefore, by [1, Part II, Chapter 3, Theorem 4], the field
t—L(M(z))' of semi-finite factors over X is u-measurable and L(M) =
SeL(M(t))’d/z(t).

By the definition of L, (resp. L,(;), we may identify L(M) (resp. L(M(1)))
with the von Neumann algebra tensor product Cp, QI(M) (resp. Cizn®

I(M(2))) where Cj25 denotes the algebras of scalar multiples of the identity
acting on [A(Z). From this, we can identify the commutant of L(M):

LM) = (Can@UM)) = (Crp) QUMY
= B Z)Qr(M),

where B(IA(Z)) is the full algebra of operators on /%(Z). Analogously, we
can identify the commutant of L(M(¢)):

L(M()) = BIA(Z)Q@r(M(?)) .

Then, we have L(M) — S® BU(Z) @ r(M(t)du(r). Put §(r)=o()
(resp. é,(7.)=0¢:(x(¢)). Then & (resp. ¢,) is a faithful normal finite trace on
r(M) (resp. r(M(t))). Let TrQ@¢ (resp. Tr@¢,) be the tensor product of Tr
and ¢ (resp. 4,) on B(IA(Z))Q@r(M) (resp. BUAZ))Qr(M(t))), where Tr is the
canonical trace on B(I2(Z)). Then ¢t—Tr @4, is a u-measurable field of faithful
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normal semi-finite traces over X and 7r®¢ =§®Tr®$t du(t).

Next we define a multiplicity function of a left-invariant subspace. Let
N be a left-invariant subspace with the wandering subspace =ML, M. By
[7, Proposition 3.1], we know that the projection Py onto the space % lies in

L(M). By the preceding discussions, we may write P=SeP(I)d,u(t), where
P(t) is a projection in B(IA(Z))Qr(M(t)) for almost all . The multiplicity
function of M is the function m defined by the equation m(t)=(Tr@%,)(P(¢)).
Since the field ¢t— P(¢) of operators is u-measurable, m is a non-negative
measurable function over X. Since Py is finite in L(M)’ by Proposition 2.3,
m(t)<oo a.e. Then we have the following theorem as in [5, Theorem 3.4].

Theorem 3.1. For i=1, 2, let W, be a left-pure, left-invariant subspace of
L? with a multiplicity function m,. Let Pg be the projection of L* onto §,=
M,OLM,. Then the following assertions are equivalent:

(1) there exists a partial isometry V in R such that P%=VP§sz* where
Pgy,_ is the projection of L? onto W;;

(2) m(t)<myt), a.e.; and

?3) P%ISP%z in L(M)'.
Furthermore, if the condition (1) is satisfied, then Wt,=VIN,.

Proof. (1)—(2). Since RCL(M)', V is a decomposal operator. Thus
V=S®V(t)d/¢(t), where V(¢) is a partial isometry in B(IA(Z))Qr(M(t)) for

almost everywhere 7. Since Py € L(M)', P%i=§$P,-(t)du(t), where Pi(t) is a
projection of B(H(Z))Q@r(M(¢)) for almost all . By (1), it is clear that
Py = VszV*. Therefore, Pl(t)—_; V(t)P,(1)V(t)*, a.e. and so my(t)=(TrRg,)-
(P()) = (Tr Q& )V()PL)V(1)*) = (Tr @, )(Put)) = my(t). Thus my(t)= my(t)
a.e.

(2)—(3). Since my(t)<my(t), a.e., by [1, Part III, Chapter 2, Proposition
13], P,(2)SPy(t), a.e. Therefore, by [1, Part III, Chapter 1, Exercise 15], 1‘,”%151-’%2
in L(M)'.

(3)—(1). TItis clear by [7, Theorem 3.2]. This completes the proof.

Further, as in [13, Proposition 2.3], we can easily prove the following
proposition and so the proof is omitted.

Proposition 3.2. Keep the notations and assumptions as in Theorem 3.1,
Then the following assertions are equivalent:
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(1) there exists a partial isometry V in R such that P&Utl= VPE%V* and
V*V= 3 L{Pg LY,
<z

) my@)=myt) a.e.; and
3 Py ~Pg in L(MY'.

§ 4. Constant Fields of Finite Factors

In this section, we consider the constant fields of finite factors over X, that
is, the tensor product of L=(X, «) and a finite factor N.

Let X be a compact metrizable space with a finite measure #. Let = be an
invertible, ergodic, measure-preserving transformation on X. Let N be a
finite factor with a faithful, normal tracial state ¢,, and let @, be a *-automor-
phism of N. Put #(f) (t)=/(r"%), t X. Let #Qa, be the tensor product of #
and a, on L(X, ))@N. Put M—L*(X, 2)QN, a—@a, and ¢=S - du(t) @ b,
respectively. Let L¥(N, ¢,) be the noncommutative L?-space assoc)iated with N
and ¢,. We denote the operators in the left regular representation of N onto
L%(N, ¢,) by I, x& N, and those in the right regular representation by r,. Put
I(N)={l,: x&N} and r(N)={r,: x&N}. Since ¢,ca,=¢,, there is uniquely
a unitary operator u, on L¥N, ¢,) induced by &, In this paper, we identify
L(X, ©)QN with L=(X, N). Using the product of the counting measure on Z
and the measure # on X, we can realize Z X X as a measure space. Then we
can identify Z? with

s BXX— D, 0915 SXHf(n, lPdu(t)< oo} ,

where ||| is the norm of LXN, ¢,). For x& M, we can calculate L,, R,, L;
and R, on L? as follows;

L), 8) = L [0, 1),

Ref N0, 1) = Fypage-my S5 1)

Lsf)n, 1) = up fln—1, 7't)
and

Rsf Y, 1) =f(n—1,1),  fEL’.
We recall that the space L? may be identified with the direct integral
§®IZ(Z YRLX(N, ¢p)du(t). Since L=(X, r)is a maximal abelian von Neumann
algebra on L*(X, u), we can identify the commutant of L(M ); that is,
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LMY = (L™(X, )QCpnQN)Y
= L™(X, )@B(IH(Z)Qr(IN)

= ["we@@r@iuo .

Put ¢4(r,)=9,(x), xEN. We consider the tensor product 7r®d, of 7r and @,
Then Tr®d, is a faithful normal semifinite trace on B(*(Z))®@r(N). Thus,
as in § 3, we can define the multiplicity function of invariant subspaces.

§5. Case: L~(x, #) is Non-Atomic

Keep the notations in § 4. Throughout this section, we suppose that
L=(X, ») is non-atomic. Let x; be a characteristic function of a measurable
subset E in X and let p be a projection of N. We define a projection p in

LMY by
ZE(t)rpf(Oa t)5 n=0,

B, t>={ : "

Since P < E,, where E, is defined in §2, and since {LiE,L¥"},cz is mutually
orthogonal, {LiPL¥"},cz is mutually orthogonal. Thus, we define a closed

subspace M(E, p) of L? by R(E, p)= i (LiPL¥")L*. Then we present in
n=0

Lemma 5.1. (1) WUE, p) is a left-pure, left-invariant subspace of H?* with
the multiplicity function x(t)¢,(p).

(2) WUE, p)=I[8(Py)),, where [-], is the closed linear span of &, (P+) in
L and wr(k, t)=0, 1.

Proof. (1) is clear by the definition of YR(E, p).

(2) Since (Py)(0, t)=xz(t)p and (Py)(n, t)=0, n50, we have

(S LiPLY Py)(k, 1) = 33 ui(PLY Py)e—n, 7™1)
= ub (7 ) (LE Py)(0, 741)

= x5(c 7t Yubr i (Py)(K, )

= ZE(T_kt)rag(p)sk,oxE(t)p

= 5k,075£(t)[7 = (Py)(k, t).

Thus Py =T(E, p) and so [¥, Py],CM(E, p). Let f €WE, p)N L™, where
L>=%yr. Putf,(t)=f(k,t)=M. Then we have
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3Ly Ly, 1) = 3 1y ol Py)n—k, 74)
=l usxg(z™"t)p = ZE(T_”t)"a'o'(p)f(”’ 1)
= G LPLE ), 1) =fim, 1)

Therefore, U(E, p) N L= C[8,Py],- By [10, Theorem 1], we have IM(E, p)=
[8,Py],. This completes the proof.

Since = is ergodic on X, we have the following lemma.
Lemma 5.2 ([13, Lemma 3.3])). Let E, F be measurable sets of X with u(E)=
(F). Then there are measurable subsets {E,} .o and {F,}n-o satisfying:
) E=§j E, and F=“Z F,; and
n=0 n=0
(2) F,=t*(E,) for each n=0.

Lemma 5.3. Keep the notations as in Lemma 5.2. Let p be a projection of

N. Then U=i‘, Lx ak(p)L’g is a partial isometry in R, with initial projection

andﬁnal projection E LZF k(o)

Proof. Since LjL, pLQ" =L and L =0 for
F

Zen(r)al®) xp A0, i)

k= j, we have by Lemma 5.2,

* . co oo
UPU =X Z=0L LzF ao(.b)LzF (L

k=0 j
— S .
B ,,%LE Lz & (p)L" 5—5 Lz,—k(“)ﬁ

Since L¥'L kaalé( mL’;L;"jLIFi al p)Lg' =0 for k=F j, we analogously have
*= Ly )y BLEL, i =L
£=0 j=0 o(ﬁ) e a Wy — ZF ao(?)
This completes the proof.

Lemma 5.4, Let E, F be measurable subsets of X such that w(E)=u(F)
and let p be a projection of N. Then there exists a left-pure, left-invariant sub-
space M of WE, p) such that the multiplicity function of W is x(t)é,(p) and
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= L”P%Lg“ —R » Where F=MO L.

nSz
Proof. Asin Lemma 5.2, we take measurable subsets {E,} o and {F,}r-o.

Hence, by Lemma 5.3, we define a partial isometry U—Z‘, Lz ak( p)Ls in &,.

Let e,= L? be defined by: ey(k, 1)=xz(t )p, k=0, and eyk, t)= 0 k=0. Then
we have, for k=0,

o

ek, 1) = Y L, gyepLiedths 1)

r(0)as(p)(Lie)(k, 1)

3 1, ()ai(plutefk—n, <"1)
F,,(t)ao(p)uoxE(r"’t)p
= 25, (1)25(P) 2 i) () eti(P)
= 2r,(t)ai(p) -
Thus we define a projection P, in L(#M)" by
ZFk(t)rag( 2 flk, 1), k=0,

0, k<0,

=§

Puf )k, 1) =

for f& L2 Then it is clear that (L7 P,L¥")(L2P,L¥")=0, for n, me Z (n=%m).
This implies that P, is a wandering projection in L(M)’. Therefore, we define

a closed subspace It by mz(i", L:P,L¥YL2 Then it is clear that I is left-
n=0

pure and left-invariant. Further,
(Tr@B)(P(1)) = 3 27, (1)8u(ek(p))
= 33 2,(00(0) = 2:()0(p)

Thus, the multiplicity function m of M is x(t )¢ ).

Next we shall show that M =[L,(Ue,)l,, where [&, Ue,y, is the closed linear
span of ¥, Ue, in L% At first, we have, for k=n=0,

(L'S'PIL?”)(er)(k, t) = UK(Pnge" Ue)(k—n, z7"t)
= e, (g o (L Ve, =01)
uf"(Uey)(k, 1)

= ;{Fh_n(r—ﬂt)ugrag_”(p)
= ZFk—n(T_ t)rag(p)(UeO)(ka t)
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ka(Ek-n)(t)rag(p) XFk(t )ag(p)
ok, eagy ()k(P)
= O Lpa(y()b(D) -

Since (L2P,L¥") (Uey)(k, t)=0, for n>>k, we have, for k=0,
(2 LyP,LE")(Uey)(k, t) = L”P LY (Uey)(k, 1)

g%wmmmmm=m@®mm

= (Ue)(k, t) .
Thus Ue,&Mt and so [¥, Ue],CI. Further, we note that f <IN if and only
if”é, Irk(Ek_,,)(t)ra’g(p)f(k’ t)=f(k, t), k=0, and f(k,t)=0, k<0. By [l0,
Theorem 1], W N L= is dense in WM. Thus, if gD N L=, then we put

&ra(t) = X k(B _ ) (t)raﬁ(p)g(k’ 1)EN.

k
Thus g, ,=M. Then X g, (t)=g(k, t). Hence we have for m, k=n=0,
n=0

(L, Le(Ue))(m, 1) = g, (O)us(Ueg)(m—n, v™"t)
= gk,n(t)uo(xpm_”(r‘”t)ao ~(p))
= &)t g, (1) (D)
Zowy_ YD xenp, SO o 58K, 1)ad(p)
ZerEy_)DZeng,, (O x4 8K, 1)a(p)
= Op,ml g, &M, 1)aF (D) = 0} 181, a(1) .

Thus we have

(5 3 (L, LU, 1) = 3330 040 (1)

k=0 =0

o

k m
k; 61: g m, n(t) = ’Z-l;gm,n(t) = g(m5 t) .
Hence this implies that % N L= C[¥,(Ue,)], and so M [L,(Ue,)l,. Therefore,
M=[L,(Uey)l..

Since U<®,, by Lemma 5.1, MC[8, e],=M(E, p). Further, since
LrP.LE" f)(k, 1)=0, for k>m, we have
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(33 LEPLEf)k, 1)
k
= mgw X‘L‘”(Ek_m) (t)rag(p)f(ka t)

= E= xrk(Em)(t)rag(p)f(k’ 1)

= Zrk(E)(t)rag(p)f(k’ t)
2O g F 1) = R, S0 ).

This completes the proof.

As in [13, Lemma 3.1], we have the following lemma.

Lemma 5.5. Let {I%;};c; is a finite or countable collection of left-pure,
left-invariant subspaces such that I; is orthogonal to SN;, for i=+j. Let m(1)
be the multiplicity function of W, Then M =DM, is a left-pure, left-

i€l
invariant subspace with multiplicity function m(t)=>) m{t), a.e.
1=

Next we consider two cases, that is, (1) N is a II,-factor and (2) N is a L,-
factor, n<<oco. Let M be a left-pure, left-invariant subspace of Z? with the
multiplicity function m(¢). If N is a finite factor, then m(t) e R, ={s= R:
s=0}, a.e. In particular, if N is a I,-factor, n<<eo, then m(t)e(l/n)Z, =
{k/n: ke Z}. For, since N is a I ,-factor, NV is identified with an n X n matrix
algebra M, on a Hilbert space K (dim K=n). Then B{XZ))Qr(N)=
BA(Z)® M,=B((Z)Q K). Since Tr@ng, is the canonical trace on
BAZ)RK), (Tr@ndy) (P(1)) E Z,. Since Tr@ndy=n(Tr @), m(1)E(1/n)Z,.
Conversely, we present in

Theorem 5.6. (1) Let N be a II-factor and let m(t) be a measurable
Sfunction on X with values in B, such that S m()du(t)<u(X). Then there exists
a left-pure, left-invariant subspace Y of KIHZ with multiplicity function m(t).
Moreover, if S m(t)du(t)=m(X), then M is left-full.

(2) Let ]\;{ be a I,-factor and let m(t) be a measurable function on X with
values in (1/n)Z,. such that g m(t)du(t)<u(X). Then there exists a left-pure,
left-invariant subspace Nt of .ZF{I 2 with multiplicity function m(t). Moreover, if
SXm(t)du(t)zu(X), then SOt is left=full.

Proof. (1) Suppose that N is a II-factor. Let m be a measurable
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function on X with values in B, such that S m(t)du(t)=u(X). Then there
X
exist measurable subsets {E,},~, and {G,};-, of X such that

m(t) = 33 2,(N+2 (112 26,(0) -

Since x is non-atomic, there exist measurable subsets {F,},—, such that
#(E,)=u(F,) and F,NF,,=¢, n=m. As in the proof of [13, Theorem 3.6], by
Lemma 5.4, there exists a left-pure left-invariant subspace Wt, of WY(F,, 1) such
that the multiplicity function of M, is x5 () and Z L; Py L¥ =R, , where
F, =M, O LM, o

Next, since « is nonatomic, there exist mutually disjoint measurable subsets
{G,}721 such that G, =G, ,+G,,+ - +G,» and u(G, ;) =(1/2)uG,), 1=
j=<2'. Since N is a II,-factor, there exist mutually orthogonal equivalent pro-

jections {p, ;}% ,=1 of N such that E P.,;=1. Since x is non-atomic, there exist
mutually disjoint measurable subsets {H,} ., such that 2 H,CX —Z‘, F, and
(1/2")(G,)=u(H,). By Lemma 5.4, there exists a left-pure, left-invariant sub-

space N, ; of M (H,, p,;) such that the multiplicity function of R, ; is
Zs, (t)(1/2) and EL”P% Ls ‘“Rz s where B, =N, ;0L;N, ;. Put
R, 26992,, - By Lemma 5.5, N, is a left-pure, left-invariant subspace of
Z"}GBEIR( » Pu,j) (=U(H,, 1)) with multiplicity function x4 (¢)(1/2) such that

ELnP58 ¥ :Rz , where B,=N,OLMN,. Set ‘.)IIE:%EBED‘%J-@E@%”. By

n€Z
Lemma 5.5, it is clear that 9 is a left-pure, left-invariant subspace of H? with

multiplicity function m(¢) and >} L”P%L*"—RZ - ~ where =M LM
nez (3 Fut X Ha)

£ S m(t)du(t)=u(X), then >)F,+3) H,=X and so 3} LiPgL¥=1.
X n=1 n=1 nezZ

Therefore M is left-full.

(2) Suppose that N is a I,-factor. Let m(¢) be a measurable function on
X with valus in (1/n)Z, such that S m)duw(t)<u(X). Then there exist
measurable subsets {E,}7-; and {G,}3-] Jéf X such that

m(t) = 3} 25,045~ 76,(0).

Then as in (1), there exists a left-pure, left-invariant subspace I, of H? with

multiplicity function é}l 2g,(t) such that kg; L§P%1L’g =R. where §,=

k=lek
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W, OLIM,. Further, since N is a I,-factor, there exists a family of mutually
orthogonal equivalent projections {p;}%., in N such that ﬁ p;=1and ¢(p,)=
j=1

1/n. On the other hand, since x is non-atomic, there exists measurable subsets

{Gk,]}_’;:]l. Of Gk Such that szGk,1+Gk,2+".+Gk,n—l and (l/n),u(Gk)=/4¢(Gk’]),

1=<j=<n—1. Then for every k, 1<k= n—1, there exists a family of mutually

disjoint measurable subsets {H,}iz1 of X such that u(H,)=(1/n)«(G,) and

H,CX —-i F,. By Lemma 5.4, there exists a left-pure, left-invariant subspace
k=1

N, ; of M(H,, p;) such that the multiplicity function of N, ; is %, j(t)(l/n) and

n-1 n
SVLEP, L¥*=R, ,,where &, /=R, ;0L N, ;. Put M=M;D> S1ON, ;.
kEZ ks j ngpl ’ ’ ’ k=1j=1

Then, by Lemma 5.5, M is a left-pure, left-invariant subspace of H? with

multiplicity function m(z) and 3 L’;P%L*k:R v »_1 , Where F=MO
i<z (D2, +3 7,)
k=1 k k=1 k
LSR. This completes the proof.

As in [13, Theorem 3.1], we have the following theorem.

Theeorem 5.7. Let IR be a left-pure, left-invariant subspace of L* with multi-
plicity function m(t). Then S m(t)du(t) < u(X). Furthermore, S m(t)du(t)=
X X
u(X) if and only if M is left-full.

§6. Case: L™(X, g) is Atomic

Throughout this section, we suppose that L=(X, x) is atomic. Since = is
ergodic on X, let X be a finite set with elements ¢, 2, -+, f;_, and let = be the
permutation of X defined by =(t;)=t;,,, i =K—1, and =(tx_;)=1, Further,
we suppose that #({¢,})=1, 0<i<K—1, and so #(X)=K.

For t;= X and a projection p in N, we define a projection P in L(M)’ by

x(l,‘)(tj)rpf(oa tj) > n=0,

0 s n= 0.

Put M({t,}, p)=3) LIPL¥" L2 Then M ({t,},p) is a left-pure, left-invariant
n=0

subpace of L7 with multiplicity function x(,(t)¢,(p). Then we have the fol-
lowing lemmas.

Bf ), 1)) = {

Lemma 6.1. For t,€ X, there exist a left-pure, left-invariant subspace
MW; of M({t,}, p) such that multiplicity function of ; is z(,(t)d(p) and
> LEPLE =2 LQ’P%J_L;“"=RZ“ |1 where §;=T, 6 L;N,;.

7

nsZ nSzZ



1134 MicHAEL McASEY, PAUL S. MUHLY AND KICHI-SUKE SAITO

Proof. Ifi<j=<K-1, put k=j—iand, if 0= j<i, put k=j+K—i. We
note that
Z[fj)(tl)ralé(p)f(k’ t), n=k,
0, n¥k.

Put M;=>] LiPL¥" 12  Then M, is clearly a left-pure, left-invariant subspace
n=k

(LPLE [, 1) = {

of M({z;}, p) with multiplicity function xi,;(t)és(@t(p)) = 21, (t)?«(p). This
completes the proof.
Lemma 6.2. Let E, F be subsets of X such that #(E)=u(F) and let p be
a projection of N. Then there exists a left-pure, left-invariant subspace St of
W(E, p) such that the multiplicity function of Wt is xz(t)d(p) and L”P%L*k
Z p» Where F=TMOS LM.

Proof. Let E={t;, -, t;;} and F={t, , -, 1,;}. We note that T(E, p)=
IE:OEBEJR({Q > P). Then by Lemma 6.1, there exists a left-pure, left-invariant
subspace W, of M({t;}, p) such that the multiplicity function of MW, is
Zg, }(t)cbo(p) and 2 L"PSUa L¥ =R;( b Since {M,}7_, are mutually orthog-
onal, put M= ZGB‘.U:‘,, Then, by Lemma 5.5, I is a left-pure, left-invariant
subspace with multiplicity function x(¢)¢,(p). This completes the proof.

Theorem 6.3. (1) Let N be a IL-factor. Let m(t) be a function on X

having values in the non-negative real numbers. If m(t) has the property that
N m(t)=K, then there exists a left-pure, left-invariant subspace Nt of H*® with

tex
multiplicity function m(t). Moreover, if > m(t)=K, then Wt is left-full.
tex
(2) Let N be a I,-factor and let m(t) be a function on X having values in
(I/n)Z.. If m(t) has the property that > m(t)< K, then there exists a left-pure,
tex

left-invariant subspace W of H? with multiplicity function m(t). Moreover, if
S m(t)=K, then M is lefi-full.
tex

Proof. (1) Since N is a II-factor and 2 m(t) <K, there exists a family

of orthogonal projections {p,}¥=} in N such that d(p;)=(1/K)m(t;) and p,+
pi++pr1=1. Foreveryj, 0= j=<K—1, we consider a family of left-pure,
left-invariant subspaces {{({#;}, p;)} ¥=¢. Then, by Lemma 6.1, there exists a
left-pure, left-invariant subspace IR; ; of W({t;}, p;) such that the multiplicity

function of M, ; is Z(t)(t)%(P,) and EL”Pg L¥'=R, »p Where i
iy’
M, ,OLM; ;. Since {M; } ¥ are mutual]y orthogonal, put M, = ZEBIR
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By Lemma 5.5, M, is a left-pure, left-invariant subspace of Icil@ilﬁ({t} D;)
(=X, p,)) with multiplicity function K x)¢,(p;)=x(:pm(t;) and g L”P% L¥
=R, ,;, where T=M,; @La‘)ﬁ Since {MM(X, p,)} iz are mutuallyﬂ ozrthogonal
{M;} is so. Thus, put M= 2 G M;. By Lemma 5.5, M is a left-pure, left-
invariant subspace of ZGBE)R(X p;) (=M, E p;)C H? with multiplicity

function m(¢) and >} L”P%L*”~R x_1 , where %—WZ@LS‘M.

<z 2 P
i=o

(2) Let Nbeal,factor. Then there exists a family of mutually orthogonal
equivalent projections {e,}7=5 in N such that 2 e,=1. Since m(z) has values

in (1/n)Z.., there exists subsets {E,}%_; and {G,},=1 such that
R n—1 1
m(t) = >3 2p )+ —26(t) -
=1 =1p

Puté1 #(E)=L. As in the proof of Theorem 5.5(2), by Lemma 6.2, there
exists_ a left-pure, left-invariant subspace M, of W({¢, ---, ¢;_1}, 1) such that
the multiplicity function of I, is g‘lj zz(t) and I‘g LQP&L*’=R 4
where §, =0, OL,M,.

On the other hand, E%A(G,)glf—l,. Put u(G)=d, and G;={t;,, -,

9
{fo, "’3t1;—1}

ta}, 1=I=<n—1. Further, set M,; ,=M({t;,;}, €), 0= j=<K—L—1, 0=I
<n—1. For k such that 0<k=d,, 1=<I<n—1, there exists a left-pure left-
invariant subspace R, , of M, (Hgted, with multiplicity function g, }(1 /7).
Put %,—EGBER, » Then |, is a left-pure, left-invariant subspace with multi-
plicity functlon 26t)(1/m). Therefore, set M= 9%1@2@%, By Lemma 5.5,
there exists a left-pure, left-invariant subspace of H? w1th multiplicity function
m(t) such that 3% LIP.L¥'=R
ieg 3 X
where §=MSL,M.
If ST m(¢)=K, then it is clear that I is left-full. This completes the proof.
tex

+2{x e, 0=nj+I<di+ - +du_i}°

{to""stl-l} {t

As in Theorem 5.7, we have the following.

Theorem 6.4. Let ‘M be a left-pure, left-invariant subspace of L* with
multiplicity function m(t). Then >3 m(t)<K. Furthermore, >\ m(i)=K if and
teX teEX
only if Wt is left-full.
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§7. Canonical Models of Invariant Subspaces

Keep the notations and the assumptions in §§4, 5 and 6. In [6], the first
author introduced the notion of canonical models defined to be a family of
left-full, left-pure, left-invariant subspaces {0¢;};c; with:

(a) for no two distinct indices i and j, Pyy. is unitarily equivalent to P&m,
by a unitary operator in R; and

(b) for every left-pure, left-invariant subspace It, there is an i =7 and
a partial isometry ¥ in R such that VP%V*=P9R, so that M=VIN,.

In this section we consider the canonical models of invariant subspaces
in the settings of §§ 4, 5 and 6. Thus we consider the following four cases:

(1) L=(X, w)is nonatomic and N is a II;-factor;

(2) L~(X, u)is nonatomic and N is a I,-factor, n<co;

(3) L=(X, u)is atomic and N is a II;-factor; and

(4) L=(X, p)is atomic and N is a I,-factor, n< oo.

Case (1). Put S={m: X— R,: measurable function on X such that
gxm(t)d u(t)=u(X)}. By Theorem 5.6, for every m< S, there exists a left-pure,

left-full, left-invariant subspace 0t(m) of H?* with multiplicity function m(z).

Theorem 7.1. The family {R(m)},es of left-pure, left-full, left-invariant
subspaces of H? is a complete set of canonical models in L%

Proof. (a) is clear by Theorem 3.1.

(b) Let M be a left-pure, left-invariant subspace of Z? with multiplicity
function m(z). By Theorem 5.7, g m()dp(t)<u(X). Then there exists a
measurable function m, &S such thaf m(t)<my(t) a.e. By Theorems 3.1 and

5.6, we are done. This completes the proof.

Remark 7.2. Let M be a proper two-sided invariant subspace of Z%. By
[11, Theorem 3.2], M is left-pure and left-full. Put F=MOL,M. Then Py
LMY NR(M)'. By [11, Lemma 3.1], there is a family {E,},c, of measurable
sets such that (Pg, f)(n, 1) = x5, (¢)f(n, t). Therefore, m(t) =”§ 25, 0)EZ,.

Since there exists an m& S such that m(t)& Z, a.e., we cannot find a complete
set of canonical models among the two-sided invariant subspaces.
Case (2). Put S={m: X—(1/n)Z, : measurable function on X such that
g m(t)du(®)=u(X)}. By Theorem 5.6, for every m< S, there exists a left-pure,
X
left-full, left-invariant M(m) of H? with multiplicity function m(t).
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Theorem 7.3, {(m)} s is @ complete set of canonical models in L.

Remark 7.4. 1If n=1, then Solel in [13] proved that a complete set of
canonical models does not consist of two-sided invariant subspaces of L% As
in Remark 7.3, in case n==1, we cannot find a complete set of canonical models
among the two-sided invariant subspaces.

Case (3). Put S={m: X—=R,.: > m(t)=K}. Then, by Theorem 6.3, for
tex

me& S, there exists a left-pure, left-full, left-invariant subspace MM(m) of H* with
multiplicity function m(z).

Theorem 7.5. {I(m)},,es is a complete set of canonical models in L.

Case (4). Put S={m: X¥—(1/n)Z,.: > m{)=K}. By Theorem 6.3, for
tex

me& S, there exists a left-pure, left-full, left-invariant subspace W(m) of HF? with
multiplicity function m(z).

Theorem 7.6. {IMM(m)},,<s is a complete set of canonical models in L.

Remark 7.7. 1If n=1, thatis, N=C, then the first author in [6] proved that
a complete set of canonical models consists of two-sided invariant subspaces.
We now suppose that af=1. By the proof of [11, Lemma 4.2], we have L(M)' N
R(MY CI®"(X)Q 1N®B(IZ(Z))=’§EB (1yQ® B(A(Z)). Let M be a two-sided

invariant subspace of Z?, then Po & L(M) N R(M)', where F=MOLM. Thus
the multiplicity function m(7) of 9t has values in Z,. If n=1, then we cannot
find out a complete set of canonical models among two-sided invariant sub-
spaces.

Additions. After this paper was finished independently, the authors received a paper {rom
B. Solel entitled by “The invariant subspace structure of nonselfadjcint crossed products”
which is published in Trans. AMS, 279 (1983), 825-840, His work is more general than
ours. However, canonical models of invariant subspaces from the point of view of a numerical
valued function allows us for a more understandable method of constructing the actual sub-
spaces if less general. After that, the authors also received a paper from S. Kawamura and
N. Tomimori entitled by “Some families of shift operators and invariant subspaces” which is
published in Bull. Yamagata Univ., 11 (1984), 17-31. Their paper is a generalization of [6]
to their setting and so overlaps § 5 in our paper.
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