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§§8 Introduction

Let F be a real vector space equipped with a quadratic form q, whose
signature is (/*+, /«0, ju_). (i.e. ja+ and /*_ are maximal ranks of linear subspaces
of F, on which q is positive or negative definite respectively. JUQ is the rank of the
radical of q.) A subset R of F will be called a root system of sign (#+, #0, #_)
in this note, if it satisfies certain system of axioms similar to the classical one.
(See for instance [1] Chap. VI. We reformulate it in §1 (1.2).)

In this note we give a classification of root systems of sign (1, 0, 1). The
result is summarized in Theorem in § 1 (1.6), which contains a list of 12 types of
root systems. (Three types of them are reducible root systems.) Each of the
types contains an infinite sequence of root systems, whose isomorphism classes
are parametrized by a positive integer m^N, called the period of R, and some
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finite numerical datas rl9 • • • , rk9 called the coefficients of the diagram of the type.
For a root system R9 the group generated by reflexions of a&R, which

one may call the Weyl group for R9 is easily calculated, whose invariants are
elementary hyperbolic functions. (See §5.)

The proof of the theorem is divided in §2-§5. A general view of the proof
is given at the end of § 1.

As an application of above study of root systems we classify indefinite
quadratic forms defined on a Z-free module L of rank 2 from a view point of a

maximal root system belonging to the quadratic form (cf. Def. (7.1)). The
result is summarized in (7.4), which contains 7 types of maximal root systems
with parameter (m, c) 6E NX N. The number 7 of types is surprisingly small
comparing to 72 types of root systems in (1.6). This fact is well explained from a
duality property for maximal root systems in §8 (cf. (8.1) Lemma). The duality
was first observed by an experimental study using the computer DEC System-
2020 at RIMS in Kyoto University. The author is grateful to his colleagues
T. Miwa, M. Jimbo and I. Naruki for their interest in the subject and for the
helps in execution of the computer.

For the convenience of the reader, this note is written so that one can read
the tables of the classification as quickly as possible. Therefore some readers
may be suggested to go to (1.6) and (7.4) directly after reading some preparations
of notations, definitions and some general programs in (1.1)-(1.5) and (7.1)-

(7.3).

The set of units in a real quadratic field forms automatically a root system
of sign (1, 0, 1) in the sense of this note, which we shall investigate in §6. This
paragraph was added after a discussion with Prof. W. Borho, to whom the
author is grateful.

It should be mentioned that this work has a motivation in a study of period
domains for singularities. (See for instance [3], [4], [5].) However, there
does not exist a singularity, which corresponds to a root system studied in this
note, since the root systems in this note are too simple for the application.
Therefore this note may be regarded to be rather preliminary computations.
Nevertheless some complications concerning with arithmetics of quadratic
forms and quadratic fields, which appeared in this note, seem to indicate already
some possible complications which we shall meet in a further study of such
generalized root systems.

The main part of this note was carried out during the stay of the author in
Universite de Nancy I, in June 1983. He is grateful to the hospitality of the
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university and expresses his gratitude to Prof. D. Barlet.

§ 1, Statement of the Classification

We define a root system of sign (ji+9 #0, /*_) in (1.2). Then in (1.6) Theorem
we give a result of classification of root systems of sign (1,0, 1), containing a
table of 72 types of root systems. A general view of the proof is given in (1.7).

(1.1) As in the introduction, let F be a real vector space with a quadratic form
q on it. The associated symmetric bilinear form given by q(x+y)—q(x)— q(y)

is denoted by I(x, y). Let (#+, #0, #_) be the signature of /.
As usual, if an element a^F has non zero length /(a, a) 4=0, we define the

dual aveF and the reflexion wa^GL(F) as follows.

/(a, a)

ii) wa(w): = u—I(u, av)a
so that aw=a and w tf=wrtv and w£=id.

(1.2) Definition 1. A subset R of F is called a root system of sign (ju+, JUQ, /*_),
if it satisfies the following axioms 1) - 5).
1) Denote by Q(JR) the additive subgroup of F generated by the elements of R.

Then Q(R) is a full lattice of F. (i.e. M®Q(R)—F.)
z

2) For any a(=R, /(a, a) 4=0.
3) For any a<=R, w«R=R.
4) For any a, p^R, I(a9 fM)^Z.
5) Irreducibility. If R=Rl U R2 such that I(al9 a2)=Q for a.^Ri9 1=1, 2, then

R1=(f> or R2=<l>.

2o Two root systems RdF and R'dFf are said to be isomorphic, if there exists
a linear isomorphism <p: F—>F'9 such that <p(R)=R .

Note 1. The only difference of the above definition of a root system from the
conventional one (see for example [1] Chap. VI) is that we do not assume that
/ is positive (negative) definite and R is finite. R may contain positive length
roots and negative length roots simultaneously as we shall see in this note.

Under this general setting, we have studied some general facts on the root
systems in [5], which we shall use in this note.

Note 2. If a subset RdF satisfies only axioms l)-4), we shall call R a root
system, which may not be irreducible.

Note 3. If R and R' are irreducible root systems, then the above definition
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of the isomorphism <p: Rz^Rr implies automatically an existence of a constant

C such that

(cf. §5 (5.1) Assertion, [5 §1 (1.4) Lemma]).
Therefore including reducible root systems, sometimes we use the following

2' as for a definition of isomorphism.
2'. Two root systems RdF and R'dF' are said to be isomorphic, if there exists
a linear isomorhismy: F-*F' and a constant C such that <p(R)=R' andI=CIo<p,

(1.3) Here after in this note, we assume that F is a vector space of rank 2 over
R and the signature of I is (1, 0, 1).

To state our main theorem, we prepare some notations and fix some co-
ordinates of F as follows.

(1.4) Due to the signature of /, the set of isotropic vectors^ {f^F: /(/,/)=0}
is consisting of two lines Rel\JRe2, where el9e2^F are some linearly indepen-
dent isotropic vectors. Normalize their constant factors, so that, we have
I(el9 e1)=I(e29 e2)=Q and I(el9 e2)=l. (There exists still an ambiguity of
changing (ely e2) to (cel9 c~le^ for an non zero ce/Z.)

Using these coordinates, let us define an element of F,

(1.4.1) a(t, r): = e*e1+£~*re2 for /, reJS.

Obviously any element of F—Rel U Re2 is expressed uniquely either as
a(t, r) or —•«(*, r) for some t^JR and rei?— {0}.

(1.5) Definition,, For m<=N m>2, q<=Randr<=R— {0}, let us define a subset

ofF,

where the number pm is defined as follows.

, ,. ̂  * /m+Vm2—4\ , ./ rn
(1.5.2) pm: = log = ) = cosh"1 -y

\ L / \ ̂ .

It is not hard to see that Rm,q>r is an irreducible root system in F (cf. (2.3)
Lemma). We shall call m, q and r the period, the phase and the coefficient of
Rmtqfr respectively.

By definition Rmtqtr=Rm^qfy iSm=mr, r=rr and q = q' modpm. Since the
change of basis ely e2 to e*el9 e~*e2 induces the translation of the phase q by t and
the change of the bilinear form / to CI induces a multiplication by C on the
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coefficient r, Rmtq,r and Rm'tq'y are isomorphic as root system iff m=m' (cf. (5.3)
(5.4)).

For a non zero constant d^R— {0}, we define, dRm^r\ = {da^F:

Rm,q,r}. Thus dRmtq>^Rmtq+loSid]i,d2.
We need one more definition to state the classification.

Definition, Let m be a positive integer. We define a set,

Mm: = {m/d

Direct from the definition, we have properties,

i) M~1=Mm form^N,
ii) Mm^M

(1.6) The classification of root systems R in F goes in the following way.
First we define a diagram FR associated to R and define the type of it as

follows.

1) Let R be a root system of sign (1, 0, 1) in F, Then it has a unique decom-
position (cf. (1.7) Lemma i) ii), (2.2) Lemma),

(1.6.1) R=\JR;

where

for some k^N and di^R+={d>Q}, m^N, q^R/Zp^, e,-e {±1} for i=l,
• • • , k, s.t. d^Sj^dfej for i^=j.

We put r{: =d\e^ i=l9 • • - , k and call them the coefficients of R, Rl9 • • • ,
Rk will be called the components of R.

2) Let R be a root system with the decomposition (1.6.1). Then any pair of

components Ri9 Rj for l^/5 j^k9 falls into one of the following seven types of
pairs, for suitable constants m, q, e depending on the pair. (Lemma in (3.3))
(On the left side of the list we associate a diagram, which will be explained in
the next step 3).)

i) Q <—(g) dRmjq>2, 2dRmt<lsZ with 21 m ,

2 ) © ^—@) dRm.q,* i 2dRm2-2.q,t With 2 | m ,

3)
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W-« with

2-2,q,-e With

di&m.q.t > d2Rmiq+i_Pm>e with

diRm>q,e > d2Rm,q+±Pm,-* with

As a consequence, we obtain:
Put m=min{mf-, /=!, B - * ? A:}. Then m{=m or m2—2 for l^i^k. We

shall call this number m the period of R.

3) Definition of the diagram FR.
i) For each component Rf i=l, • • - , k of (1.6.1), we associate a circle or a

double circle according as m~m or nf—2.
ii) Inside the (double) circle of a component R{, we put the coefficient r{: =d}si

in) Two (double) circles of components Rf and Rj are combined by a segment

with an additional symbols as follows',

® * ® if there exists an element a&F s.t.

®-^ — • if the signs eiy ej of coefficients of Ri and Rj are different,

®— ̂  — ® if the difference qi—q, of phases is ^0 mod Zpm.+Zpm. .

A

For a typographical reason, we shall some times employ ® - ® or

* - ® instead of o — - — ® in this note.

4) Two diagrams are said to be of the same type, if there exists a bijection of

circles and double circles which keeps the symmbols O-«—o , O-̂ -O and

O—^-o on the segments.

Two root systems are said to be of the same type, if their associated diagrams
are of the same type.

5) Let R be a root system in F of the decomposition (1.6.1). To the root system
R, we associate the data,

(1.6.2) dfyn^q^^ / =!,-,£

where d^R+, mieN(m{>2), q^R\Zpmp £,-(={±1}.

Then we have:
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i) Two root systems in F are equal as subsets of F, iff their associated (1.6.2)
data are equal (for a suitable permutation of {I, • •• , k}}.

ii) Two root systems in F are isomorphic, iff they are of the same type and the
numerical invariants; the period m:=inf(m2-) and the proportion of the coefficients

(r,: - : rJeP,.! (for r,: =</?*„ i=l, .», k) are equal (cf. (5.4)).

Theorem. Root systems in F of sign (1, 0, 1) are classified into 12 types.
Precisely, by the classification we mean the fallowings.

i) In the following table, we give 12 types of diagrams,
ii) To each type of the diagrams, we give a set of data,

di(miy qi9 et) i = 1, ••• , k

where d^R+, mi^N(mi>2), q^R/Zpm., ef-e{±l} for i=l, • • - , k, which
should satisfy the numerical conditions described at each table and the condition
r^rjfor l<^/<j<^/c. (Here we put ri:=d2

isi, i=l, • • - , k.)

iii) If R is a root system in F of sign (I, 0, 1), then the diagram FR is of one

of the 72 types in the table and the data (1.6.2) associated to R belongs to the

set of the data of the type in the table.

Conversely any data of a type in the table is associated to a root system of the
type in F.

iv) We put numbers from I to 72 to each type of the diagrams. We shall refer

for simplicity "the diagram FH" or "type Fn" etc., instead of drawing the
diagram itself.

Table of Root Systems of Sign (1, 09 1).

Numbering, Diagram, Datum d{(m^ qi9 e,-) /=!,•••,£ and
relations of (rl9 ••• , rk).

k= I case (one type)

1. © d(m,q,e).

k=2 case (7 types)

2. 0__<__^g) d(m, q, e), 2d(m, q, e) s.t. 2\m .

3. ©-*-̂  d(m, q, e), 2d(m2—2, q, e) s.t. 2\m .

d(m, q, e), —d(m2—2, q, e) s.t. 2\m .
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-1

-1

* x 7 f I
7. (fT^ (F^ d^m, q, e), d2(m, q+-^-pm, £) s.t. rJr^Mn+z,

-i.s i

k=3 case (14 types)

9- ^ / X ' 1 S-L 2\m and

^m, q, e), d2(m, q+--pmy e), 2d2(m, q+--

s.t. 2\m and

, q, e), d2(m, q+—pm, -e), 2d2(m, q+-^-pm9 —e)

s.t. 2\m and

di(m, q, e), 2d1(m
2—2, q+pm, e), d2(m

2—2, q, —e),
1 s.t. 2\m and

^m, q, e), —rf^/w2—2, q+pm, e), d2(m
2-2, q, —e) ,

, -1. ws.t. 2\m and



THE ROOT SYSTEM OF SIGN (19 0, 1) 1261

d^m, q, s\ d2(m
2—2, q+pm, —s), d3(m

2—2, q, —e),
16. -i/~\-i SJf 2\m and

, 9, e), J2(m
2-2, 0, -e), 2J2(m

2-2? #5 — e) ,

18. difa, q, e), 2d1(nf-29 q, e), J2(m
2-2? g, -e) ,

s-.t 2|/n and

19.
^ T-1-

s.t. 2\m and

20 . M , d,(m9 q, £), 2d1(m, q, e), d2(m
2-2, q, -e) ,

s.t. 2\m

21. ^^ _n i, , , l
2 - 2 , q, e\ d2(m, q, -e) ,

s.t. 2\m and

^1, r2lrl e Mm2_4 .

w, q, e), yrfjC/w2— 2, ^ e), </2(m, g5 — e) ,

51.?. 2\m and

n, q, e), 2dl(m, q, s), d2(m, q, —s), 2d2(m, q, —e),

s.t. 2\m and

•ri, r2/r^

9 q, e), d2(m, q+Pm, s),

, m, -* ,

s.t. 2\m and
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, e), 2^^, q, s), d2(m, q+-pm, —e)27 .

q+^Pw
j./. 2|m

2, r3/4r1? r^! e Mm_2 .

m+2, r3/rl5 rJ

, q, —e) ,
2d1(m

2-2, q, e) ,

T, s.t. 2\m and

3i.
YVi ->*f 1 ̂  /PxT T^I(

s.t. 2\m

Ldl(n?-2, q, e} ,

" -^v 'w W-^--).
j./. 21

, rjrl9
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oo /r~\~±__/P\ di(m, q, e), d2(m, q, — e), 2d1(m
2—2, g, e) ,

_j _j • ^J. -j j ( C?)

2d2(m
2-2, q, -e),

s.t. 2\m and

35 .

^(m? #> £)' d*(m> %> ~£}> ^(m2— 2, q, e) ,

\d2(n?-2, q, -e) ,

s.t. 2 \ m

1^(m, g, e), dz(m, q, —e), —dl(m —2^ g, e)

±-d2(n?-2, q,-,),

-2, g, 5), d2(m
2—2, q, -e) ,36.

37.

2d2(m
2—2, q, —e),

s.t. 2\m and

(m? q, e), 2^(m9 ?, e), d2(m
2-2, q+pm, -e)

s.t. 2\m and

l9 r2/4rl5 r3/rl5 r^r^Mj^, r2/r3e {4±1}

m, e) ,

^J. 4|m
ri? r2/rl5 4r2/r1eAfm2_4 .

2d1(m
2—2, q+pm, e), 2d2(m

2—2, q, —e)

S'L 2\m md

r^r,, r2/r1? 4r2/r1 e Mm2_4 .
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*i. r^"1 ^ ^l(m' 2 ' e )> J2(m' *'-?)»
2d1(m

2—29 q+pm, e),

s.t. 2\m and

MJ
 £)5 -7j~d2(m

2—2,> q, —s),

s.t. 2\m and
•~?l

'-1,**

43. (^ |Q) Ji(m' ^' *)> 2^(m2-2, g+/;ws 0 ,
4(m2-2, q, -5), 2d2(m

2-2, q, -e) ,
^.L 21 AW flwrf

J2(m
2-25 q, -s), 2^(m2-25 ?, -s) ,

5J. 2 | AW

^ ^ ^
<!,*

2-2, ^+JpIB, -e), 4(m2-2, ^

- i l xT 24(m,;2'/,m~')9

i(w, ^, e), 2dl(m
2-2, q+pm, e) ,

1
47. ^ -1

2d1(m
2-2, q, e), d2(m

2-2, q, -e) ,

5.?. 4 1 AW

48. r^i "1 ^> ^i(m> ^> £)> dz(m
2-2, q+pm, -e) ,

J3(m
2-2, ?, -e), TdJjrP-2, q, •) ,
j.f. 2|m



THE ROOT SYSTEM OF SIGN (I, 0, 1) 1265

49. (^ "-1- Q rfi(m> ^ £)> d2(m
2-2, q+pmi —e) ,

d3(m
2—2, g, —e), ~-d1(m

2—2, q, s) ,

s.t, 2\m and
r2iri-> 4^2/^lJ r3l

k=5 (11 types)
50.

rr«-/\

., g, e), rf2(7
1

-.r. 2\m

•2> rslrl>

, q, e), 2^(m, ^5 e), J2(m, q+-^pm, e} ,
1

, g+yp^, e)> J3(m? g, — e) ,

.L 4|m+2 and

l9 r2/r1? 4r2/ri e Mm+2, r3/4r2, r3/r2e Mm_2.

, qy e), 2d1(m9 q, e), d2(m, q+-=-pm, e) ,
1 1

, g + ^ m ? — e) ,

U. 4|m+2

m+2? r3/4rl9 r3/rl5 4r3/ri e Af m_2 .

+y^, e)3 J3(m? q+^Pm, -
1./. 2\m and

2, rJ4r2e Mm_2, rjr3, r2/r1?

, ^ e), 2d1(m
2-2, q+pm, e\ d2(m

2-25 q, -e) ,

- (

.£. 4|m

1? r2/rl5 4^! e Af m*_« .
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dj(m9 q, e), 2dl(m
2—2, q, e), d2(m

2—25 q, —s) ,

-i</1(iw
2-2, ^+/?W5 e), 2d2(m

?-2, q, -e) ,

s.t. 4\m and

rjrl9 4r2/r1? 16

-i di(m9 q, e), d2(m, q, —e), 2d2(m
2—2, q, —e) ,

1

2" *

i\ i
2d1(m

2-2, q+pm, e)9 —^(m2-2, q9 e) ,

5 7 -

s.t. 4\m and

F~]j , , N l ^ x O / * . \ r* 1 / 9 r*. \

d^m, q, e), —dl(rrr—29 q+pm, £), 2dl(nr—2, q, e),
2 i

d2(rn, q, -e), — d2(nf-2, q, —e) ,

and

rfi(/w,^,e), dz(m
2-2,q+pm, -e), 2d2(m

2-2, q+pm,

d3(m
2-2, q, -5), 2d1(m

2-2, q, e),

,s.£. 41 AW aw^
^2/4ri, r2/r1? 4r2/rl5 rg/ri e Mm2_4, r3/r2 - 4~ x .

(m? g, e), d2(m
2-2, q+pm, -e\ 2d2(m

2-2, q+pm, -

d3(m
2-29 q, -6), -^(m2-25 ^ 5) ,

s.t. 4\m and

r2/rl5 4r2/r1? 16r2/rl5 rJr^Mm^9 r3/r2= 16 .

^(m, g, 5), 2dl(m
2—2, q+pm, e), — d1(m

2-2, q, e),

d2(m
2—2, q+pm, -e), d3(m

2-2, q, -e) ,

^.f. 41 AW and

^, r3/r2e {45 16} .
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k=6 (7 types)

61.

;, q, e), 2dl(m, q, e), d2(m, q+-^~pm, e) ,
1 1 2

^q+^Pm, -*),
s.t. 4\m+2 and

rl9 r2/rl5 4r2/r1^Mm+2, r3/4rl5 r3/rl3 4r3/r1^—^ ~~ -*- ^ ^
62.

^+4p..o,"-"— !

63.

, q, -e), ^3(/T?5 ^+yj7W3 -e), 2d3(m, q+-^pm, -e),

s.t. 2\m and

!, 4r2/rl5 r4/r3, r4/4
i, 4r3/r1? r4/r2, r4/4

, q, e), d2(m, q+-=-pm9 e), 2d2(m, q+-=-pm, e) ,
Z 2

? q, e), d^rn, q, -e\ d3(m, q+--pm9 —e) ,

iC/w, g, e)> ̂ (/w, g, e),

, q+p^ —e), d4(m9q9 -e),

s.t. 4 |m— 2 and

l9 r2/r1?

y r3/r1? 4r3/rl3

1(iw
2-2, ^,5), 2d2(m*-2, q, -

.?. 4|m

? r2/rls

, q, —s\ 2d1(m
2-2, q+pm, e) ,
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66,

d^m, q, e), d2(m
2-2, q+pm, -e), 2dl(m

2-2, q+pm, e) ,

d3(m
2-29 q, -*),y ^(m2-2, g, e), 2d3(m

2-2, q, -e),

,y.f. 4|m a^rf

-i r2/rl3 4r2/rl5 r3/4rl3 r3/r1? 4r3/r1 e Mm2_4? r3/r2 = 4 .

67.

xs^^

, ?, e), d2(m
2-2, q+pm, -e), y^i(w2-2,

-1/1X .^ V 2_2j ?> _fl)> 2£/l(w«_2, ?, «), 2d3(n?-2, q, -£),

s.t. 4\m and
ri? r2/r1? r3/rl3 4r3/rl3 IbrJr^Mj^ r2/r3= 16 .

=7 case (1 type)

9 q+-^pm, e), 2d2(m, q+-^pm, e) ,

, q+^pm, -e), 2d3(m, q+-^-pm9 -e) ,

j./. 4\m+2 and

, r2/rl5 4r2/rl5 r4/r3, r4/4

"3/rl3 4r3/r1? r4/r2? r4/4

fc=8 case (1 type)

69. rf^/w, ^5 e), 2^(m3 g, e), J2(m5 q+-^-pm, e), 2d2(m, q+-^-pm9 s) ,
1 1

5 q+-^pm, —e), 2d3(m, q+—pm, — e), ^4(m, g5 -e), 2J4(m, 0, -e) ,

s.f. 4|m+2 and

1, r2/r1? 4r2/rl5 4r4/r35 r4/r3, rJ4

1, /-a/^i, 4r3/rl5 r4/4r2, r4/r2, 4r4/
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69,

There are three more diagrams for reducible root systems*} where we
understand them as root systems whose periods are °o.

di(<*>, q, e): = {±d1(e
qe1+ee-qe2)} ,

d2(°°9 q, —e)- = i±d2(e
qe1-ee-qe2)} .

71.

-i dl(0o9q9€):={±d1(e
9e1+ee-9e^}9

°°3 q, — : =

(oo9 g, e): = i±d1(e
qe1+ee-qe2)} ,

Note 1) I7re automorphism group of a root system R and the Weyl group WR

generated by the reflexions wafor a^R, are explidtely given in §5 (5.5) (5.7).

2) Let us define the dual of R as

*) For the last three types, we employ (1.2) Note 2' as for the definition of the isomorphism,,
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which is also a root system in F. (Cf. [5] §1). If R belongs to a datum

q.^ £.) /=19 ...9 k, the dual Ry belongs to the datum djl(mi9 qi9 ef.) /=!, • • - , k.

Therefore the diagram for Rv is obtained from that of R by replacing the

coefficients r{ by r^1, /=!, •••,*:, and changing the directions of the arrows of

O— « — O, O— e-© and O—^-® .

3) The assumption of Theorem 2), that coefficients ri9 /=!, • • - , fr, are pairwisely

different, was made to avoid the overlapping of the classification. Without this

assumption, the union (1.6.1) associated to a datum (1.6.2) in the table still form a

root system in F, whose diagram Fr is obtained by "collapsing" the vertexes of

the diagram F of the table as follows.

First notice that two coefficients can be equal only among the component

combined by the segments © — - - Q or |r| - * - (0. Then new diagram

r" is obtained by replacing this part by one circle © and changing the other

part of F as follows.

i) case of 0 — - — 0. There exist an integer />2 such that m=l2—2 and

the new period for the new diagram r' is equal to /. Hence all circles in the

old diagram F (except the part © — - — @ ) should be changed to double

circles. The numbering of the segments between the new circle © and the

others is given by the following rule.

old

ii) case of (^H—tfp) • The period m is unchanged. The numbering of the

segment between the new circle 0 and the others are given by the following

rule.
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old

4) A root system R is called to be reduced, if a=cj3 for a, {3^R and

implies c=±l.

One sees easily from the definition that a root system of sign (1,0, 1) is

reduced iff its associated diagram does not contain a segment Q-^-Q 5 O~<:~O

or O~^~O • ^s a consequence, there are 9 types of reduced root systems as

follows.

Numbering Diagram

i. ©
12.

5.

16.

7.

29.

70.

5) For each diagram in the table, for each fixed period m, the possible set

for • • • : rA)ePA_i is a finite set, since Mn for weN is a finite set. This implies
the following,

The number of isomorphism classes of root system of sign (1, 0, 1), whose

period is m, is finite.
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6) In [5] §1, we introduced a concept of accumulating set AR and proper
dimension and codimension of R.

For a root system o/sign (15 0, 1), we get,

ii) p-dim(X) — 1 , p-cod(jR) = 1 .

iii) WR acts properly on F\AR

(1.7) A general view of the proof of the theorem.

Let R be any root system in the sense of (1.2) Definition. In [5] §1 (1.9),
(1.13), the followings are proven as generality.

Lemma- i) The set of lengths of roots={I(a, a): a^R} is a finite set.

ii) For each length 2re {/(a, a): a(=R}9 put Rr:={a<=R: /(a, a)=2r>. Then

Rr is a root system in F which may not be irreducible. (In particular Q(Rr) is a
full lattice of F.)

Assuming this lemma, the proof of the theorem is divided into parts,

i) Determination of each Rrfor 2r e= {/(a, a) : a EE R} .

ii) Study of "interaction'9 among two Rr and Rrr.

iii) Construction of R as a union ofRr's.

In §2 we shall show that every Rr is equal to Rm>q>r for some m^N and
q^R. (§2 (2.2) Lemma) In §3 we determine the cases when a union

Rm,q,r\l Rm' ,q' y
 can form a root system in F. All cases are classified into

seven types in Lemma of §3 (3.3).
k

In §4 we determine all possible unions U •#«,-. «,e,-9 which form a root system

in F, We do not go any details of such classification in this note, since it asks
too many studies of cases. Instead of that we explain a general principle along
which the classification will be done.

Apriori there is no reason that all root systems are classified into finite types
as in the theorem. This finiteness is due to the strong limitation of the inter-
actions among two components, stated in the previous lemma in (3.3).

The paragraph §5 is devoted for the study of isomorphisms, automorphisms
and Weyl groups of these root systems.

The units of a real quadratic field is a root system of type (T) or (T) '""LQ

as studied in § 6.

In §7, for all isomorphism classes of binary quadratic forms, we shall
calculate root systems belonging to them.



THE ROOT SYSTEM OF SIGN (1, 0, 1) 1273

§2o A <Bm,afr

This paragraph treats a root system R9 which has only a fixed length roots.
We shall show that such root system is equal to Rmt9tr for some m, g, r ((2.2)
Lemma).

(2.1) Recall notations and definitions from paragraph 1.
i) We fix isotropic vectors e^ e2^F with I(el9 e2)= 1.

ii) Define

a(f, r): = e*e1+e-*re2 for

iii) From the definition,

I(a(t, r), a(s, p)) = p£?*

In particular

/(«(*, 0. «(', 0) = 2^
iv) For r =(= 0, define the dual as,

a(f, r)v = r~X^ r) = f-V^+e-^ - sgn(r)a(^— log|r | , r'1) .

Therefore,

/(«ft r)v, a(j, p)) - (p/ry-'+g--*

v) >*V;,r)00 : = u—r~ll(u, a(t, r))a(t9 r)

In particular,

| , p)

vi) Recall the definition (1.5),

for 7we-ZVwith/w>2, ^eJBandrejB— {0}

where /7W = coslr^f-^-J .

(2.2) Lemmaa Let R be a root system in F, which may not be irreducible,
Suppose that the set {/(a, a): a^R} consists of a single element 2r^R— {0}.
Then there exists some m^N with m>2 and q^R, such that

Proof. Any element of R is expressed as a(t,r) or —a(t,r) for some
Define a set,
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A: = {t<=R: a(t, r)<=R}

Due to the axiom 1) of (1.2), A is a discrete subset of R9 which contains at

least two elements.
If t,s&A, by definition, a(t, r), a(s, r)^R and therefore w-(,fr)(a(s, r))=

—a(2t—s, r)<=R by 3) of (1.2). Hence a(2t—s, r)<=R and therefore 2t—s<=A.
This implies that A is closed under the reflexions with the center of each point

t e A. Thus there exists p9 q e 12, /J>0, such that

and therefore
R = {±a(pn+q, r):

For two roots a(q, r) and a(q+p, r)^R, the OX/O/TI 4) of (2.1) demands that

I("(q, r\ <*(q+p, r)v) = e*+e~* (cf. (2.1) iv))

to be an integer, say m&N

ep+e~p = m, (Since />>0, we have m>2.)

This relation is easily solved as,

+ Vm2— 4\ //w
-

Let us denote this number by pm and we have proven the lemma.

Note. The proof of this lemma shows also the following fact.
If a root system R of sign (I, 0? 1) contains two roots a, ft^R s.t.

and I(a, a)=I(ft, /9), then R is irreducible. In particular if there are two roots
a, fi^R s.t. a=£±fi andl(a, £)=|=0, then R is irreducible.

(2.3) To complete this paragraph, we show the following.

Lemmac For any m^N m>2, q^R and r^R— {0}? the set Rmtq>r is
an irreducible root system in F.

Proof. Except the axiom 1), all other axioms are directly verified as
follows.

2) I(<*(npm+q, r), a(npm+q, r))=2r,
3) ^(HPm+qA

a(n/Pm+^rJ)=-a((2n-nf)pm+q9 r),

4) I(<*(npm+q, f)v
3 <*(n'pm+q, r))=^»-/^+e-<»-»/>

5) I(<*(npu+q, r), a(n'pu+q, r))*0.
Let us show the axiom 1) in a slitely stronger form:

1)' Q(*..,.r)=-fr«fo r)+Za(pm+q, r).
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Proof. For short, let us denote by an the element a(npm+q,r). Then the

above 3) and 4) implies ^2n-n/==~wan(
an^ *s contained in Zan+Zan,. In par-

ticular, an+2, an_l^Zan+Zan+1. Thus by induction, in positive and negative
directions, the module Za^Z^ contains all roots of Rmtqtr. This completes
the proof of the lemmao

§3o Interaction of Two Components

In this paragraph we determine the cases when a union of Rm,q>r and
Rm'.q'S become a root system in F. The result is summarized in (3.3) Lemma,
where all such pairs are classified into seven types.

(3.1) Lemma* Take m^m^N with ml9m2>2,qly q2^R, rl9 r2eJB— {0} such

that r^r2. If the union Rm^q^ U Rm2,q2,r2 ^
 a root system in F, one of the follow-

ing three cases happens.
i) ml=m2

ii) ml=m2+2

Proof. Due to the axiom 3), the following element

w*(nPmi+qi.rj(a(nrPm2+q2> rj) = —<*(2(npmj+q1)--n'pm2--q2+log\r2lrl\, r2)

should belong again to Rm2,q2,r2- This implies a condition,

for n, n'^Z. Thus one gets relations,

0 Pm2\
2Pm1

By changing 1 and 2, we obtain also relations,

iv) PmJltei-
In particular, the relations i) and iii) implies that pmjpmi is 1/2, 1 or 2.

Noting e2pm+e~2pm=m2—2, this proves the lemma.

(3.2) Recall from paragraph 1 (1.5) the definition,

Mm:=

Assertion,, The following statements for positive integers m,uEiN are equi-
valent.

i) u\m
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ii) There exists an element r e Mm s. t. v2r e MM for any v^N with v \ u,

iii) There exists an element r^Mm s,t. u2r^Mm.

(3.3) Since there is a relation dRmtqtr=Rmtq+108ldltd»r, any Rm>q>r is uniquely
expressed as dRm^tZ for some J>0, q'^R mod Zpm and eG {±1}.

Now we prove a lemma which was stated in (1.6) 2).

Lemma. The following is the list of pair djRm.>qif^ 7=1, 2 s.t. f/ze wrn'o^ in F
forms a root system. (For the diagram cf. (1.6) 3).) Put ri:=d^ei.

iVA 2|m ,

with2\m,

iff .. , ^2-2,,,e w/rt 2 1

diRm.q,i>
 d2Rm.q.-E such that r

diRm,q,t> d2Rm2_2>q>_s such that

7) ©— vS) diRm,v,*> d2Rm,q+%Pm,-e such that r2/r^Mm_2,

Here in the above table, dly d2^R+, m^Nm>2, q&R and e(

. Put Ri=diRm.iq.}S. i=l, 2 and assume J^J^U^ i§ a root system
in F. The Lemma in (3.1) implies the following.

C 1) />Wl = pmz or 2jp^] - pmz or pwj] - 2^2 .

The relations ii) and iv) in the proof of Lemma in (3.1) is expressed now
as follows.

C2) / f e i - f t ) and /

Put d:=djd29 e: = 61/e2 and ;w:=inf {m1? /772}. The axiom 4) for the union
-RiU^2 to be a root system demands that the numbers I(dia(npmi+ql9 e^,
d2a(nfpm2+q2, 62)}=d(eeN+e-N\ where N=npmi~nfpm2+q1-q29 are integers for
any «9 n

1 ^Z. Therefore one gets another condition:
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C3) d(eeN+e'N)9d-1(eeN+e'N)^Z where N=ql-q2+npm for n^Z,

If C 3) holds for n=ni9 rii+l for some n^Z9 then C 3) holds
for all integers

Proof. The following equality holds for any n, n' '

=d(ee(qi~q2+npm)-{-e~(qi~q2+npm^) (en/pm-\-e~n/Pm)

where en/pa+e~*'pm is an integer. Using the equality the assertion is shown by
induction on positive and negative directions. Q.E.D.

Now let us show that if the pair Rl9 R2 satisfies the above three conditions
C 1), 2), 3), then the pair is one of the types listed in the lemma.

If m^rtiz, due to C 1), 2pmj=pm2 or pm^=2pm2. Therefore using C 2) one
gets mm{pmi, pmz} \ (qi—q2). Thus we have only to study the following three
cases.

Case 10 q1—qz=Q mod Zpm +Zpmz and e= + l.

Case 2o ql—q2=Q mod Zpm+Zpm2 and s= — I.

Case 30 ml=m2 and qi-q2=-^-pmi mod Zp

Notify that this distinction into three cases Is symmetric by the exchange
of the roll of R^ and R2.

Case L Since q1— q2=Q modZpm, for a suitable choice of n^Z,N of C 3) is 0.
Thus the condition C 3) implies,

d(eQ+e~°) = Id, d'\eQ+e-°) = Id'1 ,

d(epm+e'pm) = dm, d~l(epm+e~pm) = d~lm ,

are integers. Since d2e^p 1, d is either 2 or 1/2 and 2 1 m,
This corresponds to the cases 1), 2), and 3) of the Lemma.

Case 2. Since q1—q2=Q mod J^m, for a suitable choice of n^Z, N of C 3) is
0. Thus the condition C 3) implies,

</(-e°-f-£r°) = 0, d-\-e°+e-°) = C

are integers. Hence
This corresponds to the cases 4) and 5) of the Lemma.
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Case 3o Since qi—q2=-^pm
 m°d Zp , by choosing n suitably, N=——pm in

2 m 2
C 3). Thus the condition C 3) implies,

d(ee-%pm+e%pm) = dVm+2e , d-\ee-*p"+e*p») = d~1Vm+2s ,

= sdVm+2e , d'^ee^+e"^) = ed

are integers. Hence

This corresponds to the cases 6) and 7) of the Lemma.

It remains to show that the unions jRx U R2 of the pairs in the Lemma form

root systems in F. The axioms 2)-5) are already checked in the above

calculations.

To show the axiom 1), it is enough to show that the linear transformation

matrix from a basis a0, a± of Q(Ri) to a basis /?0, fi1 of Q(^2) is of rational coef-
ficients.

Put

an' == ^la(nPm + #ls £l)? fin'° ~ d2<X>(npm& + q2, 62) f°r « = 0,

so that we have

(*)-„(• ' )r- °
V^!/ \^*i e~pmi}\ 0 €e'(qi~^J\ epm2

Thus the each entry of the transformation matrix has a form

d(eN—se~N) (epm
z—e~pm^~l, where 7^= qi—q2+npm

for suitable we^. We may assume m2=m='mf{ml9 m2}.

L Assume ql—q2=Q and e=l. Then

2o Assume qi~q2=Q and 5= — !. Then

3o Assume ql— q2=-^-pm. Then

= (e*pm+...+e-»pm) (d-

This completes the proof of the Lemma
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§40 Decomposition of a Moot System

In this paragraph we classify root systems of sign (1, 0, 1).

(4.1) By classification of a root system of sign (1, 0, 1), we mean the following.
Due to the Lemma i), ii) of (1.7) and Lemma of (2.2), any root system R

in F has a decomposition,

(4.1-1) R = ^diRmitq^i

where k is an integer and d^R+, m^N with mi>2, q^R and sz-e{±l}
for /=!, ••• , k. Furthermore the coefficients d]si (:=rf.) /=!, ••• , k are pair-
wisely different. Such datas di9 mi9 qiy si f=l, • • - , k coming from a root
system R are strongly limited and arbitrarily given numbers do not form a root
system. Thus by a classification of R, we mean the determination and the
classification of all such pair of datas di9 m^ qi9 ei /=!, • • - , k, for which (4.1.1)
form a root system in F.

We do not present in this note any details of such classification work, since
it is involved in study of many cases, which is rather cumbersome and long.
Instead of that, we are going to explain some general principles for the clas-
sification, which altogether shows that there are only finite number of types of
root systems as stated in Theorem in paragraph 1. (For a definition of the
word "type", see (4.2) 6).)

(4.2) Let R be a union of the form (4.1.1). For R to become a root system it
is necessary and sufficient that for any pair i,j l^i,j^k, the union dfRmitqittf

U djRmj>qjiS/ form a root system so that they are one of the seven types of the
pair listed in Lemma of (3.3). (The proof is trivial and omitted.)

By posing this condition on R we are going to give a description of R as
follows.
1) There exists an integer m^N with m>2, which we shall call the period of
R, such that

i) Any integer mi is equal to either m or nf—2.
ii) There exists at least one l^i^k such that mi=m. (Proof. (3.1)

Lemma.)
By changing of the ordering, let us assume,

mi = m for

mi = m2—2 for ki<i^k for some

Put
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R(m):= U^R^^,

k

1 = ̂  + 1 * m"9*'*s

2) There exists a real number q^R which we call the phase of R such that

i) For i, I<^i<^kl9

q mod. pm

or

+-=-pm mod. pm .
2

Furthermore, if R(nf—2) 4=0, the second case does not occur,
ii) For i, k^i^k,

q mod. 2pm

or

q~\~pm mod. 2pm e

(The proof follows from (3.3) Lemma or iv) in the proof of (3.1) Lemma.)

We may change qi to q, q+-~-pm or q+pm according as the above congruence

relations.

3) Put, for e€E {±1}

R(m,q9e):= I

^pm>£)'- = U dfR^^. ,

2-25^,e):- U </AllHfi| ,*i<*^*
?g=?
8,- = 8

,5):- U d^.^..
k^i-g.k

9i=V+Pm
E,- = 8

77t w.51 ^ w decomposed into 8 /?<2r£y as follows,

S(nf-2, q, -1)

-2, ?+/>.,, -1) -



THE ROOT SYSTEM OF SIGN (1, 0, 1) 1281

4) Let R(M, Q, s) be a component in the decomposition (*) above. Then it is

either one of the following.
i) void,
ii) dRMiQttfor some d^R+,

iii) dRMiQ>sV2dRM>QfSfor some d<=R+.

Proof. R(M, Q, e) consists of all such components diRmi>qii?i with
m~M, q~Q, ej=e. Thus if there are more than two such components,
then according to (3.3) Lemma, the only possible interaction among them is
that of type 1) in the lemma. Hence one coefficient d{ should be a double or a
half of the other coefficient d(. Therefore R(M, Q, e) can not contain more
than three components.

5) For a given root system R, we associate a diagram FR, which is already
explained in (1.6) 3). (Note that this is not a graph, since any two vertexes are
always combined by a segment.)

Using the decomposition (#) in 3), the diagram FR decomposes into the
following figure, where each component FR(M, Q9 e) is either void or one of the
following diagrams,

rj) for some r.

•* ?
rR(iri -

6) Two root systems are called to be the same type if associated diagrams are
the same, forgetting the coefficients rl5 • • - , rk.

A rough approximation of the number of types is given by 38=6561 which
is already finite.

7) If two vertexes in the diagram are combined by a segment i, for instance

(FD~i — ""(FD ' ^en ^e ra^° °f *ne coefficients rilr2 should take only finite
possible values depending on m and i, which is described in (3.3) Lemma.
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Thus if we demand to the coefficients rls • • • , rk to be consistent to all such
conditions, it disclude many possibility of diagrams.

8) In the above 1) - 7), we stated conditions for a union R of the form (4. LI),
so that any subunions of two components form root systems. These are
also sufficient for R to be a root system. Thus if we classify all diagrams F

with coefficients rl9 ••• , rk satisfying 7), we have done the classification of the root
systems of sign (1, 0, 1).

The result of classification, whose details are omitted in this note, says that
there are only 72 types of the root system including reducible cases, as stated
in the theorem in paragraph 1 .

§5. Automorphism of Moot Systems and the Weyl Group WR

We determine all isomorphisms among two root systems and the auto-
morphism group of a root system. The Weyl group is a subgroup of the
automorphism group of index either 1, 2 or 4.

(5.1) Assertion, Let RdFand Rf CF' be root systems of type (1,0, 1) associated

to the bilinear forms I and I' respectively.
If a linear isomorphism <p : F-*Ff induces an isomorphism <p : R-*R' of the

root systems, then there exists a non-zero constant C6EJ2— - {0} such that
r°<P=ci.

Proof. 95 induces a bijection between two projective lines, (F—
{0}) and (F'— {Q})/(R— {0}). Two points corresponding to two isotropic
vectors el9 e2 of /, are mapped to that of /', since they are characterized as
accumulating points of the sets R/(R— {0}) and R'/(R— {0}), which are bijective
by assumption. One sees easily, that this bijectivity of isotropic vectors im-
plies the assertion.

(5.2) The group of automorphisms g of the vector space F such that log is a
constant multiple of / is generated by the following four types of transforma-
tions.

i) homothety: Hd: e\-> de for a d&R— {0} ,

ii) hyperbolic translation : gt : el\-^ etel

e2 H-» e~*e2 for a / e J? ,

iii) change of basis : T: e± i— » e2

iv) change of sign: E:
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These are satisfying the following relations.

[Hd9 gt] = 1, [H49 71 = 1, I* = 1, TgtT = g_t, E*=19

HdHd, = Hdd,9 gtgt, = gt+t,9 [H49 E] = 1, [g,, £] - 1, [r, E\ = H_, .

(5.3) The above four transformations transform a system ̂ j9>r as follows.

Hi) TRm>qtr = Rm>i0g\r\-qir •

iv) ERm>q)T = Rm,qt-r .

(5.4) Obviously all these four transformations induces the isomorphisms
among root systems. Notify that any of these transformations, if it applies to
a root system (1.6.1), it does not change the type of the root system, since it
does not change the type of interaction of two components. Thus the iso-
morphism appears only among the root systems of the same type. The trans-
formations do not change the periods mi9 but changes the coefficients ri by
homothety d2ri or by the sign — rf-, and the phases qf by a translation qt+t or
sign —qt.

By summerizing, one obtain an assertion, proving (1.6) Theorem 5).

Assertion. 1) If two root systems are isomorphic, they are of the same type,
2) Two root systems associated to two datas,

di(mi9 q^ £i) i = 1, • • - , k9 and df
{(m

f
{, qf

{, e{) i = 1, • • - , k ,

belonging to the same type in the table of Theorem (1.6), are isomorphic, iffm=mf

and fa: - !*)=(/•{ :»• rf) in P^.

(5.5) AssertloEo The automorphism group of a root system R is given by:

<H-i, g2qT, g2Pm> ifR(mz-2) =|= 0 ,

or an extension of it by Z& where the generator of Z2 induces an automorphism of
the diagram of R, which reverses the sign of the coefficients.

Here m and q are the periods and the phase defined in (4.2) 1) and 2) for R.

(The proof is easy and omitted.)

(5.6) Let us compute the group WR9 which is generated by reflexions w^ for

R.
For an element da(t, s)=d(ete1+e~tee2)? the reflexion w=wdo6(ti^ is calculated
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as

' 0 e~2t

w
^2 J e2t 0

Hence w^jFL-gg^rin the notation of (5.1). Therefore we see

(5.7) Assertion., For a root system R, the group WR is calculated as follows.

0 WR = <g2Pm, H_sg2qTy

For all R except the following cases ii)~v).

ii) WR = <g2Pm,H^g2qTy

For all R whose diagram contains a segment Q--"1 Q, Q "1 Q or Q "1 Q

except the case v)

iii) WR = <gpm,H_sg2qTy

For all R whose diagram contains a segment (]}-— O excePt tne case v).

iv) WR - <H_lgpm, g2Pm, H_sg2qTy

For all R whose diagram contains a segment O"^*"O excePt tne case v)-

v) WR = <gpm, H_19 g2qry
For all R whose diagram contains segments either a pair O"1^̂  and Q * -Q

or a pair O -̂Q and

(5.8) Let z^+z^z for zx, z2eC7 be coordinates for FC:=C®F. Then
obviously the function;

(5.8.1) z:z2

is invariant on Fc under the actions of H_l9 gt for t^M and T.
The domain {Im(z1/z2)>0} in Fc is invariant under the actions of H_l9 gt

for re R and T. A suitable choice of a branch of the function;

on the domain is a univalent function which is invariant by the action of WRnit<ltr.
Similarly one can determine the invariants for the other types of the root

systems.
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§ 60 Units of a

We shall see in this paragraph that the unit group E of a real quadratic

field K is a root system of sign (1, 0, 1).

The type of the root system is either © or ©-~^s* -Q according as the

sign of the norm of the fundamental unit el is +1 or — 1. (cf. (6.3) Assertion
2.) A comparison of E and WE is given in (6.5) Assertion 3.

(6.1) Let K:=Q(\/'D) be a real quadratic field, where D is a square-free

positive integer. The norm and spur are defined for a^K as,

N(a) = aa , S(a) = a+a

where a denotes the conjugate of a by the action of the non trivial element of

the Galois group of K. Since N(u+v\/]))=u2— v2D for u, ve@, N defines a

quadratic form of signature (1, 0, 1) on K as a vector space of rank 2 over Q.

Denote by O the ring of algebraic integers in K and denote by E the unit

group of K. Namely E is the set of element e of 0, satisfying the equation

N(*)= ±1 .

We first show the following.

(6.2) Assertion 1. Let K be a real quadratic field and E be the unit group.

Then E is a root system of sign (1, 0, 1) (in the sense of (1.2) Definition) as a sub

set of sign (1, 0, 1) vector space K (over Q).

Proof. We verify the axioms easily as follows.

i) The additive group Q(E) generated by E is contained in the ring O of inte-

gers, which is a lattice in K. On the other hand, since we know the existence

of a unit e^E such that £^±1, rank^ (Q(£)) > 1 , which altogether shows
that Q(E) is a full lattice in K.

ii) Obviously N(s) = ± 1 =f= 0 f or

iii) Define a bilinear form N by

)-N(a)~N(6) - (ab+ab) .

Therefore one gets a formula,

(6.2.1) w8(a) =
NO) ee

In particular if £, e are units, w,(e')= — ee~le' is a unit.
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iv) N(*, O
v) See (2.2) Note. Q.E.D.

(6.3) Let us recall some well known facts on units of a real quadratic field.
(see [2] Chap. 28.)

Any unit e of K has the unique basis representation

e = (— ly^i*1"1 (& mod 23 /*! a rational integer)

where ^ is the fundamental unit. The fundamental unit el with the nor-
malization <?!>!, can be calculated by solving Pell's equation as follows.

Let wl9 v1 be the uniquely determined rational integral solution of the
equation

(P-) u2-dv* - -4

or in case this equation does not have a solution in rational integers, of the
equation

(/>+) u2-dv2 = 4

for which ul9 v1 both are positive and minimal values. Here d=D or 4D ac-
cording as D = I or 2, 3 mod 4. Then

. _
61

(6.4) To obtain a description of E in terms of Rm,q>r as in paragraph 1
(1.4), (1.5), we fix basis el9 e2 of F:=R®K as follows.

Q

The quadratic form N on K extends to a real quadratic form on F uniquely,
denoted by the same N.

One computes easily
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and therefore

N(*i, e2) = I .

Using these basis el9 e2 and the terms of (1.5), we get the following description

o f E .

Assertion 2. Let K be a real quadratic field and E be its unit group. We

regard it to be embedded in R®K.
Q

i) IfN(e1)=l (i.e. u^ vl is a solution of(P+J)9 then

E = -RUl,o,i •

(i.e. E is of type © with the period=u1.)

ii) 7/'N(fi1)= — 1 (i.e. ul9 v1 is a solution of(P~))y then

(i.e. E is of type Q11^— © with period=ul—2.)

Proof. Using the basis el9 e2 of F, any element £=
u+v^d >0 of KdF is

described as

_
&i ~r~ - co

2 2 2

where a=

If N(f)=l, we have a relation u2— v2d=4 and therefore v\/~d=\/u
2— 4 and

a^logf^ "^ j=cosh"1f — j=/?K. Thus we get a representation

If N(e)=-l, we have a relation u2-v2d= -4. Then (u+v^/d \*=

i-(w2 + v2rf+ 2uv v/rf) =-|-(w2-2 + V(w2-2)2-4). Therefore a = A log

//#-}-v\/flT\2\ 1 i / t^2—2\ 1X n——-^-^ J 1=—cosn'M 1=—pu2-2. Thus we get a presentation
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Q.E.D.
(6.5) Define a map,

p :

Assertion 3, i) p is a group homomorphism.
ii) The following sequence is exact.

Here Z2=ker p is the torsion {±1} of the unit group E and Z2=coker p is iso-
morphic to the cyclic subgroup in WE generated by a reflexion wl8

Proof. Recall a formula (6.2.1)

Wg(a) = — ee~ld, for a unit

In particular

which implies relations

w^jVi = Wg and p(s)(d) = ee~la .

This means that p is a group homomorphism. Also one verifies easily that
any element in WE which is a product of even number reflexions lies in the

image of p. Q.E.D.

§ 7o Maximal Root Systems

Let L be a Z'-free module of finite rank and /be a rational valued symmetric
bilinear form on L. Put

R(L,I):= {aeL:/(a, oO^O ? 2I(a, flfl(a, a)eZ for F/?e£}

Then jR(L, /) is a root system of sign (1, 0, 1) which may not be irreducible, if
rank L=2 and /is indefinite. We call R(L9 1) the maximal root system belong-
ing to (L, /).

The purpose of this paragraph is to classify isomorphism classes of maximal
root systems of sign (1, 05 1). The result is summarized in (7.4). Among 72
types of root systems in the table (1.6), seven types: 29, 34, 62, 65, 69, 70, 72,
appear as types of maximal root systems. We give a parameter presentation of
maximal root systems for each type. The proofs are given in §8, §9,

(7.1) Let L be a free Z'-module and / be a rational valued symmetric bilinear
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form on L. We shall denote by q(x) the associated quadratic form — I(x9 x)

and by 0(L, /), the group of orthogonal linear transformations which preserves
/(i.e. {g^GL(L)i Iog=I}).

Definition 1. An element a^L®Q is said to belong to (L, I) if aeL, q(a)

, ,
q(d)

Put

R(L, !): = {aeL: a belongs to (L, /)} .

Assertion If R(L, I) spans L(g)Q over Q, then R(L, I) is a root system in
the sense of (1.2), which may not be irreducible.

Proof. Almost obvious, since
i) for any a e R(L, /), w« e O(L9 /) and
ii) for any g€E O(L, /), gR(L, I)=R(L, I).

Note 1. Does the assumption automatically follows, so that one can
delete it? (This is true for an indefinite form / on L with rank L=2. cf.
(9.4) Note.)

Definition 2» i) A root system R associated to I is said to belong to (L, I),
if RdR(L, I). In particular, if R=R(L, I), we call R to be a maximal root
system belonging to (L, I).
ii) If R is maximal w.r.t. (Q(^), / 1 Q(R))9 we call R to be a complete root system.

Note 2. Two concepts to be maximal or to be complete are different.
The former depends on the choice of the lattice L containing R, whereas the
latter depends only on the isomorphism class of R.

Definition 30 Two maximal root systems R and R' belonging to (L, I) and
(L', /') respectively, are said to be isomorph as maximal root systems, if there
exists an isomorphism <p: L^Lf of abelian groups and a constant C^O s.t.
Ifo9=CIand<p(R)=Rf.

Note 3. In the above definition of the isomorphism, the condition <pR=R'
follows automatically from the others, since R(L, I)=R(L, CI) for any constant
C=|=0.

(7.2) Format on the classification of maximal root

In (7.4) we shall give a list of all isomorphism classes of maximal root
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systems. As a consequence of the classification, there are 7 types of diagrams
FR(L,I) associated to maximal root systems R(L9 I) (see (1.6) 3) 4) for the
definition of a diagram and a type of a root system). Therefore we divide the
list into 7 tables according to the seven types T2g, FM, T62, F65, F69, F70, F72.

The first five tables classify irreducible cases. The remaining two tables
classify reducible cases, when the discriminant of / are square of rational
numbers.

Each table of a type F contains infinite number of isomorphism classes of
maximal root systems, parametrized by a set Pr.

Instead of giving exactly one representative for each isomorphism class of
a maximal root system, the representation in this note has finite overlapping,
which is described by a finite group Aut(F) as follows, (cf. the following

v) vi)).

Definition,, For a type F of a diagram of a root system, define,

(7.2.1) Aut(r):= {automorphism S of F} .

Here S is an automorphism of F if it is a bijection of vertexes of F, which maps

double circles to double circles and which preserves the direction of the arrow,
the sign —1 and the symbol * on the segment (cf. (1.6) 2), 3)).

In fact directly from the table of diagrams in (1.6), we see that Aut(F)
is isomorphic to either {0}, Z2 or Z2®Z2.

Now the description of the classification of maximal root systems in (7.4)
is in the following form.
i) In each table of type F, we define a set Pr of parameters. The set Pr is either
a set of pair of integers (m,c}^NxN satisfying certain elementary number
theoretic relations for the case when F is irreducible., or equal to Q+:—
c>0} for the case when F is reducible.

ii) For eachp^Pr, we associate a quadratic form

(7.2.2) q(u) := qp(u) for us=L := ZrQ+Zn .

Thus one gets a family of lattices,

(7.2.3) Lp:=(L,Ip) for

where Ip(u, v):==qp(u+v)—qp(u)—qp(v), u,

iii) For each p e Pr, the maximal root system Rp belonging to Lp and its diagram
FRp are explicitly calculated in the table.

The type of FRp is equal to F so that we fix an identification of FRp
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with the type F in the following way.
Let vl,"'a,vk(k:=^r) be the vertexes of F. Then the coefficient ri of the

diagram FRp at vf- is given inside the vertex vf- of F in the table as a function of

(7.2.4) rf. = r,QO for

iv) Let us denote by m(p) the period (cf. (1.6) 2)) of Rp. Then the parametriza-
tion by Pr has the following unicity: The map

(7.2.5) Pr-*WxPk_l9 p^(rn(p\(rl(pY"--rMb, k:=#\r\,

is infective (cf. Note 2 of this section).
v) There exist an action of Aut(F) on the parameter set Pr, denoted

(7.2.6) * : Aut (F) -> Bijection (Pr) ,

a cycle C with the relation,

(7.2.7) C: Aut (F) x Pr -* Qx

(7.2.8) CST(p) = Cs(T*p)CT(p) for S9 reAul(F) , p^Pr ,

and an isomorphism <ps of L depending on SeAut(F) andp^Pr,

(7.2.9) 9s : L^L,

inducing a relation of quadratic forms,

(7.2.10) qp(u) = Cs(p)qs*(p}(<ps(u))

such that <ps defines an isomorphism of root systems (cf0 (7.1) Note 3)

(7.2.11) 9s: Rp^Rs*w

which induces the automorphism

S: F^F

using the identifications of F with FRp and FJ?s*(/>) in iii).
Therefore (7.2.10) implies relations of coefficients,

(7.2.12) rf.(p) = Cs(p)rs(0(S*(p)) for i = 1, .-,#|r|.

(Here S(i) Is defined by the relation 5 ,̂0= v5(f.).)
The choice of<ps is not unique, but is ambiguous up to multiplications of the

elements of O(Lp) from the right and 0(LS*(/0) from the left,
vi) The above process induces the natural bijection,
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(7 2 13) P /(Aut (r))* — (isomorPhism dasses of maximal root
r (systems, whose type is F.

(Cf. (7.4) Corollary.)
vii) The action of Aut(r) on Pr may have fixed points. We shall calculate,
the fixed point set, the isotropy subgroup IFip of Aut (F) and the quadratic form
qp(u) at the fixed point p in the tables of(7A) (cf. Note 1).

Note 1. Put

(7.2.14) O(L, /):= {g<=GL(L): there exists a CeQ\{0} s.t. q = Cq«g}

Then using above Aut(jT), one can determine O(L, /) as follows.
i) There exists a natural isomorphism,

(7.2.15) 0(Lp)IO(Lp)^Irtp for p^Pr ,

where IFjp is the isotropy subgroup o/Aut(r) by the action * at p^Pr.
ii) In fact Iptp is either 0 or Z2.

If S^F§ is a generator of 'Ir,p9 then

(7.2.16) d(Lt) = <0(Lt), <ps>

where <ps is the isomorphism (7.2.9), which satisfies,

(7.2.17) qp(u)=-qp°9s(u) and 9
2

s^O(Lp} .

Proof. Let 9 be an element of O(LpQ) s.t. qpQ=CqpQ°<p. Then 9? defines

an automorphism <p: RP^~RP^ which induces an automorphism S9: F—F with
relations of coefficients :

*) ri(p«)=CrS(pM for / = 1,

Then by definition, 9? e O(LPo) <=» C= 1 <^> S<p e Aut (r) is an identity. (Remember
that the coefficients rf- are pairwisely different (1.6) 1)),
This implies the natural embedding,

d(LPo)/0(LpQ) C Aut (r) , 9 H> S, .

Thus if C=t= 1, 5|=1 and C=-l.
On the other hand, comparing *) with (7.2.12) one gets relations,

**) ri(pQ) = C-1Cs^ri(S*(Po)) for i = 1, .-, ft|r| .

Since the period is an invariant of isomorphism class of a root system, we have,

***)
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Thus the unicity of iv) together with **) and ***) implies p0=S$(p^ and hence

SV^IF.PQ-
Conversely for S<E/r>v take <ps<=GL(L) of (7.2.9). Then (7.2.10) implies

clpQ=cs(P^PQ°9s and hence (ps<=O(LpQ) such that S=Sg,g. Q.E.D.

Note 2. Even the image set of (7.2.5) has an invariant meaning as a

parameter set for maximal root systems of type F, it does not imply that the

family qp(u), p^Pr of quadratic forms is uniquely determined, since there

remains an ambiguity of a constant factor C in front of qp.

In the tables in (7.4), we have the following normalization.

vii) In the table of type F of (7 A), one vertex, say vl9 of F is fixed, so that the

coefficient at the point is normalized to I. i.e.

(7.2.18) / iQO^l for all p(=Pr .

Note 3. The choice of the basis r0? T\ of L for the quadratic forms qp,

p^Pr in the tables of (7.4) is done from a view point of the duality of maximal

root systems in §8, which seems relatively simple and natural.

(7.3) For the description of the tables in (7.4), we introduce two lattices L^D)
and L2(D).

1. The
1.1. By L1(D)for a D&Q+

9 we mean the lattice (L, /) defined as follows.

ii) q(xr0+yn) :=x2—T / f°r

iii) I(u9v):=q(u+v)—q(u)—q(v)9 u,

iv) The descriminant of q is given as, D=—dQt(I(r{, r/)X-,r
v) Let us define an element Te O(L, /) by,

"1 0~
f

0 -1
r0

In.
/m2_4\

1.2. i) By Li(m, c) for m^c^N m>2, we mean the lattice LI ( - )„ The

m2-4 C*descriminant is D:= — - —

ii) Put

P! : = {(/«, c)(=WxN: m>2, 2\m, 2c\m2-4}

\{(m, c)^Nx N: There exists an integer n s.t.

n_
2<n<m and
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s.t. Vm+2\2c, 4c\Vm+2(m-2)}

Then the maximal root system R^^m, c)) belonging to L^m, c) for (m,

has the period m (cf. (8.4), (9.2)).
iii) Define an element F^GL(L®Q) by

z

F T '
m2—4 _

2J

ThenF2^O(LJ\ F^O(LJ) if ™—s=Z and F^O(L'J) if
4c

2. The
2.1. By L2(D)for a De@+, we /weow /Ae to/fce (L, /) defined as follows.

ii)
4

iii) I(u,v):=q(u+v)—q(u)—q(v), u,

iv) 77ze descriminant of q is given as,

v) Define an element f^ O(L, /) by

-l -1.

2.2. i) 5;; L2(m, c) for m,c^Nm>2,we mean the lattice L2 f
»j^2 _ ^|

descriminant is D := - .

ii) Put

: m>2, 2\m+c, 2c\m2-4+mc}

\{(m, c)^NxN: There exists an integer n s.t. 2<n<m and

-4 n2 — 4 n
2-4 2 2c

Then the maximal root system R(L2(m, c)) belonging to L2(m, c) for (m,

has the period m, (cf. (8.4)).
iii) Define an element Fe GL(L®Q) by

z
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F
r0~ : =

m+c
2

m2-4-c2

c

m—c
4c 2

\r>
L/J

Then F2 GE O(L, /), FeE 0(L, /) if m* 4 c2 e Z and F<E 0(Z/5 /) if c e 2Z.

(7.4) Classification of root of (1, 05 1).

In the following, we list all isomorphism classes of maximal root systems
of sign (1, 0, 1) (cf. (7.1) Def. 1, 2). There are seven tables according to the
seven types of the maximal root systems. We use the types as titles of the tables.

In the each table of type F, we shall exhibit:
1) Description of a family Lp:=(L,Ip), p^Pr of lattices, where Pr is the

parameter set. (We use here the notations of (7.3).)
2) Description of the set of the maximal root system Rp:=R(Lp) belonging

to the lattice Lp as a union of components for p^Pr,
3) Description of the diagram FR(Lp) for p^Pr. The coefficients r^p), • • • ,

rk(p) of the diagram are given at the vertexes of the diagram as functions of

4) Description of Q(Rp) for p <E Pr. (In fact it is either L or L' (cf. (7.5).)
5) Generators of the orthogonal group O(L,I^=WRp (cf. (8.3) Corollary).
6) Description of the action of Aut(F) on Pr (cf. (7.2) v)). Namely: for each

5feAut(r), we present the representation S*eBijection (Pr)3 the constant
Cs(p)^Q for p&Pp, and an isomorphism <ps: L->L for p^Pr,

7) Fixed Points set of the action Aut(F) on Pr, the Isotropy group at a fixed
point and the Quadratic form q(xrQ+yri) at a fixed point. (Cf. (7.2)
Note 1.)
For a detailed explanation of the meaning of the above data in the tables,

one is refered to (7.2).

1. Type T34.

1) (L, /) :=L1(m, c) for (m, c)eP34, i.e.

where

•*'' '

q(xrQ+yn)i=x2--y2 for x,
4

c2 '
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\: 2\m, 2|c, -—Z is odd}0
2c

2) R(m, c) is a union of the following components:

Q := {±F"r0: n£EZ} ,

:= {±FZn2rQ:

3) R(m, c) is a root system of the diagram 34,

period = m.

4) QCR)=L.
5) PF= O(L, r)=<F*, f,-\y.
6) Aut(r34)={0}.

7) Fixed Point of Aut(r34) = <t> .

Table 2. Type r62.

1) (L,f):=L1(m,c) for (m,c)GP62, i.e.

L:=Zr0+Zn, q(xr0+yri):=x2-^-y2 for
where

c2 '

-P62 :=•{(«> c)ePt : — is odd, either c or (m2-4)/4c is odd}.

2) .R(m, c) is a union of the following components :

0 := {±F"r0: n<=Z} ,

0 := {±F"2ro: n<=Z} ,
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© ••=

3) R(m, c) is a root system of diagram 62,

4) QCR)=L.
5) W=0(L,I)=<F,f, -1>.
6) A\it(r62)=(sy~Z2, where 5 is the rotation K of the diagram.

C --m2"4
s 4c2

o r
Lrd 1 0 Lr

7) Fixed Point of Aut(r62) = 0.

Table 3, Type r65.
1) (L,/):=A(w,<0 for (m, c)(=P^ i.e.

where

i)'>=x2—-ry2 for x?4

PB :=•{(/«,£)£?!: 41m, 2|c}.
2) ^(m, c) is a union of the following components:

© := {±*V.neZ},

@, := {±f*(2r8):
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3) R(m, c) is a root system of diagram 65,

period = m,

4)
5) W=(
6)

where S is the rotation n of the diagram.
w2-4

- )> ^s = -c
( m2_4\

S^(m r} = ijii I5 (m,c) ^/H, j?

^s =

" C

T "
^2 m2—4

LT ~Tc~-
7) Fixed Point of Aut(T65) = 0.

Table 4 Type r69.
I) (L,l):=LJ[fn,c) for (m, c)eP695 i.e.

:-^2-/ for
4

where

2 /I

^69 - = {(m^ c)ePi ; — is odd, c and m "~ are even}0

2) J?(m, c) is a union of the following components:

© := {±rr0:»e=Z},
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3) R(m, c) is a root system of the diagram 69,

4)

5) »T=

6) Aut(r69)=<Si> S^^Z&Z* where

?! is the symmetry @

S2 is the reflexion w.r.t. the horizontal center line,
,, m2— 4

- ,

- Am-2)- -



1300 KYOJI SAITO

nVI
Vs2 1 1 =

Ln 1

9s&

v c
T "7

v(/w— 2) m+2
- 4c 2v -1

r0"
_n_

fro]u-
" C V ~

V T
m+2 v(m— 2)

L 2v 4c J

r0~
Ln_

7) Fixed Point of Aut(r69)— {(m, c)^P69: m = 4«2+2, c = 2ww for (n,
|w2+l}9

^Z2 for ̂ e Fixed Point,

, .
W2 W2

Table So Type r29.

1) (L, /) :=L2(m, c) for (m, c)eP295 i.e.

L :=ZrQ+Zri, q(xr0+yri) i=x*—xy+ ^—-y2 for *,
4

where

P29 '=^29,1 U P29,2 and
^29,1 :={(^ O^A: ^ is odd},

: m is even, ^±? and (m+c)2~4
 are odd} .

2
2) R(m, c) is a union of the following components:

0

0

3) ^(m, c) is a root system of the diagram 29,

-i
/^ r> ^

period = m,

where v=fc. m+c+2} .
-2)} \ 2 /
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4) QGR)=L' if 81 c and 81 c where c= ̂ ^ .

Q(K)=L otherwise.
5) ^=<

6) Aut(r29)=<5'1, S2>—J
where Si is the reflexion w.r.t. the vertical center line, S2 is the reflexion
w.r.t. the horizontal center line,

m2-4\ „ ?M2-4m, \ ^, j
j , CSl = - -

c - m+2
- - , 0S2 -- ^— ,

c / ' ^2 c2

' ^ i r 1 2irr<r
LrJ lO- l JU . '

C

V

—2—c) , m+2—e\ w+2—cn.
2v

v

LnJ

r0

_. _, j,m+2-c\ v(m-2-c)
14\ c ^~ v ) 2c J

7) Fixed Points of Aut(T29) = Fj U F2 where

C = 72V v|?Z2 + 4 [ *

2: m=n2+2 s.f. nevene^V, ve^Z¥

O I 2 i /I O L, W , ?22+4fc=/iv 2

There are two more tables of maximal root systems which are reducible.

6a Type r72.

1) (L, /) :=L1(c
2) for ceP72:=@+, i.e.

c2

L :=ZrQ-\-Zri, ^(^TQJryTi)-=x2 y2 for x,y^Z,
4

2) jR(L9 /) is a union of the following components:
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© := {±r0K @> := {±2ri}?

3) R(L, I) is a root system of the diagram 72,
-i

\ - u >

period = oo .

.! -̂

4) Q(K)=L.

6) Aut(7*72)=<[S>—^2, where S is the rotation n of the diagram.

7) Fixed Point of Aut(r72) = {c=

Table ?„ Type r70.

1) (L,/):-L2(c
2) for c^P70:= Q+ , i.e.

2) J?(L, /) is a union of the following components :

3) J?(L, /) is a root system of the diagram 70,

(T) — =^— @) period = oo .

4)
5) JF = 0(A /) = <f, - 1
6) Aut(r70)=(Sy—Z2, where 51 is the exchange of two vertexes;

7) Fixed Point of Aut (r70) = {c= 1} .

y—^2 ->
= x(x~y) .

(7.5) Corollary 1. Le/ (Lf-, /,-) Z?e mwfc /wo free Z-module L{ with indefinite
symmetric bilinear form 7f- o/z iY/c?r i=l, 2.
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Then fallowings are equivalent.

i) There exists an isomorphism q> : Li—L2 of the additive groups and a constant

ii) Put R{ :=R(Li9 7;), /=!, 2. Then R1 and R2 are isomorphic as root systems

(cf. (1.2)).
ill) The periods of R1 and R2 are equal and there exists an isomorphism of the

diagrams FR± and FR2 so that the coefficients of corresponding verlexes are

proportional (i.e. ^C^O s.t. r2~Crli9 /=!, --, ^\FR^ •)

Proof. The conditions ii) and iii) are already equivalent, due to (1.6)
Theorem 4). The condition i) implies ii), as noted in (7.1) Note 3.

Let us show that ii) and iii) implies i). The isomorphism R1~R2 implies
the existence of a linear isomorphism <p: Q^)— Q(J?2) such that I^=CI^<p
for a C4=0 (cf. (5.1) Assertion). Therefore all what we need to show is that
this <p induces an isomorphism 1^— L2. Due to the classification (7.4), in all
cases QCR) is either equal to Lor L'. Thus for instance the case when L1=Q(R1)
and L2=Q(J?2), the statement is obviously true.

In general we have only to show the folio wings.

Assertion,, Under the assumption iii) of the corollary,

1) A=Q(*i) iff L2=Q(R2\
2) IfL1^rQ(R1) and L2^Q(R2\ the isomorphism <pQ(R1)—Q(R2) of the root
systems induces Lj—Z^.

Proof of the assertion.
1) If the diagram rR^ (=FR2} is not the type F29, then due to 4) of the
tables we have Ll=Q(R1), L2=Q(R2).

Let FRi and FR2 be of type F29 as follows.

rRl= .| ><^ _EL with v =

... / , m+d+2\with w = ld, — ! — J.

Furthermore by assumption there exists an isomorphism of the diagram such



1304 KYOJI SATTO

that the proportions of the coefficients of corresponding vertexes are constant
C In this case the isomorphism group of the diagram is Z2®Z2 generated by

o jo 4.1. 4. o&/ \ ( m2—4\ 05k/ N / c(m+2)\Si and S2 so that Sf(m, c) = [m, - , S?(m, c) = (m, -± — J — ' ,
\ C / \ T I

v2(m~2)

, c)=(fii,
\

as in Table 5.6).
c

Then an elementary number theoretic calculations show that

c

5 g|v>-2) with v: /
c \

5

v2 c \ 2 /

,)) = ^' for any S e Aut (r29) .

Furthermore since 95S]? 952, 9?5iS2 are integral matrixes, they preserve the
group L. This proves the assertion, and hence Corollary 1.

(7.6) Classification of complete root systems of (1, 0, 1).

Corollary 20 The tables l~7 of (7.4), deleted the case of table 5, 8 1 c, 8 1 c
-when Q(R)=Lr, give a classification of complete root systems of signature (1, 09 1).

Two complete root systems corresponding to pl9p2^Pr ^re isomorphic iff
they belong to the same orbit of Aut (F).

Note. The deleted case 8 1 c, 8 1 c of the table 5 when Q(R)=L' can even
not be a maximal root system in L' as follows.

/ c \In this case the lattice (I/, /|L')cL2(^5 c) is isomorphic to LA m, — J by

a transformation r0^GQ, ̂ Q+2r^— »Glf Hence the maximal root system belong-

ing to (L', /| I/) is isomorphic to R(jL1(m9 — ))» which is the type of table 4
as follows.
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(7.7) A for a proof of (7.4).
To obtain the tables of (7.4), we shall proceed the following steps

i) In §8, we show that any lattice (L, /) is equal either to Ll(rn9c) or to
L2(m9 c), by a suitable choice of basis TO, r\ of L and by a suitable constant
multiplication on the form /, by assuming that some dRm>q>E belongs to (L, I).

This is shown by a use of a duality of maximal root systems (see (8.1)
Lemma).
ii) In §9, we list up all components d'Rm^q/t^9 which belongs to Li(m9 c) or
L2(m, c) and we draw diagrams for the maximal root systems belonging to

them.
Here we need to stratify the set of parameters (m, c) into several components

Pr, to distinguish the type F of the diagram. By ordering them suitably, we
obtain seven diagrams.
iii) We need to determine the action of Aut (F) on the component Pr and to
determine the isomorphisms 9S: L->L for S&Aut(F).

This can be done by using the data in the above i) and ii), so that we omit
the details.
iv) The case when R(L5 1) is reducible, is treated in (9.4).

§80 A Duality for Maximal Root Systems

Let us show that if a root system of a diagram ® belongs to (L, /), then

there exists another root system of the diagram (-D/T) belonging to R(L9 /) so

that they form a diagram (r>^-(^D7r) . Here

(8.0.1) D : = -det (J(n, r,-)).-.y for ̂ -basis r0, n of L.
(8.1) More precisely, we show the following.

Lemma (Duality). As before let I be an indefinite form on a Z-module L
of rank 2, If a root system dRm>q^ with respect to basis el9 e2^L®R (cf.
(1.4), (1.5)) belongs to (L, I), then another root system (\Xj9AO^m>g>_s belongs
to (L, I). Here D is given as in (8.0.1).

Proof. For a suitable choice of ei9 e2, one may assume that ^=0.

Put a. := d(eipme^ee~ipme^ i = 0, 1,

Pi '•= (VDlW^-ee-'t-eJ i = 0, 1.

Since Q(^fffi.)=Za0+Za1 and Q((V5"/d)^.ff.-e)=^o+^A (cf. (2.3) 1)'),
dRm.q,t (resP- (Vl)ld)Rm.q.-t) belongs to (L, /), iff a0, a^resp. /?0, A) belong to
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(L91). Since a0, a^eL, there exists an integral matrix M&M(Z, 2) s.t.

The relation between the intersections I(ri9 TJ) and I(ai9 ay) is given by,

2) -* -
Since a0, ^ belong to (L, I), I(ri9 <tf)<=M(Z9 2) and

"2 m"
f 2).3)

By taking the determinant of 2), one obtains,

By definition, linear relation between a/s and /0f's is given by,

em —s

X
n

d\
[_epm ee

'-m 2ir<l

-2 mJL«J

Therefore applying 4) and 1), one gets,

5)
AJ -2 m

A direct calculation shows that the entries of the matrixes of 5) and 3)
coincides. This implies that 0Q9 fa are integral linear combinations of ?&

Using 5), one computes,

[~—m 21 I'1 r~e2 — e/wl
- |detM|-2 \M\ \

1-2 m] J L-^ -^J
r o 11

= e|detM|Af-1 eM(^5 2).
-10

Thus /(/?y), J(/?y)eL* and therefore /?0? fa belong to (L, /). Q,KD.

(8.2) Corollary 1. Dw^ to this duality lemma, possible diagrams for maximal
root systems can be subtracted from the table of (1.6) as follows.
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slumbering

5.

23.

29,

34.

62.

65.

69B
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In fact we shall see that among the above diagrams, the first two types 5
and 23 do not appear (cf. (9.2)). (To see this we need to give a more precise
description of the relationships between the lattice (L, /) and the root system
belonging to it.) Assuming this fact, let us show that the orthogonal group
O(L, I) is generated by reflexions.

(8.3) Corollary 20 Let us denote by W the group generated by reflexions w^

Then

(8.3.1) W= O(L, /), 6(L9 /)= Automorphism group of R(L, /).

Proof. The statement is true including the case R(L, /) is reducible, when
the proof is immediate from the description of a£^R(L, /).

Here we prove the case when R(L, /) is irreducible.
Since we have a natural inclusion WdO(L, /), we have only to show the

opposite inclusion relation.
Since we may disclude the first two diagrams in Cor. 1., all the remaining

diagram belong to one of the following two cases.
-iCase 1. The diagram contains edges o - — O an(i

Case 2B The diagram contains edges O - O and vertexes

Due to Assertion (5.7), in both cases, one computes W as

Cascl. W=<gtm9H_l9g29T>,

Case 2. W =

PutG:={gt:t<=R}^I$ (cf. (5. 1) ii)). Let gp e G be a generator of G fl O(L, I)
(which is an infinite cyclic group.) Then since gpR(L, I)=R(L, /), pm\p for the
case 1 and 2pm\p for the case 2. Since WdO(L,I), we get the equality p=pm

or 2pm according to the 1 or 2. i.e. G fl O(L, I)=Gr\ W. By noticing the
fact — !=#_!, g2qT^W one concludes W=O(L, /).

The last isomorphism follows from the description of the automorphism
group of a root system given in (5.5) Assertion. Q.E.D.

Note. In 5) of the tables of (7.4), we use the notations F=gPm, f=eT and

(8.4) A description of (L, I). Let (L, /) be as before a pair of rank 2 ̂ -module
and an indefinite form on it. As in (8.1) let Rmj0>s and \/~DRm>0f_s belong to
(L, I), where D is the descriminant given in (8.0.1). Put also, ai:=eipm+ee~tpm,
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^i: = \/'D(eip^—£e~ipm) for i^Z. Note that we have relations

/(«,-, A) = 0, q(*t)q(Pd=-D (ieZ), (cf. (9.4) Lemma).

The aim here is to find basis r0? T\ of £ as far as "near" to a0, /30 so that they
give a simple description of (L, I).

By choosing r0 to be a constant multiple of aQ9 we get

H r0

*i / V * c I\ n ) ' \ f t i J ac\ —2a+mb me
\r
)\

for some integers a,b,c^Z with a, c>0 (cf. 5) of (8.1)). Therefore a=\ or 2.
~m

JL^J J.VJ.y.lM.V.l.LJLg, 1 I VJ 1 I 1

On each case, one computes easily

1) , i / 2 0\
/ Ltn \ /

«i
Q

P*

\ fi. I

.

m c

0 1

m2— 4 m
(1V r i /

/ Q VV ̂  JLJLUr V \s L.XJ.JLV'^/ ^M.OVO y^

as follows :

where 2\m, 2c\ m2— 4 ,

\ 1C 2]

D =
c2

2)

/ f f «\ f » )
«1 ? ^ / - r . \

where 2\m, 2c\mz—4,

4c
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3) / I 0 \
/ «o \ ' \

\flil

m+c~~

I 2

w2— 4 , 777 m
\ 2c ' 2

m-\-c

s where 21 m+c, 2c \ m2—4+mc ,
Ti,"

4c 2
Here in the above tables F means a linear transformation s.t. F(ai)=ai+l9

F(fii)=Pi+i for * eZ and F(e1)=ep«el9 F(e^=e~p™e2.
We delete the first case from our consideration, since the first and the

second lattices above are isomorph by the transformation <p(xr0+yri)=yr0+
XTi, 777=777, c=(m2—4)/c and q(<p(uJ)=(—\/I))q(it).

The second and the third lattices are named as L1(777, c) and L2(m, c) re-
spectively in (7.3). By definition the root system Rmm0tE={±Fna0: n^Z} be-
longs to ^(777, c} and to L2(m, c).

Tf another root system J?n>0)g for an n> 2 belongs to L{(m, c), then L,-(,TW c) is
_____

isomorphic to Lf-(77, d) for d=c/U 2_4 sinc^ we have followings.

^«fo,B belongs to Lfcn, c) (resp. L2(m5 c)).
belongs to Ll(m9 c) (resp. L2(m, c)).

n I n2-4 f(m2-4) (n2-4)

-4 n l(m2-4) (n2-4)— — J
To avoid overlappings and complications in the classification, we disclude

the cases when a root system Rn>Q>^ for 2<n<m belongs to L^m, c)a

Therefore In the definitions of P1 and P2 in §7 (7.3), 1.2 Ii) and 2.2 ii), we
discluded the parameters (777, c) of these cases.

§9o A Criteriiim for Components to Belong to (L, I)

(7.9) Let us give a criterium for a pair of root systems

O->-©5 O-^©, O—i~O or O^^^O to belong to (L, /).
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(9.1) Criterium. Let a root system R:=dRmjq^ belong to (L, /). Put a.;=
d(eq+ip>"e1+ee-q-ip™e2}t=R(i=Q, 1).

In the following, we give necessary and sufficient conditions for an existence

of a root system R':=d'Rm,fq,}S, belonging to (L, /) so that R and R' interacts in

one of the seven types described in (3.3) Lemma.

iff 2a^ 2ax belong to (L, 7),

iff — a03 — <*! belong to (L, I),

iff either 2aQ belongs to (L, 7),

or 2a1 belongs to (L, 7).
13) ©—»—© iff either -~aQ belongs to (L, I),
2

or —cq belongs to (L, /).

4) © i—(g) i^ f/zer^ e;v/j£ /90, /?t belonging to (L, /)

5) ©—zl—Q iff either there exists /30 belonging to (L, /)
s.t. I(aQ9 j30)=0,

or there exists ^ belonging to (L, /)
s.t. I(al9 ^i)=0.
there exists v<

s.t. — («0+
ai) belongs to (L, I).

there exists v^Z\{Q}

s.t. — (̂ o""01!) belongs to (L, I).
v

Proof. Let /?0 (or ^0? ^0 be the elements of L described in the above

conditions and let WR be the group generated by reflexions wa for a^R. Then

R': = ±WX00 or =±WRp0\J±WzPi is a root system belonging to (L, 7),
interacting with R according to the 7 types described.

Conversely if d'R^^t^ belongs to (L, 7), where m'=m or m2—25 #'=# or

g+—/?m, then the elements J3i:=d'(eq/+ip^e1+ere''q/''ipMe^ (/=0,1), satisfy the

conditions described above. Detailed verifications are omitted. Q.E.D.

(9.2) Using the criterium in (9.1), we are now able to determine all components

belonging to L^m, c) and L2(m, c), so that one can draw the diagram of the

maximal root systems. Due to the symmetry of the diagram in (8.1)3 it is

enough to investigate a half of the diagram, namely the components Rt: =

d{Rm.tqi}Zi such that e~e9 i.e. the components which are combined with the com-
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ponent RmM by the edges ©—<—® ©—<—©>©—>—fi| or

By discluding the case, when there is a component R{ such that m=m2i—2 and

© (fD s (c^ ^e definition of P! in (7.3) 1.2 ii)), one may assume that m~

m or m~m2—2 for all l<I/<^.
Followings are the list of the half diagrams.

Case 1. Li(m9 c) s.t. m even, c odd,

/m+2 \v: = I—1-, cj
\ 2

Case 2, L^ra, c) s. t. 41 m, 21 c,

(T)

Case 30 L^w, c) s.t. — odd, -^ odd,
2 2c

Case46 /^(m, c) j.f. —odd,

Ca§e5B

Case 6e L2(m, c) 51./1. m, c even,

o L2(m, c) s.t. —odd,, J
2 2c

© - ^— 0.
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CaseS, L2(m,c) s.t. m even, odd, " odd,
2 4c

&• *-(" 2 I
IM \ f* (vyi I f*i — 4

Case 9e L2(m, c) s.t. m even, —•— odd, -—-^ even,
2 4c

C^dfitf* "III T (m r*\ e f ~ni
fL-ilSC JLll'e jL/2\ff*y kjl O.I. /7t?

x-x * /frT+^K
v:= I c,

2 /

It is not hard to check that the cases 6, 7 are isomorphic to the 3 and
the case 9 is isomorphic to the case I or to the case 4, where the case I and
case 4 are isomorphic by a use of <p of (7.2) I. vi).

(9.3) Using the discussions in §8, §9, it is no more hard to reconstruct the
full diagram FR for each case in (9.2). Also the datas in the table of (7.4) is
now possible to calculate. We omitt the calculations. These complete the
classification of maximal root systems associated to an indefinite form on a
^-module of rank 2.

(9.4) A proof of (1 A) Table 69 7.
Let us show a slite modification of (8.1) Lemma (Duality).

Lemma0 Let I be an indefinite form on a Z-module L of rank 2. If an
element a GEL belongs to (L, /), then the element /9eL®J?, characterized by the
equations I(a, ft)=Q q(a) q(fi)=—D up to a sign, belongs to (L, /).

Proof. Let r05 T\ be -Z-basis of L such that a is an integral multiple of r0.
Put,

r0'a 0

* CJ Ln_

We have relations
r(r05 n))=0

, c>0.

, a,«) 0 ,
2) det ' = det

' 0 /(/?,/?).

'a 0"

b c
det(/(r,., r;-)) det

a 0"

c
i.e.
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2)' ac=2
Since a belongs to (L, /), using 1) and 2)' one computes, that

i = 0

2/(r0, n) = _b i==l

»r0)

are integers.
On the other hand, again using 1) and 2)' one computes that,

are integers. Q.E.D.

Note. This lemma asserts the existence of linearly independent elements
belonging to (L, /). Hence it gives a positive answer to the question Note 1 in

(7.1), for the case of indefinite form on rank two module.
Now the same type argument as in (8.2) shows that one can choose basis

r0, n of L in one of the following form.

Case 1. a = r0, ft = 2n >

'-= x?—- y2, for

Case 2. a = n , £ = ro+2n

Case 3. a = 2ro , ^ = n

= - *2-/}*2 for

We omit the case 3, which is isomorphic to case 1.
In the above cases it is not hard to see the equivalence :

JR(L, /) is irreducible.
<=> There exists <5eL s.t. d belongs to (L, /), d is not a constant multiple of a or
ft. (cf. (2.2) Note)

<=> There exists d^L s.t. d belongs to (L, I), I(d,d)=2, d is not a constant
multiple of a or p.
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(The verification of the last equivalence is reduced to the existence of
integral solution of Pell's equation.)

Finally in the case DGEQ2, one computes directly

Case 1. ^(c2)) - {±r0, ±2r0} U {±n, ±2n} .

Case 2, R(L2(c
2)) = {±n} U {±n} .

In both cases O(L, I)=<T, -1>=W^
This completes the proof of (7.4) for reducible cases.
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