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§0. Introduction

Let F be a real vector space equipped with a quadratic form ¢, whose
signature is (z4, #, #-). (i.e. #, and x_ are maximal ranks of linear subspaces
of F, on which g is positive or negative definite respectively. 4, is the rank of the
radical of g.) A subset R of F will be called a root system of sign (u,, 4, «#_)
in this note, if it satisfies certain system of axioms similar to the classical one.
(See for instance [1] Chap. VI. We reformulate it in §1 (1.2).)

In this note we give a classification of root systems of sign (1, 0, 1). The
result is summarized in Theorem in §1 (1.6), which contains a list of 72 types of
root systems. (Three types of them are reducible root systems.) Each of the
types contains an infinite sequence of root systems, whose isomorphism classes
are parametrized by a positive integer me N, called the period of R, and some
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finite numerical datas r,, ---, r,, called the coefficients of the diagram of the type.

For a root system R, the group generated by reflexions of @& R, which
one may call the Weyl group for R, is easily calculated, whose invariants are
elementary hyperbolic functions. (See §5.)

The proof of the theorem is divided in §2-85. A general view of the proof
is given at the end of §1.

As an application of above study of root systems we classify indefinite
quadratic forms defined on a Z-free module L of rank 2 from a view point of a
maximal root system belonging to the quadratic form (cf. Def. (7.1)). The
result is summarized in (7.4), which contains 7 types of maximal root systems
with parameter (m, c) Nx N. The number 7 of types is surprisingly small
comparing to 72 types of root systems in (1.6). This fact is well explained from a
duality property for maximal root systems in §8 (cf. (8.1) Lemma). The duality
was first observed by an experimental study using the computer DEC System-
2020 at RIMS in Kyoto University. The author is grateful to his colleagues
T. Miwa, M. Jimbo and I. Naruki for their interest in the subject and for the
helps in execution of the computer.

For the convenience of the reader, this note is written so that one can read
the tables of the classification as quickly as possible. Therefore some readers
may be suggested to go to (1.6) and (7.4) directly after reading some preparations
of notations, definitions and some general programs in (1.1) - (1.5) and (7.1) -
(7.3).

The set of units in a real quadratic field forms automatically a root system
of sign (1, 0, 1) in the sense of this note, which we shall investigate in §6. This
paragraph was added after a discussion with Prof. W. Borho, to whom the
author is grateful.

It should be mentioned that this work has a motivation in a study of period
domains for singularities. (See for instance [3], [4], [5].) However, there
does not exist a singularity, which corresponds to a root system studied in this
note, since the root systems in this note are too simple for the application.
Therefore this note may be regarded to be rather preliminary computations.
Nevertheless some complications concerning with arithmetics of quadratic
forms and quadratic fields, which appeared in this note, seem to indicate already
some possible complications which we shall meet in a further study of such
generalized root systems.

The main part of this note was carried out during the stay of the author in
Universite de Nancy I, in June 1983. He is grateful to the hospitality of the
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university and expresses his gratitude to Prof. D. Barlet.

§1. Statement of the Classification

We define a root system of sign («,., #,, #_) in (1.2). Then in (1.6) Theorem
we give a result of classification of root systems of sign (1,0, 1), containing a
table of 72 types of root systems. A general view of the proof is given in (1.7).

(1.1) As in the introduction, let F be a real vector space with a quadratic form
g on it. The associated symmetric bilinear form given by g(x-+y)—gq(x)—q(»)
is denoted by I(x, y). Let (&4, #, ~_) be the signature of I.

As usual, if an element @& F has non zero length I(e, )30, we define the
dual aVEF and the reflexion w, & GL(F) as follows.

2

I(a, @)
i) wy@): =u—I(u, aVa

a

i) avVi=

so that aVV=a and w,=w,v and w3=id.

(1.2) Definition 1. A subset R of F is called a root system of sign (u,, t, #_),

if it satisfies the following axioms 1) - 5).

1) Denote by Q(R) the additive subgroup of F generated by the elements of R.
Then Q(R) is a full lattice of F. (i.e. RQQ(R)=F.)

2) Forany acR, I(a,a)=0. ?

3) Forany a&R, wy,R=R.

4) Forany a,BER, I(a,feZ.

5) Irreducibility. If R=R;U R, such that I(a;, @,))=0 for ¢;ER;, i=1, 2, then
Ry=¢ or R,=¢.

2. Two root systems RCF and R'CF’ are said to be isomorphic, if there exists

a linear isomorphism ¢: F—F', such that (R)=R'.

Note 1. The only difference of the above definition of a root system from the
conventional one (see for example [1] Chap. VI) is that we do not assume that
I is positive (negative) definite and R is finite. R may contain positive length
roots and negative length roots simultaneously as we shall see in this note.

Under this general setting, we have studied some general facts on the root
systems in [5], which we shall use in this note.

Note 2. If a subset RCF satisfies only axioms 1) — 4), we shall call R a root
system, which may not be irreducible.

Note 3. If R and R’ are irreducible root systems, then the above definition
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of the isomorphism ¢: R=R’ implies automatically an existence of a constant
C such that
I=Clogp.

(cf. 85 (5.1) Assertion, [5 §1 (1.4) Lemmay]).

Therefore including reducible root systems, sometimes we use the following
2’ as for a definition of isomorphism.
2. Two root systems RCF and R' CF' are said to be isomorphic, if there exists
a linear isomorhism ¢: F—F' and a constant C such that (R)=R’ and I=Clo¢.

(1.3) Here after in this note, we assume that F is a vector space of rank 2 over
R and the signature of I is (1, 0, 1).

To state our main theorem, we prepare some notations and fix some co-
ordinates of F as follows.

(1.4) Due to the signature of I, the set of isotropic vectors={f & F: I(f,f)=0}
is consisting of two lines Re, U Re,, where e;,e,& F are some linearly indepen-
dent isotropic vectors. Normalize their constant factors, so that, we have
I(e,, e)=I(e,, e,)=0 and I(e,, e;)=1. (There exists still an ambiguity of
changing (e;, €,) to (ce;, ¢ 'e,) for an non zero ce R.)

Using these coordinates, let us define an element of F,

(1.4.1) a(t, r): = ele;+e're, for ,reRr.

Obviously any element of F—Re, U Re, is expressed uniquely either as
a(t, r) or —af(t, r) for some t R and r € R—{0}.

(1.5) Definition. For me N m>2, g= R and r € R— {0}, let us define a subset
of F,
(1.5.1) R, ., = {+e(mp,+q,r):neZ}

where the number p,, is defined as follows.

(1.5.2) Pms = log(n-q——}——\/zm—_t‘—‘l> = cosh‘(%) .

It is not hard to see that R,, ,, is an irreducible root system in F (cf. (2.3)
Lemma). We shall call m, q and r the period, the phase and the coefficient of
R, .., respectively.

By definition R,, , , =R, ,, iff m=m’, r=r" and ¢g=¢’ mod p,,. Since the
change of basis ey, e, to e’e;, e~%e, induces the translation of the phase ¢ by ¢ and
the change of the bilinear form 7 to CI induces a multiplication by C on the
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coefficient r, R,, , , and R, .-~ are isomorphic as root system iff m=m’ (cf. (5.3)
(5.4)).

For a non zero constant d & R— {0}, we define, dR,, ,,: ={decF: ac
Rm.q,r}' Thus dRm,q,e:Rm,q-}—logld],sdz'

We need one more definition to state the classification.
Definition. Let m be a positive integer. We define a set,
M,:= {m/d*:dE N, d|m} .
Direct from the definition, we have properties,
i) Mp'=M, formeN,
i) My MuCMy ., for my, m,& N.
(1.6) The classification of root systems R in F goes in the following way.

First we define a diagram I'R associated to R and define the type of it as

follows.

1) Let R be a root system of sign (1, 0, 1) in F. Then it has a unique decom-
position (cf. (1.7) Lemma i) ii), (2.2) Lemma),

k
(1.6.1) R= UR;
i=1
where
Ri: = diRm.',q.',B.' = Rm,-,q,-+logld,'l,s,'d% (l: 1, .-, k) »

for some ke N and d;c R,={d>0}, m;e N, q,= R/ Zp,,, ;= {+1} for i=1,
e, ky .. die; s dbe; for i .

We put r;: =d%e;, i=1, .-+, k and call them the coefficients of R. Ry, ---
R, will be called the components of R.

2

2) Let R be a root system with the decomposition (1.6.1). Then any pair of
components R;, R; for 1=i, j=<k, falls into one of the following seven types of
pairs, for suitable constants m, q, € depending on the pair. (Lemma in (3.3))
(On the left side of the list we associate a diagram, which will be explained in
the next step 3).)

1) @——W® dR, .., 2dR,,. with2|m,
2) @—<) dRyges 24R,2,,. with2|m,

3) @—>~@ dR,, ;¢ > %a’Rmz’_z,q,E with 2|m ,



1258 Kyoi Sarro
4) M lem,q,E ’ dsz,q.—e with FZ/VIEM,,,2_4 s
5) m AR, s @Ry2 sq,-. With rfrnEM,z2_,,

6) @ : @) iRy ge 5 dsz.q+%1’,,,,s with  1y/rnEM,,,,

-1,% )
7) ®_h© lem,q,z s dsz,q_‘_%pm’_e Wlth I'z/l‘l EMm—Z .

As a consequence, we obtain:

Put m=min{m;, i=1, -+, k}. Then m;=m or m*—2 for 1<i<k. We
shall call this number m the period of R.
3) Definition of the diagram I'R.
i) For each component R;i=1, ---, k of (1.6.1), we associate a circle or a
double circle according as m;=m or m*—2.
ii) Inside the (double) circle of a component R;, we put the coefficient r;: =d?%e;
(=1(a, @)/2 for e=R)).
iii) Two (double) circles of components R; and R; are combined by a segment
with an additional symbols as follows;

®—<—® if there exists an element e €F s.t. ¢€R,, 2aER; .

1 o if the signs ¢;, €; of coefficients of R; and R; are different.

e o if the difference 9;—q; of phases is =0 mod Zp,,,+Zp,, .

For a typographical reason, we shall some times employ e o or
e o instead of o—— in this note.
4) Two diagrams are said to be of the same type, if there exists a bijection of
circles and double circles which keeps the symmbols O—<—O , o—=20 and
o—0 onthe segments.

Two root systems are said to be of the same type, if their associated diagrams
are of the same type.

5) Let R be a root system in F of the decomposition (1.6.1). To the root system
R, we associate the data,

(1.6.2) dim;, g, 6;) i=1,-,k
where d,=R*, m;e N (m;>2), ;€ R|Zp,,, ¢;={£]1}.

Then we have:
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i) Two root systems in F are equal as subsets of F, iff their associated (1.6.2)
data are equal (for a suitable permutation of {1, ---, k}).

ii) Two root systems in F are isomorphic, iff they are of the same type and the
numerical invariants; the period m:=inf(m;) and the proportion of the coefficients
(ry: o r)EP,_, (for ry: =die,, i=1, -, k) are equal (cf. (5.4)).

Theorem. Root systems in F of sign (1, 0, 1) are classified into T2 types.
Precisely, by the classification we mean the followings.

i) In the following table, we give 72 types of diagrams.

ii) To each type of the diagrams, we give a set of data,

dim;, q,8) i=1,-,k

where d;eR*, m;e N (m;>2), ;€ R|Zp,,, ¢;={+1} for i=1, ---, k, which
should satisfy the numerical conditions described at each table and the condition
rikr; for 15i<j=<k. (Here we put r;:=d%e;, i=1, «+-, k.)
iii) If R is a root system in F of sign (1, 0, 1), then the diagram I'R is of one
of the 72 types in the table and the data (1.6.2) associated to R belongs to the
set of the data of the type in the table.

Conversely any data of a type in the table is associated to a root system of the
type in F.
iv) We put numbers from 1 to 72 to each type of the diagrams. We shall refer
for simplicity “the diagram I',” or ‘“type I',)’ etc., instead of drawing the
diagram itself.

Table of Root Systems of Sign (1, 0, 1).

Numbering, Diagram, Datum d,(m;, q,, ¢;) i=1, :--, k and
relations of (ry, -+, rp).

k=1 case (one type)
1. ® d(m, q, €) .

k=2 case (7 types)
2. ®-<__@ d(m, q, ), 2d(m, q, €) s.t. 2|m.

d(m= q, 5)9 Zd(mz_z’ q, €) s.t. 2[m .

don, g, ), A2, 4,¢) st 2m.
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di(m, q, €), do(m, q, —e) s.t. rjr,eM,z2_,.
di(m, q, €), dy(m*—2, q, —¢) s.t. rfr,eM,z_, .
dy(m, 4, €), dim, G+ s &) 5. i€ My

dl(ms q, E), dz(m, CI‘*‘%‘PW —6) s.z. rl/rZEMm—Z .

dl(m’ q, 6), 2d1(m’ q, E): dz(ma q, —5)
s.t. 2|\m and
rofry, rofAriEM 2, .

1
i, G, €), dm, G-+ P ©), 201, G+ D ©)
st. 2|lm and
rofry, Arar EM s .

1
dl(ma q, E)’ dz(m, q—]_'_;’pma —E): 2d2(m7 LH‘?PW —8)
st. 2|\m and
rofry, ArfriEM,, ;.

1 1
dl(ma q, E)a dz(ma Q+7pm9 5): ds(m’ q+_2—pm5 —6‘) ’
St PrneEM, . .,, rneM, ,.

dl(mz q, 6)7 2d1(m2_29 q+pma é'), dz(mz_za q, —6) )
s.t. 2|lm and
rofry, Tol4r i €EM,2_, .

dl(ma 9, 6)9 %dl(mz_—zs Q+Pm, E), d2(m2_27 q, -—8) H
s.t. 2|\m and
rofry, 4rinEM,z2_, .

dm, g, €), 2 =2, q+pay ), 5 dP—2, 4, ),
st 4lm.
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dl(m’ q, E), d2(7n2*2> q+pm, "'E)a d3(m2-—2, q, _‘5) s
st 2|m and
rofry, o EM ,2_,,  ryfrse {4*, 167} .

d\(m, q, €), d(m?—2, q, —¢), 2d,(m*—2, q, —¢),
st 2|lm and
r2/rb 4r2/rIEMm2~4 .

dl(m7 q, 5): 2d1(m2—'23 q, 6); dZ(mZ_za q, _E) »
s.t. 2|m and
rfrneEM,z_,.

di(m, g, ), 3 di(mP—2, q, ), dfP—2, 4, =),
s.t. 2|m and
rineM,z_,.

dl(rns q, 6), 2d1(m= q, E)a dz(mz_za 9, _E) 9
s.t. 2|\m and
ryfry, PofdriEM,z2_, .

dl(ms q, 5), 2d1(m2"‘23 q, 6), dz(m, q, ——E) 5
s.t. 2|m and
rary, rlrieM,z2_, .

di(m, &), (=2, 4, <), dm, 4, —)
st 2|m and
rafry, 4l EM e, .

dl(m’ q, 6), 2d1(m7 q, 6)’ dz(m, q, —é‘), 2d2(m3 q, _6) ’
st 2lm and
rofAry, vofry, ArylrieEM e, .

du(m, 4, €), dom, G+ P ), 20, G+ P ©),
dyom, g-+3 P> ),

s.t. 2\m and
ryfry, ArylrneEM,, ., riirneEM,, , .
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2. i, g, €), dolm, q-+-1 Do ), A, G-+ P =),
2d,0m, G+ 1 —);

s.t. 2|m and
o\ EM oy, T3l 41y EM,,_, .

1
6. Fe{) dym, g, ¢), 12d1(m, g €), dm, g+~ €) »
* p‘ * Zdz(m: q+’2‘pma E) l)
» s.t. 4|m+2 and
rofAry, vofry, dryriEM ., .

di(m, q, &), 2di(m, g, &), dfrm. g+ —).
20,m, 4+ Py =),

s.t. 4|lm—2 and
Fofdry, rofry, 4rslrnEM,, ;.

27.

diom, g, €), 24:0m, 4, ), i, G-+ ).
dym, 4+ Pws —9),

s.t. 2|m and
roldry, rofriEM 5, T3/Ary, ririEM,, ;.

28.

dy(m, g, ), dom, 4+ P ).
dym, g+ P =), dilm, 4, =),
S.t.
Polti, FoJFsEM sy FafFy, FfT.EM,_, .

29.

di(m, q, €), dym, q, —e), 2d,(m, q, —¢) ,
2d\(m*—2, q, €) ,

s.t. 2|lm and
rolAry, oty ArylriEM,z2_, .

30.

di(m, g, €), dy(m, g, —e¢), 2d)(m, q, —¢) ,
Sh(=2,q,9),

st. 2|m and
rofry, 4ryfry, 16r,/rieM, z_, .

31.

dy(m, g ¢), 2dy(m, q, ¢), d(m’—2, q, —¢)
2d,(m*—2, q, —¢),

s.t. 2lm and
rodry, rylry, drlrEM,z2_, .

32.




33.

35.

36.

37.

38.

39.

4o.

THE Root SysTEM OF SIGN (1, 0, 1) 1263

di(m, q. €), dy(m, q, —e¢), 2d\(m*—2, q, €),
2d(m*—2, q, —¢),

s.t. 2|lm and
ryldry, rofry, drlrEM,z2_, .

di(m, q, €), dy(m, g, —e¢), 2d,(m*—2, q, ¢),
1
_2“d2(m2_25 9, _6) s
st 2lm and
rofdry, rornEM 2, .

d(m, g, ), dyom, 4, —e), d(m—2, 4, ),
Tr=2, 0, =),

st 2|m and
rofdry, rolry, drofrieM,z_, .

dy(m, g, €), 2d\(m*—2, q, €), d(m*—2, q, —¢),
2d,(m*—2, q, —¢),

s.it. 2|m and
roldry, vofry, dryfriEM 2, .

dy(m, g, €), 3 d(m—2, q, ), dfmP=2, 4, =),
2d(m?—2, q, —e) ,

s.t. 2|lm and
Fylty, drylry, 161 /rneEM,z_, .

dy(m, q, €), 2d,(m, q, €), dy(M*—2, G+p,, —¢),
ds(mz—zs q, _5) 5

s.t. 2|m and
Pofr1, Foldry, Fofty, FafdriEM 2_,, rofrye {45} .

dy(m, g, €), dy(m, q, —¢), 2d\(m*—2, g+p,, €) ,
Sh=2,q,9),

s.t. 4|\m and
Fofdry, Folry, 4rofrieEM 2, .

di(m, q, €), d(m, q, —¢),

2d,(m*—2, q-+-p,, €), 2d(m*—2, q, —¢),
st. 2|m and

rolary, rolry, dryfriEM,z2_, .
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di(m, g, €), dy(m, g, —¢) ,

2y(m2—2, g+p,, ©), %dz(mz—Z, 7, —¢),
s.t. 2|lm and

Fofry, Poldry, PJl6FEM ,z2_, .

4y,

di(m, g, €), dy(m, q, —¢) ,

=2, 4Py ), 1 A2, 4, —2),
st. 2\m and

roldry, ryfry, 4ryfrieM 2, .

42,

di(m, q, €), 2d,(m*—2, q+p,., €) ,

d(m*—2, q, —e¢), 2d,(m*—2, q, —¢) .
st. 2|\m and

ryfdry, rofry, dryfrieM,z_, .

43.

b, dl(m7 g, €), '%‘dl(mz_za q+Pms 6) s
dz(mz_za q, —6‘), 2d2(m2—23 q, —5) >
s.t. 2|lm and

r2/r15 4"2/71, 16r2/rIEMm2—4 .

d\(m, q, €), d(m*—2, q+-p,, —¢), dy(m*—2, q, —¢) ,
2d(m*—2, q, —¢),

s.t. 4|\m and
FofPy, Fafrs, Arafr EM 2_,, 1, {4, 16%1} .

45,

dy(m, g, €), 2d\(m*—2, q+pp, €) ,

ShE=2, 4, 8), dP—2, , —¢),
s.t. 4|m and

rofdry, rofrieEM,z2_, .

46.

diom, g, &), 5 =2, -+ ).

2d\(m*—2, q, ¢), d(m?—2, q, —¢),
s.t. 4|m and

rolry, drylrneM,2_, .

47.

d\(m, q, €), d,(n?—2, q+p,, —¢),
dy(m?—2, q, —e), 2d\(m*—2, q, €) ,
s.t. 2|m and
rofry, PolAry, FafrEM 2_,, ryfryE {4%, 161} .

48.
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dy(m, g, €), d(m*—2, g+p,, —¢),
dfm*—2, q. —e), %—dl(m2~2, a9,
s.t. 2|\m and
rofry, Arylry, rafr EM 2,  rolrsE {47, 16¥1} |

di(m, q, 6) dy(m, g+ 5 Pms €)s 2dz(m, q+—;-pm, €),
dy(m, q+~pm, —é), 2d3(m, g+ P —€)

s.t. 2|m and
rofry, 1)1 EM g,  T3fry, drsfrEM,,_, .

dy(m, g, ), 2d1(m g, &), dy(m, g+ 5Pw )
2d,(m, q+* m> €), dy(m, g, — e),

s.t. 4|m—l-2 and
PofAry, 1olry, AryJr EM 0, 1afdry, rlraeEM,,_, .

dy(m. q, 6), 2d\(m, q, €), dy(m, q+ 5P €) 5
dy(m, q+ 5 Pm — —é), 2d,(m, q+2pm, —e),

s.t. 4|m—|—2 and
Fof A1y, 1of1 E My g, oAy, 1ofry, 4rsfrEM,, .

dy(m, g, e), d4(m, 9, —¢), dz(m q+ ) €),
2d,(m, g+ 5 Pm € ds(m, g+ 2pm, e),
s.t. 2[m and
Fafly, FolPa, Po|BraEM gy T JFs, Folry, APl EM,, ., .

dy(m, g, €), 2d,(m*—2, g+p,, €), d(m*—2, q, —e),
- % (=2, q, &), 2dy(m*—2, g, —¢),

/ st 4|lm and

rofary, Fofry, 4rojrieEM 2, .
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dy(m, q, €), 2d,(m*—2, q, €), d(m*—2, q, —¢),
%dl(m2—2, G+ €), 2d(m?—2, q, —¢),

s.t. 4|m and
rofry, 4ryfry, 161, /e M ,z2_, .

d(m, g, €), dy(m, g, —¢), 2d,(M*—2, q, —¢),
2dy(m2—2, G+ €), %dl(mz—Z, 7,9,

s.t. 4|m and
rofary, rofry, dryjrieEM,z2_, .

di(m, q, ¢), %a’l(mz—2, gD €), 2d,(*—2, g, €),
dym, 4, —e), 5 dm*=2, g, —e),

s.t. 4|\m and
roldry, Folry, dryjrieEM 2, .

dy(m,q, €), d(m*—2,q+p,, —e), 2d(m*—2, g+p,,—e),
d(m*—2, q, —¢), 2d,(m*—2, q, ¢),

s.t. 4|m and
FolAry, Fofre, 4Fylry, ralriEM ,2_,, Filr,=471,

dy(m, q, €), d(m*—2,q+p,, —e), 2d(m*—2,q+p,, —¢),
dm—2, q, —e), S d(m'—2, 4, ),

s.t. 4|m and
rylry, dryfry, 16ryry, FolriEM 2 ,, Fsfr,=16.

d(m, q, &), 2d,(m*—2, g+ €), %dl(m2—2, q, €),
d(m*—2, g+p,, —¢), d(m*—2, g, —¢),

s.t. 4|m and
Fofty, 4rofFy, Fofry, PofdriEM 2 ,, rifr,e {4, 16} .
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k==6 case (7 types)

61.

dl(m’ q, 6), 12d1(m7 q, 8)» dz(malq_*_”%pma 5) >
2dy(m, q+_2’pm9 €), dy(m, q—i"fpm’ —e),

2, 4+ Py —€)
s.t. 4lm+2 and
ofAry, 1ofry, Arofr E M, g, 13/4ry, 15[y, drgirnEM,,_,.

o, 0. €), Ay, G+, 240, 4+ 3 )

dim, g, —&), ds(n, g+—Dp> —¢), 2d5(m, G+—Pm, —¢),
st. 2|\m and

rofr1s Arofry, 115, 1 JArsE My, ,

r3fry, 4rgfry, 1oty 1 jA4r, €M, _, .

(0 . ). o 4+ . 20, G+ P ).

2d\(m, q, ), d(m, q, —¢), dy(m, q+7pm’ —e),
s.t. 4lm+2 and

rofArs, afriArsr, 1 rsEM ., ,

F3Ary, 1ty Pfre, FJArsEM,, ;.

di(m, 4, €), 2450m, 4, €), Ao, 4+ Py <)

Ay, G-+ P — ), 250, G-+ Py ), Ay, 0, ),
s.t. 4|\m—2 and

rofdry, 1ol Filrs, 1 f4rsEM .,

r3fdry, ryfry, Arglry, ryfr,EM, .

dl(m’ q, 6)9 dz(ma q, '_E)’ 2d1(m2_25 q+pms e) 9
%dz(mz_za q+pm) —_E) s
Lam—2, ¢,0), 2a,m*—2, ¢, =),
s.t. 4|m and
rofAry, rofry, dryriEM,z_, .

2
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dy(m, q, €), d(m*—2, q--p,., —¢), 2d\(?—2, G+Pps, €)

dy(m—2, g, —e),—;—dl(mz—2, g, ), 2dy(mP—2, q, —e),
s.t. 4|m and

Pofry, 4rofry, Pofdry, Fofry, drgfrEM 2 ,, F3lry=4.

dy(om, 4 €), A2, G-+ Py — &), 3 (12, qHPas),

d(m?—2, q, —¢), 2d,(m*—2, q, ), 2dy(m*—2, q, —¢),
s.t. 4|\m and

PofArs, FofFy, FafFy, &rafry, 10rsfriEM 2, 1ylrs=16.

dl(m’ qs 6)’ 2d1(m, q9 6), d4(ma qa _5) )
1 1
dy(m, Q+7pm, €), 2dy(m, ‘1+7Pma &),

s, G-+ P —€), 250, 4+ P —)
s.t. 4|\m+2 and

rofAry, Tofry, Arofry, 1yfrs, T /ArsEM s,

raldry, ralry, Argiry, vty rjAr,e M, , .

k=28 case (1 type)

69 di(rm, q, &), 2d;(m, 4, €), Ao, G+ P ), 20, G P )
A0, G5 s &), 20, G Py —), dilm, 4, ), 2d,(m, 4, —¢),
s.t. 4|\m-+2 and
rofAry, 1ofry, Arafry, A frs, 1)frs, 1 JArsEM .,
r3f4ry, r3fry, 4rsfry, ryfArs, 1yry, Aryfr,E M, ;.



THE Root SysTEM OF SIGN (1, 0, 1) 1269

There are three more diagrams for reducible root systems,® where we
understand them as root systems whose periods are oo,

70. @_‘1___@ di(o0, g, €): = {+d\(e’e;+ee %)},

dy(co, q, —¢): = {+d,(e"e,—ecee,)} .

d\(o0, q, €): = {Ld\(e’e;+ece e},
2d,(c0, q, €): = {£2d\(ee; e ey},
dy(oo, g, —e): = {Ldy(’e;—ee ey} .

dy(c0, g, €): = {Ld\(e’e;-+ee e},
2dy(0, g, €): = {+2d,(e"e;+-eeey)} ,
dy(oo, g, —&): = {Ldy(e’e,—ee%e,)} ,
2dy) (o0, q, —¢): = {+2d,(e’e;—ee %e,)} .

Note 1) The automorphism group of a root system R and the Weyl group Wy
generated by the reflexions w, for a R, are explicitely given in §5 (5.5) (5.7).
2) Let us define the dual of R as

* For the last three types, we employ (1.2) Note 2’ as for the definition of the isomorphism,
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RV: = {aVeF:acR}

which is also a root system in F. (Cf.[5] §1). If R belongs to a datum d(m;,
g €;) i=1, -, k, the dual RV belongs to the datum di(m,, q;, €;) i=1, -, k.
Therefore the diagram for RV is obtained from that of R by replacing the
coefficients r; by r7t, i=1, «--, k, and changing the directions of the arrows of
O—~—0, O0—©@ and O—0©.

3) The assumption of Theorem 2), that coefficients r;, i=1, ---, k, are pairwisely
different, was made to avoid the overlapping of the classification. Without this
assumption, the union (1.6.1) associated to a datum (1.6.2) in the table still form a
root system in F, whose diagram I'' is obtained by “collapsing” the vertexes of

the diagram I of the table as follows.

First notice that two coefficients can be equal only among the component
combined by the segments @—*—~@ or . Then new diagram
I'" is obtained by replacing this part by one circle @ and changing the other
part of I' as follows.

i) caseof @©——@. There exist an integer />2 such that m=/’—2 and
the new period for the new diagram I'’ is equal to /. Hence all circles in the
old diagram I' (except the part M) should be changed to double
circles. The numbering of the segments between the new circle @ and the

others is given by the following rule.

(& () 8
@ © | ® ©

* * *

@ ©

new

i) case of . The period m is unchanged. The numbering of the
segment between the new circle @) and the others are given by the following

rule.



THE RooT SYSTEM OF SIGN (1, 0, 1) 1271

old

G}T\@w@ ;
® | © | @

new

4) A root system R is called to be reduced, if a=cp for a, FER and cER
implies c=+-1.

One sees easily from the definition that a root system of sign (1,0, 1) is
reduced iff its associated diagram does not contain a segment ()——("), ()~
or (O)—>Q). As a consequence, there are 9 types of reduced root systems as
Sollows.

Numbering Diagram Numbering Diagram
L O
s 00

12.

16.

70.

5) For each diagram in the table, for each fixed period m, the possible set
(ry:+ i rp)EP,_, is a finite set, since M, for ne N is a finite set. This implies
the following,

The number of isomorphism classes of root system of sign (1,0, 1), whose
period is m, is finite.
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6) In [5] §1, we introduced a concept of accumulating set 4, and proper
dimension and codimension of R.
For a root system of sign (1, 0, 1), we get,
i) Ag=Re U Re,
ii) p-dim(R)=1, p-cod(R)=1.
iii) Wp acts properly on F\Ag

(1.7) A general view of the proof of the theorem.

Let R be any root system in the sense of (1.2) Definition. In [5] §1 (1.9),
(1.13), the followings are proven as generality.

Lemma. i) The set of lengths of roots={I(a, @): a« =R} is a finite set.
ii) For each length 2r & {l(e, @): a= R}, put R,:={a&R: I(a, a)=2r}. Then
R, is a root system in F which may not be irreducible. (In particular Q(R,) is a
full lattice of F.)

Assuming this lemma, the proof of the theorem is divided into parts.
i) Determination of each R, for 2r e {I(e, @): a = R}.
il) Study of “interaction” among two R, and R,..
iii) Construction of R as a union of R,’s.

In §2 we shall show that every R, is equal to R, ,, for some me N and
geR. (82 (2.2) Lemma) In §3 we determine the cases when a union
R, . UR, s, can form a root system in F. All cases are classified into
seven types in Lemma of §3 (3.3).

k
In §4 we determine all possible unions U R,,, ,; ¢;, Which form a root system
i=1

in F. We do not go any details of such classification in this note, since it asks
too many studies of cases. Instead of that we explain a general principle along
which the classification will be done.

Apriori there is no reason that all root systems are classified into finite types
as in the theorem. This finiteness is due to the strong limitation of the inter-
actions among two components, stated in the previous lemma in (3.3).

The paragraph §5 is devoted for the study of isomorphisms, automorphisms
and Weyl groups of these root systems.

The units of a real quadratic field is a root system of type (1) or @:@
as studied in §6.

In §7, for all isomorphism classes of binary quadratic forms, we shall
calculate root systems belonging to them.
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§2. A Single R, Case

This paragraph treats a root system R, which has only a fixed length roots.
We shall show that such root system is equal to R, ,, for some m, g, r ((2.2)
Lemma).

(2.1) Recall notations and definitions from paragraph 1.
i) We fix isotropic vectors e, e,& F with I(e;, e;))=1.
ii) Define
a(t, r): = e'e,-+e’lre, for teR, rER
iii) From the definition,
I(a(t, r), a(s, p)) = pe'~S+res™?
In particular
I(a(t, r), a(t, r)) = 2r
iv) For r==0, define the dual as,
a(t, r)V = r7'a(t, r) = rle'e,+-ete, = sgn(r)a(t—log|r|, r’Y).
Therefore,
I(a(t, )Y, a(s, p)) = (or)e'~*+e**
V) Wag () =u—r""U(u, a(t, r))a(t, r)
In particular,
Wat,n(@(s, 0)) = —(o[r)e~*e,-+re e,
= —(p/r)a2t—s, r’o™Y)
= —sgn(o/r)a(2t—s-+log|o/r|, 0)
vi) Recall the definition (1.5),
R, .0 = {F+a(mp,+q, r):neZ}
for me N with m>2, g= R and r& B— {0}

where p,, = cosh“(—';i) .

(2.2) Lemma. Let R be a root system in F, which may not be irreducible.
Suppose that the set {I(a, @): R} consists of a single element 2r & R— {0}.
Then there exists some me N with m>2 and q € R, such that

R=R

m,q,r °

Proof. Any element of R is expressed as a(Z,r) or —a(t,r) for some t = R.
Define a set,
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A:= {t&R: a(t,r)ER}
Due to the axiom 1) of (1.2), 4 is a discrete subset of &, which contains at
least two elements.

If ¢, s€ A, by definition, a(z, r), (s, r)R and therefore wy ,(a(s, )=
—a(2t—s, r)ER by 3) of (1.2). Hence @(2t—s, r) =R and therefore 2t—s& 4.
This implies that A4 is closed under the reflexions with the center of each point
teA. Thus there exists p, g R, p>0, such that

4= {pnt+q:neZ},
and therefore
R = {Xa(pntq,r): nEZ} .
For two roots a(g, r) and a(g+p, r) E R, the axiom 4) of (2.1) demands that
I(a(g, 1), a(g+p, r)¥) = e?+e7? (cf. (2.1) iv))
to be an integer, say me N
e’4e~? = m. (Since p>>0, we have m>2.)

This relation is easily solved as,

pP= log(ﬁlg@) = cosh’1<—’;1) .

Let us denote this number by p,, and we have proven the lemma.

Note. The proof of this lemma shows also the following fact.

If a root system R of sign (1, 0, 1) contains two roots a, FER s.t. -+
and I(a, a)=I(4, B), then R is irreducible. In particular if there are two roots
a, BER s.t. as=+ 4 and I(a, p)=+0, then R is irreducible.

(2.3) To complete this paragraph, we show the following.

Lemma. For any me&N m>2, gER and r€ R—{0}, the set R, ,, is
an irreducible root system in F.

Proof. Except the axiom 1), all other axioms are directly verified as
follows.
2) I(@@p,+q, r), a(mp,+q, r)=2r,
3) Watnputan( @ Pyt qr))=—a(@n—n")p,+q, r),
4) Ia(np,~+q, r)V, e(@'p,+q, r)=e®"n o= o-ttn= 7
5) Kenpy+g, r), a(n'p,+q, r))=+0.
Let us show the axiom 1) in a slitely stronger form:
)" QRp,q,)=2Za(g, 1)+ Za(py+q, r).
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Proof. For short, let us denote by @, the element @(np,,+q,r). Then the
above 3) and 4) implies a,,_,,=—Ww, (a,/) is contained in Za,+Ze,,. In par-
ticular, @,,,, @, EZa,+Zeo,,.,. Thus by induction, in positive and negative
directions, the module Zay+ Za, contains all roots of R,, ,,. This completes
the proof of the lemma.

§3. Imteraction of Two Components

In this paragraph we determine the cases when a union of R, ,, and
R,/ ., become a root system in F. The result is summarized in (3.3) Lemma,
where all such pairs are classified into seven types.

(3.1) Lemma. Take my, myE N with my, my,>2,q,, ¢, ER, r, r,€ R— {0} such
that r\==r,. If the union R UR
ing three cases happens.

is a root system in F, one of the follow-

my,q1:71 m2,42,72

i) m=m,
11) mf=mz+2 (szm]:pmz)
i) mi=m+2 (©2p,,=p,)

Proof. Due to the axiom 3), the following element
Watnpyn, a3, )(E Py, 13)) = — 2P, +) =P, — 5 H10g | Fo11 | 72)

should belong again to R,, ., ,,. This implies a condition,

20, 1) —1'Ppy—qat10g| 1o/r1 | E 2Pyt

for n,n'eZ. Thus one gets relations,

D) Pyl 2Pm,

i) Pyl 2q1—g2)+10g 1o/ |

By changing 1 and 2, we obtain also relations,

i) P20,

iv) Pmlfz(ql—Qz’)‘}“lOglrz/”li .

In particular, the relations i) and iii) implies that p,,/p,, is 1/2,1 or 2.
Noting e?#n-+e~?m=pm?—2, this proves the lemma.

(3.2) Recall from paragraph 1 (1.5) the definition,
M,: = {+m/d*:. dEN, d|m} .

Assertion. The following statements for positive integers m, uc N are equi-
valent.

i) u|lm
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ii) There exists an element r€M,, s.t. Vir&M,, for any veE N with v|u.
iil) There exists an element reM,, s.t. v'reM,,

(3.3) Since there is a relation dR,, ,,=R,, ;+10glal,a%> 30y R, g, is uniquely
expressed as dR,, . for some d>0, ¢’ R mod Zp,, and e {+1}.
Now we prove a lemma which was stated in (1.6) 2).

Lemma. The following is the list of pair d;R,,, ;. «,» i=1,2 s.t. the union in F'
forms a root system. (For the diagram cf. (1.6) 3).) Put r;:=d?e,.

dRm,q,a s ZdRm,q,s With 2]}7’1 .

o
~

dRm,q,e > 2dRm2—z,q,g with 2|m ,

ONNO
6 &

dRm,q,s 2 %dRmz_glq,e with 2]m s

-1

i) AR, er R, , . suchthat rifrnEM,z_,,
-1

5) @ @ ARy ges @Ry2 5, . Ssuchthat rifrnEM,z_,,
¥

6) ARy ges @Ry gipne SUch that rfrnEM, ., ,
-1,%

o (r) @ ARy o> @Ry gidpn—e Such that rfrneM,_,.

Here in the above table, d,, e, & R*, me N m>2, g R and e {-+1}.

Proof. Put R;=d;R,, ;. i=1, 2 and assume R=R;U R, is a root system
in F. The Lemma in (3.1) implies the following.

Cl) pmlzpmz or 2pm]=pmz or pm1=2pm2'

The relations ii) and iv) in the proof of Lemma in (3.1) is expressed now
as follows.

C2) Pmy| 21—q2) and  p,,|2q:—q3) -

Put d:=d,/d,, e:=¢,/e, and m:=inf {m,, m,}. The axiom 4) for the union
RiUR, to be a root system demands that the numbers I(d,a(np,, +q,, &)V,
a,0(n'p,, G €))=d(ee"+e™N), where N=np,, —n'p,,+q:—q,, are integers for
any n, ' €Z. Therefore one gets another condition:
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C3) deeV+e™V), d (ee¥ +e V)& Z where N=q,—q,+np, for neZ.

Assertion. If C 3) holds for n=ny, n,+1 for some n,&Z, then C 3) holds
for all integers ne Z.

Proof. The following equality holds for any n, ' €Z.
d(ee<q1—q2+<n+n’>pm)+e—(p1—qz+(n+n’)pm))
_I_d(ee(ql‘qz+(ﬂ_ﬂ,)ﬂm)+e_(ql‘qz+(ﬂ_”')1’m))
=d(ce @ 9z+ntm) | o= (@1=tntm)) (gn'bm | o= bm)

where e*’#n-¢"'s» is an integer. Using the equality the assertion is shown by
induction on positive and negative directions. Q.E.D.

Now let us show that if the pair R;, R, satisfies the above three conditions
C 1), 2), 3), then the pair is one of the types listed in the lemma.

If my==m,, due to C 1), 2Py, =Py OF Py, =2y, Therefore using C 2) one
gets min{ Py Pmyt | (41—¢q2). Thus we have only to study the following three
cases.

Case 1. ¢,—¢,=0 mod Zp,, +Zp,, and e=+1.
Case 2. ¢,—¢,=0 mod Zp,, +Zp,, and e=—1.
Case 3. m,=m, and ql—qzz%pml mod Zp,, +Zpy,
Notify that this distinction into three cases is symmetric by the exchange
of the roll of R, and R,.
Case 1. Since ¢,—¢,=0 mod Zp,,, for a suitable choice of n€ Z, N of C 3)is 0.
Thus the condition C 3) implies,
d(e®+e % = 24, dY(e’4e% =247,
d(etn+te~tn) = dm, d Yetr+e t»)=d ' 'm,

are integers. Since d% =1, d is either 2 or 1/2 and 2|m.
This corresponds to the cases 1), 2), and 3) of the Lemma.

Case 2. Since ¢;—¢,=0 mod Zp,, for a suitable choice of nEZ, N of C 3)is
0. Thus the condition C 3) implies,

d(—e"+e =0, di(—e+e %) =20
d(—e tmt-etm) = dN/mP—4, d~Y(—e tntfetm) = d N/ mP—4 ,

are integers. Hence 2 €M ,z2_,.
This corresponds to the cases 4) and 5) of the Lemma.
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Case 3. Since ql—qzz—%pm mod Z, , by choosing n suitably, Nz—%pm in
C 3). Thus the condition C 3) implies,
d(ee'%ﬁm_i.e%?m) — d\/m+25 R d“l(ee_i‘Pm_I_ei‘Pm) = d—l\/m—l—-Ze ,
d(eettm{-e~3tm) — edn/m+2¢ , d™\(cebtmt-e 3tm) = ed~'/m+|2e,

are integers. Hence &*€ M, 5.
This corresponds to the cases 6) and 7) of the Lemma.

It remains to show that the unions R; U R, of the pairs in the Lemma form
root systems in F. The axioms 2)-5) are already checked in the above
calculations.

To show the axiom 1), it is enough to show that the linear transformation
matrix from a basis ¢, @, of Q(R,) to a basis S, 4, of Q(R,) is of rational coef-
ficients.

Put

@, = dla(”Pm,“I'éha 51)’ ﬂn: = dza("l’m2+q2, 62) for n = 0, 1 H

so that we have

“o) d(l 1 )eql'”z 0 >(1 1)"1 ﬂo)
a, B ebmy o~ Pm 0 ee” (41— 99 ebmy o7 Pmy /91 )

Thus the each entry of the transformation matrix has a form
d(eN —ee ) (etmy—e~m;)"), where N = ¢, —q,+1p,
for suitable n&Z. We may assume m,=m=inf {m,, m,}.
Case 1. Assume q¢;—¢,=0 and e=1. Then
d(entn—e™mtm) (ebm—e=tm)~t = d(e®Vtnf ... Lo~ -Dtm)= Z |
Case 2. Assume q,—¢g,=0 and e=—1. Then
d(e"tm—+-e~"tm) (etm—e~tm)~! = (entmA-e~"tm) (d~Yetn—e tm))'EQ .
Case 3. Assume ql—qzz%pm. Then

d(e(”*'l/z)ﬁrn —ece” (n+1/2>ﬁm) (ei’m__e“ﬁm)‘l
= (e”l’m_l_ cee _I_ e'”?m) (d“l(ellzﬁm + ee_l/zﬁm))"‘l [= Q .

This completes the proof of the Lemma.



Tue Root SysTEM OF SIGN (1, 0, 1) 1279

8§4. Decomposition of a Root System
In this paragraph we classify root systems of sign (1, 0, 1).

(4.1) By classification of a root system of sign (1, 0, 1), we mean the following.
Due to the Lemma i), ii) of (1.7) and Lemma of (2.2), any root system R
in F has a decomposition,

@.1.1) R—= U dR
i=1

mi,qi,&i

where k is an integer and d,e R*, m;e N with m;>2, q,€R and ¢, {41}
for i=1, .-, k. Furthermore the coefficients d%e; (:=r,) i=1, -, k are pair-
wisely different. Such datas d,, m;, gq;, &; i=1, -+, k coming from a root
system R are strongly limited and arbitrarily given numbers do not form a root
system. Thus by a classification of R, we mean the determination and the
classification of all such pair of datas d,, m;, g;, ¢; i=1, -+-, k, for which (4.1.1)
form a root system in F.

We do not present in this note any details of such classification work, since
it is involved in study of many cases, which is rather cumbersome and long.
Instead of that, we are going to explain some general principles for the clas-
sification, which altogether shows that there are only finite number of types of
root systems as stated in Theorem in paragraph 1. (For a definition of the
word “type”, see (4.2) 6).)

(4.2) Let R be a union of the form (4.1.1). For R to become a root system it
is necessary and sufficient that for any pair i, j 1=1i, j=k, the union d;R,, ., .
Ud;Ry;,q;.e; form a root system so that they are one of the seven types of the
pair listed in Lemma of (3.3). (The proof is trivial and omitted.)

By posing this condition on R we are going to give a description of R as
follows.
1) There exists an integer m& N with m>2, which we shall call the period of
R, such that

i) Any integer m; is equal to either m or m?—2.

ii) There exists at least one 1<i<k such that m;=m. (Proof. (3.1)
Lemma.)

By changing of the ordering, let us assume,

m

I

;=m for 1Zi<k
m; =m?—2 for k;<i<k forsome 1=k, <Zk.

Put
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k1
R(m) = 'L=Jl diRm,',q.',e,- s

k
Rm*—2): = U d;R
i=k1+1

mi,qi> 8 °

2) There exists a real number q & R which we call the phase of R such that
i) Fori, 1=Zi<k,

q mod. p,,
q;= 4 or

q+%pm mod. p,, .

Furthermore, if R(m*—2)=£¢, the second case does not occur.
il) Fori, k,<iZk,

j q mod. 2p,,
q;= " or ‘
q-+p, mod. 2p, .
(The proof follows from (3.3) Lemma or iv) in the proof of (3.1) Lemma.)

We may change g, to g, q—i-%p,,, or g+p,, according as the above congruence
relations.

3) Put, for ec {41}
R(m, g,¢): = U diRp; 41ei 5

1<i<hy
7,=1
g;=¢

R(m, 4+ipw e):= U d; R g1, >
2 1<isky
;=0 +(1/2)bm
Ei=E

R(m*—2,q,¢): = U d;R,; 4ie: >

B <isk

a;=q

=t

R(mM*—2, +pp, €): = U dRp; 4y, -
B<i<k
2%=0+pm
g;=¢

Thus R is decomposed into 8 parts as follows.

®)  R=Ren, g, +1)ILR0n, g, —1) {LROm, g+ 7 +1)
ILRGR, g+ ps =D ILRO#—2, g, +1) L RGw—2, 4, —1)
I R(m*—2, q+py, +1) IR =2, g+p,, —1).
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4) Let R(M, Q, €) be a component in the decomposition (x) above. Then it is
either one of the following.
i) void,
i) dRy g, for some dE R,
ili) dRy q..U2dRy o, for some dE R*.

Proof. R(M, Q, €) consists of all such components d;R,,; . With
m;=M, q;=Q, e;—e. Thus if there are more than two such components,
then according to (3.3) Lemma, the only possible interaction among them is
that of type 1) in the lemma. Hence one coefficient d; should be a double or a
half of the other coefficient d7. Therefore R(M, Q, ¢) can not contain more
than three components.

5) For a given root system R, we associate a diagram I'R, which is already
explained in (1.6) 3). (Note that this is not a graph, since any two vertexes are
always combined by a segment.)

Using the decomposition (%) in 3), the diagram T'R decomposes into the
following figure, where each component I'R(M, Q, ¢€) is either void or one of the
Sfollowing diagrams,

@ O—<~Ww, or for some r.

TR(m,q+ D 5€) I'R(m, Q+1p s=u)
2 7 2

6 6

TR(m,q,s) fR(m,q,—s)

2,
TR(m2—2,q,E) ’

FR(m —2,q+pm,e)

n 4

7 2
IR(n-2,q, )~ —TR(n’-2,q+p ,~¢)

6) Two root systems are called to be the same type if associated diagrams are
the same, forgetting the coefficients ry, -+, .

A rough approximation of the number of types is given by 3*=6561 which
is already finite.

7) If two vertexes in the diagram are combined by a segment i, for instance

®1—® , then the ratio of the coefficients rfr, should take only finite

possible values depending on m and i, which is described in (3.3) Lemma.
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Thus if we demand to the coefficients r;, -+, r, to be consistent to all such
conditions, it disclude many possibility of diagrams.

8) In the above 1) —7), we stated conditions for a union R of the form (4.1.1),
so that any subunions of two components form root systems. These are
also sufficient for R to be a root system. Thus if we classify all diagrams I’
with coefficients r,, -+, r, satisfying 7), we have done the classification of the root
systems of sign (1, 0, 1).

The result of classification, whose details are omitted in this note, says that
there are only 72 types of the root system including reducible cases, as stated
in the theorem in paragraph 1.

§5. Automorphism of Root Systems and the Weyl Group Wy

We determine all isomorphisms among two root systems and the auto-
morphism group of a root system. The Weyl group is a subgroup of the
automorphism group of index either 1, 2 or 4.

(5.1) Assertion. Let RCFand R' CF’ be root systems of type (1,0,1) associated
to the bilinear forms I and I' respectively.

If a linear isomorphism ¢: F—F' induces an isomorphism ¢: R—R’ of the
root systems, then there exists a non-zero comstant CER—{0} such that
I'cp=CI.

Proof. ¢ induces a bijection between two projective lines, (F—{0})/(B—
{0}) and (F'—{0})/(BR—{0}). Two points corresponding to two isotropic
vectors e, e, of I, are mapped to that of I’, since they are characterized as
accumulating points of the sets R/(B—{0}) and R'/(®— {0}), which are bijective
by assumption. One sees easily, that this bijectivity of isotropic vectors im-
plies the assertion.

(5.2) The group of automorphisms g of the vector space F such that Jog is a
constant multiple of I is generated by the following four types of transforma-
tions.
i) homothety: H,: et~ de foradesR—{0},
ii) hyperbolic translation: g,: e, - e'e;
e ele, forateR,
iii) change of basis: T: e, > e,
e e,

iv) change of sign: E: e; > ¢, e,— —e,.
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These are satisfying the following relations.
H;,gl=1,[H, T=1,T*=1,Tg,T=g_,, E*=1,
H;Hy = Hyy, 881 = &ravs [Hyy E1 = 1, [gy, E] = L [T, E]= H_,.
(5.3) The above four transformations transform a system R,, ,, as follows.
) HiRy,,= |d| Ry, (=Ry gt1081a1,4%) -
i) gRuqr = Rugitr-
i) TR0, = Rutogisi-q,r -

e

iv) ER, ., =Ry, -,.

(5.4) Obviously all these four transformations induces the isomorphisms
among root systems. Notify that any of these transformations, if it applies to
a root system (1.6.1), it does not change the type of the root system, since it
does not change the type of interaction of two components. Thus the iso-
morphism appears only among the root systems of the same type. The trans-
formations do not change the periods m;, but changes the coefficients r; by
homothety d?; or by the sign —r,, and the phases gq; by a translation ¢;+¢ or
sign —gq;.
By summerizing, one obtain an assertion, proving (1.6) Theorem 5).

Assertion. 1) If two root systems are isomorphic, they are of the same type.
2) Two root systems associated to two datas,
dm;, q;, €)i=1, -, k, and di(m!, ql, ) i=1, .-+, k,
belonging to the same type in the table of Theorem (1.6), are isomorphic, iff m=m’

and (ry: - r)=(@{:- rf) in P,_,.

(5.5) Assertion. The automorphism group of a root system R is given by:

<H_;, 8,7, &,y If Ri’—2)=9¢,

<H_, 827, gzp,,,> ifR(mz—Z) * 9,
or an extension of it by Z,, where the generator of Z, induces an automorphism of
the diagram of R, which reverses the sign of the coefficients.
Here m and q are the periods and the phase defined in (4.2) 1) and 2) for R.

(The proof is easy and omitted.)
(5.6) Let us compute the group Wj, which is generated by reflexions w, for

aeR.
For an element de(t, ¢)=d(e‘e,+e~'ce,), the reflexion w=w,,, o is calculated



1284 Ko Sarro

Lol e ]

Hence w=H _,g,, T in the notation of (5.1). Therefore we see

as

WdRm,q,a = <H—egz(np,,.+q)T§ neZy
= <g2ﬁ,,,’ H—egqu>
(5.7) Assertion. For a root system R, the group W, is calculated as follows.
) We=<8uw, H-:82,T>
For all R except the following cases ii)~v).
i) W= <gzp,,,a H_y, g, T

For all R whose diagram contains a segment O)—2-O), O_iO or O=0

except the case V)

i) W =<8, H-2T>

For all R whose diagram contains a segment Q—LO except the case v).

iv) Wp= <H—1gpm, 82y H—egqu>

For all R whose diagram contains a segment () )‘—*LO except the case v).

V) Wip= <gpm5 H_y, 8,7

For all R whose diagram contains segments either a pair O—LO and O—i-O
or a pair =) and O .

(5.8) Let ze-+zpe, for z, z,&C be coordinates for Fo:= C®F. Then
obviously the function;

(5.8.1) 2,2,

is invariant on F¢ under the actions of H_,, g, for t& R and T.

The domain {Im(z,/z,)>0} in F; is invariant under the actions of H_,, g,
for teR and T. A suitable choice of a branch of the function;

i) Dm TifDm
(5.8.2) (ezqﬁ) +(e-zq ﬁ)
Z, z

on the domain is a univalent function which is invariant by the action of Wy, ,,.

Similarly one can determine the invariants for the other types of the root
systems.
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§6. Units of a Real Quadratic Field

We shall see in this paragraph that the unit group E of a real quadratic
field K is a root system of sign (1, 0, 1).
The type of the root system is either @ or @‘l—’“@ according as the

sign of the norm of the fundamental unit e; is +1 or —1. (cf. (6.3) Assertion
2.) A comparison of E and Wj is given in (6.5) Assertion 3.

(6.1) Let K:=@(\/D) be a real quadratic field, where D is a square-free
positive integer. The norm and spur are defined for a& XK as,

N(@) = aa, S(a) =a+a

where @ denotes the conjugate of a by the action of the non trivial element of
the Galois group of K. Since N(u+v\/D)=u?’—v?D for u, vE®, N defines a
quadratic form of signature (1, 0, 1) on K as a vector space of rank 2 over @Q.
Denote by O the ring of algebraic integers in K and denote by E the unit
group of K. Namely E is the set of element ¢ of O, satisfying the equation

N(e) = *-1.
We first show the following.

(6.2) Assertion 1. Let K be a real quadratic field and E be the unit group.
Then E is a root system of sign (1,0, 1) (in the sense of (1.2) Definition) as a sub
set of sign (1,0, 1) vector space K (over @).

Proof. We verify the axioms easily as follows.
i) The additive group Q(E) generated by E is contained in the ring O of inte-
gers, which is a lattice in K. On the other hand, since we know the existence
of a unit e€E such that es=+41, rank,(Q(E))>1, which altogether shows
that Q(E) is a full lattice in K.
ii) Obviously N(e)=-4-130 for e=E.
iii) Define a bilinear form N by

N(a, b):= N(a+b)—N(a)—N(b) = (ab-+ab) .
Therefore one gets a formula,

N@ ), _

6.2.1) we(a) = a— NG

a— L_(aE-}—a‘e)e
€€

In particular if e, ¢’ are units, w,(¢")=—e& "¢’ is a unit.
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iv) N(e, &)=+N(e+¢)—N(e)—N(e") € Z.
v) See (2.2) Note. Q.E.D.

(6.3) Let us recall some well known facts on units of a real quadratic field.
(see [2] Chap. 28.)
Any unit ¢ of K has the unique basis representation

e = (—D"," (#mod 2, # a rational integer)

where ¢, is the fundamental unit. The fundamental unit e, with the nor-
malization ¢,>>1, can be calculated by solving Pell’s equation as follows.
Let u;, v, be the uniquely determined rational integral solution of the

equation

P) W—d? = —4

or in case this equation does not have a solution in rational integers, of the
equation

P W—dvt =4

for which u;, v, both are positive and minimal values. Here d=D or 4D ac-
cording as D=1 or 2, 3 mod 4. Then

- u+nvd .
2

€

(6.4) To obtain a description of E in terms of R, ,, as in paragraph 1
(1.4), (1.5), we fix basis e, e, of F:=RQXK as follows.
Q

e = %(1®1+\/z-1®\/2)

e, = %(1@1—\/2-@\/:0.

The quadratic form N on K extends to a real quadratic form on F uniquely,
denoted by the same N.
One computes easily

Ne) = N() = £ (1®14+VZ VD (181 -VI'@Vd)
- %(1®1+\/2 VI I OVI —d'®d) = 0

N(e+e) = N(IQ1) =1
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and therefore

N(eb ez) =1.
Using these basis e;, e, and the terms of (1.5), we get the following description
of E.

Assertion 2. Let K be a real quadratic field and E be its unit group. We
regard it to be embedded in RQK.
Q

i) If N(e)=1 (i.e. uy, v, is a solution of (P*)), then

E = Ru1,0,1 .
(i.e. E is of type Q) with the period=u,.)
ii) If N(ep)=—1 (i.e. uy, v, is a solution of (P™)), then

E=Ris0URZ 2, -

(i.e. E is of type @?lai@ with period=u2—2.)

Proof. Using the basis e, e, of F, any element ezli—l_%/i>0 of KCFis
described as

e — u+1;\/17 _ tH—vzx/Ee1+ u—vzx/ie2

= e’e;+e "N(e)e, = a(a, N(¢))
u-+vv/ Zi)
— )
If N(¢)=1, we have a relation #*—v?*d=4 and therefore vv/J =\/u2—4 and

a=log<w2”2*4>=cosh‘l<—g—> =p,. Thus we get a representation

where a=1log <

&€= a(pu’ 1) 3

' =a(up,, 1).
7\2
If N(¢)=—1, we have a relation #®—v’d= —4. Then <w> =

~}4—(142 4+ v+ 2uv/d) =% @ —24+ (@2 —22—4). Therefore a= % log

7\2 2
X ((W) ):% cosh™ (u_2_2>:_; P.2—. Thus we get a presentation

1
& = d(;puz_z, _1>
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ﬁ::acgpﬁqm-4w>. QE.D.

(6.5) Define a map,
o: eEE—wwEW,.

Assertion 3. 1) p is a group homomorphism.
ii) The following sequence is exact.

0
1> Z,>E>Wy—>Z,— 1.

Here Z,=ker p is the torsion {1} of the unit group E and Z,=coker p is iso-
morphic to the cyclic subgroup in W generated by a reflexion w,.

Proof. Recall a formula (6.2.1)

wy(a) = —ee~'a foraunit e¢€E.
In particular
wi(@) =—a
which implies relations

wiwew; = w; and p(e)(a) = ee7a.

This means that o is a group homomorphism. Also one verifies easily that
any element in Wy which is a product of even number reflexions lies in the

image of p. Q.E.D.

§7. Maximal Root Systems

Let L be a Z-free module of finite rank and 7 be a rational valued symmetric
bilinear form on L. Put

R(L, I):= {aeesL: I(a¢, )0, 2I(ea, p)/l(a, ) Z for "p&L}

Then R(L, I) is a root system of sign (1, 0, 1) which may not be irreducible, if
rank L=2 and 7 is indefinite. We call R(L, I) the maximal root system belong-
ing to (L, I).

The purpose of this paragraph is to classify isomorphism classes of maximal
root systems of sign (1, 0, 1). The result is summarized in (7.4). Among 72
types of root systems in the table (1.6), seven types: 29, 34, 62, 65, 69, 70, 72,
appear as types of maximal root systems. We give a parameter presentation of
maximal root systems for each type. The proofs are given in §8, §9.

(7.1) Let L be a free Z-module and / be a rational valued symmetric bilinear
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form on L. We shall denote by g(x) the associated quadratic form %I(x, X)

and by O(L, I), the group of orthogonal linear transformations which preserves
I(.e. {g=GL(L): Iog=1I}).

Definition 1. An element e LQQ is said to belong to (L, I) if e L, q(a)
+0 and I(eV, ﬂ)=—(1—~)1(a, B) €Z for all B L.
q(a

Put
R(L, I):= {a&L: a belongs to (L, )} .

Assertion. If R(L, I) spans LQQ over @, then R(L, I) is a root sysiem in
the sense of (1.2), which may not be irreducible.

Proof. Almost obvious, since
i) for any e R(L, I), w,O(L, I) and
ii) for any g O(L, I), gR(L, I)=R(L, I).

Note 1. Does the assumption automatically follows, so that one can
delete it? (This is true for an indefinite form 7 on L with rank L=2. cf.
(9.4) Note.)

Definition 2. i) A root system R associated to I is said to belong to (L, I),
if RCR(L,I). In particular, if R=R(L,I), we call R to be a maximal root
system belonging to (L, I).
it) If R is maximal w.r.t. (Q(R), I|Q(R)), we call R to be a complete root system.

Note 2. Two concepts to be maximal or to be complete are different.
The former depends on the choice of the lattice L containing R, whereas the
latter depends only on the isomorphism class of R.

Definition 3. Two maximal root systems R and R’ belonging to (L, I) and
(L', I') respectively, are said to be isomorph as maximal root systems, if there
exists an isomorphism ¢: L=L' of abelian groups and a constant C=+0 s.t.
I'op=CI and 9(R)=R'.

Note 3. In the above definition of the isomorphism, the condition pR=R’
follows automatically from the others, since R(L, I)=R(L, CI) for any constant
C=0.

(7.2) Format on the classification of maximal root systems

In (7.4) we shall give a list of all isomorphism classes of maximal root
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systems. As a consequence of the classification, there are 7 types of diagrams
I'R(L, I) associated to maximal root systems R(L, I) (see (1.6) 3) 4) for the
definition of a diagram and a type of a root system). Therefore we divide the
list into 7 tables according to the seven types Ipg, I'ss, T62 Igs I'6er I705 I'2-
The first five tables classify irreducible cases. The remaining two tables
classify reducible cases, when the discriminant of / are square of rational
numbers.

Each table of a type I" contains infinite number of isomorphism classes of
maximal root systems, parametrized by a set Pp.

Instead of giving exactly one representative for each isomorphism class of
a maximal root system, the representation in this note has finite overlapping,
which is described by a finite group Aut(I') as follows. (cf. the following

v) vi)).
Definition. For a type I' of a diagram of a root system, define,
(7.2.1) Aut (I'):= {automorphism S of I'} .

Here S is an automorphism of I' if it is a bijection of vertexes of I', which maps
double circles to double circles and which preserves the direction of the arrow,
the sign —1 and the symbol * on the segment (cf. (1.6) 2), 3)).

In fact directly from the table of diagrams in (1.6), we see that Aut(I")
is isomorphic to either {0}, Z, or Z,P Z,.

Now the description of the classification of maximal root systems in (7.4)
is in the following form.
i) In each table of type I, we define a set P of parameters. The set P is either
a set of pair of integers (m,c)E NX N satisfying certain elementary number
theoretic relations for the case when I' is irreducible, or equal to @*:={cESQ:
¢>0} for the case when I' is reducible.
ii) For each pe P, we associate a quadratic form

(7.2.2) q@) := q,(u) for uEL := Zry+2Zr.
Thus one gets a family of lattices,
(7.2.3) L,:=(L,1) for pePr,

where I,(u, v):=q,(u+v)—q,(u)—q,(), u, vE L.
iiiy For each p& P, the maximal root system R, belonging to L, and its diagram
'R, are explicitly calculated in the table.

The type of 'R, is equal to I' so that we fix an identification of I'R,
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with the type I' in the following way.

Let vy, -+, v, (k:=#TI") be the vertexes of I'. Then the coefficient r; of the
diagram I'R, at v; is given inside the vertex v; of I in the table as a function of
PEP.

(7.2.4) r,=rp) for p€P,, i=1,- -, 4I.

iv) Let us denote by m(p) the period (cf. (1.6) 2)) of R,. Then the parametriza-
tion by Py has the following unicity: The map

(1.2.5)  Pp— NXPyy, pr> (m(p), (n@):-:rp)), k:=4#[T],

is injective (cf. Note 2 of this section).
V) There exist an action of Aut(I") on the parameter set P, denoted

(7.2.6) *: Aut (I') — Bijection (Pr),

a cycle C with the relation,

(7.2.7) C: Aut (I")X Pr — @%

(7.2.8) Csr(p) = Cs(T*p)Cr(p) for S, T€Aut(I'), pePr,
and an isomorphism ¢g of L depending on S & Aut(I') and pE Py,
(7.2.9) os: L=L,

inducing a relation of quadratic forms,

(7.2.10) 9,(1) = Cs(P)as+p(ps(w))
such that ¢g defines an isomorphism of root systems (cf. (7.1) Note 3)
(7.211) Pgt Rp:RS*(p)
which induces the automorphism
S: rsr

using the identifications of I" with I'R, and I' R, in iii).

Therefore (7.2.10) implies relations of coefficients,
(7.2.12) rip) = Cs(p)rs(S*(p)) for i=1,---, §|T|.

(Here S(i) is defined by the relation S(v;)=vs.)

The choice of @g is not unigue, but is ambiguous up to multiplications of the
elements of O(L,) from the right and O(Lgx ) from the left.
vi) The above process induces the natural bijection,
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(7.2.13) Pr/(Aut (T)* =~ isomorphism classes of maximal root}
2. T ~

systems, whose type is I'.

(Cf. (7.4) Corollary.)

vii) The action of Aut(I") on P, may have fixed points. We shall calculate,
the fixed point set, the isotropy subgroup Ir , of Aut(I") and the quadratic form
q,(u) at the fixed point p in the tables of (7.4) (cf. Note 1).

Note 1. Put
(7.2.14) O(L, I):= {g=GL(L): there exists a CeQ\{0} s.t. q= Cq-g.}

Then using above Aut(I"), one can determine O(L, I) as follows.
1) There exists a natural isomorphism,

(7.2.15) O(L)/OL,) =1, for pEPr,

where I , is the isotropy subgroup of Aut(I") by the action * at pE Pr.
ii) 1In fact Iy , is either O or Z,.
If S0 is a generator of I ,, then

(7.2.16) O(L,) = <O(Ly), ¢s>
where @ is the isomorphism (1.2.9), which satisfies,
(7.2.17) g,) = —q,095u) and ¢%i€O(L,).

Proof. Let ¢ be an element of (3(Lp0) s.t. q5,=Cqp,0p. Then ¢ defines

an automorphism ¢: R, =R, , which induces an automorphism S,: I"'=I" with
relations of coefficients:

*) r{po) = Crs,i(p) for i=1,--, #|T].

Then by definition, &€ O(L, ) = C=1= S,&Aut(I') is an identity. (Remember
that the coefficients r; are pairwisely different (1.6) 1)).
This implies the natural embedding,

O(Ls)|O(Ly) G Aut (), ¢ S,.

Thus if C= 1, S2=1 and C=—1.
On the other hand, comparing *) with (7.2.12) one gets relations,

**) ri(po) = C7'Coyrpri(S¥(py) for i=1,--, ¢|T].

Since the period is an invariant of isomorphism class of a root system, we have,

) m(p,) = m(SF(py)) -
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Thus the unicity of iv) together with **) and ***) implies p,=S¥(p,) and hence
SoE1rp,.

Conversely for SE€1r 5, take ps€GL(L) of (7.2.9). Then (7.2.10) implies
q5,=Cs(Po)q5,°9s and hence ¢SEO~(Lpo) such that S=S,,. Q.E.D.

Note 2. Even the image set of (7.2.5) has an invariant meaning as a
parameter set for maximal root systems of type I, it does not imply that the
family g,(u), pPr of quadratic forms is uniquely determined, since there
remains an ambiguity of a constant factor C in front of g,.

In the tables in (7.4), we have the following normalization.

vii) In the table of type I' of (1.4), one vertex, say vy, of I' is fixed, so that the
coefficient at the point is normalized to 1. i.e.

(7.2.18) r(p)=1 foral peP;.

Note 3. The choice of the basis r,, 7, of L for the quadratic forms g,,
pE Pr in the tables of (7.4) is done from a view point of the duality of maximal
root systems in §8, which seems relatively simple and natural.

(7.3) For the description of the tables in (7.4), we introduce two lattices L,(D)
and Ly(D).
1. The lattice L,(D).
1.1. By L(D) for a DE@*, we mean the lattice (L, I) defined as follows.
1) L:=Zry+2Zr,, L':=2Zr,-+Z2r,.
i) q@xry+yr) :=x2—€ ¥ for x,yEZ.
i)  I(u, v):=qu+v)—q)—q(v), v, v&L.
iv) The descriminant of q is given as, D=—det(I(r;, 7,)); ;-
V) Let us define an element T< O(L, I) by,

I
Ln 0 —11ln
1.2. 1) By L(m,c) for m,c& N m>2, we mean the lattice L, <

m2—4_

02

mr—4

C

). The

descriminant is D:=

ii) Put
P :={m, 0)eNXN: m>2, 2|m, 2c|m*—4}
\{(m, ©)& N X N: There exists an integer n s.t.

n \/nz__4 V(P —4) (? —4)
2 V=4 2¢

2<n<m and

eZ}
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\{(m, 0ENXN: /mL2EN s.t. Vm+2|2c, 4c|/m+2m—2)} .

Then the maximal root system R(Ly(m, c)) belonging to Ly(m, c) for (m,c)EP,
has the period m (cf. (8.4), (9.2)).
iii) Define an element FEGL(LQQQ) by

z

m
MEP
F = 9 .
51 m'—4 miln
2

4c

2
Then PP O(L, T), FEO(L, I) if .’i4__4ez and FEOL',]) if cE2Z.
C

2. The lattice L,(D).
2.1. By Ly(D) for a DE@Q*, we mean the lattice (L, I) defined as follows.
1) L:=Zry+Zr, L':'=Zr,+Z2r.

ii) q(xret+yr) :=x2~—xy—{—%(1——D)y2 for x,yEL.

iii) I(u, v) :=qu+v)—qw)—q(v), u, vEL.
iv) The descriminant of q is given as,

D = —det (UG, 7;));i.; -

V) Define an element T'< O(L, I) by

S )

2_.
2.2. i) By Ly(m, c) for m, c& N m>2, we mean the lattice L, (ﬂz—“) The
c
2_—
descriminant is D ;=" 5 4
c

ii) Put
P, :={(m, )& NX N: m>2, 2|m-+tc, 2c|m*—4-+mc}
\{(m, ()& N X N: There exists an integer n s.t. 2<n<m and

2 2 Vm—4 m*—4 2 2c

Then the maximal root system R(Lym, c)) belonging to L,(m, c) for (m,c)EP,
has the period m. (cf. (8.4)).
iii) Define an element FEGL(LQRK) by

z
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m-t+c

7o . 2 ¢ 7
Fu | M4 nj;_c L]

4c

24 a2
Then F2=O(L, I), FEO(L, I) if ”"4—4£ €Z and FEOWL, I) if cE2Z.
C

(7.4) Classification of maximal root systems of sign (1, 0, 1).

In the following, we list all isomorphism classes of maximal root systems

of sign (1,0, 1) (cf. (7.1) Def. 1, 2). There are seven tables according to the
seven types of the maximal root systems. We use the types as titles of the tables.

1)

2)

3)

4)

5)
6)

7)

In the each table of type I', we shall exhibit:

Description of a family L,:=(L, I,), p€ P of lattices, where P is the
parameter set. (We use here the notations of (7.3).)

Description of the set of the maximal root system R,:=R(L,) belonging
to the lattice L, as a union of components for p& Pr.

Description of the diagram I'R(L,) for p&Pr. The coefficients ry(p), -,
ri(p) of the diagram are given at the vertexes of the diagram as functions of
PE P,

Description of Q(R,) for p& Pr. (In fact it is either L or L’ (cf. (7.5).)
Generators of the orthogonal group O(L, I,)= W, (cf. (8.3) Corollary).
Description of the action of Aut(I") on P (cf. (7.2) v)). Namely: for each
S & Aut(I'), we present the representation S* & Bijection (P;), the constant
Cs(p)=@ for pe Py, and an isomorphism ¢4: L—L for pe Pr.

Fixed Points set of the action Aut(I") on P, the Isotropy group at a fixed
point and the Quadratic form q(xr,+yry) at a fixed point. (Cf. (7.2)
Note 1.)

For a detailed explanation of the meaning of the above data in the tables,

one is refered to (7.2).

Table 1. Type Iy,

1)

(L, ):=L(m,c) for (m,c)EP,,, iec.
L:=Zr,+2Zn, q(xr(,—l—y'rl):=x2——gy2 for x,yeZ,
where

m?—4

D:= ,
cz
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mt—4

P :={(m,c)eP,:2|m, 2|c, is odd}.

2) R(m, c) is a union of the following components:

) == {£F'r;: neZ},
@ = {+F"2r,:neZ},

= {LF"2r:ne€Z},

= {+F"r:n€Z}.

3) R(m, c)is a root system of the diagram 34,

period = m.

4 QR)=L.

5) W=O(L, D=<F% T, —1).

6) Aut(I';)={0}.

7) Fixed Point of Aut(I';,) = ¢.

Table 2. Type Ig,.
1) (L,I):=L(m,c) for (m,c)EPy, Iie.

L:=Zry+Zr,, q(xro+yr1):=x2—§y2 for x,yEZ,
where

24
p:=""2 ,
c2

Py :={(m, c)EP;: % is odd, either ¢ or (m?—4)/4c is odd}.

2) R(m, c) is a union of the following components:

®© = {tFrenez},
® {+F"2r: ne 2},

= {:l:F"%(m—z{_zro—}—cn): nEZ} ,

I
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= {+F2r:neZ},

= {+F'n:neZ},

period = m,

where v:= (c, n—1;_—2>

4) Q(R)=L.
5) W=O(L,=<{F, T, —1>.
6) Aut(I'g)=<S>=Z,, where S is the rotation = of the diagram.

2__ 2__
S*(m’ C):(m’ m__4_ﬂ) , CS: _m 4 ,
C

4c?
o[- ol
y 1 L10]in .
7) Fixed Point of Aut(I's,) = ¢.

Table 3. Type I'g.
1) (L, I):=L(m,c) for (m,c)EPs, i.e.

L:=Zry+Zr,, q(xro+yr) i=x"— %yz for x,yEZ,

where

Py :={(m, c)EP;: 4|m, 2|c}.
2) R(m, c) is a union of the following components:
@ = {+F"r: nEZ},
= {+F"Qr,): neZ},

0 - (erarpes)

1297
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®
i

{+F2r:neZ},

{innrl: nEZ},

e

@ =

{+F* Yy neZ}.

3)

period = m .

4) Q(R)=L.
5) W=0(L,)=<F%, T, —1>.
6) Aut(l'g)=<S>=2Z,
where S is the rotation = of the diagram.

2 2
S*(m, ¢) = <m, m 4), c,=-" 4,
c c

c

To| |2 " To
¥ (5! B m Tff_‘l 71 '
4 2
7) Fixed Point of Aut(I'g;) = ¢.

Table 4. Type Ig.
1) (L, D):=Lym,c) for (m,c)EPg, i.e.

L:=Zr,+Zr, q(xro—l—yrl):=xz~§y2 for x,yeZ,

where
2__—
p.-m - 4 )
c
m . m:—4
Py :={(m, c)sP,; B is odd, ¢ and are even}.
c

2) R(m, c) is a union of the following components:

@ = {iFnTO: nEZ},
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O i= {+F"2,;: nez},

. t= {:I:F"%(mzaro—i—crl): nEZ} ,

ED) - o (e83se) e,
v 2

®

(D) i= {LF"2r:neZ},

= {+F'r:neZ},
= (ar(rrer): ).
:: {:{:F" %(mz—ccrg—l-rl): nez} :

3) R(m,c)is a root system of the diagram 69,

period = m,

where v :=(c, m;_2> .

4) QR)=L.
5) W=O(L, )=<{F, T, —1>.
6) Aut(le)=<Sy, Spp=Z,DZ, where

S, is the symmetry (2) @@, @ PEEN ‘ »

S, is the reflexion w.r.z. the horizontal center line,

24 me—4
S* a == ( s i >9 Cs, = ———— 9
Fm. o) = \m = S 4
2
S¥(m, ¢) :(m, C(_mv‘zl‘_)), Cs, = m:g ’

_ V(m—2) __W¥(m—2)
(S:84em, ) = (m, 20D, ¢ — D),

4c2
7o 0 1_‘ To |
gDSl 7 = 1 0‘ J,
1 1L
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na <
@ '—To _ 2 v 7o
*n Wm=2) m+2||r|
4c 2y
£ a
7o _ y 2 To
Psise | m+2 wWm—2)| |l
2v 4c

7) Fixed Point of Aut(I'g)= {(m, )EPg: m=4n*+2, c=2nw for (n, w)E
NX N s.t. w|n?+1},
Ir ,=<8,S;)=2, for p&Fixed Point,
2 2
n—l;lyz’ D=4n_{;1-
%

Q»(xTo+yrl) = x*— "

Table 5. Type I'y,.
1) (L,I):=Lym, c) for (m, c)E Py, i.c.
L:=2Zr,+Zr, q(xro+yrl)2=x2—xy+1—_4—py2 for x,yeZ,

where
2
m’—4
D= ,
2
c

PZQ ::P29,1 U Pzg’z and
Py, :={(m, c)EP,: m is odd},

2
Py, ={(m, c)=P,: m is even, m;—c and (m+4c) —4 are odd}.
c

2) R(m, c) is a union of the following components:

= {:EF”TO: neZ},

= {:i:F"i<m+c+2ro—|—cr,): nEZ} ,
12 2

= {+F"(ry+2r): neZ},

®
@
= {iF"v(m_;.—'_cro—I—rl): nEZ} .

3) R(m, c)is a root system of the diagram 29,

period = m,

m+c+2> )

where v= (c,
2
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. m?—4
4) Q(R)=L'if 8|c and 8|¢ where ¢= .
Q(R)=L otherwise. ¢
6) Aut(I'y)=<S,, Sp=Z,DZ,
where S is the reflexion w.r.t. the vertical center line, S, is the reflexion

w.r.t. the horizontal center line,

2__4 24
Sik(m’ C) = <m, m c ) ’ C'S1 = ——m 3

c
2 2
stom, ) = (m, D), ¢ =12,
201 2(m — 2
(S1S2)*(m, ¢) = (ma w) s Cosp= — &WLZ_) >

il Lo A0
rro} _ 20+3) v ]
T |

?s: | <v(m—2—c) m+2—c\ m+2—c
—
v 2y

L7
4 c

o)
%IS{Z‘:F 1 e v Mﬂ'

vim—2—c) m+2—c\vim—2—0c)| | 1,
() 7

c v 2¢ ]

7) Fixed Points of Aut(I'y) = F, U F, where

(m, ©)EPy,: m=n’+2 s.t. noddeN, velN
{ c=ny v|nt+4-4 }

{(m,c)EPzg'z:mznz—i—Z s.t. nevenelN, veN )
F,:= f

Fl = s
2
c=ny 2v|n®+4, 24 12!‘—!—22——11:&
Itw,) = {81Spp=2Z),
244
Dm0 (X0 +Y11) = xz——'%y2 .
4y
There are two more tables of maximal root systems which are reducible.
Table 6. Type I'y,.
1) (L, D):=L(c% for cEP,:=Q"%, i.e.
2
L:=Zry+Zr, Q(XTow‘—yrl)I:xz—% y* for x,yeZ.

2) R(L,I)is a union of the following components:
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®: ‘H:To}s = {Zt271},

® = {2}, (D= {+n}

3) R(L,I)is aroot system of the diagram 72,
0@
’. period = oo ,
® D

-1

4 QR=L.
5y W=O0L,D=LT, —1>=Z,PZ,
6) Aut(I')=<S>==Z,, where S is the rotation = of the diagram.

4 D e 7 0 1][n
£ —_— — = — T = — =
SHe)= ¢’ © 4 4> % [TJ [l 0} [n]

7) Fixed Point of Aut(I';,) = {c=2}
II",(¢'=2) = <S>:Z2 5
q(xrgtyr) i= x*—y*.

Table 7. Type I'y.
1) (L, I):=Lyc® for cEPy:=Q", ie.
L:= Zr,+Zr,, q(xry+yr):= x"’—xy—.Ll—;c—zy2 for x,yeZ.
2) R(L,I)is a union of the following components:
@ 1= {£7d}, = {EGo+2r)} -
3) R(L,I)is a root system of the diagram 70,
O—2CD period = oo .

4) QR =L.
5 W=0L,1)=<T, —1)=Z,PZ,.
6) Aut(I')=<S>=4Z,, where S is the exchange of two vertexes;

1 7o 1 2 7o
S* =—, C =5 —D = —(? ) = .
©=" ° ©r P [rl:l [0 - J L’j

7) Fixed Point of Aut(I'y) = {c=1}.

I[’,(c=1) = <S>:Z2 9

q(xrotyr) = x(x—y).
(7.5) Corollary 1. Let (L,, I,) be rank two free Z-module L; with indefinite
symmetric bilinear form I, on it for i=1, 2.
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Then followings are equivalent.
1) There exists an isomorphism ¢: L.,=~=L, of the additive groups and a constant
C=0 s.t. I,op=CI,.
i) Put R;:=R(L;, I), i=1,2. Then R, and R, are isomorplic as root sysienis
(cf. (1.2)).
iii) The periods of R, and R, are equal and ihere exists an isomorphism of the
diagrams T'R, and T'R, so that the coefficienis of corresponding veriexes are
proportional. (i.e. IC=£0 s.t. ry=Cry, i=1, -, $|T'Ry|.)

Proof. The conditions ii) aund iii) are already equivalent, due 1o (1.6)
Theorem 4). The condition i) implies ii), as noted in (7.1) Note 3.

Let us show that ii) and iii) implies i). The isomorphism R,~R, implies
the existence of a linear isomorphism ¢: Q(R)=Q(R,) such that ;=Cl,ogp
for a C3=0 (cf. (5.1) Assertion). Therefore all what we need to show is that
this ¢ induces an isomorphism L,==L,. Due to the classification (7.4), in all
cases Q(R) is either equal to L or L. Thus for instance the case when L,=Q(R,)
and L,=Q(R,), the statement is obviously true.

In general we have only to show the followings.

Assertion. Under the assumption iii) of the corollary,
) Li=QR) iff L,=Q(Ry).
2) If Li=+=QR) and L,F+=Q(R,), the isomorphism @Q(R)=Q(R,) ¢f the root
systems induces L=~=L,.

Proof of the assertion.
1) If the diagram I'R;, {=I'R,) is not the type Iy, then due to 4) of the
tables we have L,=Q(R,), L,=Q(R,).

Let 'R, and I'R, be of type I'y, as follows.

'R, = with v = <c, m_—l—;_—l—_%) .
IR, — with w= (d, ”%3 :

Furthermore by assumption there exists an isomorphism of the diagram such
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that the proportions of the coefficients of corresponding vertexes are constant
C. In this case the isomorphism group of the diagram is Z,Z, generated by
m?—4 c(m—|—2)>

S, and S, so that S¥(m, c)=<m, —>, S¥(m, c)=<m, ;
c v

2 —
(S,S)%(m, ©) =(m, M) as in Table 5.6).
c
Then an elementary number theoretic calculations show that

Q(R(m,c)) =L

2_
=8|c, 8|n—1———4
c

20, LA
©8|~_c(m+2) , 8[———-—v (m—2) with v:= (c, m—+c-1—2)
v c 2
SQ(Rsim,0) = L' forany SeAut(ly).

Furthermore since s, @s,, ¢ss, are integral matrixes, they preserve the
group L. This proves the assertion, and hence Corollary 1.

(7.6) Classification of complete root systems of sign (1, 0, 1).

Corollary 2. The tables 1~7 of (7.4), deleted the case of table 5, 8|c, 8|¢
when Q(R)=L', give a classification of complete root systems of signature (1, 0, 1).

Two complete root systems corresponding to p,, p,& P are isomorphic iff
they belong to the same orbit of Aut(I').

Note. The deleted case 8|c, 8| ¢ of the table 5 when Q(R)=L’ can even
not be a maximal root system in L’ as follows.

In this case the lattice (L', I|L")C Ly(m, c) is isomorphic to L, (m, —%) by

a transformation ry—G,, r,+2r;—G;. Hence the maximal root system belong-

ing to (L', I|L’) is isomorphic to R<L1<m, —2—)), which is the type of table 4

as follows.
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(7.7) A program for a proof of (7.4).

To obtain the tables of (7.4), we shall proceed the following steps
i) In 88, we show that any lattice (L, 7) is equal either to L,(m, ¢) or to
L,(m, c), by a suitable choice of basis ry, 7; of L and by a suilable constant
multiplication on the form Z, by assuming that some dR,, , . belongs to (L, I).

This is shown by a use of a duality of maximal root systems (see (8.1)
Lemma).
ii) In §9, we list up all components d'R, ., which belongs to L,(m, c¢) or
L,(m, c¢) and we draw diagrams for the maximal root systems belonging to
them.

Here we need to stratify the set of parameters (m, c) into several components
P, to distinguish the type I" of the diagram. By ordering them suitably, we
obtain seven diagrams.
iili) We need to determine the action of Aut(Z") on the component P and to
determine the isomorphisms ¢g: L—L for SeAut(l).

This can be done by using the data in the above i) and ii), so that we omit
the details.
iv) The case when R(L, [) is reducible, is treated in (9.4).

§8. A Duality for Maximal Root Systems

Let us show that if a root system of a diagram () belongs to (L, I), then
there exists another root system of the diagram (-D/x) belonging to R(L, I) so
that they form a diagram @®—-(=D/z). Here

(8.0.1) D:= —det(I(r;, r;));,; for Z-basis r,, 7, of L.
(8.1) More precisely, we show the following.

Lemma (Duality). As before let I be an indefinite form on a Z-module L
of rank 2. If a root system dR, ,. with respect to basis e, e, LQR (cf.
(1.4), (1.5)) belongs to (L, I), then another root system (\/D|d)R,, , _. belongs
to (L, I). Here D is given as in (8.0.1).

Proof. For a suitable choice of e, e,, one may assume that g=0.

Put @, ;= d(e'?me,---ee"tme,) i=0,1,
B; = (\/D/d)(e'tre,—ee " itme,) i=0,1.

Since Q(dR,,,)=Zay+Za, and Q(/D/d)Ry,q,-)=Z By +Zp; (cf. (2.3) 1)),
dR,, . (tesp. (\/D/d)R,, , ) belongs to (L, I), iff a;, a,(resp. B, B,) belong to
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(L, I). Since ), a; L, there exists an integral matrix M & M(Z, 2) s.t.
a
1> o))
@ 71
The relation between the intersections I(r;, r;) and I(a;, @;) is given by,
, . 2 m
2) MI(ri, 7)),/ M = ed :
m 2
Since a,, @, belong to (L, I), I(r;, ¢})E M(Z, 2) and
2 m
3) eM™! eMZ,?2).
m 2

By taking the determinant of 2), one obtains,
4) D(det M)? = d*(m*—4) .

By definition, linear relation between a;’s and g;’s is given by,
Bo __\/Bl_l —c e ~\/5 1 —e
ﬂl - d l‘epm _ee"ﬁm e2 d eﬁm _Ee_ﬁm
1 € e,
X|d
el’m ee’l’m] a,
VD —m 2 ao:l
ANm—4| =2 m]|a]’
Therefore applying 4) and 1), one gets,

o —m 2 7o
5 [ },detMl-x[ }M[ }
o3 —2 m /gl

A direct calculation shows that the entries of the matrixes of 5) and 3)
coincides. Thisimplies that 4, 8, are integral linear combinations of 7, 7, L.

Using 5), one computes,

—m 2 “1M—e2 —em
U £y = [ldetMl‘z[ JM] [ ]
—2 m —em —e2

= ¢|det M| M l:_(l) ;:lEM(Z, 2).

Thus I(8Y), I(8Y)EL* and therefore 8,, g, belong to (L, I). Q.E.D.

(8.2) Corollary 1. Due to this duality lemma, possible diagrams for maximal
root systems can be subtracted from the table of (1.6) as follows.



numbering

S.

23.

29.

34.

62.

65.

69.

THE Root SysTeM oF SIGN (1, 0, 1)

diagram
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In fact we shall see that among the above diagrams, the first two types 5
and 23 do not appear (cf. (9.2)). (To see this we need to give a more precise
description of the relationships between the lattice (L, ) and the root system
belonging to it.) Assuming this fact, let us show that the orthogonal group
O(L, I) is generated by reflexions.

(8.3) Corollary 2. Let us denote by W the group generated by reflexions w,
for a= R(L, I).

Then
8.3.1) W=0(L, 1), d(L, D= Automorphism group of R(L, I).

Proof. The statement is true including the case R(L, I) is reducible, when
the proof is immediate from the description of @& R(L, I).

Here we prove the case when R(L, I) is irreducible.

Since we have a natural inclusion WCO(L, 1), we have only to show the
opposite inclusion relation.

Since we may disclude the first two diagrams in Cer. 1., all the remaining
diagram belong to one of the following two cases.

Case 1. The diagram contains edges O—=2-O and Q——*—O .

Case 2. The diagram contains edges O—_I—O and vertexes ©-.

Due to Assertion (5.7), in both cases, one computes W as

Case 1. W= <gﬁm’ H—la g24T> )
Case 2. W= <g2Pms H—-la ngT> .

Put G:={g,: t€ R} =R (cf. (5.1)ii)). Let g,&G be a generator of GN O(L, I)
(which is an infinite cyclic group.) Then since g,R(L, I)=R(L,I), p,| p for the
case 1 and 2p,,| p for the case 2. Since W C O(L, I), we get the equality p=p,,
or 2p,, according to the case 1 or 2. i.e. GNO(L, I)=G N W. By noticing the
fact —1=H_,, g,,7€W one concludes W=0O(L, I).

The last isomorphism follows from the description of the automorphism
group of a root system given in (5.5) Assertion. Q.E.D.

Note. 1In 5) of the tables of (7.4), we use the notations F=g, , T=eT and
- l :H—l-

(8.4) A description of (L,7). Let (L, I) be as before a pair of rank 2 Z-module
and an indefinite form on it. As in (8.1) let R,, . and \/DR,,, . belong to
(L, I), where D is the descriminant given in (8.0.1). Put also, a;:=e¢?n{ce™m,
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Bii=+/D(e?m—ee~"#n) for icZ. Note that we have relations
I(a;, ) =0, q(a)9(B)=—D (€Z), (cf.(9.4) Lemma).

The aim here is to find basis 7y, 7, of L as far as “near” to @, 8, so that they
give a simple description of (L, I).
By choosing 7, to be a constant multiple of «,, we get

()-G oG G)=al 2 ) (5

a, b e nl’ Vo2 "~ ac\ —2a+mb me )\ r,

for some integers a, b, c€ Z with a, ¢>0 (cf. 5) of (8.1)). Therefore a=1 or 2.

By replacing r; by T1+|:_—m;—'—_—2~b—1 7o We have three cases By=ry, 27, OT 7,+271.
c

On each case, one computes easily as follows:

1 2 0
) q
m ¢
@
Y= 0 1 (To) where 2|m, 2¢c|m*—4,
Bo 2 4 1
m*—4 m
¢ 2 2
2__
q(xro+yr) = %xZ—DyZ, p=" 2 .
m ¢
2 2
() e |(7)
g m—4 m |\
2¢c 2
2) 1 0
a, mo
@, 2
= (To) where 2|m, 2c|m*—4,
ﬂo 0 2 71
b mP—4
m

24
2

qGrytyn) = ¥—Dy, D="
m
— c
2

()= e | ()
n m—4 m|\rn
2

4c
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3) 1 0
% m--c
—— c
a, . 2 <7’0> h 2, + 2' 244
= where 2|m-c, 2¢|m*—4+mc,
Bo 1 2 71
A m2——4_i_21_
2c 2

. _ mP—4
q(xrotyr) = x* xy+ (1 DYy, D—T,

m--c
N c
F( 7'0) _ 7’0) )
71 m*—4—c* m—c N
4c 2

Here in the above tables F means a linear transformation s.t. F(a,)=a;,,,
F(8,)=p,,, for i€ Z and F(e,))=e?me,, F(e,)=e ?ne,,

We delete the first case from our consideration, since the first and the
second lattices above are isomorph by the transformation ¢(xr,+yri)=yr,+
xry, m=m, c=(m*—4)/c and g(p(u))=(—~/D)q(u).

The second and the third lattices are named as L,(m, ¢) and L,(m, c) re-
spectively in (7.3). By definition the root system R,, ,.={+F"@,: n€Z} be-
longs to L,(m, c) and to Ly(m, c).

If another root system R, , . for an n>>2 belongs to L;(m, c), then L,(,mc) is

__1 since we have followings.

R, o, belongs to L;(m, ¢) (resp. Ly(m, c)).
© a:= efme e Pnee, belongs to Ly(m, ¢) (resp. Ly(m, c)).

n n*—4 (m? 4) (n —4)
° 72 c/\/ e €z,

(resp. -+ 2‘/ 4’ /\/m—4’ ——/‘/(m—‘l)(n%) Z).

To avoid overlappings and complications in the classification, we disclude
the cases when a root system R, , , for 2<<n<m belongs to L,(m, c).

Therefore in the definitions of P; and P, in §7 (7.3), 1.2 ii) and 2.2 ii), we
discluded the parameters (m, ¢) of these cases.

H—4
isomorphic to L;(n, d) for d=cﬁ/ n’zz

§9. A Criterium for Compenents to Belong to (L, I)

(7.9) Let us give a criterium for a pair of root systems O—<0O, O—~©,
O—>0, 0—=L0, O or O=:*Q to belong to (L, I).
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(9.1) Criterium. Let a root system R:=dR,, ,. belong to (L,I). Put a;:=
d(ettitme, +ee™1"tme,) = R (i=0, 1).

In the following, we give necessary and sufficient conditions for an existence
of a root system R':=d'R,, . . belonging to (L, I) so that R and R’ interacts in
one of the seven types described in (3.3) Lemma.

1) iff 2a,, 2¢,  belong to (L, I),

iff %an, %al belong to (L, I).
2) ® ®) iff either 2a, belongs to (L, I),
or 2a, belongs to (L, I).

1

3) iff either 7050 belongs to (L, I),

or %al belongs to (L, I).

y ——@ if there exist B, f, belonging to (L, I)
s.t. @y, Bo)=I(ay, £1)=0, I(By, Bo)=1($1, B1)-
iff either  there exists B, belonging to (L, I)
s.t. I(ey, Bo)=0,
or there exists B, belonging to (L, I)
s.t. I(ey, B)=0.
iff there exists ve Z\ {0}

s.t. -11)— (ay+a,) belongs to (L, I).
iff there exists ve Z\{0}
s.t. L (a,—ay) belongs o (L, I).
v

5)

6)

7)

Proof. Let g, (or B, B be the elements of L described in the above
conditions and let W}, be the group generated by reflexions w,, for e=R. Then
R :=4Wgyp, or =+Wy,B,ULWrB: is a root system belonging to (L, I),
interacting with R according to the 7 types described.

Conversely if d'R,, , - belongs to (L, I), where m'=m or m*—2, ¢'=q or
g+ %pm, then the elements B;:=d'(e? t'tme,-}-e'e¥~tne,) (i=0, 1), satisfy the
conditions described above. Detailed verifications are omitted. Q.E.D.

(9.2) Using the criterium in (9.1), we are now able to determine all components
belonging to L,(m, ¢) and L,(m, c), so that one can draw the diagram of the
maximal root systems. Due to the symmetry of the diagram in (8.1), it is
enough to investigate a half of the diagram, namely the components R;:=
d;R,,; ..; Such that e;=e¢,i.e. the components which are combined with the com-
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ponent R,, , . by the edges O—<—@) ®—‘<—@ or ——®

By discluding the case, when there is a component R; such that m=m?—2 and
@ , (cf. the definition of P, in (7.3) 1.2 ii)), one may assume that m;=
m or m;=m?—2 for all 1=<i<k.

Followings are the list of the half diagrams.

Case 1. Ly(m,c) st meven, codd,

v: =(mT+2’ c).

Case 2. Ly(m,c) st 4|m, 2]|c,

2_
Case3. L(m c) st. Todd, ™ —%odd,
2 2c
O——0.
2
Cased. L(m,c¢) st. Todd, ™ —4 odd,
2 4c

Case 5.

Case 6. Ly(m, c) s.t. m, ceven,

o——Q)-

Case 7. Lym, c) s.t. %odd, 4]c,

M.

mt—4

odd,
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2—
Case 8. L,(m, ¢) s.t. meven, m;}—c odd, @_—%L_ll odd,
c

2_—
Case 9. Lym,c) s.t. m even, T—;_—codd, %_ch—jeven,
c

Case 10. L,(im,c) s.t. m, c odd,

It is not hard to check that the cases 6, 7 are isomorphic to the case 3 and
the case 9 is isomorphic to the case 1 or to the case 4, where the case 1 and
case 4 are isomorphic by a use of ¢ of (7.2) 1. vi).

(9.3) Using the discussions in §8, §9, it is no more hard to reconstruct the
full diagram I'R for each case in (9.2). Also the datas in the table of (7.4) is
now possible to calculate. We omitt the calculations. These complete the
classification of maximal root systems associated to an indefinite form on a
Z-module of rank 2.

(9.4) A proof of (1.4) Table 6, 1.
Let us show a slite modification of (8.1) Lemma (Duality).

Lemma. Let I be an indefinite form on a Z-module L of rank 2. If an
element a & L belongs to (L, I), then the element S & LQ R, characterized by the
equations I(a, B)=0 q(&) q(8)=—D up to a sign, belongs to (L, I).

Proof. Let ry, 7, be Z-basis of L such that « is an integral multiple of 7,.

Put,
Fa a 0] [7r
]. - foraeN, b, ceR, ¢>0.
/9_ b ¢ 71

We have relations
1) I(a, B)=a(bI(re ro)+cl(ro r1))=0

2)dt[1(a’a) 0 :|~dta0dt1 det |9 01
e 0I5 B) = de l:b J et((r;, ;) de I:b c]' i.e.
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2) ac=2
Since a belongs to (L, I), using 1) and 2)’ one computes, that
2 _ c i=0
21(a, ;) _)a

(e, @) 2U(re 1) =_pb i=1
all (TOa TO)
are integers.
On the other hand, again using 1) and 2)" one computes that,
1(8, B) —a i=1
are integers. Q.E.D.

Note. This lemma asserts the existence of linearly independent elements
belonging to (L, 7). Hence it gives a positive answer to the question Note 1 in
(7.1), for the case of indefinite form on rank two module.

Now the same type argument as in (8.2) shows that one can choose basis
70, 71 Of L in one of the following form.

Case 1. a=r,, B=2r,

q(xrotyr)i= xz—% y?, for x,yEZ.

Case 2. e=ry, B=rvt2n
q(xretyr):= xz—xy+% (1-D)y?, for x,yEZ.

Case 3. a=2r,, B=r

q(xrotyr) = % x*—Dy? for x,yEZ.

We omit the case 3, which is isomorphic to case 1.
In the above cases it is not hard to see the equivalence:

R(L, I) is irreducible.
< There exists § €L s.t. § belongs to (L, I), 6 is not a constant multiple of @ or
B. (cf. (2.2) Note)
& There exists 6 L s.t. & belongs to (L, I), I(8, 0)=2, ¢ is not a constant
multiple of @ or 8.

o D&EQP: = {?; ceq}.
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(The verification of the last equivalence is reduced to the existence of

integral solution of Pell’s equation.)

Finally in the case DE&? one computes directly

Case 1.  R(L(A) = {£re +2rp U {L£r, +2r1} .
Case2.  R(LJ?) = {+rot U{Lr}.
In both cases O(L, I)=<T, —1>=W=2Z,PZ,.

1
[2]
Bl
[41

(51

This completes the proof of (7.4) for reducible cases.
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