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A Proof of

By

Yasuo YAMASAKI*

The purpose of the present note is to prove in a self-contained way Kwapien's theorem
that gives a criterion for Hilbertizability of normed spaces. Original proof [1], [2] has required
much more complicated discussions. Many authors have investigated [3]~[6] relating pro-
blems, but their researches are based on mutual quotations, thus it is difficult to follow their
studies for readers not so familiar in the topic. So the author believes that a self-contained
proof has some meaning.

§lc Kwapien's Theorem

Theorem If a real Banach space E is of type 2 and cotype 2, then E is iso-
morphic to a Hilbert space.

Proof. The definition of type 2 and cotype 2 is:

3a, b>0 vn vxly x2, ••• , xn^E (except x1 = x2= °°° =xn = G)

(1-1) a± ||x,||2<|| ± *ixi\\
2dm(e)<b± \\xt\\2

where £=(e,)i-i> e~±l and m is the product measure of -y(fli+fl-i), 3\ being

the Dirac measure placed at 1.
In (1.1), the first inequality is the definition of cotype 2, while the second

inequality is the definition of type 2.

First step From (1.1) we can derive

(1.2) a £ ||x,||2< J|| ± tiXi\\*dg(t)<b ± ||*,||2

where f=(f f-)i-i and g is the product measure of one-dimensional gaussian
measures with variance 1.

Rn can be written as the product B?=R\. X {— 1, 1}", and the measure g
can be written as g=g+ X in, where g+ is the (normalized) gaussian measure on
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R*+ = {(/,)| f .^0 for vi}. Therefore we get

(1.3) (\\±tixi\\*dg(t)= \\\\± IttMfdg+dm.
J « = 1 JJ »=1

Assuming (1.1) we have

J 1=1 * * i=l l J i=l

In a similar way, also we have (1.3)>a 2J ll^-ll2- Thus we have proved (1.2).

Second step Assume that %15 x2, • • • , xn, yly y2, • • • , ;

(1.4) S/fe)2 - S/(^-)2 for
i=l i=l

Then we have

(1.5) (|| ± tiXi\\
2dg(t) = (|| ± tiyi\\*dg(t) .

J i=l J i=l

Denote with gXl,X2l...tXlt the measure on £" induced by the mapping t=(ti)-^>
n

2] tfXf^E from the measure g. Then the characteristic function of gx X2i...fXil is
=

= \
Jj 1 = 1

Therefore under the assumption of (1.4), we have Zg1,X2,...,sJ(f)=Zy1.y2,...,yn(f)-
From the one-to-one correspondence between the characteristic function and

the measure, we see that gieit3r2t....Xn=gy1,yt.....yJl. Hence

J Jl ± ^il

Jjg" 1=1

namely we get (1.5).
Third step Let C(5*) be the Banach space of weakly continuous functions

on the unit sphere S* of JE*. For every xi9 x2, ° ° ° 9 xn^E, we shall define
^^.....^eas*) as follows:

(1-6) ^1 .̂.-.,.(/) = i3A*i)2.

Combining (1.2) with the result of Second step, we see that
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(1.7) fl>,1.^.....,. = a,,,*,.,,. wiP/«w «S lkl|2<6g IWI* .

Even if ?z>m, we can add ym+i=ym+2=°"~ yn
= 0 to prove (1.7).

Fourth step Consider a subset A of C(S*) such that

(i.8) ^ = {*,,.*..... j s i wi* = i> •
A is convex, because ̂ ,^...,^+(1 —W)t.yt,.-,jm=®v\fl....,v\*m,vi=K jv-xf^X ,m

and ± HVTXH'+S IIVF^II'^t! IWI2+(1-*)S ll*ll'=l.
i=l 8=1 f=l 1=1 n

(1.7) means k4 n o4=#, because if ̂ .̂ .....x^a^ ,̂,...,̂  with I] ll*,-||2=
m n _

S Ib,-||2=l9 then we get ^^T^,vT^2,...,vT^=:^vTj],^^,...x^ws with S HV^ill2

»? _
=fe and Sllv'0yf-||2==ff> which contradicts to (1.7).

8=1

Fz/r/z 5-^ep Since A is a convex set and bAf\aA=<fr9 by the corollary of
the separation theorem (the proof is given later) there exists a linear function
F which is positive on A and satisfies

(1.9) a sup F(<Z>) ^ 6 i

Using this F9 we shall define (jc, y)ff=F(f(x)f(y)\ (x, y)H is bilinear and (x, x)H

=F(0X)>0, therefore \\x\\ff=\/(x9 x)H is a Hilbertian norm.
From (1.9) we get

(1.10) a sup 11*111 ^Mnf||jc||i.
x&S x&S

So, replacing \\'\\ff by its suitable constant multiple, we can suppose that
a^\\x\\ff^b on 5, or equivalently

(1.11) fl|WI2^IWI^i|W|2 for

This means that E is isomorphic to the Hilbert space whose norm is || ° \\H.
(q.e.d.)

§20 Separation Theorem

Theorem Let N be a real normed space and U be its open unit ball. If
A is a convex subset of N such that A fl U=<t>3 then there exists a linear function
F on N such that

(2.1)

Proof, First step If N is finite dimensional, then two disjoint compact
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convex sets A and B can be separated by a hyperplane.

Since N is isomorphic to Rn, we shall adopt the Euclidean metric. There

exists x0^A and y0^B such that d(xQ, y0)=d(A, B) (=the shortest distance

between A and B). Let I be the line connecting XQ and y0. Then the hyperplane

n, which is orthogonal to / and passes through (xQ+y^!2, separates evidently

A and B.
Second step In general case, let B* be the closed unit ball of N*. B* is

weakly compact. For x^A and e>0, we shall put

(2.2) KXi

For every xl9 x2, • • • , xn^A and e>0, we have

(2.3) n ,.*=1 *

because the convex hull of {xl9 x2, • • • , #M} is finite dimensional and disjoint
with the closed ball of radius l — e, so that First step is applicable. (A linear
continuous function on a subspace of N can be extended on N without changing

its norm, according to Hahn-Banach's theorem).

Since B* is weakly compact, the finite intersection property implies the

complete intersection property, therefore

(2.4) n nir,..̂ .
g>0 xGA

Take an element Ffrom this set, then evidently we have (2.1). (q.e.d.)

Corollary Let E be a real vector space, A be a convex set and suppose that

Af}aA=<l> for some a>l. Then there exists a linear function F such that

(2.5) sup F(x) ̂  1 ̂  a inf F(x) .
x^A x^A

Proof We can assume that A spans E, because a linear function on a

subspace of E can be extended on E.

Since A is convex, every element z of E can be written in the form:

(2.6) z = Ix—vy, x, y<=A, J^O, /^

Define ||z|| by

(2.7) ||z|| = i

Then || • || becomes a semi-norm on E. (It may not be a norm, but the follow-

ing discussions are kept valid considering the factor space E/{z\ ||z||=0}).

Suppose that z=ax^aA. If ax=Ax'—fty' for some x', y'^A and ^0,
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/^O, wehavejc'=— *+— /e^t^U. Since ,4 f}aA=49 this implies
A A, A A

so that A > 1 . Thus z^aA implies | |z| | ̂  1 .
By the separation theorem just proved, there exists a linear function F such

that ||F||*^1 and vz<=aA F(z)^l or equivalently vx^A aF(x)^l. Since
x^A implies ||jc||^l, we have evidently vx&A F(x)^l. This completes the
proof of (2.5). (q.e.d.)
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