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1. The present paper is the first part of the study on invariants for extended

affine root systems with markings, which may be regarded as a development of the

work of E. Looijenga [12] on Root systems and Elliptic curves, extending and

strengthening the results by introducing the flat structure on the invariants.

We introduce in this paper the concept of an extended affine root system with

a marking ((2.1) Defflmltiom).

The objective of this first part is the study of the Coxeter transformations for a
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marked extended affine root system. It is achieved in the paragraphs § 9, § 10 and

§ 11. The results are summarized in Lemma A (9.7), Lemma B (10.1) and Lemma

C (11.3).

These Lemmas are used essentially in the second part of the study [20] for the

construction of flat 6-invariants for marked extended affine root systems,

2. An extended affine root system R is, by definition, a root system belonging

to a positive semi-definite quadratic form /, whose radical has rank two. A marking

G for the root system R is a rank 1 subspace of the radical, (cf. (1.2) Definition,

(2.1) Definition)

The main difficulty for the study of such extended affine root systems arise from

the fact that there does not exist an analogous of a Weyl chamber, compared with the

cases of finite or affine root systems, since the group WR generated by the reflexions

with respect to all roots of R : i.e. the extended affine Weyl group, does not act

anywhere properly on the ambient real vector space**. Nevertheless we define a

Dynkin diagram FR, G for (/?, G) by the help of the exponents introduced in § 7.

(See (8.2) for a definition of the diagram, and (8.6) for discussions on the diagram.)

The diagrams are listed in the following Table 1.

Then a Coxeter transformation for (J?, G) is defined as a product of reflexions

of roots corresponding to the nodes of the diagram ((9.7) Definition).
*) W% acts properly on a domain in the complexification of the real ambient space.

3. Let us explain briefly some geometric backgrounds, which helps but is not

necessary for the understanding of this paper.

A rational double point of a complex analytic surface and its universal

deformation are described by a Dynkin diagram and a simple Lie group (or algebra)

of type At, Di or EL by E. Brieskorn [3,4]. (See also P. Slodowy [21].) Then there

exists canonically a vector space Q and a non-degenerate symmetric bilinear form /

on Q such that the base space S of the deformation (whose coordinate ring is the

ring of invariant polynomials on the Cartan algebra by the action of the Weyl group)

is canonically isomorph to Q (see [16]). We call such structure, the flat structure of

S or the flat structure on the invariant ring**}

A simple elliptic singularity of a complex analytic surface is, by definition [28],

obtained by blowing down a smooth elliptic curve in a smooth surface, whose

deformation is studied by E. Looijenga [11] [12], P. Slodowy [22] and others, where
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an affine root system and affine Lie algebra (i.e. Kac-Moody Lie algebra (or group)

of Euclidean type) are used for the construction of the family.

The present paper gives a construction of a flat structure for the base space S of

the universal deformation of a simple elliptic singularity or equivalently a flat

structure on the invariant ring of 6~-functions, which will be actually done in the

second half of this paper [20],

For the purpose, it was necessary to introduce a new root system, which is an

extension of an affine root system by one dimensional radical: the extended affine

root system with a marking, as introduced in this paper.

Even the extended affine root system does not correspond to a Kac-Moody Lie

algebra (cf. [33], [34]), one may naturally ask an existence of a Lie algebra

corresponding to them which would describe the universal deformation of the simple

elliptic singularity (cf. (8.5), P. Slodowy [23]).

# %) The flat structure on the base space S of a universal unfolding of any hypersurface
isolated singular point is introduced in [17] [18], where Q is a space of relative differential
forms, / is a residue pairing on Q and the embedding S -» Q is defined by a flat connection
V depending on a choice of a primitive form f(0).

In the case of a simple elliptic singularity, a choice of a primitive form f(0) is equivalent
to a choice of an element a in the radical of the intersection form on the middle homology
group of the Milnor fiber, which defines the marking G : = Ra. (This was announced in [17].
Details will appear in [20].)

4. Let us give a brief view on the contents of the note.

i ) The first three paragraphs § 1, § 2 and § 3 contain preliminaries: definition

of a root system R belonging to a quadratic form (1.2) and its generality.

For the first reading, the readers are suggested to skip this part until § 4, after

looking at some basic definitions and notations in (1.1), (1.2), (2.1), (2.2), (2.3),

(3.1) and (3.4) without proofs, and to come back to § 1, § 2 or § 3 according to the

necessity.

ii) The next three paragraphs § 4, § 5 and § 6 contain the classification of

marked extended affine root systems (/?, G). They are classified using numerical

invariants ti(R, G), t2(R, G), called the first and the second tier numbers

Introduced In § 4 (cf. (1.11)), as follows.

Except for some exceptional cases, the isomorphism class of (/?, G) is

determined by the triple (P, ti, £2) where P Is the type of the quotient finite root
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system R/radI and ti : = ti(R, G) (f = 1,2) are tier numbers. We call P(M* as the

type for (/?, G). For the exceptional cases, we define types by a slite modification

such as A?'l}*, 5P'2)*, Ciu)*, BCi*'2)(l) and BCi2'2\2), which are called exceptional

types (cf. (5.1), (5.2)).

The result of classification is exposed in the table in (5.2). The proof is reduced

in § 6 to classify weighted diagrams (F,(k(a))ae\r\) where F Is a Dynkin diagram

for an affine root system and k(a) (a^\F\) are positive integers called the counting

(6.1).

If one admits the result of the classification in § 5, one may skip these paragraphs

till § 1,

iii) After these preparations, we arrive basically important concepts for a marked

extended affine root system: the exponents w» (/ = 0, ..., /) in § 7 and the Dynkin

diagram FR, G In § 8.

The following Table 1 is the complete list of the types and the Dynkin diagrams

for marked extended affine root systems with an assumption that the quotient affine

root system R/G is reduced.

The author is grateful to W. Ebellng, who noticed him that the figures EG, E7,

E8 appear already in the representation theory of algebras [2], and the importance of

the branching points of the diagrams.

iv) The Dynkin diagram FR, G gives a most intrinsic description of the marked

extended affine root system (/?, G) in the sense that (R, G) can be reconstructed only

from the data of the diagram ((9.6) Theorem). In the reconstruction of (/?, G), a (pre-)

Coxeter transformation, which Is a product of reflexions w.r.t. the nodes of the

diagram (cf. (9.3)(9.7)), plays an essential role.

v) The Coxeter transformation c is unique up to (autor) conjugacy in WR. Then

we shall show in § 9, § 10 and § 11 that;

i ) c is a semi-simple of finite order /max+l, whose eigenvalues are described by

the exponents (Lemma A (9.7)).

ii) No element of R can be expressed as an image of the transformation c—l

(Lemma B (10.1)).

iii) The hyperbolic extension WR.G is an extension of WR by an infinite cyclic group,

which is generated by the power clm*x+l of a hyperbolic Coxeter transformation c
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Table 1. Dynkin Diagrams for Extended Affine Root Systems

>(1,2)
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(Lemma C (11.3)).

vi) The last paragraph § 12 treats the folding relations among Dynkin diagrams

for marked extended affine root systems. The folding relation Induces a hierarchy

relations among the diagrams so that all diagrams are divided Into 4 groups,

Illustrating the classification in • § 5. Particularly the exceptional types form one

group.

The study of foldings also Illustrate the importance of rank two-ness of the

radical of the quadratic form for an extended affine root system, since the two

extensions correspond to the two types of foldings defined In (12.3).

5. Some part of the result, Including the classification of marked extended

affine root systems, is published in [19].

. Part of this work was carried out in Sept. '82 - Dec. '82, when the author was a

visitor of the University of Nijmegen under the support of Z.W.O, in Jan. '83 - Feb.

'83, when he was a visitor of the Unlversioy Bonn and the Max Planck Institut In

Bonn and March '83, when he was a visitor of the Ecole Polytechniques In Paris. He

expresses his gratitude for the organizations and the mathematicians for the

hospitality.

Particularly thanks goes to Professors T. Springer and E. Looijenga In the

Netherlands, Professors E. Brleskorn, P. Slodowy, F. Knorrer and W. Ebeling in

Bonn and Professors M. Demazur and B. Tits In Paris for several valuable

discussions.

§ 10 Root Systems to a Quadratic Form

This paragraph is devoted for generalities on root systems belonging to

quadratic forms. We prepare terminologies and concepts for the uses in later

paragraphs.

A rough view of the paragraph is the following.

i ) The axioms for a root system R belonging to a quadratic form I and its

examples are given in (1.2), (1.3). The isomorphism class of the root systems

determines the quadratic form I up to a constant factor (1.4).

II) In (1.5)-(1.13) one is concerned with the rational structure (1.7) and the

finiteness of the set of length of roots (1.9) and their direct consequences.
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One obtains the concepts of dual root system Rv (1.5), quotient root system

R/G (1.8), marking G, tier numbers t(R), t(R, G) (1.10) (1.12), and even lattice

structure IR (1.11).

iii) In (1.14)-(1.20) the group WR generated by reflexions of roots is investi-

gated, The main tool is the use of Eichler- Siege! map and its inverse (1.14.1)(1.14.5).

For the name of the transformation, the author is indebted to W0 Ebeling, who

pointed out him that such transformations (1.14.1)(1.14.5) are used implicitly in the

works of M. Eichler and C. L. Siegel.

A criterium for WR to split into a semi-direct product of another WR' and a free

abelian group is given in (1.15).

We introduce a hyperbolic extension FG (1.17) of the space F w.r,t, a marking

G, which induces a central extension WR,G of WR in (1.18). Some stmctual study

of WR,G is done in (1.19) (1.20) using a map r : WR&-+MG-

(1.1) Reflexion Wa ©ff en. Let F be a real vector space equipped with a quadratic

form q, which induces a symmetric bilinear form,

(1.1.1) I:FXF-»R
) := q(x+y)—q(x)—(i(y\

If an element a^F is non-isotropic (i. e. q(a}^Q}, then we define the dual
and the reflexion Wa^GL(F) as follows.

<u-2> «V

(1.1.3) wa(u) := u-I(u,av)a for

By the definition we have,

(1.1.4) a-

(1.1.5) wa=w

(1.1.6) wa

where

O(FJ) :=
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Is the orthogonal group of the metric /.

For a non isotropic subset B of F (i.e. q(a)±Q for any a^B), we define a

reflexion group by,

(1.1.7) WB := the subgroup of O(F,I) generated by wa for a^B.

Note, To avoid a confusion on the word "dual", we shall denote by F* the

dual vector space Homjg(F, R) of F. Note that the element a^ belongs to F but not

to F*.

(1.2) The axioms for a root system R belonging to /.

As in (1.1) let F be a real vector space of finite rank with a metric /, whose

signature is (/*+, JJLQJ //_). (I.e. //+, ̂ 0, or ^_ are number of positive, zero or negative

eigenvalues of / respectively.)

Definition 1. A subset R of F is called a root system belonging to I or a root

system of sign (A/+, //0, A*-), if it satisfies the following Axioms 1), ..„, 5).

1) Let Q(R) be the additive subgroup of F generated by R. Then Q(R) is a full

lattice of F. (i.e. the natural map induces an isomorphism R®Q(R)^F.)

2) For any a^R, I(a, ff)=£0.

3) For any a^R, waR = R.

4) For any a, fi^R, I(a, £v)e^.
5) Irreducibility . If R = Ri±LR2 and Ri±R2 with respect to I for subsets Rt of

R, then either Ri = $ or R2 = (f>.

2. Two root systems R in F and Rf in Ff are isomorphic if there exists a linear

isomorphism <p ; F — F' which induces a bijection <p : R^R' (cf. (1.4) Lemma).

Note 1. I ) // ore/?, then -a^R. (v waa = -a)

ii) If a, ca^R for a constant c^R, then

(v Axiom 4) Implies I(ca, a^) = 2c, I(a, (caD

iii) A root system R is called reduced if a, ca^R implies c€={±l}.
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Note 2. Let us call a subset R of F to be a root system belonging to I, which

may not be irreducible, if R satisfies the axioms 1), ...,4) of Defo 1. Then we

have the following.

Let R be a root system belonging to /, which may not be
N

irreducible. Then there exists a unique disjoint decomposition R= -LLRj, Rj^ifi

(/ = !, ...,N) such that

i ) Rj is an irreducible root system belonging to I \RRjfor j = \, ..., N . (Here

is the linear span of Rj).

ii) Ri-LRj for i*j. (I.e. I(at, ctj) = Q for ^

Proof. If R=±LRj?Rj±<£ for / = !,..., N(>2) is a decomposition of Rj=\
satisfying only II ) of the assertion, then one check easily that automatically each Rj

is a root system which may not be Irreducible. Furthermore RR^c^F for all /, since

otherwise ii ) Implies Rjdiad I for j±i, which contradicts to the fact that RjdR

is non-isotropic. Thus the existence of the decomposition with I ) and il ) can be

shown by Induction on rank F.

If JLLRj and JJLSZ- are two Irreducible decompositions. Then Rj= JJ_(/?<7-n Si)
i i t

is a decomposition of Rj. Since Rj Is Irreducible Rj nSz = $ or Rj. The same

argument for S, shows that up to a permutation of the Indexes i, /, the two

decompositions coincide. This Is the uniqueness of the decomposition. q.e.d.

Note 3. In the above situation we have F = @RRj if I is non- degenerate .

( v RRj n 2 RRi drad / for all j )
i+j

Note 4. By definition WR preserve the metric /. Conversely up to a constant

factor, I is the unique symmetric bilinear form on F which is invariant by WR.

Proof. Let / be another symmetric Invariant form on F. The equality J(wau,

waa) = J(u, flr)for a^R, u^F implies /(w, a) = CaI(u, a) where ca: = J(a, a)/

I(a, a)- If I(a, 0)3=0 for a, @^R, the symmetry of/ Implies ca — c^ Thus the

Irreduclbllity of J? implies J = cl for c—ca for any

(1.3) Example 1. Let R be a root system belonging to /, where I is positive semi

definite of sign (/+, /0, 0).

Then
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-4,4] for any a,

(V Semi-definiteness of q\Ra + R0 implies that I(^v
? 0)I(a, /?v)<4. Then

apply Axiom 4).)

i ) if IQ = Q (I.e. / & positive definite), then R is finite and is a wot system in the

classical sense (see [1] Ch. VI).

Proof. We have only to show that #R<oo. Let a\, O B O , ai+^R be a R basis

for F. Since / is non-degenerate, the correspondence a^R*-^(I(a, aY))i=i,-,i+^

(^n[-4,4])2+ Islnjective.

Note 1. We shall generalize this finiteness property for general / in (1.21)

Note 2. If a root system R which belongs to I is finite, then I is definite, due

to the uniqueness of/ in (1.2) Note 3.

II) If /o = l, then R is an affine wot system, (For a definition, see [14, 2], [7]).

Proof, All axioms for an affine root system stated In [14] are direct

consequences of the axioms In (1.2), except an axiom (AR4), which asks that WR acts

properly on an affine hyperplane £: = {6 = l}cF*, where b is a generator of rad/

— Mb, This Is an direct consequence of an exact sequence 0— » Trad/— > WR-+ WRIT*AI

— »0 In (1.15) Assertion, where Trad/ is a lattice of the translation group of E and

is a finite Weyl group, (cf. (1.3) Ex 1. i ), (1.7) Corollary, (1.8) Assertion).

iii) In general if lQ = k>2, let us call R a k- -extended affine root system,

Particularly we shall investigate the case k=2 in this paper, when we call R an

extended affine wot system simply,

Example 2a Let L be a free abelian group of finite rank and I be a

symmetric bilinear form on it. Put,

R(L, I) : = {a^L : I(a, a)*Q, /Uv, £)e^ for all £<EL}.

If R(L, I) spans ]$®L over M, R(L, I) is a root system belonging to I, which

may not be irreducible. We shall call R(L, /) the maximal root system belonging
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to (L, II

In [29, § 7 (7.4)], all maximal root systems belonging to an Indefinite form of

sign (1, 0,1) are classified Into seven types.

1© 3o All root systems of (1, 0, 1) are classified Into 72 types in

[29, § 1 (1.6)].

4o Let B be a (finite) subset of a vector space F with a form I, If

B satisfies the axioms for a root system except axiom 3, then R ; = WsB Is a root

system belonging to /. Sometimes we shall call B a basis for R. We have relations,

Q(R)=Q(B), WR=WB*

(1.4) Isomorphisms of Root Systems*

Let <p be an isomorphism between two root systems R and R' which

are belonging to I and /' respectively. Then there exists a non-zero constant c£=

R such that / = c/'°p.

Proof. Let a, $^R be roots s.t. I(a, £)=£0 and Ra±R$. Put F2: =

and F2: = <p(F2 X Then R2 : — F2 Pi R and R2 : — F2 H R' are root systems belonging to

1 1 F2 and /' | Fi respectively which are isomorphlc by <p \ F2. Therefore due to the

axiom 5) of irreducibility, one can reduce the proof of the lemma to the followings.

1 ) Lemma is true for the case when rank F = 2.

il ) Let <p be an isomorphism of root systems R, R' which may not be irreducible

in rank 2 vector spaces. If R is irreducible, then R' is irreducible,

Proof of i ). Let AR and An- be the accumulating sets In P(F) and P(F')

of the image set of R and R' respectively. According as / Is definite, semi-definite

or Indefinite, AR is either void, one point or two points, which correspond to the

Isotropic vectors In F of/, (cf. (1.3) Ex 1. I ), ii) and Ex 30 ([29] (1.6) Note 6)).

Since <p Induces a bijection among AR and Anr, 9 maps the Isotropic vectors of / to

that of/'. This implies already the statement i ) for the cases when / Is semi-definite

or Indefinite.

In the case when / is definite, R is either of the types A2, B2, BC2 or G2. Then

the coincidences of some geometric Invariants (e.g. #R, #(R/RX)3 etc.) show that R
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and Rr are of the same type.

Proof of ii). Reducible root systems for rank F = 2 is either AiXAi, AiX

BCi or BCiXBCi. Thus they are characterized among all root systems by an

equation #(R/RX) = 29 which is invariant by <p. q.e.d.

(1.5) The dual root system Rv.

For a given subset RdF,

put

Lemma. If R is a root system belonging to /, then J?v is a root system

belonging to I.

Proof. The axioms 2)-5) for J?v are directly shown by definition. The axiom

1) for J?v will be shown in (1.10) after a preparation of a finiteness lemma (1.9).

(1.6) Irreducibility.
Assertion. For any a,/3^R, there exists a sequence a^'. — a, ati, ..., ff*: = #

of elements of R s.t.

J-^0 for i = jj±lJ, , ii)
[ = 0 otherwise

Proof. An existence of a sequence with a property i ) is an immediate

consequence of the axiom of irreducibility. The property i ) implies that

rank(/(^t, ^))fj=o,.-,A^A. This implies ii). q.e.d.

Corollary 1. Let R be a root system which may not be irreducible. Then R

is irreducible iff it has the following property :

#) If a linear subspace G of F is invariant under WR and G f t R ^ f i , then

G = F.

Proof. If R is irreducible and G is a PF^-invariant subspace with at= u-i 1/1.

For any fi^R, take the sequence <j0, ..., #* of the assertion. Then (wak— l)wak-i •••

WaiCtQ^ G is a non-zero multiple of /S, and therefore /§£= G. Then the axiom 1)

implies G = F.
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Conversely If R satisfies *) and R = Rl±LR2 with j?i_LJ?2. Then RQ(Ri\

are W^-invariant subspaces which are orthogonal to each other. If /?i=£#,

then by #), RQ(Ri) = F and hence RQ(R2) Is contained In the radical rad/: =

: /(.r, y ) = 0 for vy<=F}. Hence /(or, or ) = 0 for ore/?2. This Implies J?2 =

q.e.d.

20 Z,ef R be an irreducible root system belonging to I. For a

constant r^M, let us put,

Rr :=

If Rr^fi, then Rr is a root system belonging to /, which may not be irreducible,

Proof, All the axioms of (1.2) except the axiom 1) are trivially verified. For

a proof of the axiom 1), we have only to show that RQ(Rr) = F, since Q(Rr)d

Q(R). Since / is invariant by WR, the axiom 3) Implies WRRr = Rr. Hence

RQ(Rr) Is a IFje-lnvariant subspace of F containing Rr^ffi. Therefore RQ(Rr) =

F due to (1.6) Corollary 1.

(1.7) Rational structure off F°

Assertloiio There exists a non-zero constant c^R such that cl is an integral

bilinear form on Q(R)xQ(R\

Proof. Let us fix an element a^R and put c: — I(a, a)~l- For any

take a sequence ar0, ..., ff* of the (1.6). Then

Thus for any 0,

d(0, r) = \cl(p, /3)/(^v, 7) e Q.

Thus for a suitable Integral n^N, ncl Is an Integral bilinear form on Q(R).

q.e.d.

tlOTo A linear subspace G of F is said to be defined over Q if

GO Q(R) is a full lattice of G,
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CeroIIarja Put

rad/ = {xtEF: I(x, y)=Q for any y£EF }.

Then rad/ is defined over Q.

Proof. Since cl is rational valued on Q(R) for a c^O, the system of

equations d(x,y)=Q (y^Q(R)) are rational coefficients. q.e.d.

(1.8) Quotient Root Systems. Let G be a linear subspace of rad / defined over Q

and let p : F-^F/G be the linear projection map. The bilinear form on F/G

induced from / on F is denoted by IG so that IG(p(x\ p(y))=I(x9y) for x, y^

F.

Assertion, Let us denote by R/G the image of R in F/G. Then R/G is a

root system belonging to IG, such that Q(R/G)^Q(R)/ (Q(R)ClG).

Proof. The 2), 9 B O J 5) are trivially verified for R/G. The 1)

follows from Q(R/G)=p(Q(R))^Q(R)/Q(R)n G. q.e.d.

Definition., We shall call R/G the quotient root system of R by G.

Note. For the study of R, sometimes it is convenient to fix a flag Go^OC Gi

C'"CGr=rad7 defined over Q, which we shall call a marking of R. (cf. (2.1)
Deffo 2.)

This concept of a marking a root system comes from a study of primitive forms

for the period mapping of simple elliptic singularities, (cf. [17] [20]).

(1.9) Lemma of finlteness of root length.

The following simple lemma plays an important role.

Lemma. Let R be a root system belonging to I. Then there exists a non zero

constant c such that the set

(1.9.1) [cl(a,a):

is a finite set of integers,

Proof. Due to (1.7) Cor* and (1.8) Assertion, J?/rad/ is a root system
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belonging to /rad/ such that

{/(a, a): a^R} = {£*/(& 0): /3el?/radI}D

Therefore without loss of generality, one assumes that / Is non-degenerate.

Define, Pv:= {/<EF: /(/, Q(R))c:%}. I Is non-degenerate, Pv Is a

full lattice of F, Due to (1.7) Assertion, there exists a non-zero constant c such

d(Q(R)\Q(R))c:%. Therefore cQ(J?)cPv. both cQ(R) and Pv are full

lattices of F, exists an Integer N±Q such that NP"C.cQ(R).

I(P\P^)^I(P\^Q(R))=~jI(P\ Q(/?))c-j^.

Due to the 4), J?VCPV. In particular, 4//(or, ar ) = /(orv, ffv)e-j^ for

a&R. This Implies c/(tf, or) Is an Integer which divides 4JV. This completes the

proof of the finiteness. q.e.d.

Note. A modification of the proof shows that, If Q(R) Is an even lattice

w.r.t. cl, then cl(a, a)\2N2
0

(1.10) Tine total tier

Let /? be a root system belonging to /, where cl is an Integral bilinear form on

Q(R) for a positive constant c.

Due to (1.9) Lemma, we now,

Let us call ^(/?) the total tier number of R which takes the value In

Proof of (1.5)

Let us fix a root a^R. Then for any /?, one computes,

(a,a) ""' cl(0, ̂ )p t(R)I(a, a)^p°

This Implies, Q(J?V)C w^J/ \-Q(Rl so that Q(J?V) Is a lattice In F. q.e.d.

o The above proof shows also the following :
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A linear subspace G of F is defined over Q with resp. to R, iff it is defined

over Q w.r.t, j?v.

(1.11) Even lattice structure*.

Let R be a root system belonging to / and c is a constant as In (1.9) Lemma0

Put

IR : =

n 1 1 r> 7 v -- l-c.m.{cl(a, a): a^R] T{L.LL.Z,) IRV .— 2C *•

Then we have following properties.

I ) Q(R) (resp. Q(R^)) is an even lattice w.r.t. IR (resp. IRv).

ii) If Q(R} (resp. Q(RV)) is an even lattice w.r.t. cl for a suitable constant

c'^0, then c'l is an integral multiple of IR (resp. IRv).

iii) Formula

(1.11.3) IR&IRV = t(R)I®L

In particular,

for

(1.12) Relative tier number. Let the notations be as In (1.11). Let G, H are

linear subspace of F defined over Q s.t G^H.

We define tier numbers relative to G and H as follows.

/ i i o i \ t ( n U\- Ji Q(R)f\ G/Q(R)\\ H v / j , j \rank GIH
(1.12.1) t*(G'H>- =

(i ^T>^ t vC r wv —(1.12.2) t*«(G,H).-

Here in the above expression, #-^ for two lattices L and M means | det A \ where

A Is a transformation matrix from a j^-basis of L to a JT-basis of M, and A : B

means a constant c s.t. A = cB.

Note that if one replace / by dl for a constant £/=£(), then J? and IR are
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unchanged, but Rv and IRV are replaced by d~1Rv and d2!^ so that the tier

numbers In (1.12.1) and (1.12.2) are Independent of d.

fflo i ) The relative tier numbers are positive integers,
™ \ f ( f^ E J > \ 0 # \ / / r / r ^ TJ\11) lR\ Lr, JLJ. ) lR V {*, tl ) —

Proof . I ) Since the tier number does not depend on a constant factor of /,

we take I to be (/.c.w.{/*(ff, a) : a^R}Yl2lR. Then we have IR^ = I and a^ =

). Therefore Q(Rv)dQ(R). These show that
t

Is an Integer. In a similar manner, one sees that fov(G, AT ) is an Integer.

II) Apply the formula (1.11.3). q.e.d.

(LI 3) The following is a simple consequence of ttie ttiiltemess lemma.,

A§serti®me Let <p be an isomorphism of a root system R belonging to I. Then

I°9 = ±1.

Proof, Due to (1.4) Lemma, there exists a constant c=£0 s.£. I = cl ° <p. If c

=£ ±1, then the set {I(a, a) : a^R} which is Invariant by the multiplication by c

Is infinite. This contradicts to (1.9) Lemma. q.e.d.

(1.14) Eicfialer Siegel presentation E. For a study of the Weyl group WR, we

introduce a map E : F(g)(F/rad/)-»End(F) (Del (1.14.1)) and Its inverse E~l :

WR^F®(F/iadI) (1.14.5)) In this paragraph.

Using E, we give a sufficient condition for /?, G so that WR splits into semi

direct product in (1.15) and we study central extensions WR,G of WR associated to

hyperbolic extensions In (1.19).

1. Eichler Siegel map E for (F, I) is the following,

(1.14.1) E: F®(F/rad/) - >End(F),

where £(2/<<8>0<)(w) := u-fd(gt, u\

2o We define a semi group structure ° on F®(F/rad/) by,

(1.14.2) 9*<1> :
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where we use the following convention,

I: F(g)(F/rad/)x-xF®(F/rad/)->F(8)(F/rad/)

^, ffk)gfk,):= .2.

From the definition directly we obtain following assertions.

I ) FAe mop £ fe injective, It is bijective iff rad/ = 0.

ii) E is a homomorphism of semi groups.

(1.14.3)

ill) For an non isotropic a^F, the reflection wa (1.1.2) is given by

(1.14.4) Wa = E(a®a").

iv) The inverse of the Eichler Siegel map on WR is well defined,

(1.14.5) E-1: WR - »F(8)(F/ rad/X

The image of (1.14.5) is contained in
( v The lattice Q(J?)(g)(Q(J?v)/Q(J?v)nrad/) of F(g)(F/rad/) Is closed under

the product ° and contains ^®^v for all are/?. Taking on account of (1.14.4), IP*

Is contained In the Image of the lattice by E. )

v) The subspace rad/(x)(F/rad/) is closed under the product °, where °

coincides with the additive structure of the vector space on the subspace. We have

(1.14.5) (E(0)~idr)2 = Q for

For a later use, let us show an assertion.

Assertlonio Suppose w: = E(£) GE O(F, /) for a

Then,

£ + *£-/(£, *f ) = 0 mod rad/(g)F+F®rad/0

Proof. The orthogonality of ec; implies,
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/(/, g)=I(wf, wg)=I(wf, g)-I(wf, £, g) for all /, g^F,

f-wf+I(wf, f ) = 0 mod rad/

=/(£, f)+Kwf, £)=/(&> + '£, «>/)=/(£ + '£-/(£, '£), wf)

for all /eFo This Implies the assertion. q.e.d.

(1.15) Spllttlmg of WR. As In (1.8) let G be a linear subspace of rad / defined over

Q.

Define a lattice of G(g)(F/rad/) by,

(1.15.1) TG :-E-1(i^)n(G®(F/rad/)X

(Tc Is a lattice, due to (1.14) Assertion iv), v).)

Assertloiio I ) Following is an exact sequence,

E P*
(1.15.2) 1 - >TG - > PTjz - > W^/G - >L

ii ) The adjoint action of WR on TG is given by

(1.15.3)

for

Proof . I ) The following diagram Is naturally commutative.

E p*
1 - >TG - WR - > WR,G

n
) - » F(g)(F/rad/)

where the second line Is exact.

II) Let us show (1.15.3) for w=E(a®a^\
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We state now a lemma giving a condition for (1.15.2) to split.

Lemma0 Let R be a root system belonging to I and let Gdrad / be defined

over Q. Let L be a linear subspace of F such that

(1.15.4) F = L®G (i.e. L is complementary to G.),

(1.15.5) P*\ WKHL: WRHL-* WR/G IS Sltrjective.

Then

i ) The homomorphism (1.15.5) is an isomorphism. Hence (1.15.2) splits into a

semi direct product,

(1.15.6) WR = WXHL\X TG.

ii) TG is a full lattice of G®(F/rad/), which is generated by

(L15.7) aG®aL for

Here a = aL+aG is the splitting (1.15.4) for an a^F and a^i means the
element (aLY = (a^)Lof L.

Proof, i ) The subgroup E~l WRHL is contained in L®(F/ rad /), since it is

generated (as a semi-group) by a®a^^L®(F/ i&d I) for a^RHL and

L®(F/t:adI) is closed under the product °.

Therefore,

i TG C (L(g)(F/rad/))n(G(g)(F/rad/))= 0.

Hence W RnL^E(TG)={l}, which implies injectivity of (1.15.5) due to (1.15.2).

ii) Let a~ ai+ac be the decomposition of (1.15.4) of a^R. Then in F®

(F/rad/)3 one computes as follows.

Therefore we obtain a decomposition (1.15.6) of the reflection,

(1.15.8) wa = E(aL®aZ}E(aG®aZ) for

e TG.

Thus TG is generated by aG®al for ore/?.

To show that TG is a full lattice of G(8KF/rad /), it is enough to show that
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spans the whole vector space since TG is already contained in a lattice (Q(/?)fl

G)(8)(Q(j?)/(QU?)nrad/)).

Due to (1.15.3) the space RTc is invariant under the action of WR/ TG— WRIG-

Therefore due to (1.6) C<o>r0 1 and (1.8) Assertion, RTG contains aG®(F/rad /) for

any a^R. Since G is defined over Q, G is spanned by ac for a^R- This implies

q.e.d.

Note. Under the same assumption of the lemma, we have,

i ) R flL is a root system belonging to I\L.

ii) The linear isomorphism p\L : L — F/G induces an injection map

among two root systems, which induces an isomorphism WKHL — WHIG-

Proof, i ) We have only to show Axiom 1 and 5 for R fl L. Since R D L is

invariant under the action of WKHL, the image of RQ(RHL)) in F/G by p is

invariant under the action of WRIG — P*WRKL which contains p(R(~}L)c:R/G.

Thus due to (1.6) Cor. 1 and (1.8) Assertion, p\L(MQ(RnL)) = F/G. Hence

Q(RKL) spans L.

If R C\L were reducible, there exists a linear subspace H^L, which is invariant

under the action of W /?nz, containing an element of 7?DL. Then pH^F/G is

invariant under WRIG containing an element of p(RnL)dR/G. This is a

contradiction to the fact that R/G is an irreducible root system. q.e.d.

(1.16) Counting Kc(a}. Let R be a root system belonging to /, and G be a

subspace of rad / defined over Q. To give a tentative description of the "extension"

of the root system R/G to the root system R, we introduce KG, which associates a

subset KG(a) of the lattice Q(/?)fl G for each root a^R as follows,

We shall call the Kc(a), the counting set of

Assertion 1. i ) 0 e Kc(a) and KG(a) = —KG(a) for

11) Kc(9a) = KG(a) for an automorphism <p of R and

iii) Kc(a) is closed under the reflexion centered at each point of Kc(a}*

(i.e. If x,y^KG(a\ then 2x-y^KG(a).)

iv) KG(a) is closed under the translation by I (a, j3^)KG(/3) far a,t
(i.e. A
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v)

Proof, i ) Is a consequence of (1.2) Note 1, 1 ).

ii ) and v ) are trivial by definition.

iii) If or, a+x, a+y<^R, then

iv) If a,0, a+x, @+y^R9 then
q.e.d.

Assertion 20 Suppose that there exists a linear subspace L of F satisfying the

conditions (1.15.4), (1.15.5) of (1.15) Lemma such that RHL-+R/G is surjective.

Then

i ) KG(a) contains a full lattice of G for a^R.

ii) R= 11 {a + KG(a)}.ae/enz,
iii) U KG( a) generates the lattice Q(R)HG.

af=R^L

Proof. By assumptions J?c(J?nL)0G, so that we get the disjoint union

presentation of R as ii). iii) Is an immediate consequence of ii). I ) Is a

consequence iii) taking in account the facts Assertion 1. Iv) and the irreducibility

of R. q.e.d.

(1.17) Hyperbolic extension For the description of the central extension WR,G In

(1.17.1), we prepare some linear algebraic assertions. Proofs are elementary and

omitted.

Assertion 1. Let F be a vector space over R of finite rank equipped with a

symmetric bilinear form I. For a given linear subspace GCradJ, there exists a

triple (Fc, IG, IG) of a vector space FG of rfl/ifc = rank F+rank(rad//G), a

symmetric bilinear form IG on FG and an injective linear map cc : F—>Fc, s.t,

i ) I = IG° tc,

ii) rad/G =

We call (FG, IG, IG) a hyperbolic extension of (F,/) w.r.t. G,

So far there is no confusion, we identify F with the subspace cG(F) of FG and G

with the radical of IG.

Assertion 20 Hyperbolic extension is unique up to an isomorphism in the
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following sense. Let G, H be subspaces of rad / s.t. HdG and let (FG, IG, tG),

(Fn, IH, in] be hyperbolic extensions w.r.t. them. Then there exists an injective

linear map <p : FG-*FH such that

I ) IG = IH ° p,

ii ) q> ° CG — CH-

8 Let (Fc, /G, CG) be a hyperbolic extension w.r.t. G. Then the

automorphism group is given by,

(1.17.2) Aut(FG, IG, CG) = £G(MG),

where

EG: FG®(FG/G) - >End(FG\

is the Eichler Siegel map for FG and IG (1.14.1), and

(1.17.3) MG : = ker(rad /®(rad I/G)-+ S2(rad //G))

UP IIJ

(Here S2( V) Is a symmetric tensor product of V.)

The rank of MG is given by,

(1.17.4) rank(Mc) = -|-rank(rad//G)(rank(radI)+rank G-l).z

The product ° structure on MG coincides with the addition structure on MG as a

linear space,

(1.18) Tie extension WR,G- Let R be a root system belonging to / and G be a

subspace of rad/. We fix a hyperbolic extension (Fc, IG, CG) and regard tG '• F~*

FG as an Inclusion map. Therefore as an element In FG each a^R defines a reflexion

of FG denoted by wa=Ec(a®a*\

Put,

(1.18.1) W^,G: = the subgroup of O(FG, IG) generated by wa

ao The group WR,G is a central extension of WR.

- EG _ P*
(1.18.2) 1 - >KG - > WR.G - ^ WR - > 1,
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"where

i ) p* is a surjective homomorphism induced from the restriction of the action of

WR.G on FG to the subspace F.

ii) KG is a lattice of MG ((1.17.3)) defined by

(1.18.3) KG : - EG

where EG is the Eichler Siegel map for FG and IG in (1.17.2).

Proof. Since WR,G is generated by EG(a®a^) for a®a^^F®(F/G) (a&

R) and F(8KF/G) is closed under the product °, the group WR,G is contained in

Fc(F(><)(F/G)). Hence the inverse Eichler Siegel map is well defined as an injective

map

(1.18.4) EGI : WR,G - >F®(F/GX

The action of Ec(F®(F/G)) on FG leaves the subspace F invariant so that the

restriction p* is well defined to make the diagram commutative :

P*
WR,G - > WR

> F(g)(F/rad/).

Therefore by putting KG: = EGl(WR,G)ri(F(8)(TadI/G)\ one obtains the exact

sequence (1.18.2).

Since McCF®(rad 7/G), it is enough to show the inclusion relation Kc^-Mc

to show (1.17.2).

Let us apply (1.14) Assertion for FG, IG and g^Kc-, since w:= EG(£ )^ WR,G

CO(FC, /c). Hence

mod FG(8)G+G(8)FG.

Since ^eF(g)(rad //G) we have /(£, *f) = 0. Therefore

*) £+*£ = omod FG®G+G(X)FG.
Again noting f eF®(rad//G), * ) implies

**) |erad/(x)(rad//G).

Then * ) and ** ) implies f eMc-
J?G is discrete in MG, since it is contained in a lattice Q(R}®(Q(RV)I

z

) no. q.e.d.
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(1.19) Components off the Eichler-SIegel E. The sequence (1.18.2) does not

split. For a more precise study of the sequence, we introduce in (1.20) a mapping,

r : WR&-+MG, which coincides with EGI on the center EG(KG)- For a preparation

to TJ let us define some notations.

The definition of the r depends on a decomposition,

(1.19.1) F = L®H®G

where L is a subspace of F complementary to rad/ and H is a subspace of rad /

complementary to G.

Fixing one such decomposition, we introduce mappings,

(1.19.2) $: WR,G - >L(x)L,

(1.19.3) p: WR,G - *H®L,

(1.19.4) q: WR,G - > G®Lf

as components of the inverse Eichler Siegel map (1.14.5),

(1.19.5) E-1(p*(g))=$(g)+p(g)+q(g) for

where we use the following identification,

The orthogonality of g implies the condition (cf. (1.18) Assertion),

(1.19.6) f (£) + ^(#) = / ( f (<7X^(sO) for gt=WR.G.

Let us reformulate the relation (1.14.3) into some formulae for components of F.

(1.19.7)

(1.19.8)

(1.19.9)

where

F0: L(g)L - ^End(L),

the Eichler Siegel map for L and /|L.

As a corollary to (1.19..7), we have,
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(1.19.10) *f(g)=t(g-1) for

(V If (1.19.10) is true for glt g2, (1.19.7) implies that it is also true for gig2. On the

other hand (1.19.10) is obviously true for reflexions g:= wa.)

(1.20) The map r. We introduce the map r (1.20.1) and summarize its properties in

the following Assertions 1—3.

Assertion 1. There exists a map,

(1.20.1) r: WRtG - >MG

s.t. the inverse Eichler Siegel map (1.18.4) is given by,

(1.20.2) Ecl(g) = e(g)+P(g)+Q(g)-Eo(S(g)) *p(g)

for

Here the terms in the right hand corresponds to the following decomposition.

MG^ A2(H)®G®H,

where H®H = S2(H)@A2(H) is the direct sum decomposition of H®H into the

symmetric and the anti-symmetric tensors.

Assertion 2. The multiplicative law for r is given by,

(1.20.4)

for

Here A(rj): = --(rj — t7j) is the anti- symmetric part of

Assertion 3» The ranges of £, p, q, r are fallowings

(1.20.5) f(W^.c)c 2 Zmt(a,0)aL®0L,
a,P*ER

(1.20.6) P(WR,G)<^
a,P

(1.20.7) Q(WR,G)C-
a,fl<

(1.20.8) r(WR,G)c
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Here we denote by,

(1.20.9) a =

the decomposition (1.1 9.1) for a root a^R, and by int(a, @)for a, ff^R a positive

real number defined by

' 2 / I ( a ,

g.c.d.-

a) for a =/3

2**n/(aJ-) ff,+i)
kn/(tfj, #j)L j=i

(1.20.10) ir
g.cMA —nr : t

TT Ti -. -. \

s.t.ai = a and ak—l

(Note that int(a, 0) = int(j3, a) and int(g, /3)<=Z for a,

Proof for Assertioms 1 — 30

1. Let

be the decomposition of E G l ( g ) according to the splitting (1.20.3). Apply the

criterium for the orthogonality (1.14) Assertion for this. Namely

B + tS-KS^S^Q mod G(8)F+F(g)G for B=Etl(g).

An explicit calculation of this relation gives

), *p(g)) and

2v(g)=I(p(g),'p(g)).

2. Apply (1.20.2) to the relation EG1(gig2) = EG1(gi)° EG1(gz). An explicit

calculation of this gives (1.20.4).

3. If a^R is decomposed as (1.20.9), then

g(g)g
v = gL®gZ+gg(^

in F®(F/G), so that we have
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2

P(wa) =

Therefore for the reflexions wa (a^R), £ , p, q, r takes value in the right hand of the

formula of the assertion. Let us denote by Me, Mp, Mg and by Mr the modules in

the right hand of the formulae (1.20.5) -(1.20.8) respectively.

What is enough to show is that if for gi, g2^ WR,G the mappings |, p, q, r take

values in Me, Mp, Mg, and in Mr respectively then so is also for gig2.

In view of formulae (1.19.7) (1.19.8) (1.19.9) and (1.20.4), it is sufficient to show,

C MP, M9E0(Mf ) c Mq, and

All these relations are reduced to a relation,

(1.20.11) int(flr, 0)7(0, r)int(rf S)^Zint(a, d), for a,B,r,

This is a direct consequence of the definition of int(a, S) by noting the fact

Kfa, n)=/W, 7) for 0, r^R* q-e-d.

One can sharpen the Assertion 3 by a slite modification of the proof ag follows.

Assertion 37. The ranges of p + q, r are fallowings

r( WR,G] c a*

§ 2. Marked Extended Root System (/?, G)

(2.1) Let us recall the definition of an extended affine root system ((1.3) Ex. 1 iii)).

Definition 1. A root system R belonging to a symmetric bilinear form /, whose

sign is (/, 2, 0), is called an extended affine root system of rank I.

Namely ; / is a positive semi- definite bilinear form on a real vector space F
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of rank 1+2, such that rank of iad!: = {x^F : I(x,y) = Q *y^F} is equal two.

R is a subset of F satisfying the 1), ..., 5) for a root system belonging to

I in (1.2) Del

For short we shall use an abbreviation e.a.r.s. for an extended affine root

system.

2. A marking G for an e.a.r.s, R is a linear subspace of rad / of rank 1 defined

over Q (cf. (1.8)).- The pair (R, G) is called a marked extended affine root system

belonging to I or a m.e.a.r.s. for short.

3. Two e.a.r.s! s J?CF and R'dF' are said to be isomorphic, if there exists a

linear isomorphism <p : F^F' s.t. <pR = R' ((1.2) Del 2.)- Furthermore let G and

G' be markings for R and Rf respectively, and the map <p induces <pG = G'. Then

we say that the two m.e.a.r.s. 's are isomorphic.

9: U?, G)^Q?', G'X

Note 1. If cp is an isomorphism between e.a.r.s. 's belonging to I and /', then

there exists a positive constant c^R+ s.t. I = d' ° <p (cf. (1.4) Lemma).

Note 2. The same e.a.r.s. can split into non isomorphic m.e.a.r.s.'s, by different

choice of markings. In fact there are at most two isomorph classes of m.e.a.r.s.'s for

the same e.a.r.s. (cf. (5.4) Appendix).

(2.2) The (J?v, G). Let (/?, G) be a m.e.a.r.s. belonging to /. Then R^: =

{av^F : a^R} is also an e.a.r.s. belonging to / (cf. (1.5) Lemma) and the same

space G defines a marking for J?v (cf. (1.10) Note). We call the pair (J?v, G) the

dual m.e.a.r.s. of (/?, G).

(2.3) j§T -basis a, b off rad /. Let (R, G) be a m.e.a.r.s.. Recall that we denote by

Q(R) the lattice in F generated by R. ((1.2) Del 1.1))

Then Q(^)nradJ is a full lattice of rad/, which has rank 2 (cf. (1.7) Cor.).

We choose a Z -basis a, b of the module in the following way,

(2.3.1) Q(R)^G1 = Za,

(2.3.2) Q(R)nG2 =

where
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(2.3.3) G2: = radJ, G^

The ambiguity of such basis (a, b) is described by a group { : * ̂  Z}.

§ So Quotient of (R, G)

(3.1) Let (R, G) be a m.e.a.r.s. Put Gl:=G, G2: = rad/ as in (2.3). Denote by

R/G* the image set of R in F/G* by the projection p{ : F-+F/G* and by I& the

metric on F/G* induced from /, i = 1, 2.

Recall that we denote by WB the group generated by reflexions wa for a^B for

a subset B in F (cf. (1.1.7)).

Lemma 1. i) R/iadI:=R/G2 is a finite wot system belonging to /rad/.

ii) R/G:=R/G1 is an affine root system belonging to IG.

2. The following is an exact sequence,

E Pi*
(3.1.1) 1 - »7V - >WR - >WW-»1, for i = l,2,

i ) ^)t- w a homomorphism induced naturally from the projection pi.

ii) E : F(g)(F/rad/)^End(F)? £qj/i<8>0<)U):= u-^fd(gi, u\

is the Eichler Siegel presentation for F and /, defined in (1.14).

iii) TG : - £-1(

3. i ) The sequence (3.1.1) splits into a semi- direct product.

ii) TG
{ is a full lattice of Gl®(F/radJ) of rank il.

Definition. R/iadl and R/G are called the quotient finite root system and

the quotient affine root system of (R, G) respectively.

Proof 1. Due to (1.8) Assertion, R/G', i = l,2 are root systems. The examples

(1.3) 1. i ) and ii) show that they are either a finite root system or an affine root

system respectively.

2. The exactness of (3.1.1) is shown in (1.15) Assertion.
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3. Due to the Lemma of (1.15), it Is enough to show the existences of linear

subspaces Ll and Ll+l of F such that

i ) Ll+2~{ is a complementary subspace of G* in F.

(3.1.2) F = LM-'®G* for £ = 1,2.

ii ) The following homomorphisms are surjective.

(3.1.3) />*JWW+2-*: WW*+2-' - > WRI& for

Since the decomposition (3.1.2) and the splitting of (3.1.1) play an important

role in the later study, we explain details of the construction of Ll and Ll+l in the

next (3.2) and (3.3).

(3.2) Ll. Let J3i,...,j3i ^ R/radl be a basis of the finite root system.

For each 1<2</, choose an element ai^R^p2l(&i} where p2: F— »F/rad/ is

the linear projection. Define,

(3.2.1) Ll : =
1=1

The fact that Ll satisfies (3.1.2), (3.1.3) for i = 2 follows directly from the facts,

i) any root #e/?/rad/ is a linear combination of @i,...,{li with integral

coefficients which are either all^O or all<0,

ii) the reflexions WH, i = l, ..., I generates WRITBAI-

Let us summarize direct consequences of this splitting, (cf. (1.15) Lemma)

Assertiom. i ) Q(R) splits over Z as follows,

(3.2.2) Q(R) = (Q(/e)nL l)0(Q(fl)nrad/)

and

(3.2.3) Q(R)nLl = ®Zai.1=1
ii) The subgroup WR^LI of WR is generated by wai, ..., wai and is isomorphic to
WR/radJ SO that

(3.2.4) WR = WxnLlK Trad/

iii) For any a^.R, the reflexion wa is decomposed as,

), far WaLl^WRnL*, ^rad/®^^^ Trad/,
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where a = aL
L + aradi is the splitting (3.1.2) and

21 (a, a)-laLi.

iv) The lattice Trad/ is generated by ar^i®ali for

Note 1. If R/radl is reduced, then p2: F— »F/rad/ induces an iso-

morphism,

p2:

(v fl/rad/=U ir*,rad/ A * U
2 = 1 1 = 1

2. The group WR acts nowhere properly on F and F*. (v The

subgroup I? (Trad/) is a free abelian group of rank = 2/>rankF=/ + 2 for />2,

which cannot act properly anywhere on F and F*. Remember that rad/ is

pointwisely fixed by WR.)

(3.3) Siibspace Ll+l. Let us recall the concept of basis $>, ..., & for the affine root

system R/G from [14] 4.

First, fix a sign of a generator & of rad/G = rad//G and put,

(3.3.1) El : = lre(F/G)*: *(*)=!}.

The set El is an affine space of rank /, whose translation group is (F/rad/)*.

F/G is identified with the vector space of affine linear functions on El. The

contragradient action of WRIG on El is proper and the set of regular points of the
action El— U Hp. (Here H^: = {x^El: 0(x) = Q}) decomposes into open

fitER/G

connected components, called chambers. WRIG acts faithfully and transitively on the

set of chambers.

A basis {/?0, ..., fit} of R/G is by definition a set of indivisible roots ff^R/G,

such that Hfl0, ..., HpL form the set of walls of a chamber C and 0{(x )>0 for all x

ec, f=0 , ..., /.
Ler J3o,...,/3i be a basts for R/G and pi: F-+F/G be the projection. For

each 0<i<l choose an element ai^R^p\l($i) and we define,

(3.3.2) Ll+1

i=Q

l+lThe fact that Ll+l satisfies (3.1.2), (3.1.3) for / = !, follows from the following
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properties i ), ii) of the basis /30? ..., 0i.
i ) Any root j3^R/G is a linear combination of /30, ..., 0i with integral coeffi-

cients which are either all^O or all<0.

Ii) The group WRIG is generated by w^ i = Q, „ „ „ , /.

iii) There exists positive Integers no, ..„,, HI with gcd (no, ..., ni) = l, such that

(3.3.3) 2 ntfi
i=0

Is a positive generator, say b, of the integral constant functions Q(/?/G)Drad//G

on E (cf. [14](6.7)).

Let us summarize direct consequences of this splitting (cf. (1.15)).

Assertlomo i ) Q(R) splits over Z as follows,

(3.3.4) Q(R) = (Q(R)nLl+1)®(Q(R)n G\
i

Put

(3.3.6) b : = 2
i=0

Then

Q(J?)nL J + 1nradJ = Zb.

ii) TAe subgroup WRHLI+I of WR is generated by wao, o 0 0 , wat and is isomorphic

to WRIG, so that

(3.3.7) WR = W*ni.<+i IX Tc-

1. In the above choice of ao, »,., at, if necessary after a change of the

ordering of them, one can always assume that p2(ai), .,., p2(cti) Is a basis for

R/iadI, and hence Ll:=®Rat is a splitting factor (3.2.1). Then n0 of (3.3.3) is

equal to 1 (cf. [14] (6.6)). "Therefore,

i=0 \«=1

Q(R) =
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Note 2. If the affine root system R/G is reduced, then the projection pi : F— »

F/G induces an isomorphism,

pi : RKLl+l^ R/G.

(v R/G=\JWRiG 0i^ U TF*ni:'+iflr<c:/enL'+1c RIG.)
z=0 i=0

(3.4) Definition. A set {#o, ..., at] of roots of R is called a basis for (/?, G), //
/Ae//° image in R/G form basis for the affine root system R/G.

We shall show the following assertion in (6.2).

Assertion. Let (R, G) be a m.e.a.r.s. such that R/G is reduced. Let {ao, ...,
ai} and {/30, ..., 0L} be basis for (R9 G). Then there exists an automorphism q> of

(R, G) such that

§4e Tier Numbers t(R\ h(R, G), h(R, G)

For a m.e.a.r.s. (/?, G), we introduce some numerical invariants t(R), h(R, G),
t2(R, G) which we shall call tier numbers.

(4.1) The total tier number.

Definition. Let R be an e.a.r.s. belonging to 7. The total tier number of R

is,

t(R): = ma*{I(a,a)/I(0,0): a^^R}.

Obviously this number depends only on the finite root system J?/rad7 as
follows.

type of Rl rad/

t(R)

At

1

Bi

2

Ci

2

Bd

4

Di

1

El

1

F4

2

G2

3

(4.2) Even lattice structure on Q(R). Since R/iadl is a finite root system, by

suitable choice of positive constants ci, C2, the metrics 7j?: = Ci7, 7i?v: = €2! have the
following properties (cf. (1.11.1) (1.11.2) and (1.11.4)).
i ) Q(R) (resp. Q(R^)) is an even lattice w.r.t. IR (resp. 7^v).
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ii) inf{/j,(a, o r ) : a^R} = mf{IR^(av, av) : ave#v} = 2.

iii) t(R) = &*%*!. W>°v> for a^R.

(4.3) Relative tier members,, Let (R, G) be a m.e.a.r.s. Let 5, b (resp. £v, 6V) be a

basis for Q(^?)nrad/ (resp. Q(j?v)flrad7) as In (2.3).

The first and the second tier numbers for (R9 G) and (J?v, G)

are,

t1(R9 G) : = | (& v mod ̂ v ) : (6 mod ^) |x(7*-: /),

fi(/?v , G) : - | (6 mod a): ( f tv mod ^v) |x(7*: 7),

t2(R, G) : = |(*v: 0) |x(7*v : /),

fc(/ev,G) : =\(a: a^\x(IR: 7).
r/ie notion A : B means the constant number c s.t. A = cB.

The definition of the tier numbers above is invariant by a change of / by a

constant multiple of I. A more general combinatorial definition of them is given in

(1.12.1), (1.12.2).

(4.4) Assertion, i ) Tier numbers are positive integers.

ii) t(R)= £ iU? ? G)°MJ? v , G),
t(R)= tz(R, G) - fa ( / ? v , G).

Proof (cf. Assertion (1.12)). i) Take / to be IR. Since a=lR^a' gve
), we have Q(R)c:Q(R^) and therefore Q(J?)n Gz 'cO(J?v)n Gz' for

z" = l, 2. Thus 0 : ^V
3 6 mod 0 : &v mod ^v are integers. This implies ti(Rv , G),

^2(^?v, G) are integers. Other cases are shown similarly by taking I = IR^.

ii) By definition, the right hand Is equal to ( I R \ 7) • (/^v : I). Taking 7

to be equal to 7* and using (1.1.4) this number is equal to (7j?v(^v , < 3 f v ) / 2 ) x

(7*(ar, or)/ 2) for an ^ej?, which Is equal to t(R) by (4.2) iii). q.e.d.

(4.5) The tier mumlbeFo By definition, the first tier number t\(R, G) depends

only on the affine root system R/G. If R/G Is reduced, it Is calculated as follows.

Let /?o, ..., 0i (resp. @o, ..., /?/v) be a basis of the affine root system R/G (resp.

J?V/G)3 so that ft= ^ nSi (resp. ftv= 2 ^z
v/?,v) Is the generator (3.3.3) of Q(R/G)

n(rad7/G). Then T:^v - Im/nnCa", a?) for f = 0, 0 0 0 , / and therefore,



112 KYOJI SAITO

(4.5.1)

The following is a table of the first tier number.

1. Reduced quotient affine root system case.

Type of RIG
(according to [14])

ti(R, G)

At

1

Bl

1

BY

2

d

I

cr
2

BCi

2

Dt

1

£<

1

F4

1

F4
V

2

G2

1

G2
V

3

2. Non reduced quotient affine root system case.

Type of R/G
(according to [14])

U(R, G)

BCCi

1

C^BCi

4

BBY

2

CvCi

2

(4.6) Note. If R/G is reduced, then R/G is uniquely determined by the type of the

quotient finite root system J?/rad / and the tier number ti(Ry G), as we see in the

first table above.

§ 5. Classification of Marked Extended Afflne Roof Systems

In this paragraph (5.2), we present a complete list of isomorphism classes of

marked extended affine root systems (R, G), which satisfy an assumption,

A) the quotient affine root system R/G is reduced.

For each isomorphism class of a m.e.a.r.s. with this assumption, we associate

the type of the isomorphism class in (5.1). For each type of a m. e. a. r. s., we shall

exhibit in the table of (5.2):

1) The first and the second tier numbers ti(R, G) and t2(R, G) (cf. (4.3)).

The type of the isomorphism class of dual (j?v, G) (cf. (2.2)).

2) The set R of roots in a vector space F with a metric / and a marking G

(cf. Notation below) such that (R, G) is a m.e.a.r.s. of the type of the table.

3) A basis, aQ, ,.., ai for (R, G) (cf. (3.4)).

4) The countings, *(flr0), ..., k(ai) (cf. (6.1), (6.4)).
The exponents mao, ..., mai (cf. (7.1.1)) w. r. t. the basis.

5) The Dynkin diagram 7\c (cf. (8.2)) of the type.
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# \r\=l(R)+cod(R, G) + l and cod(#, G): -codimension of (R, G) (ef.
(8.1)).

Let £o, £1, £2,°" be a sequence of the orthogonal vectors in a real

Hilbert space H. The ambient space F and the marking G for a root system in the

following table are defined as linear subspaces of Ra © Rb © H by,

F : - ®Rai = Ra®Rb® ©

where ar0, •", #i are the basis given in 3). The metric / on F is induced from that of

H by regarding Ra © U6 as the radical

(5.1) Definition of the type for a extended root system,,

Using a classification of m.e.a.r.s.'s in § 6, we define the types for a m.e.a.r.s. in

the following manner.

Let (Pi, tiy tz) be a triple of a type PL of a finite root system of rank / and two

positive integers ti and tz- A m.e.a.r.s. (/?, G) is said to belong to (Pi, ti, tz) if Pi

is the type of R/md I and ti=ti(R, G), z = l,2.

i ) Type PUl'£z)

Let ti, tz be divisors of the total tier number t(Pi) of a finite root system PL (cf.

(4.1)), and (Pt, ti, tz) corresponds to a reduced affine root system (cf. Note L).

Then there exists a unique isomorphism class of m.e.a.r.s.'s which belong to

(Pi, h, tz) except the following 4 cases ; (Ai, 1, 1), (Bi, 2, 2) /I>25 (G5 1, 1) /2>2,

(SCi, 2, 2) /^L Except for these cases we shall call p^**** to be the type of the

isomorphism class.

ii) Type p<«i.'»>*

Let (Pt, ^, fe) be one of (Ai, 1, 1), (5t, 2, 2) /^2 or (Q, 1, 1) /^2. Then there

exist two isomorphism classes of m.e.a.r.s.'s which belong to (Ptj t\, tz). In this case,

one isomorphism class is called to be of type P[tl^ and the other to be of type

iii) Types BCi2'2\l) and
If (Pi, ti, tz) is (BCi, 2,2) for />!, then there are two isomorphism classes of
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m.e.a.r.s.'s which belong to (BCi, 2, 2). Then one isomorphism class is called to be

of type £CP'2)(1) and the other to be of type BCP'2)(2).

iv) Exceptional types.

Let us call the above 4iw)*, BP'2)* (/^2), Ciu)* (/^2), BCiM)(l)(/2>2) and
SCi2>2>(2) ( / ̂  1 ), exceptional types of marked extended affine root systems.

Note 1. The condition A discludes the cases (BCi, ti, tz) such that ti = l or 40

Note 2. The treatments and the studies of exceptional types in this and the

following paragraphs are rather case by case study using the explicit description of

the set of roots in (5.3). After introducing a concept of (mean) foldings of Dynkin

diagrams in paragraph 12, we shall see that the exceptional types form naturally a

group (cf. (12.5) Hierarchy).

Note 3. If P is a type for a m.e.a.r.s, let us denote also by Pv the type for the

dual m.e.a.r.s.. Then as a consequence of the classification, we see easily ;

for t=

for t =

Hereafter we shall use a convention that if a statement on a m.e.a.r.s. (R9 G)

depends only on the isomorphism class of (R, G), then we use the type P instead of

(R, G) in the statement.

(5.2) Extended Affine Root Systems with Markings.

Type AV-1}

2) R:

3) aQ=—

4) ki = l

5)
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(1=1)

2) R: ±e+nb+ma (n,m^Z s.t

3) aQ= —

Wo =-9",

5) codUiw)*)=l,

Type

2) R:±£i+nb+ma ( l^f^/) (»,

±ei±ej+nb+ma

3) ^0=-£i-

4) *, =

5)
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#0 Q

Type SI1-2' ( /2>2)

2)

3) 0-0=— £1 — £2+^, at = £i — et+i (l^i^l— 1), cti = ei.

4) A, = 2 (O^i^ /-I), Ai = l,

5)

Type

2) R: ±£i + nb+ma (l<.i<l) (n,
±£{±£i+2nb+ma

3) ff0= — £1+6, or,- = £< — e<+i ( l ^ z ^ / — 1), ai = £i.

4) Ai =

Z^/ — 1),

5) cod(5p-1>)=/-l,
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Type 5l2>2)

2) R: ±€i+nb+ma

±ei±€j+2nb+2ma

3) aQ=-

4) k0=l, kt =

5) <

a i-1 a*

2 ffi

Type Ciw)

2)

3) ^0=-

4) *£ = l

5) cod(Ciw))=/+l f #r(Ciw ))=2/+2.

ai-i 2 at

TFwt%<& /^*(^>2)lype Oi

2) ^:

±£i±£i+nb+ma
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3) a<>=—2

4) £0=2, ki =
mQ=l, mi

5) cod(C{w))=/-l,

Type Ci2'1}

2) /?: ±2et+2nb+ma
±ei±€j+nb+ma

3) ao= — £i—

4) fo =

5) cod(Ci2-l))=/-lf

ffo o

Type CP'2>

1) /i(C!M))=2,

2) ^?: ±2et+2nb+2ma
±£i±£j+nb+ma

3) #0=— £1 — £2+6, ai =

4) *< = ! (0£i'£/-l), A:j=2,
Wo = l, Mi = l, w<=2 (2^/^/—1),

5) cod(CP'2))=/-2, #r(CP'2))=2/-l.
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Type

2) R: ±£i + nb+ma (!<£</) (n.m^Z s.t. nm=0 mod 2),
±£i±ej+2nb+2ma

5)

Type Ctw)*

3) ^0= — £1+6, flr* = e*— e*+i ( l ^ i^ /— 1), ai = ei,

2) R: ±2£i + nb+ma (l^i<l) (n,m<=Z s.t nm = 0 mod 2),

3) ar0=— 2ei + ft, a* = £* — €£+! ( l < f ^ / — 1), oti = 2£i.

4) A0=2y *, =

5) cod(Ciw)*)=/f #r(Ciw)*)=2/+l.
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Type BC[2>1)

1)

2)

±ei±£j+nb+ma

3) a<>=— 2si + b, ai = £i — £i+i (l<i<l— 1), ai =

4) fo =

5) ood(SC?'1})=/,

ai-\

1 = 1}

Type

2) R: ±

±£i±£j+nb+2ma

3) aQ=— 2£i + b, ai = £i — £i+i (l^i<l— 1), ai =

4) A0 = 4, fo =

5)
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(/ = !)

Type BCP'2)(1) ( /I>2)

2)

3) tfo=-2

4) *0 = 2f *f =

5) cod(5C!2'2)(l))-/-l,

Type JBCi2'2>(2)

1) M£CP'2>(2))=2, f2(5Ci2'2>(2)) = 2, (5Ci2-2)(2))v-JBCP'2)(2).

2) R: ±ef + nb+ma (l<i<,l) (n,m^Z),

l) (n,

3) a0=-

4) Arf = 2 (0^i^/-l), *, = !,

w*=2

5) cod(JBC[2'2)(2))=/+l,
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a0

ai-i 2 at

(1=1)

Type DP1*

2) J?:

3) flTo=— £1 —

4) *f =

i ^ / — 2),

5) ood(Diw))=/-3f #r(Z)iw))=2/-2.

In the next three types (E?'l\ Elltl} and JBj1'0), let cot : = e*-4-2
8 1 y j=o

so that 2ty*=0 and l(a)i, Q)j)=—r+8v for O^f , /^8.

Type fij1-"

2)

3) <3r0= —

4) *, = l

5)



EXTENDED AFFINE ROOT SYSTEMS 123

2) /?: ±(a)i-a)j
±(o)i+cs)j+a)k)+nb+ma

3) ^o= —

4) h=l

5)

•«

2) J?: ±(a)i-a>j)+nb+ma

3) ^0=^0— ̂ 1 + 6, ai = a)t—a)i+i (l<>i<7), ^8 =

4) fo = l (0<i^8)

mo=l, Wi = 2, m2=3, w3=4, w4=5, w5=6? w6 = 4, m7 = 2, mB

=3.

5) cod(£i1-1))=lf
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Type F4
(u)

1) fl(^w)

2) /?:

-2

3) (3f0 = £i —

where (7 : =

4) A, =

5)

Type F4
(1'2)

2) j?: ±£i

±€t±ej+nb+2ma

= £2 — £3, ^2 = £3— £4, ^s = £4— (7,

4) A0 = 2, Ai = 2f *a = 2f *8 = 1, *4 = 1,
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5) cod(F4
(1'2>) = l, #r(F4

(1'2))=6.

Type F4
(2>1)

2) R: ±

3) ^0 = £i — £2 + 6, #1 = 62 — £3, df2 = £3 — £4, ^3 = 26:4, a4= — Si — £2— 83

— £4.

4) kt = l (0£i^4),
wo=l, »Zi = 2, wz2 = 3, ms = 4, m4 = 2.

5) cod(Fl2-1))=l,

fifo O

Type F?'2>

2) J?:

±ei±£j+nbjrma

3)
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4) *0=1, #i = l, kz=l, #3=2, A:4=2,
»zo=l, Wi = 2, 7»2 = 3, 7Ws=2, m4=l.

5) cod(Fl2-2))=l, # r(F4
(2'2))=6.

In the last four types (Gil>l), G^'3), G?'1' and GP'),let <j>t : =£<-y(£1+£2

+ e.)(i=l, 2,3), so that 2^=0 and /(^,, ^-)=— i-+5«
i=l O

Type G^1'"

2) R:

3) ffo=—

4) *, = ! (

Wo = 3, nii=6, W2 — 3,,

5) cod (Giw))=l, #r(Giw))=4.

Type

2) ^?:
±(<f>i-<t>j)+nb+3ma
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3) ao= — $1+^3+b, ai = </>i—(/>2, a2=<f>2.

4) A0 = 3, &i = 3, A2 = l,
mo=I, mi = 2, M2=3.

5) cod(Gi1-8))=l,

G(
2
3>1)

2) J? : ±

3) ^o= —

4) *, = !

5) cod(Giw))=l, #r(Gia-1))=4.

Type G2
3'3)

2) J?:
±(<f>i-<f>j)+nb+ma

3) ^0= —
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4) kt = l, *! = !, £2 = 3,

Wo=l, mi=2, mz=l.

5) cod(GP>)=l,

(5.3) A description of the set of roots.
Here we give a systematic description of the set R from the knowledge of the

type of an. e.a.r.s. (R, G).
In the following we use the notation RP as for the set of finite roots of type P.

The Weyl group invariant metric is denoted by /P, which is normalized s.t.

inf {IP(a a)

i ) Type P(1«1)

R= U {a+Zb+Za}.
a^Rp

ii) Type P(1-» for t = t(P)

R= U {a+Zb+ZIp(a'a}a}.

iii) Type P"-1' for t = t(P)

R= U {a+Z^aeRp \ L

iv) Type P(t-'> for t = t(P)

R= U
OE-Rp

v) Type p<w>* where l = t(P) (Case
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vi) Type P(u)* where l±t(P) (Case C[M)

R= \J \a + nb+ma : m, n^Z, mn = 0 mod 2 if a is a long root}.

vii) Type P(w)* where t = t(P)*l (Case Bi2'2}*
r

-nb+ma: m,n^Z,m=n = (

P[ mn = Q mod 2 if or is a short rootJ

viii) Type BCi2'1}

R= U {a + nb+ma : m, n^Z', n = l mod 2 for a longest root}.
a<=RBr.

ix) Type BCi2'4) (/>!)

^+M 2 > f l r j f l : m,

for a longest root^

r /(ff a) i\a + nb+m 0
?—-^ : m, n^Z, n = l mod 2

/?= U 2

x) Type 5d2'2)(l) ( />2)

I a + nb+ma : m, n^Z, n = l mod 2 for ^ longest root,]

m = 0 mod 2 for a longest root]

xi) Type BCi2l2)(2)

nb+ma : m, n^Z, n = l mod 2 for a longest root,

m = 0 mod 2 for ^f not shortest root

(5.4) Appendix, Isomorphism as Root Systems

In the following, we list up all pair of non isomorphic marked extended affine

root systems, which are isomorphic as root systems forgetting about their markings,

For each such pair, we give an isomorphism 0 explicitly by using the explicit

description of the root system in (5.2).

l) Blw^Bl™ (/:>3)

0 '. FB^^FB^

e*1 - > e* / = !,...,/
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a* - > b

b* - > a

2)

4) G^'3) ̂  G2
3'1}

(To see that these 4 give a complete list of Isomorphism among two m.e.a.r.s.'s

(/?, G) and (/?r, GO, we proceed the following. If R^ R' then I ) R/radl^

R'/radl' and ii) the counting set KT^i(a) for a^R and Kr*u'(a') for a'^R' (cf.
(1.16)) should behave similarly. For a m.e.a.r.s. (J?, G)3 such data are easily

calculated from the description of (/?, G) in (5.3). Thus in this way we can pick up

all possible pair of marked e.a.r.s.'s from the table of (5.3), which might be

Isomorphic as root systems. Then as we see In the above list, one constructs explicitly
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the Isomorphism 0 for each case.)

§ 60 Tli© Secomi Tier Nemtoer t2(R,G) ami tin© CoMmtimg k(a) (a^M)

In this paragraph we give a proof of the classification of m.e.a.r.s.'s stated In the

last paragraph. The Idea Is to calculate £2(/?,G) by Introducing counting number

k(a) for a^R which Is a positive Integer s.t {a + Zk(a)a} = Rr\{a+Za} (cf.

(6.1)). The counting number k(a) plays a role In the definition of exponents In § 7

and In the study of the Coxeter transformation In § 9.

(6.1) Let (R,G) be a m.e.a.r.s. such that R/G Is reduced.

i ) For any root a^R, there exists a positive integer k(a\ which we

shall call the counting of a, such that

(6.1.1) [a+Zk(a)a] =

II) For any two wots a?@^R,

(6.1.2) k(0)\I(/3,a")k(a).

Particularly if 1(0, av)=±l, then

(6.1 .3) l \ k ( a ) / k ( / 3 ) \ I ( a , F ) .

iii) If q* is an automorphism of (R9 G), then

(6.1.4) k(a) = k ( p ( a ) ) for

Iv)

(6.1.5) R = ^±LM{a+Zk(a)a],

for a linear subspace Ll+l of F spanned by a basis (cf. (3.4)).

v) g.c.
g.c.d.{k(ai) : a0y 0 0 0 ? on a basis for (R, G)} = 1.

Proof, I) Put K(a): ={x^Z : a + xa^R} for a root a^R (cf. (1.16)).

Since O^K(a) and x, y^K(a) Implies 2x~y^K(a) (cf. (1.16) Assertioni L I )
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iii)), K(a) is an Ideal ofZ, whose non negative generator is denoted by k(a). Then

*(ff )=£0 due to (1.16) Assertion 2 and (3.3) Note 2.

Then ii ) iii) iv) and v) are direct consequences of (1.16) Assertion 19

Assertion 2»

(6.2) Corollary,, Let (R, G) and (/?', G') be m.e.a.r.s.'s and let {a<>, ..., at] and

tffo, ..., $1} be basis of (R, G) and (R', G') respectively (cf. (3.4) Bef. ). Suppose

(R, G) and (/?', G') are isomorphic. Then there exists an isomorphism <p : (R, G)

^(R', G') such that {<p(a0\ ..., p(or, )} = {&, ...,&}.

Proof, It is enough to show the case when (/?, G ) = (/?', GO. Recall the

projection £x : F-+F/G. Since pi(aQ), ..., pi(ai) and £i(/?o), ..., £i(&) are basis

for the affine root system J?/G, there exists an element w^ WHIG and a sign £^{±1}

such that (ew(p\(a*)\ o o o y ew;(/>i(flrt))} = {^i(A), ..., />i(A)}. (FF^/c acts transi-
tively on the set of chambers.) Therefore if w^ WR is a lifting of w, using the

Assertion i ) we see that there exists a permutation a^&i+i and integers

(i = Q, . .=, /) such that

Let us define two elements ^ and p of GL(F) by

F,
£=0

The map ^ is shown to be an automorphism of (/?, G) using the expression (6.1.5)

for Ll+1 : =® «af and the fact k(a} = k(-a).
i = 0

Let us show that <p is an automorphism of (/?, G). First let us show that /or

/3<ERnLl+1 with Ll+1: =(& R&, <p(/3) belongs to R such that

By definition <p@i = !3i + mik(l3i)a e /? "and (pw^9~l = w<pp.^ WR for f = 0, o 0 8 , /.

Therefore ^(/?nL'- l-1)=^(jJ

C WsR = R. Tf0 = w0i for tfetfn/1, ^e IF/^nr^ and 0<f </9 then

using Assertion i ) and iii) one computes A(p(#)) = ̂ (^fr1^ ) =
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_
Using the expression (6.1.5) for Ll+l—^R^i again, one computes .9R —

. Samely one computes

that <p~lRdR. This shows that <p is an automorphism of (R, G).

Therefore the composition <p~1w<p Is an automorphism of (/?, G) such that

)=$i, £ = 0, ..., /. This completes the proof of the corollary.

(6.3) Let us give a formula for the second tier number tz(R, G) using the counting

t2(R, G) = g.c.d. {

- = g ^ W ^ : a., . . . a, a basis}.

Proof. For the dual root system (^?v, G), parallel to (6.1.1) let us define,

(6.3.2) kv:R^-»N by {a^ + Zkv(a"/)av} = R"/ n {av + Za^}.

By definition, we have a relation,

9 T(sv^ /i/vN

(6.3.3) kv(av)av = * k(a)a = na a ' k(a)a for

Taking the proportion of (6.3.3), for a, 0^R, we have

Therefore

(6.3.4) A v ( g v ) = — 9' ^(g) for

,where c=

Applying (6.3.4) to g.c.d. {£ v ( f f v ) : o-S/?v} = l, one gets,

(6.3.5) c = g.c.d. { f ( g V ' g V ) A : ( g )

By definition of t2(R, G) in (4.3), applying (6.3.3), (6.3.4), (6.3.5),

, G) : = |(«v :
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o, O O O J at a basis}.

(6.3.6) A v ( g v ) = t,£ Gx 2 ^ f°r

(6.4) Let {#(), . 0 0 , ai} be a basis for a m.e.a.r.s. (/?, G), (3.4). Since it can be regarded
i

as a basis for the affine root system R fl 0 Roti, one can associate a Dynkin diagram
i = 0

F for this basis. (See for instance [14,5]). By \F\ let us denote the set of nodes of

jT, which is identified with the set {oro, ..., ai} of the basis. At each node of the

diagram corresponding to a base ar,-, let us associate the counting Integer k(ai)> so

that we obtain weighted Dynkin diagram (F, (k(a))a<=\n).

Lemma i ) The weighted diagram (F, (k(a)a<=\r\) is uniquely determined by

the isomorphism class of (R, G),

li) The weighted diagram (F ,(k(a))ae\r\) for a (R, G) determines uniquely the

isomorphism class of (R, G).

Proof. 1 ) (6.1) Assertlom iii) (6.2)

ii ) Let {a0, „ , „ , ai} be a basis for (/?, G). Let us take the expression (6.1.5) for

U {wat+Zk(at)a},
"-

where the right hand is uniquely determined by the weighted diagram (F,

(k(a))ae\r\). The marking G Is given by Ra. q.e.d.

Note. Let (r,(fc(a))a^\r\) be the weighted diagram for a m.e.a.r.s. (j?, G).

Then the weighted diagram for the dual (RV
3 G) is given by (Fv ,(£v(^v))«ve=irviX

where Fv Is the dual of F (i.e. the set of nodes of Fv Is bijectlve to .P and the arrows

on the bonds are reversed) and k^(av} Is given by (6.3.6).

(6.5) Due to the Lemma (6.4), the classification of m.e.a.r.s.9s Is reduced to the
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classification of weighted diagram (P ,(fc(a))a^\r\) where

I ) F is a Dynkin diagram for a reduced affine root system,

ii) the counting weights k(a) a^\F\ are positive integers s.t.

k(@)\I(l3,av)k(a) for flr,0e|r| and

g.c.d.{*(flr):

In the following we list all such weighted diagrams. For each weighted diagram,

we calculate the first and the second tier numbers, using (4.5.1) and (6.3.1)= For each

weighted diagram, let us define the type according to a similar rule as In (5.1).

(6.6) Exlstemc© ©ff m0e0aoiroSo9§0 To finish the classification of m.e.a.r.s.'s In § 5, we

want to show the existence of a m.e.a.r.s. (/?, G) for each weighted diagram (P,

(/c(a))a<E\r\) In the list of (6.5) s.t a basis for (/?, G) gives the weighted diagram.

This can be achieved by showing the following steps.

1 ) An explicit construction of (/?, G) is given in (5.2) (or (5.3)). (The author

owes to the appendix of [14] for a description of affine root systems).

Therefore we need to show the following ii )— v ).

II) Each (R, G) in (5.2) satisfies the axioms for an e.a.r.s. given in (2.1).

iii) The set aQ, „.,, at given in 3) of the table (5.2) is a basis for (R9 G) in the

sense of (3.4).

iv) The weighted Dynkin diagram (defined In (6.4)) associated to the basis

belongs to the list in (6.5).

v) By this correspondence (R, G)=» (F, (k(a})a<=\r\), the type for (R, G) in

(5.2) coincides with the type for (r, (k(a))a*\r\) in (6.5).

To check all these steps for all types of m.e.a.r.s.'s Is a rather long cumbersome

routln work, which we do not proceed In note.

(6.7) As a result of the classification, we have the following.

fem* Let (R, G) be a m.e.a.r.s. of type P(tl't2\

If tz = I, then k(a)=l for any

If t2=t(P), then *(flr)=y/*(flr, a) far any

(6.8) Note. It is curious to observe that the coefficients m (i = 0, „ = ., /) of b
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. . , ,. the first the second ., , ,
weighted diagram tier number tier number the ^ the dual

1

1 1

1 2 2

Bil'1} Ci2'

2

2 2 2 1
•^-o 1 2 5i1>2) CP'
2

1 1 1 1 1
o ~ 0 . 0 — o - - o 2 1 5S2'1' C?'

2 2 2 2 1

2 2

I 1 Cjlf

2

C(1'

CP'
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1

^ £_...—£—«4 2 2 CP'2) Bll'l)

2

L^-l L 000 -L^J 1 1 Ci1'1* 5P'2)*
2 2

1 1 1 1 1
2 1 5CP'15 5CP'4)

2

2 1 BC{2>1) 5CP'4)

4 2 2 2 1
o-̂ -o o— o o o —o-^-o 2 4 BCi2'4} BC?'l)

u u

2 1 1 1 1

2 2 2 2 1

L^i 2 2 J5C}2'2) R^-(2'2)

1 1

,1 1 1

1

1 1 1 1 1
o o
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o o o-

1 1 1 1 1 1 1 1
—o o o o o 1

2 2 2 1 1
1 2 F4

(1'2)

F4(2'1}

F4
(2>2)

2

1 1 1 1

2

2 2 1 1

1

1
— o

a-

F4
(w) F4

(2-2)

Gil>1) G

Gili8)

'3)

Gill'1}
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(3.3.6) and the counting coefficients k(at) (£ = 0, ..., /) behave somehow parallelly

in connection with the and the second tier numbers (cf. (4.5=1) and (6.3.6)).

This fact leads us to a definition the of exponents in the following

paragraphs. Particularly it becomes clear again In the study of foldings in § 12.

We Introduce In this paragraph exponents for a m.e.a.r.s. (R, G), which we shall

use for a definition of the Dynkln for (R, G), The exponents

as values for Coxeter transformation of (R, G) in §9 and as the of

WR,G Invariant ^-functions In [20].

(7.1) Let (R, G) be a m.e.a.r.s. and {aQ, O O O J cti] be a for (R, G) (cf. (3.4)

Del).

B©imM©mo The exponents for (R9 G) are

T-f™. x,,.\
(7.1.1) w , : = -

m are the coefficients of (3.3.3) and, k(a} is the counting in (6.1) and IR

is the normalized metric on F defining the even lattice structure on Q(R) (cf. (4.2)).

(7.2) For each type of isomorphism class of m.e.a.r.s.9s, the exponents are calculated

and given in 4) of the table (5.2).

Let (R, G) be of type

If t2=t(P\ then Mi=m i = 0f o o o y /.

// fa = l, then mi=lR(a%ai)ni i = 0 , 0 0 0 ? /.

(° 0° (6.7) Assertiom.)

(7.3) Asserdom. 1 ) The exponents are half integers.

II) The set of exponents does not depend on the choice of the bases {ao, o o O J ai},

(Y (6.2) Corollary and (6.1) Assertion! 111).)

iii) Let
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„ I^(aY.aY) v , „ ,
m' -~ 2kv(aY) «-">-. '.

be the exponents for the dual (Rv, G). Then mi's and mY's are proportional.

Precisely,

n,v _ ti(R, G)t,(R, G) ,„ . n ,
Mi — - t(R) — - ' Z — U , ...,/.

Proof.

(by (4.5.1))

: a}ni (by (63-3))

m i = l l > m i ( b y (4J)' (4'4))-

(7.4) We prepare an assertion which is rather of technical nature, but will be used

in crucial steps of the proofs of (8.6) Assertion, (9.6) Theorem and (10.1) Assertion

5 for the proof of Lemma B.1

Assertion. Let {#0, ..., at] be a basis for (Ry G) and mao, ..., mat be the

exponents. For a, /3^{a<>, ..., ai] suppose mp< ma and I(a,

Then

Proof. From the formula (6.3.6), we have,

k(a) A : v (^g v )_ /Xg .g~

Except for the types M1'1'* or BC[2'2\ we have either I(a, /?v)= -1 or 1(0, av) =

— 1. Thus taking in account of (6.1.3), * ) implies,

either k(a)_Ua,a) or r(lv) _ /XlM")
either ~ ° r ~ v

On the other hand due to the proportionality of exponents (7.3) iii) and (6.3.6), the

statement of the assertion is equivalent for (R, G) and (^?v, G) so that one may
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prove only one of them. Therefore, except the types ^4i1>:l)* and BC(2i2\ we may

assume IR(a, a)/2k(a) = lR(0,0)/2k(0) by choosing one of (/?, G), (^?v
? G).

Thus the problem is reduced to show,

**) // nft<na and I (a, @)±Q for a,0&\F\, then I(a, £v)=-l, where F is a

Dynkin diagram for a reduced affine root system,

If 7 ( f f , £ v )= - f=£0 , -1 for ff,£e|r|, then -*j- and therefore

( Y Folding of Dynkin diagrams). This proves ** ).

The cases A^'1}* and BC{2>2) can be directly verified. q.e.d.

§ 80 DymMm Diagram for a mee.aoFoSo

In this paragraph, we introduce a Dynkin diagram PRiG for an Isomorphism class

of (R9 G). The Dynkin diagram gives a most intrinsic way of describing the marked

extended affine root system (R9 G) as we see In § 9.

(8.1) Coiimemsiom off (R9 G). Let {a0, ..., <arj be a basis for a m.e.a.r.s. (R, G) (cf.
i

(3.4)) and F be the Dynkin diagram for the affine root system j?n 0 JStf*. Recall
z=0

the exponent m/:= 9^./? \ ^« at each node ^z- of F.

1. Let us denote by Fm the subdiagram of F consisting of nodes,

Here wmax:= max{w0, „. , , mi}.

5 denote by cod(J?, G) ^ number #\Fm\ and call it the codimension of

(R, G).

Note 1. Due to the proportionality of exponents ((7.3) iii)), the set \Fm\ is

naturally bijective to

Therefore cod(J?? G) = cod(j?v, G).

2. The name codimension for cod(J?, G) Is Introduced here, since it Is

identified with the codimension of a Hamiltonian system introduced In [30, (1.12)]
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(i.e. cod(R} G) is the number of (energy) functions which is necessary to describe the

system constructed from (/?, G). For the precise identification, see [20].)

(8.2) Hereafter, we use the following notations

i ) a*: = a + k(a)a for are/?. ( k ( a ) is the counting defined in (6.1)).

ii) |ri|:= {ar*

The Dynkin diagram FR,G for a m.e.a.r.s. (/?, G) is defined as

the intersection diagram for the set \P\\J \Pm\. i*e*

i ) The set of nodes \rRtG\ of the diagram is identified with the set \T \ U \r£\

consisting of l(R)+cod(R, G)+l points.

ii ) Bonds and arrows among nodes are inserted according to the same rules for

a finite root system with an additional case. Namely as follows.

if I ( a , £v)=0 (<=>/(£ flrv)=0),
if

if
if I(a,F )=/(& a")=2.

(8.3) i ) The diagram FR,G depends only on the isomorphism class of (/?, G).

(v (6.2) CeroIIarj, (7.3) ii)).

ii) The diagram JV,G far the dual (J?v, G) is the dual diagram of PR,G*

(i.e. arrows are reversed.). (V (8.1) Note 1.)

iii) For each type of m.e.a.r.s., the Dynkin diagram is explicitly given in 5) of

(5.2).

iv) The Dynkin diagrams distinguish the isomorphism classes of m.e.a.r.s.'s,

(i.e. if two m.e.a.r.s. 's have the same diagram, they are isomorphic.)

( Y cf. (9.6) Theorem)

Note 1. The diagrams for E?tl\ Elltl\ ElL1) appeared already in a study of the

lattice for simple elliptic singularities. (See W. Ebeling [5], where he gave more

generalized Dynkin diagrams for the lattice of singularities.) Also W. Ebeling has

noticed to the author that the diagram appear also in a study of the presentation of

algebras (cf. [2]).
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Note 2. B. Verdier has told to the author that he got also some of the diagrams

In his note [6].

(8.4) We collect here some elementary facts on the Dynkin diagram and exponents

for a (R, G), which we shall use in later paragraphs freely.

i ) The diagram is isomorphic by a transposition of nodes a^Fm and a*^Pm

which are connected by the bond O=====D.

ii) The complement F^G—FmUFm decomposes into a finite disjoint union of
diagrams of type Aii9 i = l, ...,r.
iii) Each component FA^ is connected to Fm only at one node, say &£= \rm\, at

a terminal node of PAl..

iv) On the branch I\.U{/?J of FR,G, the exponents m/s are in arithmetic

progression. Namely

. = //(/* + !) for / = !, ...,

where a\, ..., ait+\ are renumbered nodes of J^.U{/?J.

v) Put

/max : = max{/2- :

Then

/e + l |/max + l fa

This implies that /max + l is the smallest common denominators of mmax/mi9

(8.5) As an application of the above facts (8.4), we give a reduction of a calculation

of some numerical invariants, which practically helps much.

Let the notations be as before. Then,

(8.5.1) g.c.

(8.5.2) t*(R, G) - g.c.d.

Proof, The formulae were shown readily If we replace the running Index set a

rm\ by 0e|r| ((6.1) Assertion v), (6.3.1)).

Therefore in account of (8.5) iv), it is enough to show the following.
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*) Let a, £e|r| s.t. I(a,0y±Q and

Then k(a)/k(j3) and k(a)lR^(a^ g> / ) /k($)lR^(^ ^ a™ integers.

(Proof of *) Due to the (7.4) Assertion, in the above situation, k(a)/k(/3)

= -I(j3,a^) is an integer and hence (k(a)lR"(a^ a^ )/(k(0)Is"(0^ ^} ) =

— /(/?v, a) is also an integer. q.e.d.

Corollary., Let (R, G) be a m.e.a.r.s. such that cod(R, G) = l.

Then

fa(/?,G)= J*V^2
V^V) where a^\Tm\.

(8.6) Discussions on the Dynkin diagrams.

There does not exist an apriori definition of a Dynkin diagram for an extended

affine root system or for a marked extended affine root system, since there does not

exist a concept of a Weyl chamber (cf. (3.2) Note 2.) comparing to the case of a finite

root system or an affine root system. There are several trials to understand the

Dynkin diagrams for such a generalized situation by several authors. (See for

instance W. Ebeling [5], F. Knorrer [8], P. Kluitmann [10], Van der Lek [26] for our

restricted cases.)

The Dynkin diagrams, which we defined in this note, have several similarities

and un-similarities with the classical one for finite or affine root systems. We shall

list them in the following.

Unsimilarities

i ) The diagram FR,G depends not only on the roots R but also on the marking

Gdrad/. (cf. (5.4) Appendix)

ii) The number l(R)+cod(R, G)+l of the nodes of the diagram is larger than

the rank l(R) + 2 of the ambient space F in general. The linear dependence

relations among the nodes as elements of F are described by the unipotent part of

the pre-Coxeter transformation, (cf. (9.6))
iii) The Cartan matrix (I(a, j3^))a,/3<=\rRiG\ contains positive numbers 2 = I(a*, a^ )

for a^\rm\ in its off diagonal part, (compare with [33])

(Obviously all these three facts are related to the fact : the high degeneration

(f*Q = 2) of the metric /.)
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Similarities

i ) The lattice Q(R} is generated by flre|/ifG|. The group WR is generated by
wa for ar€E|/\G|. The set of roots R is equal to (J WRCI* ((9.6) Theorem)

arein

ii) Coxeter transformation for (/?, G) is naturally defined as a product of wa

for a^\rR,c\, which is of finite order, whose eigenvalues describe the degrees of the

invariants of WR« ((9.7))

iii) Up to isomorphy, the root system R together with the marking G is

reconstructed from the datum of FR,G- ((9.6))

iv) The diagrams behave naturally with respect to the automorphism of (R, G)

and foldings of (R, G). (cf. § 12)

v) The multiplicity of the discriminant {—the square of the fundamental anti-

invariant of WR} is equal to #|A,C| ( = l(R)+cod(R, G)+l).

From these phenomenon, one would naturally expect an existence of a theory of

Infinite dimensional Lie algebra associated to these diagrams, (cf. Slodowy [23])

In fact there exist simple elliptic singularities ([28]) of types called EQ, E?, Es, Ds,

A4 such that the middle homology groups of their smoothing contain naturally root

systems of types Eiu), Eju), E^\ D(5lsl) and A(4lfl) as the set of vanishing cycles

respectively. In these cases, the multiplicity of the discriminant of the unfolding of

the singularities is equal to /(J?) + cod(J?3 G) + l, where cod(/?, G) coincides with

the codlmension of the unfolding. Then by a suitable choice of pathes In the base

spaces of the unfolding, one can find a ''strongly distinguished basis" for the middle

homology group such that their intersection diagrams coincide with the Dynkin

diagrams of the corresponding root systems defined in this note. (cf. [31],[34])

In [20] we shall construct a quotient space by the natural action of WR,G (cf.

§ 11) on a complex half space. The space will be Identified with the base space of the

universal unfolding of the singularities E&, E7, Es, D5, A* for the case Eo"l\ E?1'1*,

£$w), Diu), 4(
4

U) (cf. also E. Looijenga [12], P. Slodowy [22]). This might give a

strong justification for the definition of the Dynkin diagram In this note.

§ 9 Coxeter Transformation!! 1

(Construction of (/?, G) from the diagram FR,G)

In this paragraph, we construct the m.e.a.r.s. (R, G) up to an Isomorphy from
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the data of Its diagram FR.G ((9.6) Theorem). Here the concept of a (pre-) Coxeter

transformation ((9.3) Def.) plays an essential role.

(9.1) A decomposition of FR,G. Let FR,G be a Dynkin diagram for a m.e.a.r.s. (/?,

G). The diagram consists of l(R)+cod(R, G) + l number of nodes and contains

cod(/?, G) number of bonds C=====D.

Let us fix a decomposition of the set of 2cod(J?, G) nodes connected by such

bonds into two subsets \Fm\ and \Fm\ so that two nodes at the terminal of any such

bond are divided into the two sets. Such decomposition is unique up to

isomorphism of the diagram (cf. (8.4) i )). We shall denote by a* the node in \Fm\

which is connected to the node a of \Fm\ by the bond <=====».
Recall that the complement FR,G-Fm(JFm decomposes into connected com-

ponents of diagrams of types Aii(i = l, O O O J r\ so that we obtain a decomposition of

the diagram FR,G-

(9.i.i) FR,G =
(9.2) The Yector space F with a metric / . Define,

1) F := the vector space of rank l(R)+cod(R, G)+l spanned by a^\FR,G\.

To avoid a confusion, the base of F corresponding to a node a^\FR,G\ will be

denoted by a*

2) There exists a symmetric bilinear form I on F s.t.

i) I(a,a)>0 for a*=\rR.G\.
ii ) / satisfies the same rule for I stated in (8.2) Deff.

Such metric / Is unique up to a positive constant factor.

3) / is positive semi- definite. The radical of I has rank cod(Rs G)+l, which

is spanned by

S := 23 naa and &-&* for a^\Fm\,
«^rRtG-r*

where na are the coefficients in (3.3.6).

Proof . By definition a* — a for a^\Fm\ belongs to rad / . The quotient space
F I 0 R(d* — &) may be regarded to be spanned by the diagram F^G — Fm for aa^\rm\
reduced affine root system, where the / induces a positive semi-definite metric,

whose radical Is spanned by b . q.e.d.
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(9.3) Pire-Coxeteir

For a node a^\rR>G\, let us define a reflexion wa^GL(F ),

wG(u):=u-I (u,a^)a where a^:= 2a/I (a, a).

tiom. An element c of O(P, I ) is called a pre-Coxeter transformation

for (R, G), if it is a product of wa for a^P^G — PmDFm and wawa* for a^Fm

for any ordering of them.

Due to 1 of [1] Ch. V, § 6, every pre-Coxeter transformations are

conjugate in the group W:— <wa :

(9.4) Joriaii iecomposfitlom ©ff c.

The following Is a key Lemma in this paragraph.

o Let c be a pre-Coxeter transformation for the diagram J\G.

Let the Jordan decomposition of c be,

(9A1) c = SU.

Then, the set of eigenvalues of the semi-simple part S is given by

(9.4.2) eXp^TT/^Wmmax) for ff^|A,c|.

Hence

(9.4.3) 5(%ax+D = L

(9.4.4) (C/-l)2-0, (I.e. log U =£7-1).

(9.4.5) Imagem-1) = ^ ^(^f - ̂ f ) C rad/ .

Proof, For any {t€=\rm\, define

(9.4.6) St := w^+2'wad,

(9.4.7) 5? := »d0* + 2'»Ba*.

Here 2' means the summation over all nodes a belonging to components PAL.

which is connected to £e | A,|. Due to (9.2) 3), rad / Is spanned by S - 2 S
^e|rm|

by SS-Sfforf le l /U
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For each component FAI{ of (9.1.1), define a space

(9.4.8) F i := ® R& (f = l,...,r),«*rAl.

so that we obtain an orthogonal direct sum decomposition,

(9.4.9) F = ®Fi® 0 R&a® 0 R($*a-&a).
m\

Since the statements of the lemma depends only on the conjugacy class of c , we may

choose one c as follows.

(9.4.10) c:= ci...dr*t\

where ti := H wa (/ = !, ..., r),
<**\rAl.\

t 1= II foafta*.
a<E\rm\

To analize the action of c on F , we look at the actions of c i, ..., c r and f on each

factor spaces of (9.4.9).

Assertion 1.

A Coxeter transformation for

A ti for i=j,

idpj for i=t=j.
i )

ii) di$a = £a for
Cibl=bl for

lii) i = idp —B

where

B:F - » 0 R(a*-a)c:F is defined by w - > 2 I (M, ff^)(0*-/3).
ae|rm| ^\rm\

Proof, i ) Trivial, since the spaces F i, ..., F r are orthogonal to each other.

ii ) We show only the first formula.

If FA* and a^\rm\ are disconnected, a is orthogonal to F i and hence c iS a =

ba. If /* and # <E|FOT| are connected, c; $a = Ci($— S Sp) = S— S £? = $<*.
ra|/3¥=a ^¥=a

iii) Using / (A*, #v) = 2 and / (M, &*) = ! (u, &\ one computes,
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Since ^* — aSrad/ for a&\rm\,, we obtain,

/ («)=«- 2 /(«, £ v )(£*-*). q.e.d.
nl

2. Lef the notations be as above. Define

(9.4.11) S:=6i...dr(idt—B-pi\

(9.4.12) U:=id?-B°p2

^ r ^
where pi and p2 are linear projections from F to the direct factor spaces @F ,•
and 0 R$a in (9.4.9) respectively,

Then £ = SU gives the Jordan decomposition of c.

Proof. Using the Assertion 1 one checks Immediately pi° B = p2° B = [B ° p2,

i ... Cr] = 0 and B(pi + p2) = B. Then by definition

-B°p2)

idF -B-pi)

-[B-p2,di...dr])(idF -B-pi)

The Unipotency of U is a direct calculation as,

(9.4.13) (U

To show the semi-simplicity of S, we show that S Is conjugate to c\ ... cr,

which Is semi-simple since di is a Coxeter transformation on F z- for the type Ai{

and an identity on the other factors of the decomposition (9.4.9). q.e.d.

o Put

T:= idP-B° d°pi

where d : = (ci ... cr\ ®F — idY1 : ®F / - > © F Z - . Then T is invertibte
= = =

(9.4.14) T~1ST = C i B O O
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Proof . T Is well defined, since ti does not have eigen value 1 on F i, T Is

invertlble, since (T—idp)2 = Q.

= £1... dr-B°pi-B* d - p i

B-d-pi)di...dr+B(d-pi(di...dr-l)-pi)
..cr. q.e.d.

Proof of the lemma (9.4).

(9.4.2) is a direct consequence of (9.4.14), Assertion 1 i ) ii ) and (8.5) iv) v ).

The unipotency (9.4.4) is shown in (9.4.13).

Let us show (9.4.5). Due to (9.4.12), Im(U-l)=Im(B • pz).

a)= 2
0e|r

Here we use a relation naf (6, a) = k(a}ma(I : ZR), and ma = mmax for

Using the last expression, it is a straightforward calculation in linear algebra

that the fact that Pm is a connected linear diagram implies that B(Sa) for ^^|Fm|

/$* — $ &* — &\
spans the space 2 jRl / / n \ --- // \ 1. q.e.d.^ ^ a,/?eir«i V A(^8) k(a) J n

The formula (9.4.5) implies that ^Ae abstract data of the Dynkin

diagram FR,G determine automatically the counting constant k(a):= (a* — a) : a

for a^\Fm\ in the following way,

First, notice that lm(U — 1) does not depend on the choice of the pre-Coxeter

transformation. ( v Im( U — l )Crad / , so that it is pointwisely fixed by the group

W.) Through the formula (9.4.5), the relation Im([7 — 1) = 0 determines the

proportion among k(a) (a^\Fm\). Since g.c.d. ( k ( a ) : a^\rm\) = l ((8.5.1)), these

data determine k(a) (a^\Pm\) uniquely.
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(9.5) AssertloEio Put

W : = the sub-group of O(F , / ) generated by wa for

R : = U Wd,

Then $ is a root system belonging to I ,

A

Proof. Recall the definition (1.2) for a root system belonging to / . It is

almost a routine work to check that R is a root system in the sense of (1.2). (cf.

(1. 3) Exo 40). q.e.d.

(9.6) We arrived at a goal of this paragraph.

Let PR,G be the Dynkin diagram for a m.e.a.r.s. (R, G) w.r.t. a basis {ao, ..., at}.

Put

Fr : = F/Im(t/- lX

Ir : = the metric on Fr induced from /,

Rr : = the image of R in Fr,

Wr : = the subgroup of O(Fr, Ir) induced from W,

Gr : = 0 R(a* — a )/Im( U — l) (one dimensional subspace of Fr)3

Or : = 0 Z&/((

Here the notations F,I ,U,W,R are in (9.2) 1), 2), (9.4.1) and (9.5).

Let the notations be as above,

1. Rr is an extended affine root system belonging to /r, such that WjRr=Wr,

Q(Rr)=Qr. The subspace Gr defines a marking of Rr.

2. The marked extended affine root systems (R, G) and (Rr, Gr) are isomor-

phic.

Proof, 1. Due to (9,4.5), Im (U — l) is a two codimensional subspace of

rad/ , which is defined over Q. (i.e. ( 0 %a)r\lm(U — l) is a full lattice in
A a^FR'Gl

Im(U — 1).) Then the image Rr of R in the quotient space Fr is a root system

(cf. (1.8) Assertion). Gr is obviously a rank 1 module defined over Q.

2. Since a change of the choice of the decomposition Pm{J Pm in (9.1) induces an
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Isomorphism of the diagram PRtG ((8.5) i )), It induces an isomorphism of the root

system Rr. Therefore let us fix a choice of Pm and P% as done in (8.1) (8.2).
jf± /y* sy

Define a linear map F ~-+F by a*-*a for #€E|/VG|. Since —r?—^—=a for any

(cf. (8.2) i )), taking account of (9.4.5), one sees that the map is factorized

by an isomorphism Fr-^F, inducing Gr—G. Furthermore this identification

induces Ir = cl for some c>0.

By this identification Wr becomes a subgroup of WR and hence Rr = U Wra

Is a subset of R. We want to show that Rr^>R, which implies also Wr= WR-

Let us put {<jo, ..., ai}:= \ PR,G\ — \Pm*> Then ato, ..., at is a basis for the reduced

affine root system Rr\Ll+l where Ll+1:=®Rai (cf. (3.3)). Recalling (6.1.5) and
i=0

(6.14), we have

R= M (a+Zk(a)a}
a<^RnLl + l

= U WW+1 (at+Zk(at)a\
i=0

Since Wi?nLi+i = <Wa0, ..., ^>C PTr, the last expression implies that If ati
dRr for i = Q, ..., /, then J?C'J?r.

Let us show the Inclusion a + k(a)Za<^Rr for flre|rifC| — I -Til by decent

induction on the exponent ma.

If a&\rm\, then

= a-2m(a-a*) = a + 2mk(a)a for

a*} = a*-2m(a-a*) = a + (2m + l)k(a)a for

If or, /3 are nodes of /\G which are joint by a bond. Suppose mp< ma- By Induction

we assume that a, a*^Rr> Then (7.4) Assertion implies,

for

This completes the proof of the theorem.

(9.7) The Coxeter transformation c. Let #0, . = 0, at be a basis for a m.e.a.r.s.

(/?, G) and A,G be the Dynkin diagram for (R, G) w.r.t. the basis (cf. (8.2)).
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A Coxeter transformation c for (R, G) w.rX tk» basis {aQ, ...,

at] is an element of WR defined as a product of wawa* for a^\Fm\ and wa for

As a conclusion of the study In this paragraph, we have ;

Lemma A0 I ) The conjugacy class of a Coxeter transformation in WR
i

depends only on the linear space Ll+1:=@Rai and the sign of the generator a

of Q(R)nG (cf. (2.3.1)), but neither on the order of the product for the

expression of c nor on the choice of the Weyl chamber C in choosing a basis for

R/G (cf. (3.3)).

The change a*-* —a of the sign of the generator a of G brings the conjugacy

class of c to the conjugacy class of c"1.

il) Let <p : (F, G) — (F, G) be an (outer) automorphism for (R, G) and c be a

Coxeter transformation w.r.t. a basis {#o, ..., ati}- Then ad9(c): = cpc<p~1^. WR is

a Coxeter transformation w.r.t. the basis {<pav, ..., <pai}.

iii) A Coxeter transformation c for (/?, G) is semi-simple of finite order /max+l.

The set of eigenvalues of c is given by,

wa/Wmax) for a^r^G-Fm and 1 =

Proof. I ) The conjugacy class of c does not depend on the order of the

product to present c, due to Lemma 1 [1] Ch. V, § 6.

The change of the sign a to — a, Induces the change of a* : = a 4- k( a )( — a ) (cf.

(8.2) I )). Therefore wawa* is changed to Wa*Wa = (wawa*)~l> Therefore if c Is a
Coxeter transformation for a, then c"1 Is a Coxeter transformation for the generator

— a.

il) Let <p : F^»F be an automorphism of (/?, G). Since <p(a*)=<p(aY (cf.

(6.1.4)) and q>Wa9~l = W9a for a^R, If c Is a Coxeter transformation w.r.t. a basis #0,

.„-., a i then <pc<p~l Is a Coxeter transformation w.r.t. the basis <pa$, ..., <pai-

ill) Any Coxeter transformation c Is the Image of the pre-Coxeter transformation c

by the natural projection W~ » WR. Since c act as identity on the kernel Im( U — 1)

Crad / of the projection F —»F, the eigenvalues of c Is equal to that of c minus

{1, o c , 5 1 : £-times}. Then (9.4) Lemma i ) Implies the assertion. q.e.d.
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§ 10. Coxeter Transformation 2
(The existence of regular eigenspaces of a Coxeter transformation)

(10.1) Let c be a Coxeter transformation of a m.e.a.r.s. (R, G) defined in (9.7). The

following Lemma B is the main result of this paper, which plays a crucial role in the
construction of flat ^-invariants (cf. [20]). The proof of the Lemma B is now a
straight forward work.

Lemma B.

Proof. Recall that c'
max+1 = l ((9.7) Lemma A Hi)). Hence (c-l)(clmax

i + ... + i) = 0. Due to the semi-simplicity of c, Im(c-l) = ker(c*max-f-''e

+ 1). Thus what we have to show is that no root a of R satisfies the equation,

(10.1.1) P(c)a = Q, where P(c) : = c
lmax+ctmax"1 + — + l.

Due to (9.7) Lemma A i ) and ii ), the statement of the B does not
depend on a choice of a Coxeter transformation. Therefore we take a Coxeter
transformation c which is the image of the pre-Coxeter transformation c of (9.4.10)

and we use freely the results and notations in (9.1)-(9.6).

Put,

(10.1.2) c : = ci-Crt

where a : = H wa (i = l, ..., r\
a^\rAt. \

t I = II WaWa*,
aeirmi

(10.1.3) Ft := 0 Ra (i = l, ..., r),

(10.1.4) ba : =

Here II in (10.1.2) means a product for a fixed linear ordering and 2' in (10.1.4)
means the summation over all nodes of components /"^ which is connected to the

Assertion 1. P(c)Fi = 0 mod G for / = !,..., r.

Proof. Due to Assertion 1. Hi) in the proof of (9.4), t = idr mod G. Also due
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to the same Assertion 1. i ), c\Fi = d\Fi and hence P(c)\Fi = P(d)\Ft mod G.
On the other hand /f + l|/max + l ((8.5) v)) so that Pi(a): = clii + cp-l + — + l
divides P(d). Since a\Ft is a Coxeter transformation for Ait so that Pi(a)\Fi

= 0 and hence P(d)\Ft = 0. q.e.d.

Assertion 2» P(c)ba = (lm&x + l)ba mod G for

Proof. Using (9.4) Assertion 1. ii),

P(c)ba = P(l)ba= Umax+D6a for

3* If a root a^R satisfies the equation (10.1.1), then a =
where 0 is a root of Ait for some i and m^Z,

Proof. One may choose bf(^\Fm\\ tf (<ze|Aj, i = l, ..., r) and a as for

(rational) basis for the linear space F.

Put

*) a= 2 ctfa+l 2
Pe\rm\ 1 = 1 ftelFA

Apply P(c) on * ) and applying Assertions 1 and 2,

P(c)a = (/max+1) 2 Cftbfl mod G.
fi^\rm\

Since bp (@^\rm\) are linearly independent mod G, P(c)a = 0 implies c^^O for 0
e |r«|. Therefore if a of * ) is a root of R with P(c)ff = 0, then 2 2 c^ff is

, *=i^|/Mi,l

an affine root in J?n (01?^). Since the set {£<EE | A,c|-|r^| : c^O} is connected,
i=0

there exists some f, !</<r, so that {/? : c^^0}ci | A£J. q.e.d.

4. Notatlomso Let the component FAli be connected to ^e|r»|, so that the

diagram at that branch looks like,
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where t = l, 2±1, 3±l, 4±l or oo. (For the convenience we use a convention o—«—

o o and °—r-o = o-̂ -o for t = 2, 3, 4.)
t> i

A positive root of Ait with respect to this basis fa, ..., fftf is given by,

au,v : = 0u+0u+i + ...+j3v for some u, v^Z with l<u<v<h.

Define a Coxeter transformation a for Ait by,

d : = Wftti — w;^.

Direct from the definition, one calculates

,v =\Q!u-i,v-i for

for u = I.

Since all roots au, v, 1^ u<v< /»• are conjugate each other the counting k(au,v\

is & constant ((6.1) Assertion iii)), which we shall denote ki : = k(au,v)

Assertion 5» The Coxeter transformation c leaves the space Fi®G invariant

for / = !, . 0 0 , r. We have a formula,

P(c)au,v= l™^(v-u+l)ha for l<u^v<h.

Proof. Due to (9.4) Assertion 1. i ) iii), c\Ft® G = dtft\Fi®G where tf =

and tft(u)=u-I(u,0*)k(0)a.
By induction on m, we have,

(c^)mM = cf«-/(s1c? u,0Ak(0)a for\«=o /

Hence for u^Fi, we have

It It li lm-\
* * * ) Pi(c)u :=2 (c^ ) m w=2cfM-S / (5}c?u,/3

m=?Q m=0 OT=O \n=0

On the other hand using ** ) in 4., I(c?au.v, /?v) is either /(&, /3V), -/(A, ^v)
or 0 according as n=u — lL9 n = v or »^= M — 1, z;. Therefore applying *** ) for u
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Pt(c)au.v= -((li-
= (v— u+l)kia.

Here In the last step of the calculation, we have applied (7.4) Assertion for a :=#,

0:=/3i since mfi1<m/3=mmax.

Since /* + 1 1 /max + 1 and hence P(c)=Q(c)Pi(c) for some polynomial Q(c)

such that Q(1)= /7VI^1
> we have-

q.e.d.

6. Let a^ R be a root of the form,

a = au,v+mkia for l<u<v<li,

If we have shown that P( c)a^G, we have completed the proof of the Lemma of

(10.1).
Using the formula of Assertion 59

Since 1< u<v<h, the value y
 7 ?1" lies in the interval (0,1).

vi \ J.

Hence ~~j +m =/= 0 for any

End of the proof of Lemma B0

§11. Coxeter Tramsffoirmatiom 3

(The generator of the extension WR,G of WR).

Let P^R,G be the hyperbolic extension of WR (cf. (1.18) or (11.1)) and c be a

hyperbolic Coxeter transformation ((11.2) Def.). We show that WRiG Is a central
extension of WR by an infinite cyclic group which is generated by c*max+ie ((11.3)

Lemma C).

(11.1) Let (J?, G) be a m.e.a.r.s.. Let us recall briefly the notion of a hyperbolic



158 KYOJI SAITO

extension w.r.t. the marking G from (1.17), (1.18).

1. There exists a triple (F, I, c) where F : = a vector space of rank / + 3, I : = a

symmetric bilinear form on F and c : F-*F is an injective linear map s.t. i ) I =

I°c ii) rad/ = *G.
Such triple is unique up to an isomorphism so that we fix one and regard c as

an inclusion map.

2. Denote by wa^O(F, I) the reflection of a^R as an element in F, Denote

by WR,G the group generated by wa (a^R) and call it the hyperbolic extension of

WR.

3. The restriction map p* of the action of WR,cfrom F to the subspace F induces

a short exact sequence,

(11.1.1) 1 - >KG^ WR,G-^ WR - > 1,

where

EG: F®FlG^End(F\

i9 u)

is the Eichler Siegel presentation (cf. (1.17.2)) and

(11.1.2) KG: = EGI(WR.G)C{MG

is a lattice of MG := G®(rad I/G) (cf. (1.18) Lemma).

(11.2) Let {<zo, ..., ai] be a basis for (R, G) and J^.G be the Dynkin diagram for

(R, G) w.r.t. the basis.

Definition. A hyperbolic Coxeter transformation c for (R, G) w,r.t. the basis

[ao, ..., ai} is an element of WR,G defined as a product of wawa* for
and wafor a^ \ A,G|-|rTO| U |rj|.

Same argument as (9.7) Lemma A proves,

Assertion? i ) The conjugacy class of a hyperbolic Coxeter transformation c

in WR,G depends only on the linear space ® Rat and the choice of a generator a
i=0

of Q(/?)H G, but neither on the order of the product to present c nor on the

Weyl chamber C in choosing basis for R/G (cf. (3.3)).
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ii) Let <p : F^F induce an automorphism of (/?, G), whose orthogonal

extension is denoted by $> : F-*F. If c is a hyperbolic Coxeter transformation

w.rJ. a basis {ao, ..., ai}, then adq>c := <pc<p~1^ WR, G is a hyperbolic Coxeter

transformation w.r.t. the basis {<pao, .„,, <p@i}.

ill)

(11.3) The main purpose of this paragraph is to show the following Lemma C.

Lemma Co Let the notations be as above,

i ) c'«-+1 = (In : /)±

ii) ( IR : /) max - a®b generates KG ®s a cyclic group.
Wmax

i. e. The element clmax+l generates the cyclic group ker($*).

(Here a, b are Z -basis of Q(R)H rad/.)

Note. Let us choose the basis a, b of Q(R)f\ rad/ as in (2.3.1) (2.3.2). Then

as an element of MG : G(x)(rad//G), a®b is unique up to a sign. The sign of the

element is determined by the realization of the Dynkin diagram PRiG as a set of roots

of R in the following way.

i ) The choice of a basis {ao, ..., ai} determines the sign of b by (3.3.6).

ii ) The choice of Fm and Fm determines the sign of a by (8.2) i ) ii ).

(11.4) Proof of i) of Lemma C.

Let us denote by IR the bilinear form (IR :/)/. First let us show a formula,

(n.4.1) (e-i)e+fR(e9i,)—L-a e (C-DFI+* for $ ^FL+*.
Wmax

Note that the formula (11.4.1) does not depend on the choice of c in the conjugacy

class in WR,G, since the change of c by w~l c w for a w^ WR,G induces,

Case cod (R, G)=l + l. This is the case when rR,G = Fm\jrm- Since c =
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a WaWa*, similarly as in (9.4) Assertion 1 iii),
ml

2
c(u) = u- 2 I(u, a) v (a* -a)

ae\rm\

1 R(U, 2 naa)a.
ae\rm\

(Here we used the facts m a = L ( ( l . l . l ) \ mm&x=ma and a*-a = k(a)a

((8.2) i)) for

Case cod(j?, G)< / + !. Since /*,<?- r«U r»=£#, let us take a node aQ of the
diagram jTU^ for some / so that ao lies at terminal of the diagram. Take one c

by c : = wao°d, where d is a product of $aWa* for a^\Fm\ and ^a for ^e|F^,G| —
|r«|u|r;|u{flro}.

Since (11.4.1) is obviously true for %^Fl+z, we have only to show (11.4.1) for

one g^FL+3 s.t £&FL+2. We may choose one such f satisfying /(f ,flro)^=0, /(f ,

^) = 0 for flre|r*iC| Qf^^o, so that rf(f )=f. Then

On one hand, applying Assertion 5 in the proof of (10.1) Lemma for u = v = l,

P(c)(ao— j , \ a} = 0. Therefore the semi-simplicity of c implies that the second

term of * ) a*-^~^a belongs to (c-l)Fl+2,

On the other hand noting /(£, b) = /(f, ^naa) =naol($, ao), (li + l)mao =a

mmax ((8.5) iv)) and mao=
 ao> the la§t term °f * ̂  becomes'

IR(a0,
_.a "

This completes the proof of (11.4.1).
Applying P(c)= c£max+"o + l on (11.4.1), one obtains,

for

This is nothing but i ) of Lemma C. q.e.d.
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(11.5) For the proof of ii) of Leinma C, we need to recall a map r : WR,G-»MG

from (1.20).

Let {ao, ..., at] be a basis for (/?, G) s.t. the images of a\,..., ai in J?/rad / are

basis for R/ rad /.

Put

L : = ̂ Rai, H : = Rb, b = ^mai9 G : = Ra,

so that we fix a direct sum decomposition,

Then, depending on the decomposition (11.5.1), we have Introduced a map,

r: WR,G »MGj

(cf. (1.20.1)), such that

ii) r(WR,G)d a^RZi

where

a) we denote by a = aL+cnH + ci!G the decomposition (11.5.1) for

b) int (a, 0) for a, ft^R is a positive number defined by,

r 2/I(a,_a) i far=0,
k-l

g.c.d. <

(See (1.20) Assertions 1-3 for more details and for the proofs about the map r.)

(11.6) A proof of Ii) of Lemma C.

1. By definition of KG and I ) of Lemma C we have the following commutative

diagram.

{(c'max-i)*. n<E:Z} c EG(KG) C WR.G

«: I)/max+1 ^g)& c^G c r(WR,G) c
Wmax
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Thus if we have shown an inclusion relation,

*) r(WR.G)

we get KG = Z(IR : /)^max+1
 a®b which proves ii) of the C.

Wmax

For the purpose it is sufficient to show,

**) int(g>jg)gc®feg^(/jg:/)&n"+1 a®b for a9/3^R9Mmax

due to (11.5)ii).

2. First let us calculate int (a, 0). As we see below, it is easy to see that the

function int (a, 0) depends only on the quotient root system j?/rad /.

Formula

/*:/(11.6.1) int(a,0)=t-

where

t = l for all cases except the following l)-4).

t = 2 1) R/iadI is of type Ai and a*0.

2) R/iadI is of type Bi(l^2) and a^0 are short roots of R.

3) R/radl is of type d(l>2) and a±@ are long roots of R.

4) J?/rad / is of type BCi(l^2) and either a±j3 are short roots of R,

or a^/3 are long roots of R, or a^/3 are middle roots of R for I —

2.

A sketch of a proof for (11.6.1). Since int(a, 0), / int(a,

g.c.d. 2 int (a> ^^Z- ™s impiies (11.6.1) for an integer t. If

there exists a sequence a = a\, ..., a*=0 s.t. I(cti, at+iJ^Q i = l, ..., k— 1,
and a^ai+i mod radl f = 1, 0 0 0 , A~l, then

o
, g/+i)=± f/ ^x and therefore i
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2•j/ - v- so that t = 1 In this case. This will cover almost all cases except R/ rad /

Is of type either one of Ai, Bi, Ci, BCi. Some more careful study of the cases A\,

Bij Ci9 BCi gives the results of the formula.

3. In the following we give a table of ma for all of m.e.a.r.s.'s.

Type ^w) AV-l» 5{w) Bl1* Bi2^ B?*} Ciw) CilM C?'l} CP'2)

/max+1 1 2 2 2 2 1 1 2 2 2

1 1 4 2 2 1 2 2 2 2

Type BP'2)* Ciw)* BCi24) BC?'4) BCi2-2)(l) BCS2-2)(2) D?'1} £i

/max+1 2 2 2 2 2 1 2 3
1 2 4 2 4 2 2 3

Type £jw> Ej1^ F4
(1'1) F4

(1'2) Fpl> Ff'2) G(
2

U) Gi1^ Giw> G(
2
3'3)

lmax+1 4 6 3 4 4 3 2 3 3 2

4 6 6 4 4 3 6 3 3 2

4o To show * * ) Is a straight forward work now0 Using the descriptions of R

In (5.3) and the formula (11.6.1), one shows that int(or, 0) aG®@H^Z 7/'P{ ^®^ri/i j

for or, #e J? of type P(u) and that int (a, ^}aG®^H^^(IR : I)a®b for ̂ ? ^e J? of

type P(tM with max (^ lf £2)>L
The root systems of types Aiw)*, B?'2)* and C[lfl>* are from 1), 2) and

3) of the formula (11.6.1).
This completes the proof of (11.3) Lemma C.

(11.7) Note. Let at = a, az: = a + mb, a^: = a + na, flr4 : = or +«fl+w6 belong to

g I = Wai
0Wciz

0Was*Wa*

Then g : = EG((IR : I)m-na®b)
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§ I2o off Byiikim Diagrams

In this paragraph, we study foldings of Dynkin diagrams for marked extended

affine root systems. Precisely, we introduce two types ; folding and mean folding (cf.

(12.2) Deffe)

All Dynkin diagrams with multiple bonds are obtained by foldings of Dynkin

diagrams with only simple bonds: A(i'l\ D(illl\ E(
L

l>1) ((12.4)). In case of finite or

affine root systems, which are studied by P. Slodowy [21], T. Yano [27] and others,

only one of the two types of foldings is enough to produce all diagrams, whereas in

the case of m.e.a.r.s.'s, both types of foldings are necessary to obtain all diagrams.

In this way, we arrive a hierarchy relation among m.e.a.r.s.'s, where the

exceptional types A(iu)*, Bi2'2)*, Ciw)*, Sd2'2)(l), SCP'2)(2) form naturally one

group (cf. (12.5)).

(12.1) Let (/?, G) be a m.e.a.r.s. belonging to /. Let {ao, ..., oti] be a basis of

(R, G) and F be the Dynkin diagram for the affine root system /?fl 0Rat (cf.
i=0

(6.4)).

Put

Aut(/?,rad7) : = {^eAut(J?): p|rad/ = idrad/}.

Lemma» Assume that (R, G) is not of exceptional type.

Then there exists a faithful representation,

(12.1.1) r\ Aut(F) > Aut(/?, rad/),

i
such that the action of r(auto(JT)) on F leaves the subspace ®Mai invariant.

t=0

Proof. We construct r explicitly as follows.

Let us regard Aut( P) as a subgroup of the permutation group of {0, ..., /} of the

indexes of cto, ..., ai.

Under the assumption of Lemma we discluded the types A(i'1}*> Z?[2f2)*, Cilfl)*.

Then we check easily,
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where k is the counting function ((6.1)) and m Is the coefficients in (3.3). Hence, by

the definition of exponents (7.1.1), we have,

so that a preserves the subset \Pm\ of |F|. Therefore the action of o^Aut(F) can

be extended to FR,G (cf. (8.2)) by

a(a?) = tftf<« for

Then there exists a unique linear map rff: F — F such that

T0(ai) = aff(i) (0<f </) and Ta(a) — a, r&(b)=bfoi a, ithebaslsofrad/. ( ° 0 ° The

linear dependence relations among or,-'s, a f ' s , a and b are generated by at — a^ —

k(ai)a (Q<i<l) (cf. (8.2)) and b=i±ntat (cf. (3.3.6)). Since *(ff*o)
i = 0

)— Hi ( 0< f< / ) , the same relations hold for flr^o's, OfS-dVs, a and b.)

Let us show that rff Induces an automorphism of R.

ra(R) =

= J? (cf. (6.4) Lemma II ).)

It is obvious that a •— > r^ Is a representation and Is faithful. q.e.d

Note. Under the assumption of the assertion, the (12.1.1) induces,

Aut(F) ^ Aut(A,G)/2cod(*'G),

where 2cod(R'G) denotes the group generated by the transposition of a and a* for

(12.2) Let the notations and the assumptions be as In (12.1). Let H be a subgroup

of Aut(F), which acts on F through (12.1.1).

Define an invariant subspace of F,

=x for

Clearly by definition, iank(FH) = #(\r\/H) + l and the sign of I\FH Is
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Define two mappings,

Tr": F- - »FH, a^ 13 0,

TiH: F- - >FH, a^(#Ha)~l 2 0.
ff€=Ha

(12.3) F/WH «ow on we shall .assume the following for the group H*

* ) There exists at least a node of P so that H is contained in the isotropy

subgroup of Aut(F) of the point,

Under the assumption we have :

Lemma !„ There exist extended affine root systems RH and RH in FH

belonging to I\FH such that the set TrH| FR,G\ and Tr^l/Vcl form Dynkin diagrams

for (RH, G) and (RHj G) respectively,

Together with the structure of the Dynkin diagram, we shall denote by TTHFR,G

and TTHrR,G the sets, TrH|r*,c| and Tr^l/tcl respectively,

28 The isomorphism classes of (RH, G) and (RH, G) depend only on Hd

Aut(F) but not on the choice of basis ao, .*<>, ai«

3o (RH, G) and ( ( R y ) H y G) are dual of each other.

Proof , The proof of Lemma will be done in the following 7 steps. The precise

meaning of Lemmm I will be explained in the steps 4 and 5.

Since each of the steps are rather elementary^ we do not give details of the

calculations.

1. In the next (12.4), we shall list all groups H satisfying the * ).

As a result of the listing, we have the following.

i ) I(a, 0) = 0 for all a, 0eHr s.t. a*® (for

I! ) H acts transitively on the set of pairs (a, /?) e HrxHd with

2. Q(Trjsr|rJZic|) and Q(Tr/f|/\G|) are full lattices of FH.

( °0° Since Tr# Is a linear map, we have
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1 1

3. Using 1 i ) ii ), one computes the lengths, Intersection numbers and the

duals of the of Tr^l/Vcl and TIH\ FR,G\ as follows.

far ye=|/Vc|,

iii) 7(Tr*y, (Tr^)v) - ^T, ^)^% for 7,

i7) 7(TWf (Trrf)v) = #y^g)/(7? 3^)^Z far 7,

v) (TrF
7)

v = TrH(7v) for ye|A,c|,

vi) (TW)v-Tr^(7v) /*/• yelnd.

By definition of TrF
? TrH directly,

/or y€=|r|,

vin) Trfly°-Trfly = k(r)a for

4. The sets Tr^lF^cl and TIH\PR,G\ have naturally the structure of m.e.a.r.

s.'s,

By this statement we mean the followings.

i ) On the sets TrH|F| and Trj/|F| in FH we define structures of Dynkin diagrams

according to the rule (8.2) ii) using the intersection numbers 3. iii), iv). Then one

verifies that they become diagrams for a/fine root systems, denoted by TiHP and

TiHF respectively.

ii ) On the diagrams TiHP and TiHP we define the counting weights using 3 vii),

vi) as follows.

lk(TiHa) : = (H • k)-^ Ha • k(a) for
\/c(TiHa) : = k(a) for

Here

Then one verifies that the weighted diagrams (TrFF, (k(T%Ha))a) and (TrHPy
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(k(TrHa))a) belong to the table of (6.5) for weighted diagrams of m.e.a.r.s.'s.

iii) The coefficients n (3.3.6) for the diagrams TiHF and TrHr are calculated as

follows.

I = Ha for

na for

Here (H • n): = g.c.d.{#Ha • na : 0 e=|r|}.

By putting bH:=Jl HTT^ ° lTHa and bn : = 2 HTTH&

we have

iv) We normalize the metric I in the following so that they define a minimal even

lattice structure on Q(TrHF) and Q(TiHr). (cf. 3. i ), ii)).

IH : = (H-IR)-1IR,
IH I = (H~l a IJR)~I!R.

Here

(H-I*) :=g.c.d.{#Ha°IR(a,a)/2:
(H-l-I*) :=g.c.d.{(#Hari°IR(a,a)/2:

v) Using the preceeding ii), iii) and °w), the exponents for (TiHF, (k(TrHa))a)

and (Tr^F, (A(Tr«flr))a) are calculated as follows,

vi) Particularly v) implies,

= TiHrm. (Recall (8.1)).

vii) Together with the fact ii ), we get,

Here we put a" := (H • k}a and aa:=a.
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vi) The preceeding i )~vii) altogether imply that the set TTH\ PRtG\ and Tr»| AiC|

form Dynkin diagrams for some m.e.a.r.s.'s. (cf. (8.2) for the definition), which we

shall denote by Tr^A.c and TW^c respectively.

5, Let us show that there exist m.e.a.r.s.'s, say RH and RH in FH belonging

to I\FH, so that TiHFR>G and Tr#/\G are the Dynkin diagrams for them

respectively.

Put
RH := U <wa

ye|r*.d

RH := . U <war^\rRtG\

Then 1 and 2 lii) iv) v) vi) imply that RH and RH are root systems belonging to

J\FH (cf. (1.3) Exo 4). Since I\FH is positive semi-definite s.t. T a d ( I \ F H ) = TadI,

RH and RH are extended affine root systems by definition. The space G : = Ra

defines markings for RH and RH.

Let (RpHj GrH) and (RrH, GrH) be m.e.a.r.s.'s associated to the diagrams

TrH/\G and TTHFR,G respectively. (The constructions of them is given in (9.6)). Then,

there exists natural isomorphisms

^ (RH, G\

and

(RrH, GrH) — (RH, G).

Proof. Define a map Frfi:= ®Ra -^FH by &>-*a. Then due to (9.4.5)
a^TrH\rRtG\ ^

and 3 vii), 4 ii), it is factorized by an isomorphism (Fr^)/Image(C7 — 1)— FH,

inducing Gr^ : = RaH ̂ G:= Ra,
Then the map induces a bijection,

^ RH

by definitions of them.

6. Since the Dynkin diagrams TrHrJRic and Tr«r/zfG are determined only by H

CAut(F) (cf. 3. iii) iv)), the isomorphism classes of (RH, G) and (RH, G) are

determined by H.

1. The formula 3 v), vi) imply that, (RHr = (R^)H and (J?^)v = (J?v)lf.
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These complete the proof of (12.3) Lemma.

Definition. Let the notations and the assumptions be the same as in the

above Lemma.

We call the diagram TrHI\c the folding of FR.G and Tr«rifG the mean folding

of FR,G by the group H.

We shall not make no distinction between two (mean) foldings by H and H'9
if the decomposition of the set \FR,G\ into the orbits of H and that of H' coincides

each other.

(12.4) The following are the complete list of foldings and mean foldings of Dynkin

diagrams for m.e.a.r.s.'s.

The orbits of the nodes of FR,G by the action of H are drawn as nodes lying in

the vertical position in the diagram. Thus if the action of H is obvious from the

drawn picture, we have not explicitly mentioned about the group JJ.

If two subgroups H, H'dAut(r) satisfying the assumption * ) of Lemma,

commute each other and H fl H'= {!}, then Tr* and Trjr commute. Let us denote

by Tr ?- the product Tr^Tr^'=TrH'Trff and by => the correspondence of diagrams.

In each figure, the diagrams in antipodal positions are dual of each other.

1.

Bi2'2}
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Tr*

In the 2, Z* means the group generated by a involution which the

nodes on the right terminals of the diagrams and K means the group by

the involution which fixes the nodes on the left terminals of the diagrams.

In case / = !, we formally B?'2): = A(^\ Ciw):= Aiw).
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Table 3o

In the table 3, Z2 means the group generated by the transposition of the nodes

on the right terminals of the diagrams and Zi means the group generated by the

transposition of the nodes on the left terminals of the diagrams.
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In the table 4, Z2 means a group generated by an Involution which fixes the

nodes in the right terminals of the diagrams and Zi means a group generated by a

(product of two) transposition (s) which exchanges nodes on the left terminals of the

diagrams.
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2

-V

Table
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(12.5) Hierarchy Byiaidm

The tables In (12.4) classify the diagrams for marked extended affine root systems

into the following four groups.

I . The Dynkin diagrams, which have no multiple bonds.

These diagrams are characterized as diagrams which can not be expressed

neither as a folding nor as a mean folding of some other diagrams.

II. The Dynkin diagrams of type p«^<p» (for t(P)>l, ti\t(P)\

, F4
(1'2), F4

(2'2)
? GV*\ G(

2
3'3).

These diagrams are characterized as diagrams which can be obtained by a

folding of the diagrams of the group I .

III. The Dynkin diagrams of type P(t^l} (for t(P)>l, ti\t(P)).
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These diagrams are characterized as diagrams, which can be obtained by

mean foldings of the diagrams of the group I .

IV. The Dynkin diagrams of exceptional types.

Ciu)* (/^2),

These diagrams are characterized as diagrams, which can be obtained by

foldings of the diagrams of the group III and also by mean foldings of the

diagrams of the group II. In the other words, diagrams of this group can be

obtained from the diagrams of the group I by a succession of a folding and a

mean folding which are commutative,

As a summary, let us give a table of hierarchy relations among the Dynkin

diagrams.

self dual

folding

group III

1}, Ciu), C!2ll), BCi2'1M)

folding

dual

group II

(3,3)

mean folding

group IV (exceptionals)
self dual

1), BCi2'2)(2)

(12.6) Assertion* Let us give formulae for calculating the tier numbers and the

exponents, for the foldings and mean foldings.

I ) The total tier number.
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H-^ IR}(H

11 ) The first tier number.

,G (H . n

iii) The second tier number,

1

/ rr . r v\-

iv) The exponents

. . . ( H - k )

Proof. Samely as in the proof of (12.3) Lemma we calculate as follows.

= (H
»frr f l «) = ^v.v v

Then applying these to the formulae for tier numbers (4.2) iii), (4.5.1) and (6.3.1) and
for the exponents (7.1.1), we obtain the formulae in Assertion. q.e.d.

(12.7) Corollary. Let the notations be as before. Then we have the following

proportionalities.

(12.7.1)



178 KYOJI SAITO

Proof. Use ii), iii) and iv) of the Assertions One may also check the

proportionality, directly from the tables of (12.4).

These proportionalities are the last statements of this paper.
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Added in Proof.

L The complete intersection of quadric cones defines a sequence of singularities, called Di

(see F. Knorrer [8]). Recently in a private letter [34], W. Ebeling has informed to the author

that he found a strongly distinguished basis of the middle homology group of the Milnor fiber

of the singularities, which are intersecting in the form of the diagram as defined in (8.2)

Definition! of the present paper and that the Milnor's monodromies of the singularities are

identified with the Coxeter transformations as defined in (9.7). (cf. also [31])

20 It might be worthwhile to notice that the Lemmas A, B of the present paper is an analog

of a result of Coleman [36], who has calculated systematically the Betti numbers (exponents)

for simple Lie groups, "by showing the existence of regular eigen vectors for a Coxeter

transformation. Another analog of the result for the case of indefinite root systems will be

shown in a forthcoming paper.




