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A Noncommutatlve Marclnkiewlcz Theorem

Klaus BAUMANN and Gerhard C. HEGERFELDT*

Many probabilistic notions and results can be carried over to noncommutative algebraic

structures such as groups, C*-algebras, Lie algebras and *-tensor algebras. In this paper we-

consider a set c^f of (unbounded) operators in a Hilbert space with cyclic vector $0. Generalized

moments (6?a-point functions') are defined by <^0, A\ ••• Anfa), Ai^erf, and generalized cumulants

('truncated «-point functions') are defined in analogy to probability theory. The classical

Marcinkiewicz Theorem states that if the characteristic function of a random variable f is the

exponential of a polynomial P, then P has degree at most 2 and f is normal; i.e., if the cumulants

of | vanish for n^N, some N, then they vanish for all n>2. In this latter form the result is

generalized to the above non-commutative case. Robinson [11] proved an analogous result for

quantum fields by using the Wightman axioms and the canonical commutation relations,

respectively. In our result, however, only positivity of the scalar product enters. The structure of

the operator set o^ is shown to be an extension of that of generalized free fields. Applications to

representations of Lie algebras and Lie groups are given.

§ 1. Introduction! Main Eesmlt

The extension of probabilistic notions and results to groups has been investigated

for some time now (see e.g., [1], [2], [3]). The extension of such notions to C*-

algebras has become an active area of research in the framework of the Tomita-

Takesaki theory (see, e.g., [4], [5]). Streater [6] introduced the notion of an infinitely

divisible representation of Lie algebras and derived a criterion (see also [7]). A more

general algebraic setting was considered by one of us [8].

Representations of *-tensor algebras, which arise in quantum field theory, and
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associated states where Investigated there, the notions of infinitely divisible and

Indecomposable states were Introduced, and two important theorems of Khinchlne

[9, § 6.2] were generalized. All results of [8] carry over to free ^-algebras generated

by a set 2JI. In a forthcoming paper, one of us [10] will prove a generalization of

Cramgr's Theorem and of the central limit theorem. The setting of the present paper

Is close to the latter and to [8] although no need arises to consider different

representation. A fixed set &f of (unbounded) operators will do.

In Its simplest form, the Marcinkiewicz Theorem states that if a positive definite

function on H is the exponential of a polynomial then this polynomial is of degree

at most 2 [9]. An alternative formulation is that a random variable whose

characteristic function E(t) Is the exponential of a polynomial has a normal or

degenerate distribution.

Since the cumulants of a random variable are obtained from the derivatives of

InE(t) at t = ®, the Marcinkiewicz Theorem can be formulated as follows :

Theorem (Marcinkiewicz). If the cumulants of a random variable f vanish

for all n^N, some N, then they vanish for n>2, and thus f is normal or

degenerate,

In this form the theorem lends itself to a noncommutative generalization. A

random variable f Is usually considered as a measurable function, with expectation

given by integration with respect to a probability measure. But it can also be

regarded as a multiplication operator in the corresponding L2-space. Different
random variables commute as multiplication operators. The generalization now

consists In allowing an arbitrary collection of of (possibly noncommuting and

unbounded) operators defined on some Invariant dense domain ^ In some Hilbert

space. Expectation Is replaced by <^0, e $o> where (f>0 is a unit vector In &.

For @ we take the smallest such domain, namely all polynomials in elements of

&f applied to fa. We do not assume that the elements In <^ are self-adjoint or

symmetric; instead we assume that the sete^ Is hermitian, i.e. A^<^ implies

Without loss of generality we can assume that &# is linear.

The moments of random variables,<£ i ••• f „> : = E f i ••• £n, are now replaced by
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(1.1) <Ai - An>l= <fa,Ai - Anfa>, At^a^,

where the order is in general important. The object in Eq. (1.1) will be called an n-

point function or a (noncommutative) moment.

The analog of cumulants will be defined in Eq. (2.2). They are modeled after

the usual cumulants and after the truncated n-point functions in quantum field

theory. We will call them truncated n-point functions or (noncommutative)

cumulants and denote them by (A\ ••• AH^T- The analog of a normal random

variable is then a system of operators and corresponding n-point functions whose

cumulants vanish for n>2 and are not identically zero for » = 2. In quantum field

theory this is known as a generalized free field.

The following main theorem uses only positivity in the form of the scalar

product of a Hilbert space and does not need any further assumptions usually made

in quantum field theory or in quantum mechanics.

Theorem (Noncommutative Marcinkiewicz Theorem): Let &^ be a hermitian

set of operators and let $0 be a unit vector in the domain of any product of

operators in &$, with n-point functions (moments} <^0s A\ oo° An $oX If all

associated truncated n-point functions (cumulants) vanish for n>N, some N, then

they vanish for n>2.

Remark. In quantum field theory an analogous result was first derived by

Robinson [11] who reduced it to the commutative case by use of the Wightman

axioms or canonical commutation relations, respectively. Using the spectral

condition, Borchers [12] and, independently, one of us [13], showed that the

vanishing for n = 2N, some JV>0, was already sufficient. A similar result was

obtained for a class of Euclidean fields by Newman[14].

As a by-product of our proof we obtain the structure of the operator set <*# of

the theorem, a structure which is well-known from generalized free fields.

Corollary,, Let the assumptions of the theorem hold. Let ® be obtained by

acting on </>0 with all polynomials in elements of ^ Then for any A^<Jf, any (f>

e^ is an entire vector for A ; hence if A is symmetric it is essentially self-adjoint

on &. In the sense of strong convergence of power series one has on @
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(1.2)

and the 'moment generating function* is given by

^

If A, B^o^then their commutator is a multiple of unity on & '.

Section 2 deals with the definition of truncations and simple combinatorics. In

Section 3 we prove an estimate for n -point functions and convergence of the

exponential series. In Section 4, Eqs. (1.2) and (1.3) are proved by means of

Schwarz's inequality and by a generalized Liouville Theorem for entire functions.

In Section 5 we discuss applications to representation theory, in particular for

Lie groups and Lie algebras.

§ 2* Truncation Combinatorics

We collect a few simple facts about noncommutative cumulants (truncated n-

point functions).

Definition 2.1. Let / be a set. A (finite) partition P of / is a collection [Ik]

of disjoint nonempty subsets of / with U/* = /. The set of all partitions of I is
denoted by P/.

Definition 2020 For each i e N9 let Ai^^ be given. For each finite /, /= {ii,

•", ii}, i\<i2 °°° <ii, we define

(2.1) Ar^A^-Au.

Definition 2.3. The cumulants <-"> r are defined inductively as follows1' [15].

(2.2) <Ai> = <

l) Borchcrs [16] and Ruelle [17] use the notion of a partition as an ordered set. Then the expression for
C4/>r looks different. By means of a product for states defined by /2-point functions one obtains a very
elegant formalism in which the truncated state becomes a logarithm. See also [8].
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Examples. One has

An immediate consequence is the following.

Lemma 2.1 Let / = {!,•••, n}. Then

(2.3) CA, •" An> = <Ai - An>T + H <AI\rXAI->T.
n<=r/'=/=/

Proof . In Eq. (2.2) one can assume that »e/ft. Putting /' = /* and summing

first over F/\r in Eq. (2.2) yield <Ai\r><Ar>T.

It is now easy to invert Eq. (2.2) by straight forward Induction, using Eq.

(2.3). This gives a well-known expression.

Corollary 2810 One has

(2.4) <Ai>T = 2 (-l)*^*-!) ! <Atl> - <Aik>Pep/

We now state another expression which closely resembles the definition of

cumulants in probability theory [9]. In the noncommutative case the order of factors

is Important. The logarithm below Is defined by Its Taylor series around 1.

Proposition 2do In the sense of formal power series one has

(2.5) <Ai-An>T=-/--^r

This expression Is generally accepted by the workers in the field, but we have not

found a reference. A proof can be given by the following elementary fact.

2o2o Let f be a {formal} power series in xi, 0 = = s XN? N < oo. Let

dj= HIT-, and let /={!,-, »}. Then
'

(2.6) 3i-3»e / = (ai-3»/)e /+ 2 (
ne/'c/

I'+I
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Proof. This holds for n = l. Let it hold for all v, v ̂  n<N. Using Eq. (2.6)

for J = {2, • • - , n + l} we have

which is Eq. (2.6) for

Proof of Proposition 2.1. In Eq. (2.6) we choose

Then

= <Ai-An>=o

and Eq. (2.6), at x=Q, is identical to Eq. (2.3) with <Aj>T replaced by 3/ f\

Since (Ak> = (Ak>r for fixed A: the statement follows by induction.

§ 38 Convergence of Exponential Series

We need the following estimate.

Lemma 3*1,, Let all truncated n~ point functions (cumulants) vanish for n>

N^l. Let ^CLo^ be finite, and let

Mr := max {\<A\

Then, for Ai, — ,

(ID \<Al .
^m — kN^N for m>N while for m^N the denominator is to be

omitted,

Proof . For m = l, Eq. (3.1) holds true. Assume it holds true for all v^m — l.

Now we use Eq. (2.3) for n — m and with <^4/>r=:0 for |/'|>JV. The number of

subsets of {1, • • - , m} of length v which contain m is \~i \)>
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If m > N we obtain, by Induction hypothesis,

We replace the denominator by (m—2N) -"if m>2N and by 1 otherwise. Since

nr> (m-l)!(m-v-l)!< (m-l)l
^ (v-l)l(m-v)\ -(v

we can continue the estimate with

^m~^-2£i(v-l)l 2*-1 (m-N)(m-2N)-

Since the sum 2 is less than g1/2
5 Eq. (3.1) follows for m>N'.

For m^N the estimate is similar, with the denominator now equal to 1.

This estimate enables us to prove convergence of multiple power series for
exponentials.

Theorem 3.1. Let all truncated n-point functions (cumulants) vanish for n

>N, some N. For Ai, ••• , An^<^ and any $^&, the multiple power series for

(3.3) e**i... e*»**^

converges absolutely. A fortiori, a symmetric A^3^ is essentially selfadjoint on @t.

Proof. We can assume $ = Bi ... Bkfa. We take oS0={Ai, Al, • • - , B*, Bk}-

Let

My := max (K^ - A'J\, A'i^^o}, i/ = l, 2, -.

We have
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The root criterion for the convergence radius /?, Hadamard's formula l/R =

lim\ai\111, gives by Lemma 3.1
l-ca

• {(2l+2fc-N)(2l+2fc-2N)-}-1121

By Stirling's formula one sees that the second factor is bounded and that the third

factor goes to zero. Hence R = oo,

Remark, This result shows that each A^^is closable and that its closure,

also denoted by A, contains in its domain all vectors of the form eZlAl — eZnAn <!>,

<f>^&. Hence eZiAi, i = I,2, -°°, define operators which can be multiplied on ^.

Corollary 3010 Let all cumulants of order greater than N vanish. Then for

Ai, — , An there is a polynomial Ai-x»(#i, e o ° , zn) of degree at most N such that

(3.5) <e*lAl - e*»A»>

PAr-An is given by

(3.6)

Proof. The power series for the l.h.s. of Eq. (3.5) converges absolutely. For

z = 0 it is 1 so that the Taylor series converges around 1 in a neighborhood of z = 0.

Hence Proposition 2.1 holds here for functions, not only formal power series. Since

(37)

these derivatives are given by cumulants, which vanish for /i + oo° + ln>N,

§ 4» Tlae Form of the Generating Function,, Proof of Mam Theorem

We will need some simple applications of a generalized Liouville theorem [18].

This states that if f ( z ) is entire and Re f(z)^C\z\p for large \z\ then f ( z ) is a

polynomial of degree at most p.
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Lemma 4.1. a) If P(z) is a polynomial and

then P is of degree at most 2,

b) If f(zi, £2) is entire and

then f is a polynomial of degree at most 2.

c) If f(zi, Z2, Zz) is entire and

vRe

where Cz3 and C'gl depend on z\ and z^ respectively^ then f is a polynomial of

degree at most 2.

Proof, a) P must have real coefficients and must be of even degree, 2n say,

with positive highest coefficient, unless it is of degree 1. If the degree were 2n, n^

2, then one would have with z — te1*

This is violated for $ = ;r/w.

b) For fixed z\, £2, f(ziZ,Z2z) is a polynomial of degree at most 2. The

coefficient of z° is /(O, 0) and that of z1 is

3/, _<?/
~^ — ~n
OZ\z=o OZi\*=o

which is linear in zi, Zz> Similarly for z2. Finally put z = l.

c) By part b), f is a polynomial in zi, Zz of degree at most 2 for fixed £3, and

similarly for z\ fixed. Thus / is a polynomial in zi, Z2-, Zz of degree at most 3 with

the only possible third order term of the form bz\ZzZz since ^fef is ruled out by Eq.

(4.2). The combination

-Zi, —Z2, Z3 + — Zi, Z2, —Z3 + zi, —Z2, -

has the form / '' = av+a\z\ + 0,2X2 -\-a?.zl +bz\Z2Zz and fulfills the Inequality
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Re f(zi, z2,
 2

Assuming b^O we put z\ — Zi=iy and z^— — (\-\-a\^a^)lb. The above inequality
gives

for all y^R, which is a contradiction. Therefore b = Q.

We can now determine the form of the polynomial PA^-AH in Eq. (3.5) for

^ 3 by using Sehwarz's inequality.

We define the hermitian part <*#h of o^ by

; A*\*=A}.

We can and will assume ^ to be linear. One has on

4=

SO

Lemma 4020 For ^^3, PAI-^,, has degree at most 2.

Proof, We first let At^^h, i = l, 2, 3. For n = l we have by Theorem 3.1

<^o, e*Alfa> = <erAll2fa, e*A>l2<f>o>.

Schwarz's inequality gives

RePxiU)^Pxi(Re^)
and so Lemma 4.1 a) applies.

For n = 2 we have, by Theorem 3.1,

<&>, e*Mle«1*00> = <e*Ml#o, ̂ 2^¥o>.

Schwarz's inequality gives

Re P^2(^i, ^2)^yP^(2 Re ̂ i)+yPx,(2 Re *a).

Lemma 4.16) now applies.

Case % = 3 : For ^i fixed,
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Is the exponential of a polynomial in z. If one replaces, in case n = l, (f>0 by e*lAl<f>o

and Ai by A29 this Implies that this polynomial has degree at most 2.

We now have

Applying Schwarz's inequality to the r.h. sides gives, together with the preceding

remark, two Inequalities for Re P^A^ZI, £2, Za) as in Eq. (4.2). This proves the

case « = 3.

To obtain the statement for general >Ts, we consider first Ak = A'k+AkA'i, A\,

A"k^.<^h and /Uejg. By Corollary 3.1 the coefficients of the polynomials PA^A* are

polynomials In Ai, ..., ^3 of degree at most 2. By analyticity and Ak -» i , the general

case follows.

olo For Ai, A2^^ one has

(4.3) eAleA*fa = exp{+^<[Ai, A2]>]eAl+A2<f>0

Proof, We can assume <Ai> = <A2>=10. First let Ai, A2^^h- A straight-

forward calculation, using Lemma 4.2 and Eq. (3.6), gives with Zk=itk->

As in the preceding proof, analyticity then gives the general statement.

Proof of Main Theorem and of Corollary, Corollary 4.1 and straightforward

induction on n gives

Differentiating at z$ = '-° = Zn = Q, which is possible by analyticity, gives Eq. (4.3)

with (f>Q replaced by A* ... An</>o- Eq. (4.3) together with Lemma 4.2 shows that PAl-An

in Eq. (3.5) is of degree at most 2. Eq. (3.6) then shows that (A\ *°° Anyr = Q for

n>2.
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§ So Discussion* Connection with Representation Theory

Under the assumptions of the main theorem one has for the commutator of A\9

(5.1) [Ai, A2] = <AiA2-A2Al>I = <AiA2-A2Ai>TL

If we assume &# to be linear, which we can without loss of generality, then it suffices

to consider oSh={A&*S, A = A*\&}. For Ai, A2^^h, Eq. (5.1) reads

(5.2) [Ai, A2] = 2i 1m <A1A2>T L

If the 2-point function is real on o^h, one is in the commutative case.

Conversely, given a set 2JI and a form

which becomes positive semi-definite after linear extension one obtains a representa-

tion 77 of the free *-algebra generated by 2JI with truncated ^-point functions given

for n = 2 by

and zero otherwise. This is the same as in the construction of the generalized free

quantum field.

The operators of the hermitian set <*# may originate from a representation of a

Lie algebra with cyclic vector (f>Q. Then the vanishing of all higher cumulants places

restrictions on the structure of the Lie algebra, and the representation can be

integrated to a group representation.

For Lie groups our generalization of the Marcinkiewicz Theorem can be

formulated as follows.

Theorem 5.1. Let G be a finite- dimensional Lie group. Let U be a unitary

continuous representation of G with cyclic vector $0. If the generating function

B(g) = <<f>Q, U(g)<t>Q>

is the exponential of a polynomial in some local coordinates in a neighbourhood

of the group identity, then this polynomial is of degree at most 2 and G is

homomorphic to a direct product of an abelian Lie group and a Weyl group.
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A Weyl group Is associated with the usual canonical commutation relations

(53) [Q*A] = «*

of quantum mechanics [19], [20]. By Eq. (5.2) one can Introduce a suitable basis In

the (now finite-dimensional) linear space &#h where part of the basis operators span

the center of <*fh and the remaining ones satisfy Eq. (5.3).
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