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The group O of Bogoliubov automorphisms of the infinite dimensional Clifford albegra,
implementable in a Fock representation, the analogous group of automorphisms of the ca-
nonical commutation relations and various generalisations are discussed. Their homotopy
type is determined in a topology naturally defined by the spin and metaplectic representations.
A theorem of Araki and Evans on a Zyindex for certain projections is generalised using our
"mod 2" index for O. Connections with KI of certain Banach algebras are described.

This note is a continuation of [1]. There we considered the topological
structure of certain infinite dimensional groups, the prototype of which is the
group Oy of Bogoliubov automorphisms of the (infinite dimensional) Clifford
algebra implementable in a given Fock representation. To describe 0, let E
be an infinite dimensional real separable Hilbert space and let C(E) denote the
Clifford algebra over E generated by {c(u)\u^.E} with c(w)2=||M||2«I. Then
if / is a complex structure on E, 0 is the group of orthogonal operators O on E
such that OJ—JO is Hilbert-Schmidt. Moreover / determines a Fock repre-
sentation of C(E) [2] denoted by TT/, and each Oe0 defines an automorphism
of C(E) by c(u)— >c(Ou), u^E, which is implementable in TUJ in the sense that
there is a unitary operator F(0) on the Hilbert space 3 of KJ such that

The main object of Section 2 is to determine the coarsest topology on O
such that the map O-*r(O) from O into the projective unitary group of 3" is a
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continuous homomorphism. This topology on O is weaker than that of [1],
however it turns out that the results of [1] go through in the new topology. In
particular the mapj: O->Z2 defined by

j(O) = dimc ker(/a/-<9) (mod 2)

is a continuous homomorphism which separates the connected components of
O. (Note that ker (JOJ—O) is /-invariant and so the complex dimension, dimc,
makes sense.) As a corollary of this, in Section 3, a generalisation of a theorem
of Araki and Evans (which is used in their work on the Ising model [3]) is proved.

The remainder of Section 2 is taken up with some technicalities which are
expanded on as the results are useful in another context [4], In Section 3 various
generalisations of O are considered, beginning with the replacement of the
Hilbert-Schmidt operators by more general ideals of compact operators. Sym-
plectic analogues of 0 are introduced and analogous results obtained for them.
The bundles referred to in the title are those associated with the analysis of the
topological structure of these groups, the principal £/(l)-bundle determined by
the map 0->F(0) from O into the projective unitary group, some universal bun-
dles (Section 4) for certain groups and a proof that infinite dimensional Clifford
bundles are trivialisable (Section 2).

Section 4 contains some remarks which connect the groups studied here
with the unitary groups of certain Banach algebras and hence interprets the
index maps of [1] and [5] as determining KI of these algebras.

Acknowledgements, The results of Section 2 were formulated while I was a
visiting fellow at the Australian National University, Department of Math-
ematics in January, 1982. I would like to thank Derek Robinson for his in-
vitation, John Phillips for several suggestions and Iain Raeburn for useful
criticism.

§2. Topological Structure of O

In this section I will show that O has a natural topology in which it becomes
a Polish group. The homotopy groups of O are then determined following [1]3

and the significance of this topology is established.

Definition 2,1. A net {()„} in 0 converges to O if JOJ—O^JOJ—O
in the strong operator topology and JO^J+O^-^JOJ+O in Hilbert-Schmidt
norm.
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Lemma 2.2. O is a topological group.

Proof. For O <E 0 define

Tl = i/2(0-/0/), T2=y2(0+JOJ) (2.1)

and note that H T ^ I I ^ l . Then continuity of multiplication in O follows easily
if one notes three facts. Firstly that multiplication is continuous in Hilbert-
Schmidt norm, secondly that it is continuous on the unit ball in the strong
operator topology and thirdly Griimm's result [6] that if a sequence {Rn} of
operators with uniformly bounded norms converges strongly to R and S is
Hilbert-Schmidt then RnS-*RS in Hilbert-Schmidt norm. Now, to verify
continuity of taking inverses it is sufficient to show that if O^->I then O"1-*/.
But if Oa-*I then T?->0 in Hilbert-Schmidt norm so the identity

Tfrl+T?T2 = i (2.2)
shows that (r?)*r?-*7 in norm (where T*9 T* are defined in terms of O^ as in
(2.1)). But now r?*-^0 in Hilbert-Schmidt norm and from

il(r?)*v-vj|2 = <n(r?)*v, v>+<v, v>-<v3 r?v>-<r?v,v>
we deduce that (T?)*-*/ strongly.

Let 0Q denote the set of 0e0 with ker(0— JOJ)=(Q), then if O<=00 it
follows from (2.2) that one is not an eigenvalue of TfT2 (T2 being defined by
(2. 1)). But if O' is sufficiently close to O e 00 i*

1 this topology on O then (T$*T'2
cannot have one as an eigenvalue either. Thus OQ is open in O. By translating
00 around we obtain an open cover for O.

Lemma 2.3. Every O^O0 may be written uniquely as a product, O=U
(I+X) where U is J-linear (i.e., unitary on E) and X is Hilbert-Schmidt with
J(I+X)J— (I+X) positive. Moreover U and I+X depend continuously on O in

00.

Proof. This result appears in part in [1]. Here U is the unitary in the polar
decomposition of Tl=y2(O—JOJ) from which it follows easily that U~1O=I+X

for some Hilbert-Schmidt X with J(I+X)J—(I+X) positive. Uniqueness is
straightforward to verify. If O^-^O in OQ then we need to show that the unitary
Ua in the polar decomposition of T<f=y2(Oc&—JOaJ) converges strongly to U.
But (cf. proof of Lemma 2.2) [7Q5-rt(l-(Tf)*r?)-1/2 and so the convergence
is clear. It remains to show that I+Xa= U^O^ satisfies \\Xa— X\\2-+Q. Using
(2.2) and the definition of X* one may write J+^=(/-F*FJ1/2+rf, where
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a and similarly I+X=(I- F* F)1/2+ Y. As O^O in 0 so 1 1 Y*—

Y\\2 converges to zero and hence it is sufficient to show that (J— F* Ya)
1/2— I

converges to (/— F*F)1/2— Jin Hilbert-Schmidt norm,, We already have con-

vergence of (I— F*FOS)V2 to (J— F*F)1/2 in the strong operator topology so

Theorem 2.21 of [7] will give the result, provided we can show that

But

so it is sufficient to prove that tr[(/— Y*Y&)1/2— (/— F*F)1/2] converges to zero.

If the eigenvalues of 7*^ and F*Fare ft/a)}".! and {̂ 17-1 respectively
then

S/l -^<«))1/2(i -W2 = S/*y-*

and as I+X^O0 for all a there is a constant K such that

for all j (and a sufficiently large). Thus the result follows from the fact that

\\Y*Ya\\2-*\\Y*Y\\2.

Remark 2.4. Let O2 denote the group of orthogonal operators on E of the

form I+X with X Hilbert-Schmidt. Then it follows from [1] that every element

of O may be written as a product of a unitary operator on E and an element of

02- Hence the map from the product <!](£) X 02 (where ^(E) is the unitary

group of E) onto 0 given by (U, I+X)-*U(I+X), is onto and continuous if
is given the strong operator topology and O2 its natural topology.

Noting that ^(E) x O2 is separable and metrisable we have

Proposition 2«,5o O is a Polish group,

Proof. We need only check completeness. If {On} is a Cauchy sequence

in O then {On} is a Cauchy sequence in the orthogonal operators on E equipped
with the strong operator topology and hence converges to some orthogonal

operator O. But then JOnJ—On and JOnJ+On must converge strongly to

JOJ—O and to JOJ+O in Hilbert-Schmidt norm respectively as JOn/+On

is a Cauchy sequence in the Hilbert-Schmidt operators. So O is complete.

o60 O0 contains a contmctible, open, symmetric neighbourhood of
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the identity.

Proof, Observe that if Q(=0Q and O=U(I+X) is the decomposition of
Lemma 23 then —1 does not lie in the spectrum of I+X, because with 7i and

T2 as in (2.1), O<U~1T1<1 and

Thus there is a skew-adjoint real linear Hllbert-Schmidt operator A on E with
7+Ar=exp A. On restricting exp to the set of real skew-adjoint A such that
|(exp A—I\\<\ we find that log is a continuous inverse for exp. So we can

choose 00o^0o to be the set of all O=U(I+X) with HX||<L If exp
let A=JQ | A | be the polar decomposition of A so that

exp A = cos | A | +/0 sin | J> | .

Let gs, 0<^< 1, be a homotopy contracting *3J(E) to 1 and define

by

hs(0) = gs(U) exp sA

where O=U(I+X)=U exp A is the decomposition of Lemma 2.3. Note that
because cos s \ A \ >0, gs(U) Is the unitary in the polar decomposition of Jhs(O)J
—hs(0) for all ,ye[0, 1] so that hs is well-defined. Then hs is a homotopy
contracting 000 to the Identity as required.

With these preliminaries out of the way the spin representation of O may
be analysed. Let

and note that *U is a subgroup of the unitary group ^(f?) of S" equipped with
the strong operator topology. V Is a topological group and we may define p :

<U->0 by p(eier(O))=O. Assuming thatj?: V-^O is continuous then It fol-
lows from a result of Gleason [8] that p is a locally trivial fibration (i.e., there
exist local cross-sections for p) with fibre p~1(O)=kQr p={eiQ\Q<6<2n}, It
then follows that/?: p~\O^-^O^ is a locally trivial fibration with contractible
base and so Is trivial. That is we can find a continuous cross-section from 000

Into CU. Thus except for the continuity ofp we have established

Proposition 2,7* There is a countable open cover {0,} f-e/ of O obtained by
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translating OQQ, such that for each Oi there is a continuous map r{: Oi-*
cU(9?)

with

Ad r,(0) [*j(c(u)y\ = nj(c(0u)} .

(Note that (Ad 17) (A)=UAU~l).

Corollary 2»88 The map associating toO^.0, an implementing unitary P(O),
defines a continuous projectile representation of O.

Remark 2,9, Let £ be the G.N.S. cyclic vector in the Hilbert space £F of
nj and fix the phase of F(O) for O e 0 by requiring

<J2, r(0)J2>>0, 0GE0. (2.3)

Note that if 0<$00 this is no restriction at all (cf. [9]). With this choice of
phase the map O-^F(O)9 0e00 can be shown to be continuous.

Lemma 2.10. The map p: ^-^O is continuous.

Proof. As p is a homomorphism we need only prove continuity at the
identity. If £/„-»/ strongly in V then there exists a sequence {On}n=i in 0 such
that Un7Uj(c(uJ) U~l=nj(c(Onu)) and On converges strongly to /. In order to
prove that On converges to / in the topology on 0 we need some results of [9].
As Un implements the automorphism defined by On [9] gives an expression for
Un@. Introduce the notation A for the operator

Av = T2TT'v9 v<=E (2.4)

where 7\ and T2 are defined in terms of O by (2.1) and the bar denotes a complex
conjugation on E so that A is /-linear. Similarly define An in terms of On.

In order to use [9] we need to interpret the notation of that paper. To that
end note that [9] defines H=H+@H_ where H± are copies of E (regarded as a
complex Hilbert space with complex structure /) and lets C: H^*H be defined
by (Cv)s=v_, e=±, vs(=Hs. Identify the Clifford algebra over E with the CAR
algebra over H+ and orthogonal operators on E with unitary operators on H
via equations (3.21), (3.22) of [9]. Then An defined above (cf. equation (2.4))
is written A+_ in equation (4.2) of [9]. Inspection of equations (4.41) to (4.45)
of [9] shows that Un& is a sum of terms which involve powers of the operator An.
The term linear in An we call KnQ and from [9] p. 123 we deduce

(here ||i0]| = l is assumed and An is defined in the obvious way in terms of On



SOME INFINITE DIMENSIONAL GROUPS 1 109

using (2.1) and (2.4)). Moreover from [9] (equ. 4.45)

Since KnQ converges to the zero vector we have IMJ^-^O as n-^oo. But

so that {HCrjr1!!}*-! is bounded abvoe. Hence {IKrjJIJ-r-i is bounded away
from zero. From this and the fact that 0n->7 strongly it follows that An and
A* converge strongly to zero. By a result of Grumm [6] this means that An

converges to zero in Hilbert-Schmidt norm. But as (Tn\-+I strongly and

\\(TM\ = l another result of [6] gives (T^^T^T^T^ converging to zero
in Hilbert-Sehmidt norm. This proves that On-*I in 0 as required.

The next task of this section is to determine the homotopy groups of 0,

The argument is essentially that of [1] (although there are small differences as
the topology on O given there is not the same as that of this paper) and so the
following is just a sketch.

Let 3£ denote the space of all complex structures on E which differ from
J by a Hilbert-Schmidt operator. Then 3£ is the homogeneous space O/CU(E).

On the other hand by Lemma 2.3 the normal subgroup O2 of O also acts transi-
tively on 3£ so that

This latter space has known homotopy type, namely that of the space
0(oo)/t/(co) where 0(oo) (resp C/(°o)) denotes the stable orthogonal (resp

unitary) group (cf. [10]). We prove below that the fibration 0-*3£ is locally
trivial (this follows also from Lemma 2.3). So O is a locally trivial fibre bundle
with contractible fibre ^(E) over a paracompact base 3£ and hence has the

homotopy type of the base. From [1 1] the non-zero homotopy groups of O are

thus: *o(<5)~^2»*i(0), *£O)^n%(O)^Z9 wf-+8«9)a^(0) *>0.
The following result exhibits a local cross-section for the fibration 0-»3f

and we include it for use elsewhere.

Lemma 2.11. Let 3£0= {J, \ \\J.-J\K 1} and define

s(J) = I;

where J0 is the isometric part of the polar decomposition of JJ1—J1J then

is a locally continuous cross section for O->3£
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Proof, Let ̂ (Ji) and s2(J^ stand for the first and second terms respectively
in the definition of s(J^. Notice that s is well-defined since with ||/i— J||<1
both (2— //!—/!/) and J1/+/1/+2 are positive and moreover /§=—/, Jf=

-/0 since ker(//1-/1/)=0. Now s(JJ&O since s2(J^*s^=y4s(l+J1jy
tJJ1

is trace class and by noting that J0 commutes with both Si(Ji) and s2(Ji) some
elementary algebra proves that s(Jj) is orthogonal. It is straightforward to check
that s is indeed a section so that only continuity remains to be established,, Let
/„->/! and note that sl(Jr^s2(J^=JJn~JnJ converges to JJ^—J-J in Hilbert-
Schmidt norm. As ^i(/n)-^Ji(/i) strongly we conclude that

in Hilbert-Schmidt norm. This proves that s is continuous.

The original motivation for the results of this section was the observation
that the usual construction of Clifford bundles (see for example [12]) does not
immediately go through in the infinite dimensional case. An alternative ap-
proach is to start with a locally trivial principal 0-bundle P over a paracompact
space 3£. This may be specified in terms of a locally finite cover {Xa}}{ge/ of 3£
and transition functions gap : Xm fl Xp->O. Then one may define functions

by

Then the functions g^ may be used to patch together {XaxC(E)}(&^I to form
a bundle of C*-algebras over 3£ with fibre C(E} just as in Dixmier [13] (para.
10.1.3).

Now while non-trivial principal 0-bundles exist (as O has non-trivial
topology) the associated Clifford bundle constructed above is always trivialisable
whenever 3£ has finite topological dimension. To see this construct first the
associated Hilbert bundle ^Px^E. Then, as a bundle with structure group the
orthogonal operators on E equipped with the strong operator topology this
bundle is trivialisable. (This is Lemma 10.8.7 of [13] which goes through in
the case of real Hilbert spaces as well.) So there exist maps r^ from Xa into
the orthogonal group on E such that

By defining fa: l^Aut C(E) by fj(x) (c(uj)=c(ra(x)u) we see that the Clifford
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bundle Is trivialisable. This argument fails of course if E is finite dimensional

(cf. [12]).

§3, Generalisations

Notice that many of the results of the previous section still hold when we
replace the Hilbert-Schmidt ideal by any separable symmetrically normed ideal
© of compact operators on E (see [7], [14] for a discussion of symmetric norms).
Thus O is the group of orthogonal O such that O7— /0e@. Specifically
Lemmas 2.2 and 2.3 go through although now we must define O& (in place of
02) to be the group of orthogonal operators on E which differ from the identity
by an element of @, equipped with the topology inherited as a subgroup of
(5. With this reinterpretation Remark 2.4, Proposition 2.5 and Lemma 2.6 still
hold. Similarly the determination of the homotopy type of 0 (discussion
preceding and including Lemma 2.11) goes through.

The main consequence of the preceding paragraph which will be used here
is that for every 0e0, O—JOJ is Fredholm (use equation (2.2)) and that the

map 7: Q-^Zz given by

j(O) = dimc ker (O-JOJ) (mod 2)

is a continuous homomorphism which separates the connected components of
0. (In view of the remarks of the previous paragraph the only assertion which
needs checking is the continuity of j and this depends only on the continuity
of O->O+JOJ in the uniform topology by [1]. As the ©-topology is, in
general, stronger than the uniform topology, continuity of j follows.)

We will now deduce from the preceding remarks a generalisation of a
theorem of Araki and Evans (Theorem 3 of [3]).

First of all we need to reformulate our discussion in terms of Araki's self-
dual CAR algebra formalism [15]. Let If be a complex separable infinite
dimensional Hilbert space, F be an anti-unitary involution, P+ be an orthogonal
projection on H with FP+r=l — P+ = P_ and © a separable symmetrically
normed ideal of operators on H. Define

c[]r = {U | U unitary on H, P+UP_+P_UP+£E@} .

Then ^Ur and O are isomorphic [simply let H=E@E with complex structure

J@-J, r= and map 030-> 1 e^/r for />+= The ana-
\1 U/ \12 J-iJ \U U/

logue of a complex structure on E is a basis projection on H, thai is, an or-
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thogonal projection P on H with PPT= I —P. Hence let

3£p+ = {p | p basis projection, P— P+

and equip 3?P+ with the obvious metric topology: HA— P2||@ where || ||@ is
the norm on @. Then 3?p+ is homeomorphic to 3? as ^Ur acts transitively on

3?P+ (so that both are homeomorphic to O/CU(E) with P+ corresponding to

/)o The index map j becomes j: Vr-^^z where

7( J7) = dim ker(P+ UP+) (mod 2) ,

(here P+UP+ is regarded as an operator on P+H). This gives the commutative

diagram

-p+

where cUr~>3£p+ is the quotient map given by the transitive action of ^Ur on
3£P+ and the dotted arrow is defined by

j+(p) = dim ker P+P (mod 2), P e3TP+ ,

where P+P: PH-»P+H.

There is another way of defining j+. Notice that

dim ker P+UP+ = dim ker P+U*P+

as P+UP+ has Fredholm index zero. Moreover if P+U*P+v=Qs v^P+H

then Pv= UP+U*P+ v=0. Thus ker P+U*P+ is contained in the eigenspace of

P+—P corresponding to the eigenvalue 1. Conversely if (P+—P)v=v then one

has

p+pv = 0 and PP+v = 2Pv so that P+PP+v = 0 .

But P+PP+=P+UP+U*P+=\P+U*P+\2 and thus ker P+PP+-ker P+U*P+.

Let P+ A (1 — P) denote the projection onto the eigenspace of P+—P of eigenvalue
1. Then we have (cf. [3], Theorem 3):

Theorem 3.1. The group ^Ur acts continuously and transitively on 3£P+9

the spaces Vr, 3£P+ and 0(oo)/[/(oo) have the same homotopy type and the con-

nected components of 3£P+ are separated by the continuous map j+: -£P+-*Z2

given by
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AGP) = rankP+A(l-P) (mod 2), P^3£P+ .

In [5] a subgroup of O was discussed although again the topology given
there was different from that of this paper. If we fix a complex structure /0 on
E which commutes with / then (E, /0) forms a complex Hilbert space and the
subgroup ^U of O considered in [5] consists of those elements of 0 which com-
mute with JQ. When @=@2, the Hilbert-Schmidt ideal, V is the group of
unitary Bogoliubov automorphisms implementable in the representation TUJ of
the CAR over E (regarded as a complex Hilbert space with complex structure
/0). In the context of this paper the natural topology on *U is that inherited
from O. The appropriate index map for V is defined in [5] as f(C/)=Fredholm
index P+ UP+ where 17 e CU3 J=JG(P+—P_). The continuity of / in the topology
described here is proved in [16] in the case @=@2 and the proof given there
goes over to the general case. ^U turns out to be relevant to the discussion of
representations of the group of unitaries which differ from the identity by a
Hilbert-Schmidt operator and I will discuss its properties in more detail in [4].

Finally one may also consider the symplectic analogues of the groups
discussed above. Let a: ExE->R be the imaginary part of the complex inner
product

<w, v> = (w, v)+i(Ju9 v); u,

Then the group of bounded operators R on E with

a(Ru9 Rv) = o(u, v); u,

is the symplectic group of E and we define dp to be the subgroup consisting of
those R with RJ—JR^&. Let gp^ denote the subgroup of <% consisting of
operators which differ from the identity by an element of @, equipped with the
metric topology: ||^i—R2\\& RI, R2^£p&. Following [17], the polar decom-
position allows us to write every element of <% as the product of a unitary
operator on £"(that Is, an orthogonal operator commuting with /) and a positive
element of Jp. So we may equip <% with the product topology (the unitaries
having the strong operator topology) in which it becomes a topological group
[17].

Lemma 3*2,, (Araki [18]). The group £p acts transitively on the space
3£ff consisting of symplectic operators ^ on E which differ from J by an element
of @> and satisfy J\ = — \ and

(Jv, /iv)>(v, v) for all v(=E.
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Proof, This result could be proved using [18] however it is simpler to just

exhibit the element R of £p such that J1=RJR~1
a In fact it is sufficient to show

there is a symplectic operator R with J1=RJR~1 for then RJ—JR=(J1

So define

where KQ is the isometry in the polar decomposition of J-J—J-J. Rfi is well-

defined as the conditions on /x give /!/+//!<— 2-7 so that the square roots

exist. Moreover the kernel of JiJ—JJi is the joint eigenspace of JJi and J-J

corresponding to the eigenvalue —1 and hence coincides with the kernel of

— 27— /!/— //!. Thus as / anticommutes with JJi—J^J it anticommutes with

KQ. This, together with the fact that KQ commutes with JJi+JJ, implies that

Rfi is symplectic and it is then elementary algebra to verify that Rj^JRj^Ji

as required,

Equip 3Sff with the metric topology :

Theorem 3030 The group £p has the homotopy type of the space 3£ff. 3£v is

homeomorphic to ^p-\^3(E) n^p@ which has the homotopy type of Jp(oo)/^J(oo)0

In particular £p is connected,

Proof, That d?p has the homotopy type of 3£v is immediate from the defi-
nition of the topology on <ip. Lemma 3,2 and the fact that <^p=cIJ(E)-^^(S>

give the homeomorphism 3fo.=^p@/^p@ n ^(E) while the homotopy type of
the latter is known [10] to be that of <f/0(oo)/|7(oo). The homotopy groups are

listed in [11].

In the case where @=@2? the Hilbert-Schmidt operators9 the analogue of

the spin representation of O is the metaplectic representation of dp. The

latter arises from the fact that in this case J?p is the group of Bogoliubov auto-
morphisms of the CCR over E (with symplectic form a) implementable in the

Fock representation determined by the complex structure /„ Continuity of the

metaplectic representation is proved in [17] (see also [19] for a clearer argument)

and the fact that the topology on J/* is the weakest for which the metaplectic

representation is continuous is proved in [20].

Some of the groups of the preceding sections are related to the groups of
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invertible elements of certain Banach algebras. In this section H denotes E

regarded as a complex Hilbert space with complex structure J0 such that J0

and / commute. Define algebras £}&(£), £B®(H) to consist of those bounded

operators A on E, H respectively such that AJ—JA^&. The following result

is straightforward.

4.1. ^@(£) and 3)&(H) are Banach algebras in the norm

\\A\\ = \\A\\.+\\JAJ+A\\& (4.1)

where || IU is the uniform norm.

Denote by SX^(E) and <3X&(H) the respective groups of invertible ele-

ments of these Banach algebras.

4,20 S~C&(E) (resp S-C®(H)) has the homotopy type of O

(resp <U).

Proof. We equip O and V with the topologies they inherit from the metric

defined by the norm (4.1). The group S-C<g(H) is denoted G in [1] where we

showed, using the polar decomposition, that ^U is a deformation retract of G.

The same argument shows that O is a deformation retract of 3JC^(E). Hence

the result.

Proof. We consider the case of J3@(jE) only, the other being similar using

the results of [5]. By definition of K^ we need to consider the group of invertible

elements of the algebra of n X n matrices over *B^(E) for every n. This latter

algebra is isomorphic to the algebra of operators A on E(g)Rn which satisfy

AJ—JA&& where J=J®In (In being the nxn identity)., that is, isomorphic to
the algebra £B^(E®Rn). But the group of invertible elements of the latter has

the homotopy type of O by the preceding proposition and hence the group of
invertible elements of &<g(E(S)R") factored by its connected component of the

identity is isomorphic to %*2 independently of n. So

Remark 4.4. There is another way in which the algebras &&(£) and

^^(H) arise. If Jl is a complex C*-algebra then given an element reExt(J)

it follows as in [20] that there is a representation n of Jl on a Hilbert space H

and projections P± with P+-\-P_=I such that
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where JC(H)= compact operators on H. Thus Jl imbeds in *B<g(H) via n. It
is not difficult moreover to see that an embedding of ^A into J2@ (H) (where
&p is the ideal of compact operators Swith 2]z- •?? < <*>, {$.} being the eigenvalues
of (S*S)1/2) defines a /?-summable Fredholm module in the sense of [22],

As a final observation we note that when @=JC the ideal of compact
operators, the groups Q£(E) and SJ2(H) of invertible operators on E and #
respectively, equipped with the uniform topology, are universal principal bundles
for QJCjtfJE) and S-CjdiH) respectively under the obvious quotient maps

This follows from the fact that QJE(E) and Q£(H) are contractible (Kuiper's
theorem [23]) and the observation that the preceding quotient maps define
locally trivial fibrations because QXj^E) and QX^iH) are closed Lie subgroups

of QJ2(E) and QJE(H) respectively. Similarly the orthogonal and unitary
groups provide universal principal bundles for the retracts 0 and ^U respectively
(with @= JC).
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