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Introduction

1. The preseni paper is the first part of the study on invariants for extended
affine root systems with markings, which may be regarded as a development of the
work of E. Looijenga [12] on Root systems and Elliptic curves, extending and
strengthening the results by introducing the flat structure on the invariants.

We introduce in this paper the concept of an extended affine root system with
a marking ((2.1) Definition).

The objective of this first part is the study of the Coxeter transformations for a
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marked extended affine root system. It is achieved in the paragraphs § 9, § 10 and
§ 11. The results are summarized in Lemma A (9.7), Lemma B (10.1) and Lemma
C (11.3).

These Lemmas are used essentially in the second part of the study [20] for the
construction of flat 0-invariants for marked extended affine root systems.

2. An extended affine root system R is, by definition, a root system belonging
to a positive semi-definite quadratic form I, whose radical has rank two. A marking
G for the root system R is a rank 1 subspace of the radical. (cf. (1.2) Definition,
(2.1) Definition)

The main difficulty for the study of such extended affine root systems arise from
the fact that there does not exist an analogous of a Weyl chamber, compared with the
cases of finite or affine root systems, since the group Wz generated by the reflexions
with respect to all roots of R : ie. the extended affine Weyl group, does not act
anywhere properly on the ambient real vector space™. Nevertheless we define a
Dynkin diagram I's, ¢ for (R, G) by the help of the exponents introduced in § 7.
(See (8.2) for a definition of the diagram, and (8.6) for discussions on the diagram.)
The diagrams are listed in the following Table 1.

Then a Coxeter transformation for (R, G) is defined as a product of reflexions
of roots corresponding to the nodes of the diagram ((9.7) Definition).

*) Wp acts properly on a domain in the complexification of the real ambient space.

3. Let us explain briefly some geometric backgrounds, which helps but is not
necessary for the understanding of this paper.

A rational double point of a complex analytic surface and its universal
deformation are described by a Dynkin diagram and a simple Lie group (or algebra)
of type A, D, or E; by E. Brieskorn [3,4]. (See also P. Slodowy [21].) Then there
exists canonically a vector space £ and a non-degenerate symmetric bilinear form J
on £ such that the base space S of the deformation (whose coordinate ring is the
ring of invariant polynomials on the Cartan algebra by the action of the Weyl group)
is canonically isomorph to 2 (see [16]). We call such structure, the flat structure of
S or the flat structure on the invariant ring.**

A simple elliptic singularity of a complex analytic surface is, by definition [28],
obtained by blowing down a smooth elliptic curve in a smooth surface, whose
deformation is studied by E. Looijenga [11][12], P. Slodowy [22] and others, where
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an affine root system and affine Lie algebra (i.e. Kac-Moody Lie algebra (or group)
of Euclidean type) are used for the construction of the family.

The present paper gives a construction of a flat structure for the base space S of
the universal deformation of a simple elliptic singularity or equivalently a flat
structure on the invariant ring of 0-functions, which will be actually done in the
second half of this paper [20].

For the purpose, it was necessary to introduce a new root system, which is an
extension of an affine root system by one dimensional radical : the extended affine
root system with a marking, as introduced in this paper.

Even the extended affine root system does not correspond to a Kac-Moody Lie
algebra (cf. [33], [34]), one may naturally ask an existence of a Lie algebra
corresponding to them which would describe the universal deformation of the simple
elliptic singularity (cf. (8.5), P. Slodowy [23]).

% %) The flat structure on the base space S of a universal unfolding of any hypersurface
isolated singular point is introduced in [17][18], where Q is a space of relative differential
forms, J is a residue pairing on 2 and the embedding S— 2 is defined by a flat connection
7 depending on a choice of a primitive form {©.

In the case of a simple elliptic singularity, a choice of a primitive form ¢ is equivalent
to a choice of an element a in the radical of the intersection form on the middle homology
group of the Milnor fiber, which defines the marking G := Ra. (This was announced in [17].
Details will appear in [20].)

4. Let us give a brief view on the contents of the note.

i) The first three paragraphs § 1, § 2 and § 3 contain preliminaries: definition
of a root system R belonging to a quadratic form (1.2) and its generality.

For the first reading, the readers are suggested to skip this part until § 4, after
looking at some basic definitions and notations in (1.1), (1.2), (2.1), (2.2), (2.3),
(3.1) and (3.4) without proofs, and to come back to § 1, § 2 or § 3 according to the
necessity.

ii) The next three paragraphs §4, §5 and § 6 contain the classification of
marked extended affine root systems (R, G). They are classified using numerical
invariants #1(R, G), t(R, G), called the first and the second tier numbers
introduced in § 4 (cf. (1.11)), as follows.

Except for some exceptional cases, the isomorphism class of (R, G) is
determined by the triple (P, #, {2) where P is the type of the quotient finite root
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system R/radl and #;:=¢:(R, G) (i=1,2) are tier numbers. We call P¢"#? as the
type for (R, G). For the exceptional cases, we define types by a slite modification
such as A{V* B@2* C{WV* BC{®?(1) and BC*?(2), which are called exceptional
types (cf. (5.1), (5.2)).

The result of classification is exposed in the table in (5.2). The proof is reduced
in § 6 to classify weighted diagrams (I",(%¥(a@))seir)) where I is a Dynkin diagram
for an affine root system and £(a) (@ €|I'|) are positive integers called the counting
(6.1).

If one admits the result of the classification in § 5, one may skip these paragraphs
till § 7.

iii) After these preparations, we arrive basically important concepts for a marked
extended affine root system : the exponents m; (i =0, ..., [) in § 7 and the Dynkin
diagram I's, ¢ in § 8.

The following Table 1 is the complete list of the types and the Dynkin diagrams
for marked extended affine root systems with an assumption that the quotient affine
root system R/G is reduced.

The author is grateful to W. Ebeling, who noticed him that the figures Es, Er,
Ejs appear already in the representation theory of algebras [2], and the importance of
the branching points of the diagrams.

iv) The Dynkin diagram [k, ¢ gives a most intrinsic description of the marked
extended affine root system (R, G) in the sense that (R, G) can be reconstructed only
from the data of the diagram ((9.6) Theorem). In the reconstruction of (R, G), a (pre-)
Coxeter transformation, which is a product of reflexions w.r.t. the nodes of the
diagram (cf. (9.3)(9.7)), plays an essential role.

v ) The Coxeter transformation ¢ is unique up to (autor) conjugacy in Wx. Then
we shall show in § 9, § 10 and § 11 that;

i) c is a semi-simple of finite order Inax+1, whose eigenvalues are described by
the exponents (Lemma A (9.7)).

ii) No element of R can be expressed as an image of the transformation c—1
(Lemma B (10.1)).

iii) The hyperbolic extension Wx, is an extension of Wz by an infinite cyclic group,
which is generated by the power C=*' of a hyperbolic Coxeter transformation ¢
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Table 1. Dynkin Diagrams for Extended Affine Root Systems

AGD (1=2)

AgD®

B (123)
B (1=3)
BfY . (122)
B . (1=2)
) (122)
2 . (1=22)

572
CzY (1=3)
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cs (1>3)
B@2* (1>2)
cve (1=2)
BCE (1=2), fqi\ (I=1)

i

4
BCRo (122), o/ (1=1)
}b

BC?2(1) (1=2)
BC#2(2) (1=2), (1=1)
D&l,l) ( l 24)
Eél'l)

E,;l,l)




Eél’l)

FA(I'”

F4(1'2)

F4(2’1)

F}z.z)

G(zl.l)

G;l,a)

Gga.l)

Gga,s)
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(Lemma C (11.3)).

vi) The last paragraph § 12 treats the folding relations among Dynkin diagrams
for marked extended affine root systems. The folding relation induces a hierarchy
relations among the diagrams so that all diagrams are divided into 4 groups,
illustrating the classification in'§ 5. Particularly the exceptional types form one
group.

The study of foldings also illustrate the importance of rank two-ness of the
radical of the quadratic form for an extended affine root system, since the two
extensions correspond to the two types of foldings defined in (12.3).

5. Some part of the result, including the classification of marked extended
affine root systems, is published in [19].

. Part of this work was carried out in Sept. 82 - Dec. ’82, when the author was a
visitor of the University of Nijmegen under the support of Z.W.0O, in Jan. ’83 - Feb.
’83, when he was a visitor of the Universioy Bonn and the Max Planck Institut in
Bonn and March ’83, when he was a visitor of the Ecole Polytechniques in Paris. He
expresses his gratitude for the organizations and the mathematicians for the
hospitality.

Particularly thanks goes to Professors T. Springer and E. Looijenga in the
Netherlands, Professors E. Brieskorn, P. Slodowy, F. Knorrer and W. Ebeling in
Bonn and Professors M. Demazur and B. Tits in Paris for several valuable

discussions.

§ 1. Root Systems Belenging to a Quadratic Form

This paragraph is devoted for generalities on root systems belonging to
quadratic forms. We prepare terminologies and concepts for the uses in later
paragraphs.

A rough view of the paragraph is the following.

i) The axioms for a root system R belonging to a quadratic form I and its
examples are given in (1.2), (1.3). The isomorphism class of the root systems
determines the quadratic form I up to a constant factor (1.4).

ii) In (1.5)-(1.13) one is concerned with the rational structure (1.7) and the
finiteness of the set of length of roots (1.9) and their direct consequences.
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One obtains the concepts of dual root system R (1.5), quotient root system
R/G (1.8), marking G, tier numbers t(R), (R, G) (1.10) (1.12), and even lattice
structure Ir (1.11).

iii) In (1.14)-(1.20) the group Wr generated by reflexions of roots is investi-
gated. The main tool is the use of Eichler-Siegel map and its inverse (1.14.1)(1.14.5).

For the name of the transformation, the author is indebted to W. Ebeling, who
pointed out him that such transformations (1.14.1)(1.14.5) are used implicitly in the
works of M. Eichler and C. L. Siegel.

A criterium for W to split into a semi-direct product of another Wk and a free
abelian group is given in (1.15).

We introduce a hyperbolic extension Fg (1.17) of the space F w.r.t. a marking
G, which induces a central extension Wrc of W in (1.18). Some structual study
of Wre is done in (1.19) (1.20) using a map v : Wre— Ms.

(1.1) Reflexion w, of @. Let I be a real vector space equipped with a quadratic
form g, which induces a symmetric bilinear form,

(1.1.1) I:FXF> R
I(x,y) :=a(x+y)—a(x)—a).

If an element ¢ €F is non-isotropic (i. e. g(@)+0), then we define the dual
aVEF and the reflexion w.E GL(F') as follows.

v o—_1 _ _
(L1.2) @' = Y= e ®

(1.1.3) wlu) ;= u—I(u, av)a for ucF.

By the definition we have,

w_ . Iaa) I(a",a")_
(1.1.4) a"V=a, =5 5 =L
(1.1.5) We=Wa" , Wi=idr,
(1.1.6) we € O(F, ),
where

OF,I) :={geGL(F): I-g=I}
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is the orthogonal group of the metric 7.
For a non isotropic subset B of F' (i.e. g(a)+0 for any a=B), we define a
reflexion group by,

(1.1.7) Ws := the subgroup of O(F,I) generated by wa. for a<B.

Note. To avoid a confusion on the word “dual”, we shall denote by F* the
dual vector space Home(F, R) of F. Note that the element ¢V belongs to F but not
to F*.

(1.2) The axioms for a root system R belonging to /.

As in (1.1) let F be a real vector space of finite rank with a metric /, whose
signature is (x4, to, #-). (Le. g4, o, Or g are number of positive, zero or negative
eigenvalues of [ respectively.)

Definition 1. A subset R of F is called a root system belonging to I or a root
system of sign (u+, o, n-), if it satisfies the following Axioms 1), ..., 5).

1) Let Q(R) be the additive subgroup of F generated by R. Then Q(R) is a full
lattice of F. (i.e. the natural map induces an isomorphism R Q(R)=F.)

2) For any a€<R, I(a, a)*0.

3) For any a€R, w.R=R.

4) For any a,BER, I(a,B)EZ.

5) Irreducibility. If R=R:,1L R, and R.1 R, with respect to I for subsets R; of
R, then either Ri=¢ or R.=¢.

2. Two root systems R in F and R’ in F’ are isomorphic if there exists a linear
isomorphism ¢ . F~F’" which induces a bijection ¢ : R~R’ (cf. (1.4) Lemma).

Note . i) If a€R, then —a€R. (" w.a=-—a)
i) If a, caER for a constant cE R, then
ce{+2, +1, +1/2}.
(. Axiom 4) implies I(ca, av)=2c, I(a, (ca)')=2/cEZ)

iii) 4 rcot system R is called reduced if a,ca <SR implies c={+1}.
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Note 2. Let us call a subset R of F to be a root system belonging to I, which
may not be irreducible, if R satisfies the axioms 1),...,4) of Def. 1. Then we
have the following.

Assertion. Let R be a root system belonging to I, which may not be
irreducible. Then there exists a unigue disjoint decomposition R=jJi_,I_1Rj, Ri+¢
(7=1, ..., N) such that
i) R; is an irreducible root system belonging to I| RR; for j=1, ..., N. (Here RR;
is the linear span of R;).

i) R:LR; for i+j. (I.e. I(a: a;)=0 for “a:ER:; Ya,ER;.)

Proof. If R=]_11;1R,-, R;#¢ for j=1,... N(=2) is a decomposition of R
satisfying only ii ) of the assertion, then one check easily that automatically each R;
is a root system which may not be irreducible. Furthermore RRigF for all 7, since
otherwise ii ) implies R;Crad ] for j+ ¢, which contradicts to the fact that R;C R
is non-isotropic. Thus the existence of the decomposition with i) and ii) can be
shown by induction on rank F.

If 1L R; and 1L S; are two irreducible decompositions. Then R;=1L(R;NS;)
is a dec}ompositior; of R;. Since R; is irreducible R;NS:=¢ or R;. 1 The same
argument for S; shows that up to a permutation of the indexes ¢, j, the two
decompositions coincide. This is the uniqueness of the decomposition. g.e.d.

Note 3. In the above situation we have F=@® RR; if I is non-degenerate.
J
(- RR;N Zﬁ_RRiCradI for all 5)
¥

Note 4. By definition Wz preserve the metric /. Conversely up to a constani

factor, I is the unique symmetric bilinear form on F which is invariant by Whk.

Proof. Let J be another symmetric invariant form on F. The equality J (wez,
waea)=J(u, @) for a€R, uc F implies J (u, @)= cal (u, @) where co:=J(a, a)/
I{a,a). If I(a, B)+0 for @, BER, the symmetry of J implies c,=cs Thus the
irreducibility of R implies J=c/ for c=c, for any a€ER.

(1.3) Example 1. Let R be a root system belonging to I, where I is positive semi
definite of sign (I, lo, 0).
Then
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I(a,BY)EZN[—4,4] for any a,BER.

(" Semi-definiteness of g|Ra+ RS implies that I(a", 8)I(a, 8Y)<4. Then
apply Axiom 4).)

i) If lb=0 (i-e. I is positive definite), then R is finite and is a root system in the
classical sense (see [1] Ch. VI).

Proof. We have only to show that #R<oo. Let @y, ..., .. ER be a R basis
for F. Since I is non-degenerate, the correspondence aER— (I(a, @y ))i=1,1.E
(Z n[—4, 4])* is injective.

Note 1. We shall generalize this finiteness property for general [ in (1.21)

Lemma.

Note 2. If a root system R which belongs to I is finite, then I is definite, due
to the uniqueness of 7 in (1.2) Note 3.

ii) If lo=1, then R is an affine root system. (For a definition, see [14,2], [7]).

Proof. All axioms for an affine root system stated in [l14] are direct
consequences of the axioms in (1.2), except an axiom (AR4), which asks that Wz acts
properly on an affine hyperplane E :={p=1}C F*, where b is a generator of rad |
=~ Rp. This is an direct consequence of an exact sequence 0— Traar— Wr— Wrraar
—( in (1.15) Assertion, where Traqr is a lattice of the translation group of E and
Wriraar is a finite Weyl group. (cf. (1.3) Ex 1. i), (1.7) Coroliary, (1.8) Assertion).

iii) In gemeral if lo=k=2, let us call R a k-extended affine root system.
Particularly we shall investigate the case k=2 in this paper, when we call R an
extended affine root system simply.

Example 2. Let L be a free abelian group of finite rank and I be a
symmetric bilinear form on it. Put,

R(L,I):={acL: I(a, a)*+0, I(a",B)EZ for all B L}.

If R(L,I) spans RQL over R, R(L,I) is a root system belonging to I, which
may not be irreducible. We shall call R(L,I) the maximal root system belonging
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to (L, I).

In [29, § 7 (7.4)], all maximal root systems belonging to an indefinite form of
sign (1, 0, 1) are classified into seven types.

Example 3. All root systems of sign (1,0, 1) are classified into 72 types in
[29,§ 1 (1.6)].

Example 4. Let B be a (finite) subset of a vector space F* with a form 7. If
B satisfies the axioms for a root system except axiom 3, then R:= W3B is a root
system belonging to /. Sometimes we shall call B a basis for R. We have relations,

Q(R)=Q(B), Wr= Ws.
(1.4) Isomorphisms of Root Systems.

Lemma. Let ¢ be an isomorphism between two root systems R and R’ which
are belonging to I and I’ respectively. Then there exists a non-zero constant ¢S
R such that I=cl’ - ¢.

Proof. Let @, BER berootss.t. I(a, B)+0 and Ra+ RB. Put F>:= Ra-+ RB
and F;:=@(F;). Then R;:=F;N R and R;:=F; N R’ are root systems belonging to
I|F; and I’| F5 respectively which are isomorphic by ¢|F,. Therefore due to the
axiom 5) of irreducibility, one can reduce the proof of the lemma to the followings.

1) Lemma is true for the case when rank F=2.
ii) Let ¢ be an isomorphism of root systems R, R’ which may not be irreducible
in rank 2 vector spaces. If R is irreducible, then R’ is irreducible.

Proof of i). Let Ar and Ax be the accumulating sets in P(F) and P(F’)
of the image set of R and R’ respectively. According as ] is definite, semi-definite
or indefinite, Az is either void, one point or two points, which correspond to the
isotropic vectors in F of I. (¢f. (1.3) Ex 1. i), ii) and Ex 3. ([29] (1.6) Note 6)).
Since ¢ induces a bijection among A and Ax, @ maps the isotropic vectors of [ to
that of J’. This implies already the statement i ) for the cases when [ is semi-definite
or indefinite.

In the case when [ is definite, R is either of the types A2, Bz, BCz: or Gz. Then
the coincidences of some geometric invariants (e.g. #R, #(R/R*), etc.) show that R
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and R’ are of the same type.

Proof of ii). Reducible root systems for rank F'=2 is either A;X A4:, A1 X
BC, or BCi;xXBC,. Thus they are characterized among all root systems by an
equation #(R/R*)=2, which is invariant by . qg.ed.

(1.5) The dual root system RV.
For a given subset RCF,
put
RYV:={aVEF: a€R, I(a, a)*0}.

Lemma. If R is a root system belonging to I, then R is a root system

belonging to I.

Proof. The axioms 2)-5) for R" are directly shown by definition. The axiom
1) for RV will be shown in (1.10) after a preparation of a finiteness lemma (1.9).

(1.6) Irreducibility.
Assertion. For any a, BER, there exists a sequence av:=a, a, ..., Ax:=8
of elements of R s.t.

+0 for i=j,j+1 .
A . , i) k<pitp-.
=0 otherwise

i ) I (a/,-, a',-){

Proof. An existence of a sequence with a property i) is an immediate
consequence of the axiom of irreducibility. The property i) implies that
rank(I(a:, @;)):i ;=01 =k. This implies ii). g.e.d.

Coroliary 1. Let R be a root system which may not be irreducible. Then R
is irreducible iff it has the following property :

%) If a linear subspace G of F is invariant under Wxr and GN R+ ¢, then
G=F.

Proof. If R is irreducible and G is a Wxr-invariant subspace with € GN R.
For any BE R, take the sequence ay, ..., @ of the assertion. Then (wa,—1)Wa,_; ...
Wa, o€ G is a non-zero multiple of 3, and therefore /& G. Then the axiom 1)
implies G=F.
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Conversely if R satisfies %) and R=R, 1L R; with R L R,. Then RQ(R:),
RQ(R,) are Wr-invariant subspaces which are orthogonal to each other. If R, # ¢,
then by %), RQ(R,)=F and hence RQ(R:) is contained in the radical rad [:=
{xeF: I(x,y)=0 for vy F}. Hence I(a, @)=0 for ¢=R,. This implies R,=
$. g.ed.

Corellary 2. Let R be an irreducible root system belonging to I. For a
constant yE R, let us put,

R :={a€R: I(a,a)=2r}.

If R.+¢, then R, is a root system belonging to I, which may not be irreducible.

Proof. All the axioms of (1.2) except the axiom 1) are trivially verified. For
a proof of the axiom 1), we have only to show that RQ(R,)=F, since Q(R,)C
Q(R). Since [ is invariant by Wkg, the axiom 3) implies WiR, =R, Hence
RQ(R;) is a Wr-invariant subspace of F containing R,+ ¢. Therefore RQ(R,)=
F due to (1.6) Corollary 1.

(1.7) Rational structure of F.

Assertion. There exists a non-zero constant cE R such that cl is an integral
bilinear form on Q(R)xX Q(R).

Proof . Let us fix an element ¢ R and put c:=I(a, @)"'. For any SER,
take a sequence ay, ..., @ of the assertion (1.6). Then

cI(8,8) = ([11(ats, e (U1 (ass, &) € @.

Thus for any 8, YER,

cI(8, 7) = 5cl(8, I8, 7) € Q.

Thus for a suitable integral #& N, ncl is an integral bilinear form on Q(R).
g.e.d.

Definition. A linear subspace G of F is said to be defined over @ if
GNQ(R) is a full lattice of G.
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Corollary. Put
rad] = {xE€F: I(x,y)=0 for any yEF }.

Then radl is defined over Q.

Proof. Since cI is rational valued on Q(R) for a ¢#0, the system of
equations c/(x, y)=0 (yE Q(R)) are rational coefficients. g.e.d.

(1.8) Quotient Root Systems. Let G be a linear subspace of rad / defined over §
and let p: F— F/G be the linear projection map. The bilinear form on F/G
induced from J on F is denoted by I; so that Io(p(x), p(v))=I(x, y) for x,yE
F.

Assertion. Let us denote by R/G the image of R in F/G. Then R/G is a
root system belonging to I, such that Q(R/G)=~Q(R)/(Q(R)NG).

Proof. The axioms 2), ..., 5) are trivially verified for ®/G. The axiom 1)
follows from Q(R/G)=p(Q(R))=~Q(R)/Q(R)NG. g.ed.

Definition. We shall call R/G the quotient root system of R by G.

Note. For the study of R, sometimes it is convenient to fix a flag Go=0C G,
C-+C Gr=rad ] defined over @, which we shall call a marking of R. (cf. (2.1)
Def. 2)

This concept of a marking a root system comes from a study of primitive forms
for the period mapping of simple elliptic singularities. (cf. [17] [20]).

(1.9) Lemma of finiteness of root length.
The following simple lemma plays an important role.

Lemma. Let R be a root system belonging to I. Then there exists a non zero

constant ¢ such that the set
(1.9.1) {cl(a,a): a€R}
is a finite set of integers.

Proof. Due to (1.7) Cor. and (1.8) Assertion, R/rad I is a root system
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belonging to [raq; such that

{I(a, a@): a=R} = {Itaa:(B, 8) : BER/rad I}.

Therefore without loss of generality, one assumes that ] is non-degenerate.
Define, PV:={f€F: I(f, Q(R))CZ}. Since I is non-degenerate, P is a
full lattice of F'. Due to (1.7) Assertion, there exists a non-zero constant ¢ such that

cI(Q(R)), Q(R))CZ. Therefore cQ(R)C PV. Since both cQ(R) and P are full
lattices of F, there exists an integer N #0 such that NPYCcQ(R).

v % \% _9_ —L v —g_
Hence I(PY,PY)CI(PY, NQ(R))— NI(P , Q(R))C NZ.

Due to the axiom 4), RVC P". In particular, 4/I(e, a)=1(a", a")E%Z for
@€ R. This implies c/(a, @) is an integer which divides 4N. This completes the
proof of the finiteness. g.ed.

Note. A modification of the proof shows that, if Q(R) is an even lattice
w.r.t. cl, then cI(a, a)|2N2

(1.10) The total tier mumber #(R).

Let R be a root system belonging to 7, where ¢/ is an integral bilinear form on
Q(R) for a positive constant c.

Due to (1.9) Lemma, we define now,

. lemiclla, a): a=R}
(.10.0) HR) := g.c.d{cl(a,a): a=R}"

Let us call ¢(R) the total tier number of R which takes the value in IV,

Proof of (1.5) Lemma.

Let us fix a root € R. Then for any £, one computes,

v 2 2 cl(a, a) 2
B =16 T®i@ o "B @ s P wmite, ) 2

. y 2 o .
This implies, Q(R )C_———t(R)I(a/, 2) Q(R), so that Q(RY) is a lattice in F. g.e.d.

Note. The above proof shows also the following :
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A linear subspace G of F is defined over @ with resp. to R, iff it is defined

over @ w.r.t. R".

(1.11) Even lattice structure.
Let R be a root system belonging to / and c is a constant as in (1.9) Lemma.

Put
L 2c
(L1LD) Ip = g.c.d{cl(a,a): a/ER}I’
v ._lemicl(a,a): aER}
(1.11.2) Irv = 9¢ 1.

Then we have following properties.

i) Q(R) (resp. Q(RY)) is an even lattice w.r.t. Iz (resp. Izv).
i) If Q(R) (resp. Q(RY)) is an even lattice w.r.t. ¢'I for a suitable constant

c’'*0, then ¢’ is an integral multiple of Ir (resp. Izv).

iii) Formula
(1.11.3) Ir®@Irv = H(R)IRKI.
In particular,

(1.11.4) IR(‘;’“)-:IRV(“ZV’ @’) _ y(R) for a€R.

(1.12) Relative tier number. Let the notations be as in (1.11). Let G, H are

linear subspace of F' defined over @ s.t. GDH.
We define tier numbers relative to G and H as follows.

4 QRNG/QRINH . J\renkGIH
(1.12.1) tR(G,H).—#Q(RV)QG/Q(RV)HH><(IR : 1) ,

w0 = 1YY ;e

Here in the above expression, #7[1’7 for two lattices L and M means |det A| where
A is a transformation matrix from a Z-basis of L to a Z-basis of i/, and A: B

means a constant ¢ s.t. A=cB.
Note that if one replace I by dI for a constant d+0, then R and Iy are
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unchanged, but RY and Izv are replaced by d 'RY and 4%z so that the tier
numbers in (1.12.1) and (1.12.2) are independent of 4.

Assertion. 1) The relative tier numbers are positive integers.
i) (G, H) trv(G, H) = t(R)"xCH,

Proof. 1) Since the tier number does not depend on a constant factor of 7,
we take I to be (l.c.m.{Iz(a, @): aER})*2Iz. Then we have Izv=1I and @' =
I(a’vz ") @€ Z-aC Q(R). Therefore Q(RY)C Q(R). These show that (G, H)
is an integer. In a similar manner, one sees that {zv(G, H ) is an integer.

ii) Apply the formula (1.11.3). g.e.d.

(1.13) The following is a simple consequence of the finiteness lemma.

Assertion. Let ¢ be an isomorphism of a root system R belonging to I. Then
Top =+1.

Proof. Due to (1.4) Lemma, there exists a constant ¢+0 s.t. I=clco. If c
#+ +1, then the set {I/(a@, @): @<= R} which is invariant by the multiplication by ¢
is infinite. This contradicts to (1.9) Lemma. g.e.d.

(1.14) Eichler Siegel presentation E. For a study of the Weyl group Wz, we
introduce a map E : F®(F/rad I)—End(F) (Def. (1.14.1)) and its inverse E*:
Wr— FQ(F/rad I') (Def. (1.14.5)) in this paragraph.

Using E, we give a sufficient condition for R, G so that Wz splits into semi
direct product in (1.15) and we study central extensions Wx¢ of Wz associated to
hyperbolic extensions in (1.19).

Definition 1. FEichler Siegel map E for (F,I) is the following,
(1.14.1) E: FQ(F/rad I)— End(F),

where E(Zfz@gi)(u) = u—ZilfJ(gi, u).

2. We define a semi group structure o on FQ(F/rad ) by,

(1.14.2) pod :=p+¢—1I(p, ¢),
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where we use the following convention,

I: FR(F/rad [)X X FQ(F/rad I )— FQ(F/rad I)
P1 XX @—=1(01, = @r),

I(¢1, °°% ¢k):=i12ikfill®l(g}1y 1'22)"'1(911‘:/:—1“ fikk)gt!‘ky
Sfor ¢;:=“;Z7ﬁ;-®gz"jEF®(F/rad I (G=1,..., k).

From the definition directly we obtain following assertions.

i) The map E is injective. It is bijective iff rad I=0.
ii) E is a homomorphism of semi groups.

(1.14.3) E(§°9) = E(£)E(n).

iii) For an non isotropic a € F, the reflection w. (1.1.2) is given by
(1.14.4) we = E(aQa").

iv) The inverse of the Eichler Siegel map on Wy is well defined.

(1.14.5) E™': We—> FQ(F/rad I).

The image of (1.14.5) is contained in Q(R)@(Q(RV)/Q(RV)ﬂrad I).
(*  The lattice Q(R)@( Q(RV)/Q(RY)Nrad I) of FQ(F/rad I) is closed under
the product ° and contains a®a" for all = R. Taking on account of (1.14.4), Wk
is contained in the image of the lattice by E.)

v) The subspace rad [Q(F/rad ) is closed under the product o, where o
coincides with the additive structure of the vector space on the subspace. We have

(1.14.5) (E(¢)—idr)? =0 for ¢=rad IQ(F/radI).

For a later use, let us show an assertion.

Assertion. Suppose w:=E(£)EO(F,I) for a EEFQ(F/rad I).
Then,
E£+6—1(&,%6)=0 mod rad IQF+F®rad I.

Proof. The orthogonality of w implies,
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I(f, 9)=I(wf, wg)=I(wf, g)—I(wf, & g) forall f,gEF.

Hence
f—wf+I(wf, £)=0 mod rad]
=I1(¢, f)+I(wf, E)=I1(w+*¢, wf)=I(&+6—1(§, %), wf)
for all f€F. This implies the assertion. g.e.d.

(1.15) Splitting of Wx. Asin (1.8) let G be a linear subspace of rad / defined over
}.

Define a lattice of GQ(F/rad ) by,
(1.15.1) Te : = EN(Wz)N(GR(F/rad I)).
(T¢ is a lattice, due to (1.14) Assertion iv), v ).)
Assertion. i) Following is an exact sequence.

E D+
(1.15.2) 1 Tc Wr Wrie— 1.

ii) The adjoint action of Wx on Tg is given by

(1.15.3) wE(Zi‘.f;@gf)w“ = E(zi!fz@wgi),
Jor w&E Wk, Zfi@Qie GQ(F/rad I).

Proof. 1) The following diagram is naturally commutative.
E D=

1— T¢ — Wr — Wrie —1
N NE™ NE™
1- GR(F/rad I)— FQ(F/rad I)— (F/G)®(F/rad I)—1

where the second line is exact.
ii) Let us show (1.15.3) for w=E(a®aV), aER.

E(Zi?fi®wgf)w =E((Zi§fi®(gi—l(a®a/v, gi)))ea®a)
=E(Z{1fi®gi+a/®av)
=E(a’®a’v°(2fi®gi))=WE(Eifi®gi)-
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We state now a lemma giving a condition for (1.15.2) to split.

Lemma. Let R be a root system belonging to I and let GCrad I be defined
over §. Let L be a linear subspace of F such that

(1.15.4) F=L®G (i.e. L is complementary to G.),
(1.15.5) Dol Wear: Wani— Wric  is surjective.
Then

i) The homomorphism (1.15.5) is an isomorphism. Hence (1.15.2) splits into a
semi direct product,

(1.15.6) Wr = WeraX Te.
i) 7T¢ is a full lattice of G@(F/ rad [ ), which is generated by
(1.15.7) ac®ay for a<R.
Here a=a,+ac is the splitting (1.15.4) for an aEF and «; means the

element (a.)”=(a"). of L.

Proof. i) Thesubgroup E~'W n. is contained in L& (F/ rad I'), since it is
generated (as a semi-group) by a®a ELQ(F/radl) for ¢€RNL and
L®(F/rad I) is closed under the product °.

Therefore,
E'WeraeNTe C (LA(F/rad I))N(GR(F/rad I))= 0.

Hence W rn:NE(Te)={1}, which implies injectivity of (1.15.5) due to (1.15.2).
ii) Let ¢a=a.+ac be the decomposition of (1.15.4) of ¢ R. Then in FQ
(F/rad I), one computes as follows.

a®a¥=(ar+ac)@(a)' =a:Qay +acQ®ay =(a:Qay ) (acQay).

Therefore we obtain a decomposition (1.15.6) of the reflection,

(1.15.8) we = E(a:®a) )E(ac®ay) for E(a:QaY)E W rnr,
dc@d’Z 5 TG.

Thus T is generated by ac®ay for aER.
To show that 7% is a full lattice of G®(F/rad I), it is enough to show that T
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spans the whole vector space since T¢ is already contained in a lattice (Q(R)N
G)®(Q(R)/(Q(R)Nrad I)).

Due to (1.15.3) the space R T is invariant under the action of Wg/T¢= Wrie.
Therefore due to (1.6) Cor. 1 and (1.8) Assertion, R 7 contains ¢c®(F/rad I) for
any ¢€ R. Since G is defined over @, G is spanned by a¢ for = R. This implies
RTe=GR(F/rad I). g.ed.

Note. Under the same assumption of the lemma, we have,
i) RNL is a root system belonging to I|L.
ii) The linear isomorphism p|.: L~F/G induces an injection map RNL— R/G
among two root systems, which induces an isomorphism W rar=~= Wrye.

Proof. 1) We have only to show Axiem 1 and § for RN L. Since RNL is
invariant under the action of W zn., the image of RQ(RNL)) in F/G by p is
invariant under the action of Wgic=p« W rn. which contains p(RNL)CR/G.
Thus due to (1.6) Cor. 1 and (1.8) Assertion, |, (RQ(RNL))=F/G. Hence
Q(RNL) spans L.

If R N L were reducible, there exists a linear subspace H & L, which is invariant
under the action of W rn. containing an element of RNL. Then pH S F/G is
invariant under Wg containing an element of p(RNL)CR/G. This is a
contradiction to the fact that R/G is an irreducible root system. g.ed.

(1.16) Counting Kc(a). Let R be a root system belonging to 7, and G be a
subspace of rad [ defined over @. To give a tentative description of the “extension”
of the root system R/G to the root system R, we introduce K¢, which associates a
subset K¢(a) of the lattice Q(R)N G for each root @ =R as follows,

Ke(a):={x=G: a+x<=R}.

We shall call the K¢(a), the counting set of a<R.

Assertion 1. i) 0€ K¢(a) and Ke(a) = —Ke(a) for a<R.

i) Ke(pa)=Kc(a) for an automorphism ¢ of R and aER.

iti) Ko(a) is closed under the reflexion centered at each point of Ke(a).
(ie. If x,vEKe(a), then 2x —y=Ke(a).)

iv) Ke(a) is closed under the translation by I(a, B )Ks(B) for a, BER.
(i.e. Ke(a)DKe(a)+1(a, BY)Ke(B).)
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v) —[Gz,—ﬂKc(a#Ké(av), where K¥%(a¥):= GN{RV—a"}.

Proof. 1) is a consequence of (1.2) Note 1, i).
ii) and v) are trivial by definition.
iii) If @, a+x, a+yER, then wa+z(@+y)=—a+y—22ER.
iv) If @,B, @a+x, B+yER, then wsiy(a+x)=wsa)+x—1(a, B )yER.
g.ed.

Assertion 2. Suppose that there exists a linear subspace L of F satisfying the
conditions (1.15.4), (1.15.5) of (1.15) Lemma such that RNL— R/G is surjective.
Then
i) Ke(a) contains a full lattice of G for aER.

i) R= A {e+K(a)}
iii) aequKG(a) generates the lattice Q(R)NG.

Proof. By assumptions RC(RNL)PG, so that we get the disjoint union
presentation of R as ii). iii) is an immediate consequence of ii). i) is a
consequence iii) taking in account the facts Assertiom 1. jv) and the irreducibility
of R. g.e.d.

(1.17) Hyperbolic extension. For the description of the central extension W, in
(1.17.1), we prepare some linear algebraic assertions. Proofs are elementary and

omitted.

Assertion 1. Let F be a vector space over R of finite rank equipped with a
symmetric bilinear form I. For a given linear subspace GCrad I, there exists a
triple (Fe, Ic, tc) of a vector space F¢ of rank=rank F+rank(rad I/G), a
symmetric bilinear form fc.on Fe and an injective linear map tc: F— FG, s.t.
i) I=1I¢ete,

ii) rad Ie=1¢c(G).

Definition. We call (Fg, Ic, tc) a hyperbolic extension of (F,I) w.r.t. G.
So far there is no confusion, we identify F with the subspace (c(F) of Fs and G
with the radical of Ie.

Assertion 2. Hyperbolic extension is unique up to an isomorphism in the
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following sense. Let G, H be subspaces of rad [ s.t. HCG and let (F¢, I, tc),
(Fu, Iu, tu) be hyperbolic extensions w.r.t. them. Then there exists an injective
linear map ¢ : Fo— Fy such that

i) ic- = iH° ?,

i) ectec=tu

Assertion 3. Let (Fg, I, tc) be a hyperbolic extension w.r.t. G. Then the
automorphism group is given by,

(1.17.2) Aw(F;, Ie, te)=Ec(Ms),
where

E¢: Fe®(Fe/G)— End(F),

is the Eichler Siegel map for Fe and [ (1.14.1), and

(1.17.3) Me:=ker(rad I®(rad I/ G)— S*(rad I/ G))
W \
¢ ——(£+¢) mod G.

(Here S2( V') is a symmetric tensor product of V.)
The rank of Mg is given by,

(1.174)  rank(Me) = —%—rank(rad 1/G)(rank(rad )+rank G—1).

The product o structure on Mc¢ coincides with the addition structure on Mc as a
linear space.

(1.18) The extemsion Wxe. Let R be a root system belonging to / and G be a
subspace of rad /. We fix a hyperbolic extension (Fg, ¢, ¢¢) and regard ¢¢c: F—
FG as an inclusion map. Therefore as an element in F: each = R defines a reflexion
of F¢ denoted by w,=Es(a®a").

Put,

(1.18.1) Wre:= the subgroup of O(F;, I¢) generated by @, (¢ER).
Lemma. The group W is a central extension of Wx.

~ EG ~ D*
(1.18.2) 1 Ke Wre We—1,
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where

1) b« is a surjective homomorphism induced from the restriction of the action of
Wi on Fg to the subspace F.

i) Kg is a lattice of Mg ((1.17.3)) defined by

(1.18.3) Ke : = Eg*(Wre)N M.

where Eg is the Eichler Siegel map for F; and I; in (1.17.2).

Proof . Since Wr, is generated by Eq(a®a") for a®a¥EFQ(F/G) (a<
R) and FQ(F/G) is closed under the product o, the group Wxe is contained in
E:(F®(F/G)). Hence the inverse Eichler Siegel map is well defined as an injective

map
(1.18.4) EG': Wre— FQ(F/G).

The action of E¢(FQ(F/G)) on F; leaves the subspace F invariant so that the
restriction p, is well defined to make the diagram commutative :

- .
Wre — We
NEz NE™

FQ(F/G) —» FQ(F/rad I).

Therefore by putting Kg:= Ec'( W) (FQ®(rad I/G)), one obtains the exact
sequence (1.18.2).

Since McC F®(rad I/G), it is enough to show the inclusion relation K¢C Mg
to show (1.17.2).

Let us apply (1.14) Assertion for F¢, /¢ and £€ Kg, since 0 := Ec(£)E Wre
C O(F;, Is). Hence

E+6=1(£,€) mod F~G®G+ GRFe.

Since £€ F®(rad I/G) we have I(£, *€)=0. Therefore
+) £+ =0mod Fe®G+GRFe.
Again noting £ F®(rad I/G), *) implies
xx) £&rad IQ(rad I/ G).
Then #) and #+* ) implies £€ M.
K is discrete in Mg, since it is contained in a lattice Q(R)@(Q(RV)/

Q(RV)NG). g.ed.
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(1.19) Components of the Eichler-Siegel map £. The sequence (1.18.2) does not
split. For a more precise study of the sequence, we introduce in (1.20) a mapping,
7 WR,G—> Mg, which coincides with Ez! on the center Ec(Kg). Fora preparation
to 7, let us define some notations.

The definition of the » depends on a decomposition,
(1.19.1) F=L®HDG

where L is a subspace of F' complementary to rad/ and H is a subspace of rad 1
complementary to G.

Fixing one such decomposition, we introduce mappings,

(1.19.2) £: Wre— LQL,
(1.19.3) p: Wee— HQL,
(1.19.4) q: Wre— GQL,

as components of the inverse Eichler Siegel map (1.14.5),

(1.19.5) E"(p:(9)) = £(g)+p(g)+alg) for gE Wae,

where we use the following identification,

FQ (F/radI)~ (LOH®G)®L = (LOL)D(HRL)D(GRL).

The orthogonality of g implies the condition (cf. (1.18) Assertiom),

(1.19.6) E(g)+te(g) = I(&(g), *&(g)) for gE Wre-

Let us reformulate the relation (1.14.3) into some formulae for components of E.

(1.19.7) £(g192) = £(g1)+£(g2)—1(£(g1), £(g2)),
(1.19.8) 17(9192) = ﬁ(gl)Eo(tS(gz))'i‘ﬁ(gz),
(1.19.9) a(g192) = q(g1)Ec(*(g2))+a(g2),
where

E,: LQL—End(L),
Eo(Zi‘.fi®gz-)(u) = u—lefJ(gz-, u),

the Eichler Siegel map for L and |L.
As a corollary to (1.19.7), we have,
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(1.19.10) 6(g) = &(g7") for g€ Wre.

(" If(1.19.10) is true for g,, g», (1.19.7) implies that it is also true for g;g,. On the
other hand (1.19.10) is obviously true for reflexions g:= w,.)

(1.20) The map . We introduce the map » (1.20.1) and summarize its properties in
the following Assertions 1—3.

Assertion 1. There exists a map,
(1.20.1) 7: Wee— Mo
s.t. the inverse Eichler Siegel map (1.18.4) is given by,

(1.20.2) Ec'(g) = &(g)+p(g)+a(g)—E.(E(g)) tp(g)
+—§—I(p(g), 'p(g))+7(g) for gE Wge.

Here the terms in the right hand corresponds to the following decomposition.

(1203) FQ (F/G)~ (LAL)D(HQL)D(GRL)D(LRH )BS*(H )DMs,
MG = AZ(H)@G®H7

where HQH =S*(H )P A%*(H ) is the direct sum decomposition of H&® H into the
symmetric and the anti-symmetric tensors.

Assertion 2. The multiplicative law for v is given by,

(1.20.4) 7(g192) = 7(g1)+7(g2)— AL (6(g1), Eo(£(g2))'D(g2)))
—1(q(g1), Eo(£(g2))'0(g2)) for g1, g€ Wre.

Here A(?]):=—%—(7]—t77) is the anti-symmetric part of 7€ HQH.

Assertion 3. The ranges of &, p, q, v are followings

(1.20.5) E(Wre) C =& int(a, B)a:®p:,
(1.20.6) p(Wre) C 2, Zint(a, B)an®8,
(1.20.7) a(Wre) C 2, Z inila, B)ac®AL,

(1.20.8) 7r(Wre) C =z int(e, 8)A(au®Bx)
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+ X Zint(a, B)ac®BxH.
a,BER

Here we denote by,

(1.20.9) a@ = ar+an+ae,

the decomposition (1.19.1) for a root a€R, and by int(a, B) for a, BER a positive
real number defined by

2/1(a, a) for a=p

k-1
1.20.10) int = 2*T1 I(as, aj+1)
( ) 1n (ay B) g,C.d. J:l . al, ey akER
j@l[(a’j, a;)

s.t.an=a and ar=8
(Note that int(e, 8)=int(8, @) and —[—(-‘12—“—) int(e, B)EZ for a, BER.)

Proof for Assertions 1—3.
I. Let

Ec'(g) = &(g)+p(g)+a(g)+ulg)+v(g)+7(g),

be the decomposition of Ez'(g) according to the splitting (1.20.3). Apply the
criterium for the orthogonality (1.14) Assertiom for this. Namely

E+'E—-I(F,'E)=0 mod GRF+F®G for E=Ez'(g).
An explicit calculation of this relation gives

u(g)=—"p(g)+I1(£(g), *p(g)) and
20(g)=1(p(g), ‘p(g)).

2. Apply (1.20.2) to the relation Eg'(gi192.)=FEc'(g1)°Ec'(g2). An explicit
calculation of this gives (1.20.4).

3. If =R is decomposed as (1.20.9), then

v 2 2
a®a =a:RQay +as®Qay +acRai +al ®QH+WQH®QH+WCZG®QH
in FR(F/G), so that we have
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E(wa) = a:Qay = ’I—((‘YZ,T)QLC@C?L,
ﬁ(wa) = ClH@ClZ = Taz,jﬁm;@a@,
a(iWe) = acQay = I(%waa@a@,

r(Wae) = I—(cvz,—a)_a(;@m{'

Therefore for the reflexions W, (¢ €ER), &, p, g, r takes value in the right hand of the
formula of the assertion. Let us denote by M, Mp, My and by M, the modules in
the right hand of the formulae (1.20.5)—(1.20.8) respectively.

What is enough to show is that if for g;, g.E W, the mappings & , D, q, r take
values in M., M», Mg, and in M, respectively then so is also for g:g,.

In view of formulae (1.19.7) (1.19.8) (1.19.9) and (1.20.4), it is sufficient to show,

I(M¢, Me) C Me, MpEo(Me) C My, MoEo(Me) C Mg, and
AI(Mp, *Mp) C My, I(Mq, *Mp) C M.

All these relations are reduced to a relation,

(1.20.11) int(e, B)I(B, v)int(y, §) € Zint(a, §), for a,B, 7, dER.

This is a direct consequence of the definition of int(@, §) by noting the fact
I(Be, y)=1(B, 7) for B, yER. q.e.d.

One can sharpen the Assertion 3 by a slite modification of the proof ag follows.

Assertion 3'. The ranges of p+gq, r are followings

(p+a WR,G) C a’BEE}?Z int(a, 8)(au+ ac)RB:,
r(Wre) C 22,.Z intl@, BNA(2xn®Bx)+ ac®8Bx).

§ 2. Marked Extended Affine Root System (R, G)

(2.1) Let us recall the definition of an extended affine root system ((1.3) Ex. 1 iii)).

Definition 1. A root system R belonging to a symmetric bilinear form I, whose
sign is (1,2,0), is called an extended affine root system of rank |[.

Namely ; I is a positive semi-definite bilinear form on a real vector space F
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of rank [+2, such that rank of radl:={x<F : I(x,y)=0 yEF} is equal two.
R is a subset of F satisfying the axioms 1), ..., 5) for a root system belonging to
I in (1.2) Def.

For short we shall use an abbreviation e.a.r.s. for an extended affine root
system.

2. A marking G for an e.a.r.s. R is a linear subspace of rad I of rank 1 defined
over @ (cf . (1.8)).. The pair (R, G) is called a marked extended affine root system
belonging to I or a m.e.a.r.s. for short.

3. Two e.a.r.s’s RCF and R'CF’ are said to be isomorphic, if there exists a
linear isomorphism ¢ : F~F’ s.t. pR=R’ ((1.2) Def. 2.). Furthermore let G and
G’ be markings for R and R’ respectively, and the map ¢ induces pG=G’. Then
we say that the two m.e.a.r.s.’s are isomorphic.

¢: (R, G)~(R', G').

Note 1. If ¢ is an isomorphism between e.a.r.s.’s belonging to [ and I’, then
there exists a positive constant cER* s.t. I=cl o ¢ (cf. (1.4) Lemma).

Note 2. The same e.a.r.s. can split into non isomorphic m.e.a.r.s.’s, by different

choice of markings. In fact there are at most two isomorph classes of m.e.a.r.s.’s for

the same e.a.r.s. (cf. (5.4) Appendix).

(2.2) The dual (RY, G). Let (R, G) be a m.e.a.r.s. belonging to /. Then RY:=
{avEF: a€R} is also an e.a.r.s. belonging to [ (cf. (1.5) Lemma) and the same
space G defines a marking for RY (cf. (1.10) Note). We call the pair (R, G) the
dual m.e.a.r.s. of (R, G).

(2.3) Z-basis a, b of rad I. Let (R, G) be a m.e.ar.s.. Recall that we denote by
Q(R) the lattice in F generated by R. ((1.2) Def. 1.1))

Then Q(R)Nrad ] is a full lattice of rad 7, which has rank 2 (cf. (1.7) Cor.).
We choose a Z-basis g, b of the module in the following way,

2.3.1) Q(R)NG' = Za,

(23.2) Q(R)NG* = Za+Zb,

where
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(2.3.3) i G*:=radl, G:=0G.
+1 %
0

il] kEZ)

The ambiguity of such basis (g, &) is described by a group {[

§ 3. Quotient Root Systems of (R, G)

3.1) Let (R, G) be a me.ars. Put G':= G, G*:=rad[ as in (2.3). Denote by
R/G? the image set of R in F/G?’ by the projection p;: F— F/G* and by I the
metric on F/G* induced from I, i =1, 2.

Recall that we denote by Wj the group generated by reflexions w, for a € B for

a subset B in F (cf. (1.1.7)).
Lemma 1. i) R/radl:=R/G? is a finite root system belonging to Iraq.
ii) R/G:=R/G' is an affine root system belonging to Ig.

2. The following is an exact sequence.

E ﬁi* .
(3.1.1) 1— Tei— Wr— Wriei—1, for i=1,2,

where
i) bi, is a homomorphism induced naturally from the projection p;.

i) E: FQ(F/rad I)—End(F), E(Zfi®g:)u):= u—2fI(g:, u),
is the Eichler Siegel presentation for F and I, defined in (1.14).

i) 7o, : = E-(Wa)N(G'QF/radl),

3. i) The sequence (3.1.1) splits into a semi-direct product.

ii) Te is a full lattice of G'Q(F/radl) of rank il.

Definition. R/radl and R/G are called the quotient finite root system and
the quotient affine root system of (R, G) respectively.

Proof 1. Due to (1.8) Assertion, R/G’, i =1, 2 are root systems. The examples
(1.3) 1. i) and ii) show that they are either a finite root system or an affine root
system respectively.

2. The exactness of (3.1.1) is shown in (1.15) Assertion.
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3. Due to the Lemma of (1.15), it is enough to show the existences of linear
subspaces L* and L'*! of F such that
i) L'*?°' is a complementary subspace of G in F.

(3.1.2) F = L*"* @G for i=1,2.
ii) The following homomorphisms are surjective.
(3.1.3) p;*l Wenite=i 1 Werartve—i— Wre  for i=1, 2.

Since the decomposition (3.1.2) and the splitting of (3.1.1) play an important
role in the later study, we explain details of the construction of L* and L**! in the
next (3.2) and (3.3).

(3.2) Subspace L' Let f,,...,8: € R/rad I be a basis of the finite root system.
For each 1<i<], choose an element a;= RN pz*(B:) where p,: F— F/rad ] is
the linear projection. Define,

(3.2.1) L' : = ® Ra..

-

i=1

The fact that L*® satisfies (3.1.2), (3.1.3) for ;=2 follows directly from the facts,
i) any root 8 & R/rad] is a linear combination of S, ..., 8; with integral
coefficients which are either all>( or all<(,

ii) the reflexions wg,, i=1, ..., [ generates Wgiraas-

Let us summarize direct consequences of this splitting. (cf. (1.15) Lemma)

Assertion. i) Q(R) splits over Z as follows,

(32.2) Q(R) = (Q(R)NLYHD(Q(R)Nradl)
and
(3.2.3) QRINL! = @ Za.

ii) The subgroup Wrn.t of Wk is generated by wa,, ..., Wa, and is isomorphic to
WR/rad[ SO that

(3.2.4) Wr = WrartiX Traar
iii) For any a€ R, the reflexion w, is decomposed as,

Wa=WGLl ° E(arad1®aZ’), for waLZE WRnle arad1®dl\_/le Tradl,
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where @ =ari+ @raa; is the splitting (3.1.2) and ayi:=(aw)"=(a")t=
21(a, @) 'azrt.

iv) The lattice Traa: is generated by area:Qa: for aER.

Note 1. If R/radl is reduced, then p,: F— F/radl induces an iso-
morphism,

p2: RNL' =~ R/rad I.

i bz
(* R/rad = Wriraar B: = U Wanzta: CRNL'CR/rad I.)
Note 2. The group Wr acts nowhere properly on F and F*. (°. The
subgroup E(Treas) is a free abelian group of rank=2/>rank F'=/+2 for [>2,
which cannot act properly anywhere on F and F*. Remember that rad ] is

pointwisely fixed by Wkz.)

(3.3) Subspace L'*!. Let us recall the concept of basis fy, ..., 8: for the affine root
system R/G from [14] 4.
First, fix a sign of a generator b of rad Jc=rad I/G and put,

(3.3.1) E':={x€(F/G)*: b(x)=1}.

The set E* is an affine space of rank /, whose translation group is (F/rad I)*.
F/G is identified with the vector space of affine linear functions on E*. The
contragradient action of Wgc on E*’ is proper and the set of regular points of the
action El—pg/cH‘g' (Here Hp:={x<E": f(x)=0}) decomposes into open
connected components, called chambers. Wg¢ acts faithfully and transitively on the
set of chambers.

A basis {8y, ..., B:} of R/G is by definition a set of indivisible roots € R/ G,
such that Hap,, ..., Hs, form the set of walls of a chamber C and £;(x)>0 for all x
eC,i=0,..,1.

Let B, ..., B: be a basis for R/G and p,: F— F/G be the projection. For
each 0<i<[ choose an element a;= RN p7'(B:) and we define,

(3.3.2) LY = _(-i—l)oRai.

The fact that L*** satisfies (3.1.2), (3.1.3) for =1, follows from the following
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properties i), ii) of the basis A, ..., 8.
i) Any root BER/G is a linear combination of fy, ..., 8; with integral coeffi-
cients which are either all>( or all<(.
ii) The group Wxc is generated by wsg, =0, ..., [.
iii) There exists positive integers ., ..., 7, with ged (7o, ..., #,)=1, such that

(33.3) ,-zjo nib:

is a positive generator, say 5, of the integral constant functions Q(R/G)Nrad /G
on E (cf. [14](6.7)).

Let us summarize direct consequences of this splitting (cf. (1.15)).

Assertion. i) Q(R) splits over Z as follows.

(3.34) Q(R) = (QRINL"HD(Q(RING),
= (D Za:)®Za.

Put

(3.3.6) b= gon a

Then

Q(R)Nrad I = ZbP Za,
QR)NL*'*Nrad I = Zb.

ii) The subgroup W rnu+1 of Wr is generated by Wa, ..., Wa, and is isomorphic
10 Wri, so that

(337) Wr = Wgart+1IX Te.

Note 1. 1In the above choice of ay, ..., @, if necessary after a change of the
ordering of them, one can always assume that p,(@,), ..., p2(a;) is a basis for
R/rad I, and hence L*:= @Ra, is a splitting factor (3.2.1). Then 7, of (3.3.3) is
equal to 1 (cf. [14] (6.6)). Therefore

@ Za: = ({B )@Zb
QR) = (& za: O 28D 20
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Note 2. 1If the affine root system R/G is reduced, then the projection p, : F—
F/G induces an isomorphism,

p1: RNLY™' =~ R/G.
P

by
(v R/G:QOWR/G Bi =~ L:JOWRHLH'l a;CRNL'*"'C R/G.)

(3.4) Definition. A4 set {a, ..., .} of roots of R is called a basis for (R, G), if
their image in R/G form basis for the affine root system R/G.

We shall show the following assertion in (6.2).

Assertion. Let (R, G) be a m.e.a.r.s. such that R/G is reduced. Let {a, ...,
a.} and {By, ..., B} be basis for (R, G). Then there exists an automorphism ¢ of
(R, G) such that

{SD(a’o), ceny ¢(0'L)} = {50, veey Bl}

§ 4. Tier Numbers ¢(R), ti(R, G), t2(R, G)

For am.e.ar.s. (R, G), we introduce some numerical invariants ¢(R), #1(R, G),
t2(R, G) which we shall call tier numbers.

(4.1) The total tier number.
Definition. Let R be an e.a.r.s. belonging to I. The total tier number of R

is,
t(R): = max{l(a, @)/I(B,B): a, BER}.

Obviously this number depends only on the finite root system R/rad as
follows.

typeofR/radI A | B. | C. |BCi| D: | Ei | Fy | G2
t(R) 1 2 2 4 1 1 2 3

(4.2) Even lattice structure on Q(R). Since R/rad [ is a finite root system, by
suitable choice of positive constants ¢, ¢z, the metrics Ir:=c¢:1I, Irv:= czI have the
following properties (cf. (1.11.1) (1.11.2) and (1.11.4)).

i) Q(R) (resp. Q(RY)) is an even lattice w.r.t. I (resp. Igv).
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i) inf{lz(a, @): aER} = inf{Izv(a¥,a"): aVER} = 2.

iii) #(R)= IR(‘;: a), [Rv(a’zv’ a’) for a€R.

(4.3) Relative tier numbers. Let (R, G) be a m.e.ars. Let g,  (resp. a¥, ") be a
basis for Q(R)Nrad I (resp. Q(RY)Nrad I) as in (2.3).

Definition. The first and the second tier numbers for (R, G) and (R, G)
are,
H(R, G) : =|(4Y med ¢"): (b mod a)| x([rv: I),
t(RY, G) : =|(b mod a): (b¥ mod a¥)|X(Ir: I),
t(R,G) :=|(a": a)|xUrv: I),
t(RY,G): =|(a: @) xUr: I).
Here the notion A : B means the constant number ¢ s.t. A=cB.

The definition of the tier numbers above is invariant by a change of by a
constant multiple of /. A more general combinatorial definition of them is given in
(1.12.1), (1.12.2).

(4.4) Assertion. 1) Tier numbers are positive integers.

i) tR) = tu(R, G): t.(RY, G),
t(R) = t2(R, G)- t2(RY, G).

Proof (cf. Assertion (1.12)). i) Take / to be Iz. Since a'=—lR(aé’—a)a/VE
Za"C Q(RY), we have Q(R)C Q(R") and therefore Q(R)N G'C Q(RY)N G* for
i=1,2. Thus g¢: g%, bmod q: b’ mod g" are integers. This implies £,(RY, G),
t2(RY, G) are integers. Other cases are shown similarly by taking [ =15v.

ii) By definition, the right hand is equal to ([z: I)° (Ixv: I). Taking I
to be equal to [z and using (1.1.4) this number is equal to (Ixv(a", a")/2)X
(Iz(a, @)/ 2) for an @€ R, which is equal to #(R) by (4.2) iii). q.e.d.

(4.5) The first tier number. By definition, the first tier number #,(R, G) depends
only on the affine root system R/G. If R/G is reduced, it is calculated as follows.
Let B, ..., B (resp BY,...,BY) be 2 basis of the affine root system R/G (resp.
RY/G), so that b= Z‘, niB: (resp. =31 nyBY) is the generator (3.3.3) of Q(R/G)
N(radl/G). Then b b" =2 /n,VI(a/, ,a’) for i=0, ..., [ and therefore,
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(4.5.1) t(R, G) = Z—v —Ifi(izv—ﬂv—) (i=0, ..., 1).

The following is a table of the first tier number.

1. Reduced quotient affine root system case.

(acfgiiﬁéﬁ/ﬁm alBBrlc eyl B DB FFY G| Gy

H(R, G) 17121212 (1]1|1(2|1]3

2. Non reduced quotient affine root system case.

Type of R/G y » y
(according to [14]) BCC: CYBC: BB CvV(C,

(4.6) Note. If R/G is reduced, then R/G is uniquely determined by the type of the
quotient finite root system R/rad J and the tier number (R, G), as we see in the

first table above.

§ 5. Classification of Marked Extended Affine Root Systems

In this paragraph (5.2), we present a complete list of isomorphism classes of
marked extended affine root systems (R, G), which satisfy an assumption,

A) the quotient affine root system R/G is reduced.

For each isomorphism class of a m.e.a.r.s. with this assumption, we associate
the type of the isomorphism class in (5.1). For each type of a m. e. a. r. s., we shall
exhibit in the table of (5.2):

1) The first and the second tier numbers £ (R, G) and £(R, G) (cf. (4.3)).
The type of the isomorphism class of dual (RY, G) (cf. (2.2)).

2) The set R of roots in a vector space F with a metric / and a marking G
(cf. Notation below) such that (R, G) is a m.e.a.r.s. of the type of the table.

3) A basis, ay, ..., a; for (R, G) (cf. (3.4)).

4) The countings, k(av), ..., k(a:) (cf. (6.1), (6.4)).
The exponents #q,, ..., Mq, (cf. (7.1.1)) w. . t. the basis.

5) The Dynkin diagram Iz (cf. (8.2)) of the type.
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#|"=1(R)+cod(R, G)+1 and cod(R, G): =codimension of (R, G) (cf.
(8.1)).

Notatien. Let &y, €1, €2, be a sequence of the orthogonal vectors in a real
Hilbert space H. The ambient space F and the marking G for a root system in the
following table are defined as linear subspaces of Ba © Rb® H by,

F:= Ra® @ Ra: = Ra®Rb® ® Ra
G : = Ra,

where @, **, @, are the basis given in 3). The metric 7 on F is induced from that of
H by regarding Ra® Rb as the radical.

(5.1) Definition of the type for 2 marked extended affine root system.

Using a classification of m.e.a.r.s.’s in § 6, we define the types for a m.e.a.r.s. in
the following manner.

Let (P, t, t2) be a triple of a type P, of a finite root system of rank / and two
positive integers #; and {;. A m.e.ars. (R, G) is said to belong to (P, #, ¢) if P,
is the type of R/rad I and t;=¢/(R, G), i=1,2.

i) Type Pt
Let #, £, be divisors of the total tier number #(P;) of a finite root system P; (cf.
(4.1)), and (P, £, £2) corresponds to a reduced affine root system (cf. Note 1.).
Then there exists a unique isomorphism class of m.e.a.r.s.’s which belong to
(P, t1, t2) except the following 4 cases; (A1, 1, 1), (B, 2,2) (22, (C,, 1,1) [=2,
(BC., 2, 2) [=1. Except for these cases we shall call P{*»*2 to be the type of the
isomorphism class.

ii) Ty]pe P(tlytz)*
Let (Py, t1, t2) be one of (A1, 1, 1), (Bi, 2,2) [=2o0r (Cy, 1, 1) [=2. Then there
exist two isomorphism classes of m.e.a.r.s.’s which belong to (P, ¢, £z). In this case,

one isomorphism class is called to be of type P{**? and the other to be of type
Pftuto

iii) Types BC#?(1) and BCZ?(2)
If (P, t, t2) is (BCy, 2,2) for [>1, then there are two isomorphism classes of
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m.e.a.r.s.’s which belong to (BC, 2, 2). Then one isomorphism class is called to be
of type BC{*?(1) and the other to be of type BC{#?(2).

iv) Exceptional types.
Let us call the above A{V*, Bi?* (1=2), Ci** (1=2), BC*?(1)({=2) and
BC{#?(2) (I=1), exceptional types of marked extended affine root systems.

Note 1. The condition A discludes the cases (BC;, ¢, ¢2) such that #,=1 or 4.

Note 2. The treatments and the studies of exceptional types in this and the
following paragraphs are rather case by case study using the explicit description of
the set of roots in (5.3). After introducing a concept of (mean) foldings of Dynkin
diagrams in paragraph 12, we shall see that the exceptional types form naturally a
group (cf. (12.5) Hierarchy).

Note 3. If P is a type for a m.e.a.r.s, let us denote also by PV the type for the
dual m.e.a.r.s.. Then as a consequence of the classification, we see easily ;

(Pl(thtz))v — Plv(t/tx,t/tz) for t:t(P),
(Pl(tx,tz)*)v = Pl\/(t/h,t/tg)* fOI tzt(P).
Hereafter we shall use a convention that if a statement on a me.ar.s. (R, G)

depends only on the isomorphism class of (R, G), then we use the type P instead of
(R, G) in the statement.

(5.2) Extended Affine Root Systems with Markings.

Type AP (121)

1) #H(AP)=1, £H(AF)=1, (APV)V=AP".

2) R: t(ei—e;)+nb+ma (0<i<j<l) (n,m<EZ).
3) @o=—cote+b, ai=ei1—e: (1<i<]).

4) k=1 (0<i<D),
m:=1 (0<i<]).

5) cod(APV)=1+1, #I'(A¢V)=21+2.
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as at
af
Qo = (731
a:
(I1=1) (1=2)
Type A(‘l,l)r:

) H(AP)=1, H(AP*)=1, (A¢V*)Y =AY

2) R: xe+nb+ma (n,mEZ st. n-m=0mod 2).
3) av=—¢e+b m=s.

4) ko=2, k=1,

mn=—12—, mi=1.

5) cod(A¢V*) =1, #I'(A¢V*)=3.

Type B{* (1=3)
1) t(B)=1, #(BM)=1, (BHY)v=CP?,
2) R: teitnb+ma (1<i<l) (n, m€Z),

teiteitnbt+ma (1<i<j<l) (n,mEZ).

3) ao=—e1—e2+b, ai=ei—ein1 (1Li<1-1), ar=e..

4) k=1 (0<:)),
me=2, mi=2, m:=4 (2<i<I[-1), m,=2.

5) cod(B{*")=1-2, #I'(B{")=2]-1.
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a2 asz

Type Bi*? (1=2)
1) #(B®)=1, t(B!)=2, (B})v=CPE".

2) R: teit+nb+ma (1<i<l)(n, mEZ),
teiteitnb+2ma (1<i<j<!l)(n, mEZ).

3) av=—e1—¢2+b, ai=ei—ei1 (1Li<]—1), ar=e.

4 k=2 (0<i<I-1), k=1,
mo=1, mi=1 m:;=2 (2<i<]).

5) cod(B?)=[—1, #I'(B{®)=21.

438

Type BV (1=2)
1) H(BEY)=2, H(BED)=1, (BED)v=CP2.

2) R: te;+ub+ma (1<i<]) (n,m<EZ),
teitei+2nbt+ma (1<i<j<I1)(n, meZ).

3) ao=—e1+b, ai=ei—ein1 (1<i<[-1), ai=e..
4 k=1 (0<i<l),

mo=1, m:;=2 (1<i<[-1), m;=1.
5) cod(B#V)=1-1, #I'(B®&V)=2].

af a3

Qo

43} Qz ai-1
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Type Bf? (1=2)
) w(B#)=2, H(B")=2, (BF?)'=CP.

2) R: tei+nb+ma 1<i<]) (n,mEZ),
teite;i+2nb+2ma (1<i<j<l1) (n,mEZ).

3) ao=—e1+b, ai=ei—ein (1<i<I[-1), ai=e.

4) k=1, k=2 (1<i<[-1), k=1,
m:=1 (0<i<]).

5) cod(B®?)=1[+1, #I'(B#?)=2[+2.

Type Cf* (122)
D H(CP)=1, &(CH)=1, (CH)Y=BE,

2) R: +2ei+nb+ma (1<i<l) (n,mEZ).
teite;jtnbtma (1<i<j<l) (n, mEZ).

3) av=—2e1+b, ai=e;—ein (1<i<[-1), ar=2¢..
4) k=1 (0<i<]),
m:i=2 (0<:<]).

5) cod(CiV)=1+1, #I(Ci*)=21+2.

at
77 e S N S ——
2 ! 2

i ' T
@y O—>—0f——— o=
2 [43

Type C{® (1>2)

1) H(CPN)=1, H(CH?)=2, (CH)Y=BEY,

2) R: £2e:i+nb+2ma (1<i<]) (n,mEZ),
teiteij+nbtma (1<i<j<l) (n,mEZ).
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3)
4)

5)
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ao=—2e1+b, ai=ei—ei1 (1<i<[-1), a1=2e..

/fo-——z, k:=1 (lgisl—l), /€L=2,
MO=1, mi=2 (ISiSl—l), mi=1.

cod(Ci+?)=1-1, #I'(Ci*?)=21.

at i
H
' \ = E
@ i | i a
1 i 1
1}
2 ; 2
a1 di-1

Type C#V (1=2)

1)
2)

3)
4)

5)

H(CP)=2, t(CEV)=1, (CPV)" =B,

R: +2e:+2nb+ma (1<i<l) (n,mEZ),
+eitei+nb+ma (1<i<j<l) (n,mEZ).

Qo=—¢€1—¢E2+b, @i=€i—Eir1 (1<i<i-1), ai=2e..

k=1 (0<i<1),
mo=1, m1=1, mi=2 (ZSZSI)

cod(CM)=1—-1, #I'(CHV)=21.

as ai-1 ai

Qo

az - 2 a;

Type CP*? (1=3)

1)
2)

3)
4)

5

H(CP)=2, t(CF?)=2, (CP?)" =B,

R: +2e:+2nb+2ma (1<i<l) (n, mEZ),
teiteit+nb+ma (1<i<j<l) (n,mEZ).

o=—&1—€&2+b, ai=€;i—gi1 (1<5i<[-1), a:=2e..

ki=1 (0<:i<[-1), k=2,

mo=1, mi=1, m:=2 (2<i<[-1), m,=1.

cod(CP?)=(-2, #I'(CPF?)=21-1.
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az

Type B&»* (1=2)
1) t1(B§2'2)* )= 2, tz(BEz'z)*)= 2’ (Bgz,z)* )v — Cgl,l)*.

2) R: teitnb+ma 1<i<l]) (n,mEZ st. nwm=0 mod 2),
+eite;+2nb+2ma (1<i<j<[) (n, mEZ).

3) av=—e1+b, @:i=€i—€in (1SiSl—1), A1=E&y,
4) k=2 (0<i<[-1), k=1,

MQ=%, m:=1 (13231)

5) cod(BP™*)=1, #I'(BP¥*)=21+1,

Type CE9* (122)
1) A(CEY™)=1, K(CPF)=1, (CPV*)=Bp>

2) R: +2ei+nb+ma (1<i<l) (n,mEZ st nm=0 mod 2),
teiteitnb+ma (1<i<j<l) (n, mEZ).

3) a=—2e1+b, ai=ei—ei1 (15i<[-1), a;=2e..

4) k=2, k:=1 (1<i<)),
mo=1, m:=2 (1<i<]).

5 cod(CiV*)=1, #I(CH*)=21+1.
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Qo

Type BCP (I=1)
1) tH(BCPV)=2, t.(BC#V)=1, (BCZV)'=BCH,

2) R: xeit+nb+ma (1<i<l) (n,mEZ),
+2e:+Q2n+1)o+ma 1<i<1) (n,mEZ),
teitestnbt+ma (1<i<j<I) (n,mEZ).

3) av=—2e:1+b, @i=¢ci—eir1 (1<i<[—1), ar=c¢..

4) k=1 (0<i<l),
mi=4 (0<:<7-1), m.=2.

5) cod(BC?V)=1, #I'(BCZV)=2]+1.

(1=1) (1=2)

Type BC#* (I>1)
1) H(BC#)=2, t,(BC#)=4, (BC{#*)"=BC#".

2) R: xe;+nb+ma (1<i<]) (n,mEZ),
+2e:+2n+1)b+4ma (1<i<l) (n, mEZ),
teiteitnb+2ma (1<i<j<l) (n, meZ).

3) a=—2e1+b, ai=ei—ein (15i<[-1), ai=e¢.

4) ko=4, k:=2 (1<i<[-1), k=1,
mo=1, m:=2 (1<i<]).

5) cod(BCP*)=1, #I'(BCP*)=2I+1.
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1)
2)

3)
4)

5)

(I=1) (1=2)

Type BC¥(1) (1=2)

t(BCP?(1))=2, t(BCP*(1))=2, (BC#*(1))”=BCF?(1).

R: teitnb+ma (1<i<]) (n, mEZ),
+2e:+Q2n+1)b+2ma (1<i<l) (n,mEZ),
teiteitnbtma (1<i<j<l) (n, mEZ).

ao=—2e1+b, ai=e;—eir1 (1<i<I-1), ai=¢.

ko=2, ki=1 (1<i<I),
mo=2, mi=4 (1<i<i—1), m,=2.

cod(BCF?(1))=1—-1, #I'(BC#?(1))=21.

Type BCP#?(2) (I=1)

1)
2)

3)
4)

5)

t(BCE(2))=2, t.(BCP(2))=2, (BCP?(2))"=BCH(2).

R: tei+nb+ma (1<i<]) (n,mEZ),
+2e:+Q2n+1)b+2ma (1<i<l) (n, mEZ),
teiteitnb+2ma (1<i<j<l) (n, mEZ).

@o=—2e1+b, ai=ei—ein (1<i<[-1), a=e,.

k=2 (0<{<1-1), k=1,
m:=2 (0<i<]).

cod(BCP?(2))=1+1, #TI'(BC#?(2))=21+2.
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a at
Qo :" o'
4
(I=1)

Type DV (1=4)

1) w(D#)=1, t(D¢MV)=1, (D) =D,

2) R: teites+nbt+ma (1<i<j<l) (n,mEZ).

3) ao=—e1—e2+b, ai=ei—ein (1<i<I-1), ar=ée11+eu

4) k=1 (0<i<)),
mo=1, mi=1, m;=2 (ZSiSl—Z), mi-1=1, m.=1,

5) cod(D¢V)=1-3, #I'(D¢V)=21-2.

as ai-2 Q-1

; i
/33 J 0
Q:z di-2 a

In the next three types (E$"Y, E$*Y and E{*V), let @ : =&:— %i (0<:i<8),
. =)
so that aa);:O and I(w:, a),-)=——g)-+8,-,- for 0<i, j<8.

Type EY
1) H(ESV)=1, H(EHM)=1, (EHV)=EM.

2) R: +(wi—wi)+nb+ma (1<i<j<6)(n, mEZ),
Hwitwit+ws)+nb+ma (1<i<j<k<6) (n, mEZ),
(o1 + w2+ +ws)+ nb+ma(n, meZ).

3) a’o='—(a)1+"'+a)6)+b, A:i=Wi— Wi+1 (132.55), As= Ws+ wWs+ we.

mo=1, mu=1, m2=2, ms=3, mi=2, ms=1, ms=2.

5) cod(E{V)=1,# I'(E)=8.
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as az ax
O
Qo
as
O- O
as [« as

Type E{&Y

1) h(E®V)=1, H(EM)=1, (EfV)=EfMV.

2) R: +(wi—w;)+nb+ma (1<i<j<7) (n, mEZ),
+(witwi+wr)+nb+ma (1<i<j<k<7) (n,m€EZ),
+(wi+o+ @i+ +w)+nb+ma (1<i<7)(n, mEZ).

3) av=—(or+-+ws)+b, ai=wi—win (1<i<6), ar=ws+ws+wr.

4) k=1 (0<i<7),

mo=1, mu=1, m:=2, ms=3, m.=4, ms=3, me=2, m=2.
5) cod(E$V)=1, #I'(EMV)=0.
ai as @ o
/ n ' o
o 0 0
Qs as a2z a1

Type E{Y

D #(EEV)=1, H(EM)=1, (E&)V=EHD.

2) R: t(wi—w;)+nb+ma (0<i<j<8)(n, mEZ),
t(witwi+o)+nb+ma (0<i<j<k<8)(n, meZ).

3) a=wo—wit+b, ai=wi—wir (1<i<T7), as=we+ wr+ ws.

4) k:=1 (0<:<8)

mo=1, M1=2, Mz=3, M3=4, M4=5, M5=6, MG=4, M7=2,
=3.

5) cod(E{V)=1, #I'(E$V)=10.

123
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as

Type F{"V

1) t(Ff)=1, t(FM)=1,

as as az a1 ao
—0 —o —o0
> 0
[+4] ar
(Fil,l))széz,z).
2) R: teit+nbt+ma (1<i<4) (n,mEZ),
teiteitunb+ma (1<i<j<4) (n,mEZ),
—12~(iel-|_-ezi63ie4)+nb+ma (n, mEZ).
A2=€3—E4, A3=E4—0, QA4=0,

3) av=¢e1—¢e2+b, ar1=¢e2—¢;,

where ¢ : =%<81+€2+53+64).

4) ki=1(0<i<4),

mo=2, M1=4, MZ':-G, M3=4, ma=2.

5) cod(F{V)=1, #I'(F{V)=6.

Type F{*?

) t(FM)=1, t(F{?)=2,

(F{D)Y = Fe,

2) R: xeit+nb+ma (1<i<4) (n,mEZ),

teite+nb+2ma (1<i<j<4) (n, mEZ),

é—(i—eliezi&ia)%— nb+ma (n, meZ).

3) Go=¢€1—E2+ b, a1=€Ez2—€3,

A2—=E3— &4, A3=E4—0, A4=0.

4) /fo:2, k1=2, /tz=2, /£'3=1, /t‘4=1,

mo=1, m.=2,

Mz=3, ms=4, ms=2.
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5) cod(F{*?)=1, # I (F{*?)=6.

Qo ©

Type F{&V
) a(FPY)=2, H(FP)=1, (F@V)=F{?,

2) R: x2ei+2nb+ma (1<i<4) (n,mEZ),
teite;+nb+ma (1<i<j<4) (n, m€Z),
teitetestet2nbtma (n, mEZ).

3) a'0=€1—€z+b, A1=E2— €3, @A2=E3—Ey, (13=264, Asy=—E1—E2—E€3
—&s.

4) k=1 (0<i<4),
mo=1, M1=2, m:z=3, m3=4, ma=2.

5) cod(F#V)=1, # I'(F{&V)=6.

Type F{*?
1) w(FE?)=2, L(F&?)=2, (F&?)=F,

2) R: x2e:i+2nb+2ma (1<i<4) (n, mEZ),
+e:+e;+nb+ma (1<i<j<4) (n,mEZ),
+er1tertestet2nbt2ma (n, meZ).

3) av=e1—€2+b, @1=€2—€;3, A2=€3—€s, A3=2Es, As=—E1—E2—E3
—E&4.
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4) ko=1, k1=1, kz=1, /€3=2, k4=2,
WLo=1, M1=2, mz=3, m3=2, ma=1.

5) cod(F#?)=1, # I'(F{?)=6.

Qo

In the last four types (GEY, G§ G$Y and G‘“’) let ¢;: =e:— 3(sl+sz
+e3)(i=1, 2, 3), so that Z¢: 0 and 7(¢:, ¢J)—— 3 +685 (1<i,7<3).

Type Gal,l)
) u(G8)=1, t(G§V)=1, (G§V)'=GE.

2) R: +¢:+nb+ma (1<i<3) (n, mEZ),
+(di—¢;)+nb+ma (1<i<j<3) (n, mEZ).

3) av=—¢1+d:+b, ar=¢1—:, a:=¢

4) k=1 (0<i<2),
?no=3, M1=6, mz=3.

5) cod (G$V)=1, #I'(G$V)=4.

Type Ggl,S)
1) 6(GEM=1, t(GF)=3, (G§?)'=GH.

2) R: t¢d:+nb+ma (1<i<3) (n, mEZ),
+(pi—@;)+nb+3ma (1<i<j<3) (n,mEZ).
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3) a=—¢di+ds+b ar=d1— ¢z, az2= Pa.

4) ko=3, k1=3, k2=1,
Mo=1, M1=2, mz=3.

5) cod(G$*)=1, #I'(GE)=4.

Type G
D a(GEY)=3, H(GEV)=1, (GF)*=Gy™.

2) R:=+3¢:+3nb+ma (1<i<3) (n, mEZ),
+(pi—d;)+nb+ma (1<i<j<3) (n, mEZ).

3D a=—¢1+¢s+b, a1=¢1—¢d2, a:=3¢,.

4) k=1 (1<i<3)
mo=1, mi=2, m2=3.

5) cod (G#V)=1, #I'(GHV)=A.

Type Ggs,s)
1) #H(GF)=3, H(GF)=3, (GF)=GEH.

2) R: +3¢:+3nb+3ma (1<i<3) (n, mEZ),
+(gi—@;5)+nb+ma (1<i<j<3) (n,m€Z).

) av=—¢1+¢s+b ar=¢1—¢:, @z=3¢.
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4) k0=1, k1=1, k2=3,
711():1, M1=2, ma=1.

5) cod(G§¥)=1, #I'(GH?¥)=4.

(5.3) A description of the set of roots.

Here we give a systematic description of the set R from the knowledge of the
type of an. e.a.rs. (R, G).

In the following we use the notation Rp as for the set of finite roots of type P.
The Weyl group invariant metric is denoted by /p, which is normalized s.t.
inf {Ir(a, @) : a€ERp}=2.

i) Type P(1,1)
R= L{z {a+Zb+ Za}.
asRp

ii) Type P“? for ¢t=¢(P)
R=U {a+Zb+Z~Ii’—(%£la}.

aERp

iii) Type P®Y for ¢t=¢(P)
R=U {a+zl’°(‘§ “)b+Za}.

@QERp

iv) Type P“® for t=¢(P)
R= U{a+ZIP(ay a)b__+_ZIP(ay a)d}.
P 2 2

aER

v) Type POY*  where 1=¢(P) (Case A0*)
R= Up{a—i—nb-f-ma: m, n€Z, mn=0 mod 2}_

QER,
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vi) Type P“Y* where 1+ ¢(P) (Case C{+V* 1>2)

R=U {a+nb+ma: m, nEZ, mn=0 mod 2 if @ is a long root}.

QERp

vii) Type P%9* where t=¢(P)#1 (Case BP*?*[>2)

2 9
mn=0 mod 2 if ¢ is a short root.

R=U

aERp

{a+nb+ma: m,nEZ, m=n=0 modM}

vi) Type BC#? (1>1)

R= U {a+nb+ma: m,nEZ, n=1mod 2 for @ longest root}.
GERBCL

ix) Type BC?* (1=>1)
I(a,a)

{a’+nb+m—2———a :m, nEZ, n=1mod 2}

R
“=BC; for @ longest root

x) Type BC#?(1) (1=2)
a+nb+ma: m, nEZ, n=1mod 2 for ¢ longest root,
m=0 mod 2 for & longest root|

aERBCl

xi) Type BC??(2) (1=1)
U {a+nb+ ma: m, nEZ,n=1 mod 2 for ¢ longest root,}

acRye, m=0 mod 2 for @ not shortest root|

(5.4) Appendix. Isomorphism as Root Systems.

In the following, we list up all pair of non isomorphic marked extended affine
root systems, which are isomorphic as root systems forgetting about their markings.
For each such pair, we give an isomorphism @ explicitly by using the explicit
description of the root system in (5.2).

1) B~ BPY (1=3)
O : FBSLZ):XFB(IZ.I)

ei—¢&; i=1,..,1
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a—b

b— a
2) Ci =~ CPY (1=3)
®: FeposFopn

ei—— e i=1,...,1
a— b

b— a
3) F? ~ F@v
oD - FF‘(11,2) ot FF22,1)

e1i—— &1té&:
E2—&1— &2
g3 &3+ &4
Es—> E3— €&
a——b

b— a
4) G§® ~ GPY

O : FogaxFopy

pr—— ¢2— s
o s — ¢y
ps— ¢1— ¢

a——b

b—— a

(To see that these 4 give a complete list of isomorphism among two m.e.a.r.s.’s
(R, G) and (R’, G’), we proceed the following. If R~ R’ then i) R/radl=
R’/radl” and ii ) the counting set Kraar(@) for ¢ ER and Kraar(a”) for a’€ R’ (cf.
(1.16)) should behave similarly. For a m.e.ars. (R, G), such data are easily
calculated from the description of (R, G) in (5.3). Thus in this way we can pick up
all possible pair of marked e.a.r.s’s from the table of (5.3), which might be

isomorphic as root systems. Then as we see in the above list, one constructs explicitly
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the isomorphism @ for each case.)

§ 6. The Second Tier Number £,(R,&) and the Counting k(a) (e R)

In this paragraph we give a proof of the classification of m.e.a.r.s.’s stated in the
last paragraph. The idea is to calculate #,(R,G) by introducing counting number
k(a) for ¢ R which is a positive integer s.t. {a+Zk(a)a}=RN{a+Za} (cf.
(6.1)). The counting number £(a) plays a role in the definition of exponents in § 7
and in the study of the Coxeter transformation in § 9.

(6.1) Let (R,G) be a mears. such that R/G is reduced.

Assertion i) For any root a < R, there exists a positive integer k(a ), which we

shall call the counting of a, such that

(6.1.1) {a+Zk(a)a} = RN{a+Za}.

ii) For any two roots a, BER,

(6.1.2) EB)IB, av)k(a).
Particularly if I(B, a¥)==1, then

(6.1.3) 1 k(a)/kB) | I(a, BY).

iii) If @ is an automorphism of (R, G), then

6.1.4) k(a) = k(p(a)) for a<R.
iv)
(6.1.5) R= 1L  Ae+Zk(a)a},

for a linear subspace L'** of F spanned by a basis (cf. (3.4)).

v) gcd{k(a): a€R} =1,
gcd{k(a:): ao, ..., @, a basis for (R, G)} = 1.

Proof. i) Put K(a): ={xEZ : a+xa=R} for a root a€R (cf. (1.16)).
Since 0 K (@) and x, yE K (a) implies 2xr —y<= K (@) (cf. (1.16) Assertion 1. i)
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iii)), K (@) is an ideal of Z, whose non negative generator is denoted by £(@). Then
k(a)#0 due to (1.16) Assertion 2 and (3.3) Note 2.
Then ii) iii) iv) and v) are direct consequences of (1.16) Assertiom 1,

Assertion 2.

(6.2) Corollary. Let (R, G) and (R’, G') be m.e.a.r.s.’s and let {an, ..., a.} and
{Bo, ..., B:} be basis of (R, G) and (R’, G’) respectively (cf. (3.4) Def. ). Suppose
(R, G) and (R’, G’) are isomorphic. Then there exists an isomorphism ¢ : (R, G)
~(R’, G') such that {¢p(a), ..., p(a)}={B, ..., Bi}.

Proof . Tt is enough to show the case when (R, G)=(R’, G’). Recall the
projection p,: F— F/G. Since pi(a), ..., p1(a:) and p:(B), ..., p1(B:) are basis
for the affine root system R/G, there exists an element < Wx/c and a sign e {1}
such that {ew(pi(ao)), ..., €0 (p:1(@))}={p:1(Bo), ..., p1(B:)}. (Wgi acts transi-
tively on the set of chambers.) Therefore if w& Wk is a lifting of w, using the
Assertion i ) we see that there exists a permutation 0&&,,, and integers m;€EZ
(7=0, ..., I) such that

ew(asw) = Bi+mik(B:)a i=0, ..., L.

Let us define two elements ¢ and ¢ of GL(F') by

¢ F=§)Rai®RaEZcfaf+pa — e(Xcwa:)+pa EF,

@ : Fzg-iB()RB,-GaRaBZciBrH)a — DcBi+(p+Xcimik(B:))a € F.

The map ¢ is shown to be an automorphism of (R, G) using the expression (6.1.5)
for L'+ =i(-£-)0 Ra; and the fact k(a@)=k(—a).

Let us show that ¢ is an automorphism of (R, G). First let us show that for
any BERNLY with L['**: =i@:0 Rp:, p(B) belongs to R such that k(B)=
k(p(B)).

By definition ¢B;=8:+m:k(B:)a € R and pws, ¢~ =wes, € Wr for i=0, ..., I.
Therefore p(RNL™)= go(lgo W rnri+1 Bi)= ¢(£L:Jo<w,so, e w,e,>3¢)=l_L=lJO<w¢p°, ey
Wee>PB: CWrR=R. If f=wp: for BERNL'", wE W rnri~1 and 0<7</, then
using Assertion i) and iii) one computes £(@(8))=k(owo™'8:)=k(@B:)=k(B:)=
E(wB:)=k(B).
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Using the expression (6.1. 5) for L'"'= (—BRB, again, one computes . PR =
serrizn (2(B)+ZEBYD= _ U, (¢(B)+Zk(¢(b’))a)CR Samely one computes

that p"'RCR. This shows that @ is an automorphism of (R, G).

Therefore the composition ¢~ 'w¢ is an automorphism of (R, G) such that

(o 'wd)aswy=8B:, i=0, ..., [. This completes the proof of the corollary.

(6.3) Let us give a formula for the second tier number #:(R, GG) using the counting

k(a), aER.
(R, G) = g.c.d.{k(aM: 2ER}
(6.3.1) (ay. a?)

= g.c.d.{k(afl}———"— o, ..., @; @ basis}.

Proof . For the dual root system (R, G), parallel to (6.1.1) let us define,

(6.3.2) k¥: RN by {a"+2Zk'(a")a"}=R"N{a"+Za"}.

By definition, we have a relation,

I(a¥,a")
2

(6.3.3) E(a¥)a” k(a)a = k(a)a for

2
~1(e, a)
Taking the proportion of (6.3.3), for @, BE R, we have

k(ev) _ I(a¥,a") k(a)
k¥ (8Y) — I1(BY,BY) k(B)"

Therefore
(6.3.4) £ (a¥) =%L"v21“—v)k(a) for aER,
vhere oo (8. 8%) _K(B)

2 k¥ (B)

Applying (6.3.4) to gcd. {k¥(a¥): a=R"}=1, one gets,

(6.3.5) c = gcd. {I(Q 4 )/f(a/): aER}.

By definition of #,(R, G) in (4.3), applying (6.3.3), (6.3.4), (6.3.5),

L(R,G):=(a": a)lUgv: I)= kéggz) [(QVZJV) (Igv: I)
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=cllgv: I)= g.c.d.{ﬁ—(gzi’—ﬁ)—/t(a): aER}
= g.c.d.{i(—‘%’ﬁk(m): Qo, ..., A1 @ basis}_
g.e.d.
Corollary.

vl V) — 1 IRV(QV, QV)
(6.3.6) k(av) = R C) 5 k(a) for aE€ER.

(6.4) Let {ay, ..., .} be a basis for a m.e. ars. (R, G), (3.4). Since it can be regarded
as a basis for the affine root system RN (—D Ra:, one can associate a Dynkin diagram
I” for this basis. (See for instance [14, 5]) By |I"| let us denote the set of nodes of
I', which is identified with the set {ay, ..., @:} of the basis. At each node of the
diagram corresponding to a base a;, let us associate the counting integer £(a:), so
that we obtain weighted Dynkin diagram (I”, (k(@))aeir).

Lemma i) The weighted diagram (I, (k(@)aeir)) is uniquely determined by
the isomorphism class of (R, G).
ii) The weighted diagram (I" (k(@))acir) for a (R, G) determines uniquely the
isomorphism class of (R, G).

Proof. i) (6.1) Assertion iii) and (6.2) Corellary.
i) Let {ao, ..., @i} be a basis for (R, G). Let us take the expression (6.1.5) for
Ll+1 @Ra”

R= (a+2Zka)a) = U _ {wac+ Zk(as)a),

I+l i=0 we<wao

where the right hand is uniquely determined by the weighted diagram (I7,
(k(@))acir)). The marking G is given by Ra. g.e.d.

Note. Let (I',(k(@))aeir)) be the weighted diagram for a me.ars. (R, G).
Then the weighted diagram for the dual (R, G) is given by (I"V,(£¥(a"))aveirvi),
where I"V is the dual of I" (i.e. the set of nodes of /™Y is bijective to I" and the arrows
on the bonds are reversed) and £V(aV) is given by (6.3.6).

(6.5) Due to the Lemma (6.4), the classification of m.e.a.r.s.’s is reduced to the
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classification of weighted diagram (I',(k(@))ecir|) where
i) I' is a Dynkin diagram for a reduced affine root system,
ii) the counting weights k(a) a<|I'| are positive integers s.t.

kBB, aVk(a) for a,BE|l and
ged{k(a): e’} =1.

In the following we list all such weighted diagrams. For each weighted diagram,
we calculate the first and the second tier numbers, using (4.5.1) and (6.3.1). For each
weighted diagram, let us define the type according to a similar rule as in (5.1).

(6.6) Existence of m.e.a.r.s.’s. To finish the classification of m.e.a.r.s.’s in § 5, we
want to show the existence of a m.e.ar.s. (R, G) for each weighted diagram (I”,
(k(@))aeir)) in the list of (6.5) s.t. a basis for (R, G) gives the weighted diagram.

This can be achieved by showing the following steps.
i) An explicit construction of (R, G) is given in (5.2) (or (5.3)). (The author
owes to the appendix of [14] for a description of affine root systems).

Therefore we need to show the following ii )— v ).
ii) Each (R, G) in (5.2) satisfies the axioms for an e.a.r.s. given in (2.1).
iii) The set a, ..., a, given in 3) of the table (5.2) is a basis for (R, G) in the
sense of (3.4).
iv) The weighted Dynkin diagram (defined in (6.4)) associated io the basis
belongs to the list in (6.5).
v) By this correspondence (R, G)= (I", (k(@))acir), the type for (R, G) in
(5.2) coincides with the type for (I', (k(@))acir)) in (6.5).

To check all these steps for all types of m.e.a.r.s.’s is a rather long cumbersome
routin work, which we do not proceed in this note.

(6.7) As a result of the classification, we have the following.
Assertion. Let (R, G) be a m.e.a.r.s. of type Pt»'?,

If t,=1, then k(a)=1 for any a€R.
If t:=1t(P), then /f(a')=%fx(af, @) for any a€R.

(6.8) Note. Tt is curious to observe that the coefficients 7; (=0, ...,7) of b
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weighted diagram

1
A
o =
1 1
o0
(o]
1 2
o0
00

2
2 2 2 1
O—— 540 —O0—=>—0
2 2
1 1 1 1 1

2 2 2 2
O—<—0——0— 600 —O—=>—0
2 2
1 1 1 1 1
O0O—=—0—0— ,,, —O0—<—0
2 2
2 1 1 1 2
O—>0——0— o0 —O—<—0
2 2

1
1 1 1 1
soo —O—=€0

KYoIl SAITO

the first
tier number

the second
tier number

the type

A(ll,l)

B;l,l)

B

Bgz,l)

B

BEZ,Z)#

cfl.l)

C?,z)

cgz,l)

the dual type

A¢D

cp

sz’l)

C(ll,z)

C%l.l)

c;l,l)*

Bgz,Z)

BEZ'I)

B§1,2)
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1

1
>_l__ o —oe? 2 2 c B
1 2

1 1 1 1 2
O0—>—0——0— 40 —O—<—0 1 1 Ci* B»*
2 2
1 1 1 1 1
oe?:—o———o— coo —o—?—o 2 1 Bciz,l) Bcgz.‘;)
1- 1
OTO 2 1 BC{z,l) BC{2,4)
4 2 2 2 1
O—=>>—0——0—— o500 —O0—>>—0 2 4 BC}ZA) BCEZ,I)
2 2
4 1
o—>—o 2 4 BC{®? BC#Y
4
2 1 1 1 1
oez——o—o— coo *0-—52>—-0 2 2 Bcﬁz,Z)( 1) Bcﬁz.z)( 1)
2 2 2 2 1
o—>2>—o——o— ceo -—O—?—O 2 2 Bciz.z)(z) BCEZ,Z)(z)
2 1
oo 2 2 BCP? BCE?
4
1 1
1 1 1
. ) 1 1 D(Ll,l) D(ll,l)
1 1 1 1 1
° A ° 1 1 E§ E§™
1
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p—
[uy
—t

5 1 1 Ef Ep

0
[y
—
—
.
[
—t
e

O -0 o 0——0 1 1 Eél'” Eél'l)

0
—
—
—

B 1 A P

O 1 2 Fél.Z) F4(2'1)

o—s 2 1 F‘(z.l) FSI,Z)
2
2 2 1 11 ,  me g
2
1 1 1
° o—> 0 1 1 Ggl,l) Ggs,s)
3
3 3 1
0——0—>—0 1 3 G§® GV
3
1 1 i 3 1 GV G
3
3 1 1
o—>o—0 3 3 G§® GEY
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(3.3.6) and the counting coefficients £(a:) (£ =0, ..., /) behave somehow parallelly

in connection with the first and the second tier numbers (cf. (4.5.1) and (6.3.6)).
This fact leads us to a definition and the studies of exponents in the following

paragraphs. Particularly it becomes clear again in the study of foldings in § 12.

§ 7. Exponents m; (i=0, ..., {) for 2 m.e.a.r.s.

We introduce in this paragraph exponents for a m.e.a.r.s. (R, G), which we shall
use for a definition of the Dynkin diagram for (R, G). The exponents appear
as eigen values for Coxeier transformation of (®, G) in §9 and as the degrees of
W invariant #-functions in [20].

(7.1) Let (R, G) be a me.ars. and {ay, ..., @:} be a basis for (R, G) (cf. (3.4)
Def.).

Definition. The exponents for (R, G) are

L Iees, ai) .
(7.1.1) mi =SS, i=0,..., L.

where n; are the coefficients of (3.3.3) and, k(a) is the counting in (6.1) and I
is the normalized metric on F defining the even lattice structure on Q(R) (cf. (4.2)).

(7.2) For each type of isomorphism class of m.e.a.r.s.’s, the exponents are calculated
and given in 4) of the table (5.2).

Example. Let (R, G) be of type P2,

If t:=t(P), then wm;=mn; =0, ..., L.

If t:=1, then mz‘=‘IL(%,—gi7li =0, ..., {.

(" (6.7) Assertion.)

(7.3) Assertion. 1) The exponents are half iniegers.

ii) The set of exponents does not depend on the choice of the bases {au, ..., a:}.
(- (6.2) Corollary and (6.1) Assertion iii).)

iii) Let
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v._ Iv(aY,aY), .
m’ =T (@) n; =0, ..., 7,

be the exponents for the dual (R, G). Then m.’s and my’s are proportional.
Precisely,

v _ (R, )R, G) - .
mi: = t(R) m; Z—O, ceey l.

Proof .

my._MnY
T 2kv(ay)

=u(R, Grw(ary by (45.1)

=t(R, G)Iél‘fzaf;)(a - a)n:  (by (6.3.3)

__t(R,G) _ h(R, G)t(R, G)
T H(RY,G)"T {(R) m:  (by (4.3), (44)). qed.

Vv

(7.4) We prepare an assertion which is rather of technical nature, but will be used
in crucial steps of the proofs of (8.6) Assertion, (9.6) Theorem and (10.1) Assertion
5 for the proof of Lemma B.'

Assertion. Let {a, ..., @:} be a basis for (R, G) and may, ..., Mma, be the
exponents. For a, < {a, ..., i} suppose ms<maq and I(a, B)+0.
Then

KBk a)=—1(8, a).

Proof. From the formula (6.3.6), we have,

Ka) K (8Y) _Ie(a, @) (_ Iav(B".B")\_1 - om
() kV(aV)‘sz,B)(‘Mm,w)) 1 or 27

Except for the types A%V* or BC$*?, we have either [(a, 3Y)=—1or I(B, a¥)=
—1. Thus taking in account of (6.1.3), *) implies,

k(a) _Ixa,a) £¥(8Y) _ Ixv(B", BY)
kB)  Ix(8,8) © k(") Ixv(a¥,a")

either

On the other hand due to the proportionality of exponents (7.3) iii) and (6.3.6), the
statement of the assertion is equivalent for (R, G) and (RV, G) so that one may
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prove only one of them. Therefore, except the types A%Y* and BC#?, we may

assume Iz(a@, @)/ 2k(a)=1x(B, B)/ 2k(8) by choosing one of (R, G), (RY, G).
Thus the problem is reduced to show,

xx ) If ng<mq and I(a, B)+0 for a, BE|I"|, then I(a, BY)=—1, where I" is a
Dynkin diagram for a reduced affine root system.

If I(a,BY)=—1t+0, —1 for @, B<|I"|, then a°/—>t~§ and therefore #;> .
(* Folding of Dynkin diagrams). This proves == ).

The cases A%V and BC?*? can be directly verified. g.ed.

§ 8. Dynkin Diagram for & m.e.a.r.s.

In this paragraph, we introduce a Dynkin diagram [ for an isomorphism class
of (R, G). The Dynkin diagram gives a most intrinsic way of describing the marked
extended affine root system (R, G) as we see in § 9.

(8.1) Codimension of (R, G). Let {ay, ..., @:} be a basis for a m.e.ars. (R, G) (cf.
l
(3.4)) and I" be the Dynkin diagram for the affine root system RN (—_BO Ra;. Recall

_ Ix(a;, ai)

the exponent m;:= 2%(a:) #; at each node a@; of I'.

Defimition 1. Let us denote by I'n the subdiagram of I' consisting of nodes,

IFmIZZ {aiE|F|: mizmmax}.
Here Mmax := max{mo, ..., Mm.}.

2, Let us denote by cod(R, G) the number #|I'n| and call it the codimension of
(R) G)‘

Note 1. Due to the proportionality of exponents ((7.3) iii)), the set |I'x| is
naturally bijective to
|yl = {aye|rv|: my=max{my, ..., m!}}.
Therefore cod(R, G)=cod(R", G).

Note 2. The name codimension for cod(R, GG) is introduced here, since it is
identified with the codimension of a Hamiltonian system introduced in [30, (1.12)]
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(i.e. cod(R, @) is the number of (energy) functions which is necessary to describe the
system constructed from (R, G). For the precise identification, see [20].)

(8.2) Hereafter, we use the following notations

i) a*:= a+k(a)a for acR. (k(a) is the counting defined in (6.1)).
i) [Iml:={a*: as|xl}.

Definition. The Dynkin diagram I'rc for a m.e.a.r.s. (R, G) is defined as
the intersection diagram for the set |I"'| U |I'%|. i.e.
i) The set of nodes |I'rc| of the diagram is identified with the set |I"| U ||
consisting of I(R)+cod(R, G)+1 points.
ii) Bonds and arrows among nodes are inserted according to the same rules for
a finite root system with an additional case. Namely as follows.

¢ 8 i I(a,8")=0 (=18, a)=0),

o if Ia, BY)=I(8, a*)=—1,

oo if I(a,8Y)=—1, I(B, aV)=—t, for t=2,3,4,
e if I(a,8%)=I(8, a)=—2,

====2 if I(a,BY)=I1(8,av)=2.

(8.3) i) The diagram I'rc depends only on the isomorphism class of (R, G).
(v (6.2) Corellary, (7.3) ii)).

ii) The diagram I'zv for the dual (RY, G) is the dual diagram of I'kc.
(i.e. arrows are reversed.). ("= (8.1) Note 1.)

iii) For each type of m.e.a.r.s., the Dynkin diagram is explicitly given in 5) of
Table (5.2).

iv) The Dynkin diagrams distinguish the isomorphism classes of m.e.a.r.s.’s.
(i.e. if two m.e.a.r.s.’s have the same diagram, they are isomorphic.)

(' cf. (9.6) Theorem)

Note 1. The diagrams for E{", E{*V, E{"" appeared already in a study of the
lattice for simple elliptic singularities. (See W. Ebeling [5], where he gave more
generalized Dynkin diagrams for the lattice of singularities.) Also W. Ebeling has
noticed to the author that the diagram appear also in a study of the presentation of
algebras (cf. [2]).
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Note 2. B. Verdier has told to the author that he got also some of the diagrams
in his note [6].

(8.4) We collect here some elementary facts on the Dynkin diagram and exponents
for a (R, G), which we shall use in later paragraphs freely.

i) The diagram is isomorphic by a transposition of nodes a Iy and a*E I
which are connected by the bond =====,

ii) The complement I'nc—I'n\UI'n decomposes into a finite disjoint union of
diagrams of type A, i=1,..., 7.

iii) Each component FA” is connected to I'y, only at one node, say B:< | I'n|, at
a terminal node of Iy,

iv) On the branch I'x, U {8:} of I'rc, the expoments m;’s are in arithmetic

progression. Namely

mi/mmex = j/ (1:+1) for j=1,..., l:+1,

where a, ..., @i+ are renumbered nodes of I's,,U{B:}.
v) Put

Imax : = max{/;: 1<i<r}.
Then
Li+1 lmax+1 for 1<i<7.

This implies that Imax+1 is the smallest common denominators of Mmax/m.:,
=0, ..., .

(8.5) Asan application of the above facts (8.4), we give a reduction of a calculation
of some numerical invariants, which practically helps much.

Assertion. Let the notations be as before. Then,

(8.5.1) gedfk(e): a€|M]) =1,
(8.5.2) L(R, G) = g.c.d.{k(a)l“v—(”;’ﬁl: a€|Ml}).

Proof. The formulae were shown readily if we replace the running index set @
€ |I'n| by a<|I"| ((6.1) Assertion v ), (6.3.1)).
Therefore in account of (8.5) iv), it is enough to show the following.
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x) Let @, BE|I"| s.t. I(a, B)+0 and ma< me.

Then k(a)/k(8) and Ka)B{L e gy le(BL =

are integers.

(Proof of *) Due to the (7.4) Assertion, in the above situation, £(a)/k(8)
=—J(B, @¥) is an integer and hence (k(a‘)—IR—V(qzi’a—v))/ (k(B)IR—V(%LB—V))=

—I(B8Y, @) is also an integer. g.ed.

Corollary. Let (R, G) be a m.e.a.r.s. such that cod(R, G)=1.
Then

(R, G) = IRV(azv a”) where a€ |yl
(8.6) Discussions on the Dynkin diagrams.

There does not exist an apriori definition of a Dynkin diagram for an extended
affine root system or for a marked extended affine root system, since there does not
exist a concept of a Weyl chamber (cf. (3.2) Note 2.) comparing to the case of a finite
root system or an affine root system. There are several trials to understand the
Dynkin diagrams for such a generalized situation by several authors. (See for
instance W. Ebeling [5], F. Knorrer [8], P. Kluitmann [10], Van der Lek [26] for our
restricted cases.)

The Dynkin diagrams, which we defined in this note, have several similarities
and un-similarities with the classical one for finite or affine root systems. We shall

list them in the following.

Unsimilarities
i) The diagram I'rc depends not only on the roots R but also on the marking
GCradl. (¢f. (5.4) Appendix)
ii) The number [(R)+cod(R, G)+1 of the nodes of the diagram is larger than
the rank [(R)+2 of the ambient space F in general. The linear dependence
relations among the nodes as elements of F are described by the unipotent part of
the pre-Coxeter transformation. (cf. (9.6))
ili) The Cartan matrix (I(a, B ))ascirgcl contains positive numbers 2=1(a*, a" )
for a€|I'y| in its off diagonal part. (compare with [33])

(Obviously all these three facts are related to the fact: the high degeneration
(10=2) of the metric I.)
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Similarities
i) The lattice Q(R) is generated by a<|I'rc|. The group Wx is generated by
Wa for a€|Trel. The set of roots R is equal to agjﬂWR @. ((9.6) Theorem)
ii) Coxeter transformation for (R, G) is naturally defined as a product of wa
for a€|Ixcl, which is of finite order, whose eigenvalues describe the degrees of the
invariants of Waz. ((9.7))
iii) Up to isomorphy, the root system R together with the marking G is
reconstructed from the datum of Irgc. ((9.6))
iv) The diagrams behave naturally with respect to the automorphism of (R, G)
and foldings of (R, G). (cf. § 12)
v) The multiplicity of the discriminant (= the square of the fundamental anti-
invariant of Wkz) is equal to #|I'xc| (=I(R)+cod(R, G)+1).

From these phenomenon, one would naturally expect an existence of a theory of

infinite dimensional Lie algebra associated to these diagrams. (cf. Slodowy [23])

In fact there exist simple elliptic singularities ([28]) of types called Eq, E7, Es, Ds,
A, such that the middle homology groups of their smoothing contain naturally root
systems of types E&Y, ESY, E&Y, D¢Y and A$Y as the set of vanishing cycles
respectively. In these cases, the multiplicity of the discriminant of the unfolding of
the singularities is equal to /(R )+cod(R, G)+1, where cod(R, G) coincides with
the codimension of the unfolding. Then by a suitable choice of pathes in the base
spaces of the unfolding, one can find a “strongly distinguished basis” for the middle
homology group such that their intersection diagrams coincide with the Dynkin
diagrams of the corresponding root systems defined in this note. (cf. [31],[34])

In [20] we shall construct a quotient space by the natural action of Wre (cf.
§ 11) on a complex half space. The space will be identified with the base space of the
universal unfolding of the singularities Es, 7, Es, Ds, A4 for the case E{Y, E&Y,
E&Y, D&Y AGY (cf. also E. Looijenga [12], P. Slodowy [22]). This might give a

strong justification for the definition of the Dynkin diagram in this note.

§ 9 Coxeter Transformation 1
(Construction of (R, G) from the diagram I'z¢)

In this paragraph, we construct the m.e.a.r.s. (R, G) up to an isomorphy from
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the data of its diagram [k¢ ((9.6) Theorem). Here the concept of a (pre-) Coxeter
transformation ((9.3) Def.) plays an essential role.

(9.1) A decomposition of I'rc. Let I'rc be a Dynkin diagram for a m.e.a.r.s. (R,
G). The diagram consists of /(R)+cod(R, G)+1 number of nodes and contains
cod(R, G) number of bonds =====,

Let us fix a decomposition of the set of 2cod(R, G) nodes connected by such
bonds into two subsets || and || so that two nodes at the terminal of any such
bond are divided into the two sets. Such decomposition is unique up to
isomorphism of the diagram (cf. (8.4) i )). We shall denote by ¢* the node in |
which is connected to the node @ of || by the bond =====,

Recall that the complement ['rc—I»U s decomposes into connected com-
ponents of diagrams of types 4,,(i=1, ..., ), so that we obtain a decomposition of

the diagram ['zc.
(9.1.1) ae = TwUTAU LTy,

(9.2) The vector space F with a metric /. Define,
1) F := the vector space of rank I(R)+cod(R, G)+1 spanned by a<|Ixql.

To avoid a confusion, the base of F corresponding to a node @ & |Ix,c| will be
denoted by 4.
2) There exists a symmetric bilinear form [ on Fs.t.
i) 1(a,a)>0 for a€Ixgl.
i) I satisfies the same rule for I stated in (8.2) Def.

Such metric [ is unique up to a positive constant factor.
3) I is positive semi-definite. The radical of I has rank cod(R, G)+1, which
is spanned by

b = 3 m.¢ and a—a* for a<|Iw,
a€lR G-T'%

where n, are the coefficients in (3.3.6).

Proof. By definition 4*— & for @ €| belongs to rad / . The quotient space
F/ (—9 iR(&"*—&) may be regarded to be spanned by the diagram I'rc—I'» for a

reduced affine root system, where the [ induces a positive semi-definite metric,
whose radical is spanned by & . g.ed.
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(9.3) Pre-Coxeter transformation.
For a node ¢ €|I'x¢l, let us define a reflexion w.= GL(F ),

weu):=u—1I (u,8¥)a where av:=2a/1 (a,a).

Definition. An element ¢ of O(F, I )is called a pre-Coxeter transformation
for (R, G), if it is a product of Wae for aErc—I'nU s and We. for aEIn
for any ordering of them.

Due to lemma 1 of [1] Ch. V, §6, every pre-Coxeter transformations are
conjugate in the group W:=<f.: € ko).

(9.4) Jordan decomposition of ¢&.

The following is a key Lemma in this paragraph.

Lemma. Let ¢ be a pre-Coxeter transformation for the diagram I'rc.
Let the Jordan decomposition of ¢ be,

(9.4.1) & =SU.

Then, the set of eigenvalues of the semi-simple part S is given by

(9.4.2) exp(27V — 1Mo/ Mmax)  for @ €|rgl.
Hence
(9.4.3) SUmaxth = 1,

(9.4.4) (U-1?*=0, (ie.logU=U-1).

(9.4.5) Image(U-—1) = a,%}mR( &/:(;;? — E’l:(g')@ ) C radf .

Proof . For any BE ||, define

(9.4.6) bs = nsB +3 nat,
(9.4.7) b% = nsB*+2 nad®.

Here 2" means the summation over all nodes @ belonging to components Iy,

which is connected to 3E|I'y|. Due to (9.2) 3),rad [ is spanned by § = , TIZJ lE s and
€'l

by b5—b6 4 for BE|In).
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For each component PAL,- of (9.1.1), define a space

(9.4.8) F.:= ® Ra (i=1,..,7),

aer‘Alz_

so that we obtain an orthogonal direct sum decomposition,

(9.4.9) F = éﬁ,@ @D Rb.D D R(bi—b.).
i=1 a€|l'm| a<|I'm|

Since the statements of the lemma depends only on the conjugacy class of &, we may

choose one ¢ as follows.

(9.4.10) &i=¢1..80°1,
where éi:= Il . (i=1,...,7),
“EIFAL,J
f = H wawa*.
a€|l'm|

To analize the action of ¢ on £, we look at the actions of &1, ..., &, and £ on each

factor spaces of (9.4.9).

Assertion 1.

A Coxeter transformation for
i) ¢dF ;= Ay for i=j,
ids, for i+7j.

a = 5a for aEIFm|, 1§Z§7’,
bi=b:  for aE€|l, 1=sisr.

B: ﬁ-——>a§2 IR(a’*—a/)CF‘ is defined by u— ﬂ§ If (u, BY)(B*—B).

A~

Proof. 1) Trivial, since the spaces F 1, ..., /' r are orthogonal to each other.
ii) We show only the first formula.
If I'y, and @€|I'y| are disconnected, @ is orthogonal to F ; and hence & ;6 .=
ba If 'y, and @ €|yl are connected, &; bo.=¢:(b —ﬁ;m‘g )=b— 2 bs=b.
B+a

I
i

iii) Using [ (a* @V)=2and [ (u, &*)=1 (u, &), one computes,
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A

Dot (w)=u—1 (u, a¥Na*—a).
Since 4*—a€rad [ for @ €|y, we obtain,

Flu)=u— 32 [ (u, a¥)a*—a). q.ed.

a€|l'm|
Assertiom 2. Let the notations be as above. Define

(9.4.11) S:=¢1...6idi—B - p1),
(9.4.12) U:=idi—B- p2

A T
where p, and p, are linear projections from F to the direct factor spaces Q_—)l Fy
and @ |R5 « in (9.4.9) respectively. =

Then ¢ =SU gives the Jordan decomposition of ¢.

Proof . Using the Assertion 1 one checks immediately p,° B=p; B=[B - p»,
¢1...¢7]=0 and B(p:+p.)=B. Then by definition
SU=¢....¢.(ide —B-p:)idr —B - p2)
=&1...¢.(idi —B-p1—B-p:)=¢1...¢.(idi —B)=¢.
US=(id# —B-pz)¢1...6-(id# —B-p1)
=(é1...6+(ids —B-p2)—[B-pz, &1... - )idr —B - p1)
=¢1...6(id? —B-p2—B-p1)=C1...¢6.(idr —B)=¢.

The Unipotency of U is a direct calculation as,
(9.4.13) (U—idr ¥ =B-pa-B-p2=0.

To show the semi-simplicity of S, we show that S is conjugate to &;... ér,
which is semi-simple since ¢ ; is a Coxeter transformation on F ; for the type Ay,

and an identity on the other factors of the decomposition (9.4.9). g.e.d.

Assertion 3. Put
T:=idi—B-d-p:

where d := (¢1... érl@rlﬁ i—id)t: _(-IBIFA — (—IBIF ;. Then T is invertible

and

(9.4.14) T'ST=¢:1...Cr.
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Proof. T is well defined, since ¢&; does not have eigen value 1 on F . Tis
invertible, since (7 —id7)*=0.

ST=¢:1...¢(idr—B-p1)idi—B-d* p1)
=¢1..6r—Bp1—B-d°h
=(idi —B-d-p1)¢1... 6 ++B(d - p:(&1... Er—1)—11)
=T¢C1...Cr q.e.d.

Proof of the lemma (9.4).

(9.4.2) is a direct consequence of (9.4.14), Assertion 1 i) ii) and (8.5) iv) v).
The unipotency (9.4.4) is shown in (9.4.13).

Let us show (9.4.5). Due to (9.4.12), Im(U —1)=Im(B - p2).

Blbo= 3 [ (B0 BV NB~)

|'ml

=f (6. @V)(a*—fz)hé%lf (5o, BV)B*—=B)
B+a

=f(b— 3 b, &V)(@*—@Hﬂ%j (natt, B¥)B*—B)
B*a

ﬂﬂgxml
— 7 2 2 *_ _ﬁ_z__ A% A
=30 B mand gy B -8) =y @)

< Fip o (Is: 1) (B*—B a*—a
=21 B, &)nans, — (k(B) ) )

Here we use a relation #n.] (&, &)=k(a)me(l : Iz), and ma= Mmax for a E|n|.
Using the last expression, it is a straightforward calculation in linear algebra
that the fact that I, is a connected linear diagram implies that B(5 .) for a €|y

B*__ &,*_&, >
spans the space a,ﬂ§Fm|R< 73 W) /) q.e.d.

Note. The formula (9.4.5) implies that the abstract data of the Dynkin
diagram @' determine automatically the counting constant k(a):=(a*—a): a
for a €|y in the following way.

First, notice that Im({/ —1) does not depend on the choice of the pre-Coxeter
transformation. (** Im(U —1)Crad [, so that it is pointwisely fixed by the group
W. Through the formula (9.4.5), the relation Im(U —1)=0 determines the
proportion among k(@) (aE|I|). Since g.c.d. (k(a): a<|Im)=1 ((8.5.1)), these
data determine k(@) (@ €|I»|) uniquely.



EXTENDED AFFINE ROOT SYSTEMS 151

(9.5) Assertion. Put

W : = the sub-group of O(F , ) generated by . for a€|I'ngl.
R := U Wa.

a€|l'R,Gl

Then R is a root system belonging to I.

Proof. Recall the definition (1.2) for a root system belonging to [, Itis
almost a routine work to check that # is a root system in the sense of (1.2). (cf.
(1. 3) Ex. 4.). g.e.d.

(9.6) We arrived at a goal of this paragraph.
Let ' be the Dynkin diagram for a m.e.a.r.s. (R, G) w.r.t. a basis {ay, ..., a:}.
Put

Fr:=F/Im(U-1),

Ir : = the metric on Fr induced from [,

Rr : = the image of F in Fr,

Wr : = the subgroup of O(Fr, Ir) induced from W,

Gr : = @ R(¢*—@)/Im(U —1) (one dimensional subspace of Fr),
Qr := Zaf/(( (—D Za)ﬂlm(U 1)).
aelI‘Rcl

Here the notations £ , [, U, W, R are defined in (9.2) 1), 2), (9.4.1) and (9.5).

Theorem. Let the notations be as above.
1. Rr is an extended affine root system belonging to Ir, such that Wg.= Wr,
Q(Rr)=Qr. The subspace Gr defines a marking of Rr.
2. The marked extended affine root systems (R, G) aend (Rr, Gr) are isomor-
Phic.

Proof. 1. Due to (9.4.5), Imn(U—1) is a two codimensional subspace of
rad [, which is defined over @. (i.e. ( @ Za)ﬂlm(b 1) is a full lattice in
Im(U—1).) Then the image Rr of R am tne quotient space Fr is a root system
(cf. (1.8) Assertion). Gr is obviously a rank 1 module defined over @.

2. Since a change of the choice of the decomposition I, U I in (9.1) induces an
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isomorphism of the diagram I'z¢ ((8.5) i )), it induces an isomorphism of the root
system Rr. Therefore let us fix a choice of I, and I as done in (8.1) (8.2).

A *-—
Define a linear map F — F by ¢ — « for ¢ <|g¢|. Since a’k(a;l =g for any

@ €|y (cf. (8.2) 1)), taking account of (9.4.5), one sees that the map is factorized
by an isomorphism Fr=s F, inducing Gr=<(G. Furthermore this identification
induces Ir=clI for some ¢>0.
By this identification Wy becomes a subgroup of W and hence Rr =ae'%,ol Wra
is a subset of R. We want to show that R-D R, which implies also Wr= Wx.
Let us put {ao, ..., @:}:= | Trel—|nl*. lThen Qo, ..., @ is a basis for the reduced

affine root system RN L‘*! where L‘*':= _@(’Rai (cf. (3.3)). Recalling (6.1.5) and
(6.14), we have

R = aERL%LH‘l (a+Zk(a)a)

= 'L:)o W rart+t (@:+ Zk(a:)a).

Since Wenri+1=<Way, ..., Wa,> C Wr, the last expression implies that if @;+ Zk(a:)a
CRr for 1=0, ..., /, then RCRr.

Let us show the inclusion @+A(@)ZaCRr for a<|I'zc|—|I'a| by decent
induction on the exponent ..

If @ €|Iy, then

(Wawarx)™(@) = a—2m(a—a*) = a+2mk{a)a for mEZ.
(Wawer)™(@*) = a*—2m(a—a*) = a+2m+1)k(a)a for mEZ.

If @, B are nodes of I'z¢ which are joint by a bond. Suppose ms< m.. By induction
we assume that @, @*E Rr. Then (7.4) Assertion implies,

(Wawas)"B = B—mI(B, a¥ ) a—a®)
= B+ml(B, a)k(a)a
= B—mk(B)a for meZ.

This completes the proof of the theorem.

(9.7) The Coxeter transformation ¢. Let ao, ..., @; be a basis for a m.e.ar.s.
(R, G) and Iz be the Dynkin diagram for (R, G) w.r.t. the basis (cf. (8.2)).
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Definition. A Coxeter transformation ¢ for (R, G) w.r.t. thz basis {a, ...,

a.} is an element of Wk defined as a product of wawa+ for a<|I's| and wa for
a€|eel =Wl UM

As a conclusion of the study in this paragraph, we have ;

Lemma A. i) The conjugacy class of a Coxeter transformation in Wk
depends only on the linear space L**':= @LR(Z, and the sign of the generator a
of Q(R)NG (cf. (2.3.1)), but neither on the order of the product for the
expression of ¢ nor on the choice of the Weyl chamber C in choosing a basis for
R/G (c¢f. (3.3)).

The change a— — a of the sign of the generator a of G brings the conjugacy
class of c to the conjugacy class of c™'.

ii) Let ¢: (F, G)~(F, G) be an (outer) automorphism for (R, G) and c be a
Coxeter transformation w.r.t. a basis {ao, ..., ai}. Then ade(c):= pco™ '€ Wk is
a Coxeter transformation w.r.t. the basis {pa, ..., pa.}.

iii) A Coxeter transformation c for (R, G) is semi-simple of finite order Imax+1.
The set of eigenvalues of c is given by,

exp(27y —1ma/Mmax) for aSTrc—I'n and 1= exp(21y/ —10).

Proof. i) The conjugacy class of ¢ does not depend on the order of the
product to present ¢, due to Lemma 1 [1] Ch. V, § 6.

The change of the sign @ to — g, induces the change of @*:= @ + k(@ )(— @) (cf.
(8.2) i )). Therefore waw.+ is changed t0 woswao=(watwex)"'. Therefore if ¢ is a
Coxeter transformation for ¢, then ¢! is a Coxeter transformation for the generator
—a.

ii) Let ¢ : F=s F be an automorphism of (R, G). Since ¢(a*)=¢(a)* (cf.

(6.1.4)) and gwap ™' =weq for aE R, if ¢ is a Coxeter transformation w.r.t. a basis ay,
., @ then pcp~' is a Coxeter transformation w.r.t. the basis gay, ..., pa;.

iii) Any Coxeter transformation c is theimage of the pre-Coxeter transformation &

by the natural projection f//—> Wk. Since ¢ act as identity on the kernel Im(U —1)

Crad [ of the projection £ — F, the eigenvalues of ¢ is equal to that of ¢ minus

{1,...,1: k-times}. Then (9.4) Lemma i ) implies the assertion. g.e.d.
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§ 10. Coxeter Transformation 2
(The existence of regular eigenspaces of a Coxeter transformation)

(10.1) Let ¢ be a Coxeter transformation of a m.e.a.r.s. (R, G) defined in (9.7). The
following Lemma B is the main result of this paper, which plays a crucial role in the
construction of flat 9-invariants (cf. [20]). The proof of the Lemma B is now a

straight forward work.

Lemma B.
RNIm(c—idr) = &.

Proof. Recall that ¢'meax*'=]1 ((9.7) Lemma A iii)). Hence (c¢—1) (c'max
+ctmax~14...4+1)=0. Due to the semi-simplicity of ¢, Im(c—1)=ker(c'mex+-...
+1). Thus what we have to show is that no root @ of R satisfies the equation,

(10.1.1) P(c)a:()’ where P(C) c = Clmax+clmax—l+...+1-

Due to (9.7) Lemma A i) and ii), the statement of the Lemma B does not
depend on a choice of a Coxeter transformation. Therefore we take a Coxeter
transformation ¢ which is the image of the pre-Coxeter transformation ¢ of (9.4.10)

and we use freely the results and notations in (9.1)-(9.6).

Put,

(10.1.2) C :=cC1*°Crt

where Ci: = Wa (i=1,...,7),
asiFag;|

t:= 11 wawer,

a€|I'm|

(10.1.3) Fi:= @ Ra (i=1,..,7),
aci'Ay,; |

(10.1.4) be i = naa+X'nB  (@E|HW).

Here IT in (10.1.2) means a product for a fixed linear ordering and ¥} in (10.1.4)
means the summation over all nodes of components 4, which is connected to the

Assertion 1. P(c)F: =0 mod G for i=1,... 7.

Froof. Due to Assertion 1. iii) in the proof of (9.4), t=idr mod G. Also due
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to the same Assertion 1. i), c|F;=c:|F; and hence P(c)|F:=P(c:)|F: mod G.
On the other hand /;+1|/max+1 ((8.5) v)) so that Pi(c:):=cl+ ci'4--+1
divides P(c;). Since c;|F; is a Coxeter transformation for A;, so that P;(c;)| F;
=0 and hence P(c;)|F;=0. g.e.d.

Assertion 2. P(¢)bs = (Imax+1)be mod G for a<|Inl.

Proof. Using (9.4) Assertion 1. ii),

P(c)ba = P(1)ba = (lmax+1)ba for a€ |l

Assertion 3. If a root a€ R satisfies the equation (10.1.1), then a =B+ ma
where 3 is a root of A, for some i and mEZ.

Proof . One may choose bs(BE€ |I'n|), a (@€ |T,|, i=1, ..., 7) and a as for
(rational) basis for the linear space F'.
Put

*) a= 2 Cﬂbﬁ+2 > caB+da for ¢, dEQ.

1—/9IFL

Apply P(c) on *) and applying Assertions 1 and 2,
P(c)a = (lmax-}—l)ﬁé%l lC,sb,a mod G.

Since bs (BE|IMn|) are linearly independent mod G, P(c)a=0 1mp11es cs=0 for B

€ |I'm|. Therefore if @ of *) is a root of R with P(c)a=0, then 2 E caf is
!

an affine root in Rﬂ(@Ra/l) Since the set {3€ | I'rc|—|I'm|: cs#0}is connected,

there exists some 7, 1<i<7, so that {8: cs#0} |, q.e.d.

4. Notations. Let the component [, be connected to SE|I's|, so that the
diagram at that branch looks like,
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where ¢=1, 2*!, 3*!, 4*! or co. (For the convenience we use a convention o——o =

1

oo and o—¢—o = =T for t=2,3,4.)

3
A positive root of A,, with respect to this basis 8, ..., 8;, is given by,

Qup . = ButBuir+...+ 8y for some u, vEZ with 1< y<p</;.
Define a Coxeter transformation ¢; for A, by,
Ci i=Wpy; """ Way-
Direct from the definition, one calculates

**) Ci@uy = | Au-10-1 for u>1,
— @y, for u=1.

Since all roots @y, », 1< #u<v</[; are conjugate each other the counting £(@u,»),
1< u<p</[; is a constant ((6.1) Assertion iii)), which we shall denote &; :=£(@u,»)
(Isu<ov<y).

Assertion 5. The Coxeter transformation c leaves the space F;®G invariant

for i=1,...,r. We have a formula,

_ lmax+].
P(C)a’u,v - lz+1

Proof. Due to (9.4) Assertion 1. i) iii), c| F;® G=cits| F:® G where tz=

wewe and te(u)=u—1(u, 8¥)k(B)a.
By induction on m, we have,

(v—u+Dkia for 1<u<v<i;.

(Citﬁ)”uzc?u—l(:g:c? u, [)’V)k(b’)a for uEF;.
Hence for u< F;, we have
173 li li m—1
w0) Pdo)u = 3 (et u= 3 ctu— B 1(E clu, 8 )kB)a
m=0 m=0 m=0 n=0
143
= — 2 (Li—n)I(ctu, 8 )k(B)a.

On the other hand using ** ) in 4., I(c?@uy, B) is either I(81, 8Y), —I(B, BY)
or 0 according as #=u—1, #=v or n+ u—1, v. Therefore applying *** ) for u

=au,v,



EXTENDED AFFINE ROOT SYSTEMS 157

Pi(c)au, o = —((li—u+1)—(Li—v))I(B, BV)E(B)a
(v—u+1)k:a.

Here in the last step of the calculation, we have applied (7.4) Assertion for @ :=p,
B :=p since mg, < Mp= Mmax.
Since ;41| /max+1 and hence P(c)= Q(c)P:(c) for some polynomial Q(c)

such that Q(l):l"l‘?—’_‘:_lL, we have
_ lmax+1 . .
P(c)aus = Ii+1 (v—u+1)k:a. g.e.d.

6. Let =R be a root of the form,
@ = Quot+mkia for 1<u<v<l;, mEZ.

If we have shown that P(c)a+0, we have completed the proof of the Lemma of
(10.1).
Using the formula of Assertion 5,

P(c)a = L"l‘i_’f—Tl—(v— u+1)kia+ mk:(lnax+1)a

_(v—u+1 ) _

= ( Ii+1 +m /fz(lmax+1)d-

Since 1< w<p<1;, the value L}—_’S—lues in the interval (0,1).
Hence v—z_z:—_{i+m #+ (0 forany mEZ.

End of the proof of Lemma B.

§ 11. Coxeter Transformation 3
(The generator of the extension Wg,c of Wz).

Let Wge be the hyperbolic extension of Wz (cf. (1.18) or (11.1)) and & be a
hyperbolic Coxeter transformation ((11.2) Def.). We show that W is a central
extension of W by an infinite cyclic group which is generated by ¢&‘max*l ((11.3)
Lemma C).

(11.1) Let (R, G) be a m.e.ar.s.. Let us recall briefly the notion of a hyperbolic
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extension w.r.t. the marking G from (1.17), (1.18).
1. There exists a triple (F, I, ) where F :=a vector space of rank [+3, ] :=a
symmetric bilinear form on F and ¢: F— F is an injective linear map s.t. i ) I =
I-¢ii)rad T=(G.

Such triple is unique up to an isomorphism so that we fix one and regard ¢ as
an inclusion map.
2. Denote by . O(F, I') the reflection of a SR as an element in F. Denote
by W the group generated by @, (¢ ER) and call it the hyperbolic extension of
Wk.
3. The restriction map p. of the action of Wrc from F to the subspace F induces
a short exact sequence,

(11.1.1) 1— I&;ﬁg» WR,GA We— 1,

where
Ec: FQF/G— End(F),

Eo( 5:®9:) () := u—3fl (g5, )
is the Eichler Siegel presentation (cf. (1.17.2)) and

(11.1.2) Ke:= Eg'(Wge)N M

is a lattice of Mc:=G®(rad I/G) (cf. (1.18) Lemma).

(11.2) Let {ay, ..., a:} be a basis for (R, G) and Iz be the Dynkin diagram for
(R, G) w.r.t. the basis.

Definition. A4 Ayperbolic Coxeter transformation ¢ for (R, G) w.r.t. the basis
{0, ..., a1} is an element of Wg,c defined as a product of Waler for @< |Im|
and W, for @S| Trel—| Tl U |l

Same argument as (9.7) Lemma A proves,

Assertion, i) The conjugacy class of a hyperbolic Coxeter transformation ¢
~ l
in Wg, depends only on the linear space @0 Ra; and the choice of a generator a

of Q(R)N G, but neither on the order of the product to present ¢ nor on the
Weyl chamber C in choosing basis for R/G (cf. (3.3)).
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i) Let ¢: F~F induce an automorphism of (R, G), whose orthogonal
extension is denoted by : F—>F. If & is a hyperbolic Coxeter transformation
w.r.t. a basis {ao, ..., @}, then adeG:=FEF'E Wr, e is a hyperbolic Coxeter
transformation w.r.t. the basis {pa, ..., pa.}.

iii) gtmaxtle Eq(Ko).
(11.3) The main purpose of this paragraph is to show the following Lemma C.

Lemmsa C. Let the notations be as above.
i) gt = (I Dt E(a@0)
max
i) (Ir: I)—ZL';L—K;'_l a®b generates K¢ as a cyclic group.
max

i. e. The element &'mex*! generates the cyclic group ker(p.).
(Here a, b are Z-basis of Q(R)N radl.)

Note. Let us choose the basis g, b of @Q(R)N rad] as in (2.3.1) (2.3.2). Then
as an element of M : GQ(radl/G), a®b is unique up to a sign. The sign of the
element is determined by the realization of the Dynkin diagram [z¢ as a set of roots
of R in the following way.

i ) The choice of a basis {ay, ..., @:} determines the sign of 4 by (3.3.6).
ii) The choice of I'» and I'; determines the sign of ¢ by (8.2) i )ii).

(11.4) Proof of i) of Lemma C.
Let us denote by I the bilinear form ([ :I)I. First let us show a formula,

1

(1L4.1) (6—1)é+In(£,8) 5 —

a € (c—=1)F"*?* for &€& F'3,

Note that the formula (11.4.1) does not depend on the choice of ¢ in the conjugacy
class in Wre, since the change of & by w™'& w for a wE Wa induces,

((w™ & w)—1)é+Ial£,0)2—

= w_1<(5—1)5+f12($, b)a/ ”Zmax)—f-uly—l(6—_1)(1/0._1){’e

€ w(c—1DF"? = (wlcw—1)F"*2.

Case cod (R, G)=1[+1. This is the case when I'r¢=I7nUIs. Since &=



160 KYoI1 SAITO

aeI|'1[ Walllas, similarly as in (9.4) Assertion 1 iii),

élu) = u— I(u @) F—— I( 2) (e*—a)
= u— mmaxIR(u 2y naaf)a.
IR(&' a/)na

(Here we used the facts mo,= ((7.1.1)), Mmex=mq and a*—a=k(a)a

2k(a)
((8.2) 1)) for a€ | I'nl|.)

Case cod(R, G)<I+1. Since ['rc—I'nUI'n+ ¢, let us take a node @, of the
diagram [7,, for some i so that @, lies at terminal of the diagram. Take one ¢
by € :=wWad, where d is a product of W..+ for @ E|I's| and w, for @ €|k c|—
‘FM|U|I17:IU {a/o}.

Since (11.4.1) is obviously true for £ F**2 we have only to show (11.4.1) for
one £€ F'*3 sit. £ F'*2. We may choose one such £ satisfying 7 (£&,a0)#0, I (£,
@)=0 for @€ |Irc| @+ ao, so that d(€)=¢&. Then

*) E(&) = Wao(£)=E—1 (£, a5 )ao

— 7 v k(aX) ZIR(E, ) k(ao)
- 5_1(5’ &’o)(d’o— lz+1 a>_ IR(d’o, ao) lz+1

a.

On one hand, applying Assertion 5 in the proof of (10.1) Lemma for x=v=1,
P (c)(ao—ﬁ(—@a>=0. Therefore the semi-simplicity of ¢ implies that the second

l:+1
term of * ) @o— kl((j_"l)a belongs to (c—1)F**2,

On the other hand noting (&, b)=I(&, Zanaa/)=na,,l(5, ), (Li+1)may=

Mmax ((8.5) iv)) and me,= Q%%Qnao, the last term of * ) becomes,

ZIR(E, @) k(ao) _ 2k(ao) 1 Iz(¢, b)
IR(Q’O, 0’0) li+1 G—IR(E b) %aolR(a'o, &'0) l:+1 a= Mmax

This completes the proof of (11.4.1).
Applying P(¢)= ¢'max4-.-+1 on (11.4.1), one obtains,

lmax +1

(Glmax+l 1) =—JH(&, b)-22T2 y for £EF.

This is nothing but i) of Lemma C. g.ed.
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(11.5) For the proof of ii) of Lemma C, we need to recall a map 7 : Wre— Mo
from (1.20).
Let {ao, ..., @:} be a basis for (R, G) s.t. the images of @y, ..., @; in K/ rad [ are
basis for R/rad I.
Put
L : :i@lRm, H :=Rb, b= ;Z:‘bnfa/f, G := Ra,

so that we fix a direct sum decomposition,
(11.5.1) F=LOH®DG.
Then, depending on the decomposition (11.5.1), we have introduced a map,
r: Wre— M,
(cf. (1.20.1)), such that

i) #(g)=Es'(g) for gEEs(Ko),
i) 7(Wre)C ”Z‘.ERZint(a, B)ac® B,

where
a) we denote by @ =a1+aun+ ac the decomposition (11.5.1) for e ER.
b) int (@, B) for @, BER is a positive number defined by,

2/I(a, a) ifa=4,

k-1
11 1(a;, @;+1)
ged. | 22— a1, ..., axER st. ar=a,ax=8

jl;.[ll( @;,@;)

int(e, B) :=

(See (1.20) Assertions 1-3 for more details and for the proofs about the map ».)

(11.6) A proof of ii) of Lemma C.
1. By definition of K; and i ) of Lemma C we have the following commutative
diagram.
{(gimaxtyr . yeg} C EG(KG) C WR,G
S} Ec S‘ 1 7

Z(Ie: IVt o R, p(Wre) © Mo

M max
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Thus if we have shown an inclusion relation,

%) r(Wre) C ZUg: I)lmax_{;l

®b,
we get Ke=Z(Iz: I)-l“;;—’;_lil a®b which proves ii) of the Lemma C.
For the purpose it is sufficient to show,
%) int(a, B)ac®Bx Z(IR:I% a®b for a,BER,

due to (11.5)ii).

2. First let us calculate int (@, 8). As we see below, it is easy to see that the
function int (@, 8) depends only on the quotient root system R/rad I.

Formula
. Ir:1
(11.6.1) int(e, B) = ¢
ng(IR(aé a) [R(Bz 3))
where

t=1 for all cases except the following 1)-4).
t=2 1) R/rad I is of type A, and a+p.
2) R/rad I is of type B.(1=2) and a+[ are short roots of R.
3) R/rad ] is of type C.(1=2) and a+pB are long roots of R.
4) R/rad I is of type BC.(1=2) and either a+ [ are short roots of R,
or a+f are long roots of R, or a+f are middle roots of R for [=
2.

I(a' a')

A sketch of a proof for (11.6.1). Since nt(a, B), I(B 8) int(a, B)EZ,

g.c.d. (I(az’ a), I('Bz’ '3)> int (@, B)=Z%. This implies (11.6.1) for an integer ¢. If

there exists a sequence a=a;, ..., @x=08 st. I(a:, @:+1)+0 i=1,..., k=1, I(as,
)< 1(as, @2)<<I(as, @) and @r% @ss mod 1ad I i=1, ..., k—1, then

k-1

Hl(a'j, @j+1) 9 2
gk 3%1 HI(G’J, afi)= and therefore int(a, 8)=

Jlil(af, a;) (A (a', a)
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_H'c%a_) so that #=1 in this case. This will cover almost all cases except R/rad I

is of type either one of A,, B:, C,, BC;. Some more careful study of the cases A4,
B, C.i, BC, gives the results of the formula.

3. In the following we give a table of ———l“;;""'l

max

for all types of m.e.a.r.s.’s.

Type A(zl’l) A(ll,l)ﬁe BEI’I) le,z) BEZ’U Bgz,z) Cgl,l) C§1,2) ng,l) C§2,2)
Imex+1 1 2 2 2 2 1 1 2 2 2

Mmax ] 1 4 2 2 1 2 2 2 2

Type B 52,2)* C§1,1)=.t BCEZ'D B C§2,4) BC?2(1) BC##(2) D(l 1,1) Eél,l)
lmax+1 2 2 2 2 2 1 2 3
Mmax 1 2 4 2 4 2 2 3

Type E;I,l) Eél,l) Fél’l) F§"2’ F}Z'l) F‘gz,z) G(zl,l) Gg,s) G(zs,l) G(Zs,a)
Imax+1 4 6 3 4 4 3 2 3 3 2

Mmax 4 6 6 4 4 3 6 3 3 2

4. To show == ) is a straight forward work now. Using the descriptions of R

in (5.3) and the formula (11.6.1), one shows that int(a, 8) 2c®BEZ %{_) a®b

for @, BER of type PV and that int (@, 8)ec®Ba<EZ (Ir: I)a®b for @, BER of
type P2 with max (£, £2)>1.

The root systems of types A%V B?* and C{*V* are explained from 1), 2) and
3) of the formula (11.6.1).

This completes the proof of (11.3) Lemma C.
(11.7) Note. Let a:=a, a»:=a-+mb, as:=a+na, a:.=a+ na+mb belong to
R.

Put g 1= Way Way® Was® Wae € Wre.
Then g = Ec((Ix: Im-na®b) € ker(ps).
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§ 12. Foldings of Dynkin Diagrams

In this paragraph, we study foldings of Dynkin diagrams for marked extended
affine root systems. Precisely, we introduce two types ; folding and mean folding (cf.
(12.2) Def.)

All Dynkin diagrams with multiple bonds are obtained by foldings of Dynkin
diagrams with only simple bonds: A%V, D¢V, E®Y ((12.4)). In case of finite or
affine root systems, which are studied by P. Slodowy [21], T. Yano [27] and others,
only one of the two types of foldings is enough to produce all diagrams, whereas in
the case of m.e.a.r.s.’s, both types of foldings are necessary to obtain all diagrams.

In this way, we arrive a hierarchy relation among m.e.a.r.s.’s, where the
exceptional types A%V* B@EP* CV*, BCP#?(1), BC#?(2) form naturally one
group (cf. (12.5)).

(12.1) Let (R, G) be a m.e.ar.s. belonging to I. Let {ay, ..., @:} be a basis of
l
(R, G) and I" be the Dynkin diagram for the affine root system RN (—Po Ra; (cf.

(6.4)).
Put

Aut(R,rad]) : = {p€Aut(R): p|rad I = idraasr}.

Lemma. Assume that (R, G) is not of exceptional type.
Then there exists a faithful representation,

(12.1.1) r: Aut(I')— Aut(R, rad 1),

4
such that the action of r(auto(I")) on F leaves the subspace @0 Ra; invariant.
P

Proof . We construct 7 explicitly as follows.

Let us regard Aut(]”) as a subgroup of the permutation group of {0, ..., /} of the
indexes of ay, ..., a:.

Under the assumption of Lemma we discluded the types A{Y*, B&2*, C{+*,

Then we check easily,

k(a:) = klaswy) (=0, ..., 1),
ni= Mo (=0, ..., 1),
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where £ is the counting function ((6.1)) and #; is the coefficients in (3.3). Hence, by
the definition of exponents (7.1.1), we have,

m: = Mo) (i=0, saey l),

so that ¢ preserves the subset |I'»| of |[I"|. Therefore the action of € Aut(I") can
be extended to [z (cf. (8.2)) by

o(af) = asw for a:€|lMy.

Then there exists a unique linear map 7qs: F~F such that 7+(@:)=asw),
rolai)=abu (0<i<!)and rs(a)=a, r-(b)="5 for q, b the basis of rad I. (" The
linear dependence relations among a.’s, @i’s, @ and b are generated by a:—af=
Haa (0<i<0) (cf. (82)) and b= 3 ma: (cf. (336)). Since kano)=k(as),
newy=n: (0<i<1), the same relations hold for @su)’s, @kw’s, @ and b.)

Let us show that 7 induces an automorphism of R.

ro(R) = ra(U Awa:+ Zk(a:)a})

we< wao War>

— IL;J {wa’o‘(z)"'Zk(a'z)a})

e<wa0 ‘way>
= R (cf. (6.4) Lemma ii).)

It is obvious that ¢— 74 is a representation and is faithful. g.e.d.

Note. Under the assumption of the assertion, the (12.1.1) induces,
Aut(I™) =~ Aut(Ige)/ 2604RE),

where 2°°4®6) denotes the group generated by the transposition of @ and a* for e €
| T (cf. (8.4)1)).

(12.2) Let the notations and the assumptions be as in (12.1). Let H be a subgroup
of Aut(I™), which acts on F through (12.1.1).
Define an invariant subspace of F,

={xEF: rox=x for cEH}.

Clearly by definition, rank(F#)=#(|I"|/H )+1 and the sign of I|F¥ is
#(r/H)—1,2,0).
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Define two mappings,
T : F— F¥%, a— 21 8,

BeHa

Ty : F— F%, a—(# Ha’)_lﬂgaﬁ’-
(12.3) From now on we shall assume the following for the group H.

%) There exists at least a node of I' so that H is contained in the isotropy
subgroup of Aut(I") of the point.

Under the assumption we have :

Lemma 1. There exist extended affine root systems Ry and RY in FY
belonging to I|F¥ such that the set Tr"|I'rc| and Tru|I'rc| form Dynkin diagrams
for (R¥, G) and (Ry, G) respectively.

Together with the structure of the Dynkin diagram, we shall denote by Tr"['z¢
and Trul'rc the sets, Tr?|rc| and Tru|rc| respectively.

2. The isomorphism classes of (R¥, G) and (R, G) depend only on HC
Aut(I") but not on the choice of basis a, ..., Q..

3. (R", G) and ((RY)u, G) are dual of each other.

Proof. The proof of Lemma will be done in the following 7 steps. The precise
meaning of Lemma 1 will be explained in the steps 4 and 5.

Since each of the steps are rather elementary, we do not give details of the
calculations.

1. In the next (12.4), we shall list all groups H satisfying the assumption * ).
As a result of the listing, we have the following.

i) I(a,B)=0 foral a,BsHy s.t.a+B (for yE|Ilrdl).
iil) H acts transitively on the set of pairs (a, 8) € Hy X HS with I(a, B)+
0 (for 7, SE(rel).
2. Q(Tr¥|Izel) and Q(Trul|lrcl|) are full lattices of F™.
(*~ Since Try is a linear map, we have
TraQ(R)=TrzQ(| 'z cl)= Q(Tru|Ircl)
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QT M) C r QURINF™)

3. Using 1 i)ii), one computes the lengths, intersection numbers and the
duals of the elements of Tr¥|Irc| and Tru|I&c| as follows.

i) I(Trfy, Tefy) = # Hy I(y, v)#0 Jor  y&|Ixdl,
ii) I(Tray, Tray) = (# Hy) ' I(y, v)#0 for yEl|Ixdl,
i) I(Tery, (1)) = EEOL) 1, syez for v, 5€llkd,
V) I(Tray, (Trad)v) = 2H20) 1’1#!%;6) I(y,8V)€Z Jor v, 8 €Ikl

v) (Trfy)Y = Tra(yY) for yE€|lrdl,
vi) (Tray)” = Tr#(yY) for yE|lkdl.
By definition of Tr¥, Try directly,

vii) Triy*—Trfy = (# Hy)k(y)a for y<|I|,
vii) Trwy*—Tray = k(7)a for y€|I'|.

4. The sets Tr¥|Inc| and Tru|lrc| have naturally the siructure of m.e.a.r.

2,

§.'S.

By this statement we mean the followings.
i) On the sets Tr¥|I"| and Try|I'| in F¥ we define structures of Dynkin diagrams
according to the rule (8.2)ii ) using the intersection numbers 3. iii), iv). Then one
verifies that they become diagrams for affine root systems, denoted by Tt"I" and
Trul" respectively.
ii) On the diagrams Tr”I" and Tryl” we define the counting weights using 3 vii),
viii) as follows.

kK(Trq) : = (H-ky " Ha-k(a) for a€|l|,
{k(TrHa/) i = k(a) Jor a€|l.
Here
(H-k):=gcd{fftHa-k(a): a<|l|}.

Then one verifies that the weighted diagrams (Tr"I", (k(Tr%a)).) and (Trul”,
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(k(Traa))a) belong to the table of (6.5) for weighted diagrams of m.e.a.r.s.’s.
iii) The coefficients n (3.3.6) for the diagrams Tt"I" and Trxl" are calculated as

Sfollows.

WrrHy | = Na for a€|l|,
Nirge 1= (H n)"Ha-n. for a<|I|.

Here (H - n):=gc.d.{#Ha - na: a<|I'|}.
By putting b":= X nre#te  Tria and bu:= 2 tree * Traa,

we have

0" =b, bu=(H-n)'b

iv) We normalize the metric I in the following so that they define a minimal even
lattice structure on Q(Tr"I") and Q(Trul"). (¢f.3. i), ii)).

I¥ . = (H - Iz) Iy,
Iy : = (H ' Ir) .
Here
(H - Iz) :=gcd{# Ha " Ix(a, @)/ 2: a<|l']},
(H™ ' Iz) := gcd{(#Ha) " Iz(a, )/ 2: a<|l|}.

v ) Using the preceeding ii), iii) and iv), the exponents for (Tt?I", (k(Tr%a)).)
and (Trul", (kK(Trra ))e) are calculated as follows.

MrrHy = ma% a€|l),
ey 1= Ma n)(lH‘“IR) aE|l|.
vi) Particularly v) implies,
{(Tr’*r)m = Tr*I'm,
(Tral )m = Trulm. (Recall Definition (8.1)).

vii)) Together with the fact ii), we get,
(T Y = TrfIy,
(Tl Yo = Trul s

Here we put a":=(H -k)a and au:=a.
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viil) The preceeding i )~vii) altogether imply that the set Tt"|I'rc| and Tru|xl
form Dynkin diagrams for some m.e.a.r.s.’s. (cf. (8.2) for the definition), which we
shall denote by Tt and Trul'rc respectively.

5. Let us show that there exist m.e.a.r.s.’s, say R¥ and Ry in F" belonging
to I|F¥, so that TrI'rc and Trul'rc are the Dynkin diagrams for them

respectively.
Put .
R := U Lwae: a€TH|TrePTry,
7E’PR,G'
Ry :=. U <{wa: aETru|TrePTray.
TEIFR.Gl

Then 1 and 2 iii) iv) v) vi) imply that R¥ and Ry are root systems belonging to
| F¥ (cf. (1.3) Ex. 4). Since /| F¥ is positive semi-definite s.t. rad(/ | F#)=rad ],
R* and Ry are extended affine root systems by definition. The space G:= Ra
defines markings for R¥ and Ry.

Let (Rr#, Gr#) and (Rry,, Gr,) be m.e.ar.s.’s associated to the diagrams
Tr¥I'r,c and Trul 'z ¢ respectively. (The constructions of them is given in (9.6)). Then,
there exists natural isomorphisms

(Rre, Grit) =~ (R®, G),
and

(RFH, GFH) >~ (R, G).

Proof. Define a map Fru:= (‘Pﬁiﬁ’ - F” by @— . Then due to (9.4.5)
aETr R,G A
and 3 vii), 4 ii), it is factorized by an isomorphism ( F r#)/Image(U —1)~F¥,
inducing Gr#:= Ra"~G:= Ra.

Then the map induces a bijection,
Rra ~ RY

by definitions of them.

6. Since the Dynkin diagrams Tr”I'z¢c and Trul & are determined only by H
CAut(I") (cf. 3. iii) iv)), the isomorphism classes of (R¥, G) and (Ry, G) are
determined by H.

7. The formula 3 v), vi) imply that, (R¥)¥V=(RY)x and (Rx)=(RV)".
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These complete the proof of (12.3) Lemma.

Definition. Let the notations and the assumptions be the same as in the
above Lemma.

We call the diagram Tt"I s the folding of I'rc and Trul'rc the mean folding
of I'rc by the group H.

We shall not make no distinction between two (mean) foldings by H and H’,
if the decomposition of the set |I'z,c| into the orbits of A and that of H’ coincides
each other.

(12.4) The following are the complete list of foldings and mean foldings of Dynkin
diagrams for m.e.a.r.s.’s.

The orbits of the nodes of 'z by the action of H are drawn as nodes lying in
the vertical position in the diagram. Thus if the action of H is obvious from the
drawn picture, we have not explicitly mentioned about the group H.

If two subgroups H, H'CAut(I”) satisfying the assumption *) of Lemma,
commute each other and H N H’'={1}, then Tr¥ and Try commute. Let us denote
by Tr % the product Tr#Try=TryTr? and by = the correspondence of diagrams.

In each figure, the diagrams in antipodal positions are dual of each other.

Table 1. (/=2)

B{z,z) 14(2111_)l C;l,l)
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Table 2. (1=1)

)

BC#2(2)

In the table 2, Z, means the group generated by a involution which fixes the
nodes on the right terminals of the diagrams and Z, means the group generatied by
the involution which fixes the nodes on the left terminals of the diagrams.

In case /=1, we formally define B®?:= A{Y, C{V:= AW,
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Table 3. (/=2)

BC#(1)

N > A . i
z Tr?2 ‘\I‘rz2 / Trz; \Trzz

cp TrZ2x2% D} BV

H ~
—_— H :n
Trz,xzs :i:' Z,li__ th

In the table 3, Z. means the group generated by the transposition of the nodes
on the right terminals of the diagrams and Z; means the group generated by the
transposition of the nodes on the left terminals of the diagrams.



EXTENDED AFFINE ROOT SYSTEMS 173

Table 4. (1>2)

In the table 4, Z, means a group generated by an involution which fixes the
nodes in the right terminals of the diagrams and Z, means a group generated by a
(product of two) transposition (s) which exchanges nodes on the left terminals of the

diagrams.
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Table 5.

Table 6.

G

Table 7.

Gy

Trz,

‘\Trz 2

TrZ2x%2

TrZ3

KYOII SAITO

A(ll,x)*

Eél’n

BC{,,l)

e

Gon

Trz,

G
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Table 8.
a TI‘ZZ < Trzz i
o o, ) 0 [ ! —_— o o o) o
‘ 2 X : ‘a I 2
F‘(Z.Z) Esl.l) ‘F‘gl.l)
Table 9.
‘$ g Tr%2 ° Trz, ‘g \
Q . —O- 0 —_— Q P— —OQ—0
v 9 o o 2
Fgl,Z) E_Sl,l) FéZ.l)

(12.5) Hierarchy among Dynkin diagrams.
The tables in (12.4) classify the diagrams for marked extended affine root systems
into the following four groups.

1. The Dynkin diagrams, which have no multiple bonds.
AMY (1=1), D®V (1=4), E&V, E&Y, E{.

These diagrams are characterized as diagrams which can not be expressed
neither as a folding nor as a mean folding of some other diagrams.

1. The Dynkin diagrams of type P¢*® (for t(P)>1, t|t(P)).

B (123), B? (1=22), C* (1=2), CP#? (1=3),
BC®Y ([ =1), F{®  FED GEd GPd,

These diagrams are characterized as diagrams which can be obtained by a
folding of the diagrams of the group 1.

[I. The Dynkin diagrams of type PV (for t(P)>1, t|t(P)).

B (1=3), BfY (122), CfP (122), CfY (123),
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BC#Y (1=1), Fi, F&, G§V, G§.

These diagrams are characterized as diagrams, which can be obtained by
mean foldings of the diagrams of the group 1.

IV. The Dynkin diagrams of exceptional types.

AG0*, R (122), CPV* (122), BCPA(1) (122),
BCE2(2) (121),

These diagrams are characterized as diagrams, which can be obtained by
foldings of the diagrams of the group Il and also by mean foldings of the
diagrams of the group 11. In the other words, diagrams of this group can be
obtained from the diagrams of the group 1 by a succession of a folding and a

mean folding which are commutative.

As a summary, let us give a table of hierarchy relations among the Dynkin

diagrams.
group I self dual
A(ll,l)' D&l.l)’ E?'l)
mean folding folding
group III group II
le,l), sz’”, Cil,!), sz'”, Bsz'l) Bgl,z)’ B;z'Z), Cgl,z), CﬁZ,Z)’ Bcs'm}
F‘(l,l) F4(2,1), Gg,l)' Gg.l) dual F4“'2), Ffz'Z), G(ZI.S) G;s,s)
\ folding / mean folding
group IV (exceptionals)
self dual

A(ll,l)v, Biz'Z)*, Cil,l)-:' BCEZ'Z)(].), BCSZZ)(Z)

(12.6) Assertion. Let us give formulae for calculating the tier numbers and the
exponents, for the foldings and mean foldings.

i) The total tier number.

tH(Trflre) = t(I're) " IRi)(H “1z)’
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t(Tralrc) = t(Ire) (H - IR])-(H o IzV).

ii) The first tier number.

t(Tr T re) = t(Tre) (H- nv)(lH—l “Txv)’

H(Tralre) = tl(PR,G)_(%.

ili) The second tier number.

t2(Tr I rc) = t2(Ire) (H - k)(I{[—l o Igv)’

to(Tralrc) = tz(PR'G)(Lg_:IL;vl)'

iv) The exponents

o (H k)

MtrHy = Ma (H“IR)’

m =m 1
Tree = D ey (H ' Ir)

Proof. Samely as in the proof of (12.3) Lemma we calculate as follows.

EY((Trfa)Y) = k¥(a),
EY((Trpa)Y) = (H - kY)Y Ha - k¥ (aV).

Il

{%V(Tr”a)v = (H-n")"%Ha- n.",

Vv
7Y rrga)’ na.

Igyy = (H™ ' Igv ) ey,
Iiggyy = (H = Igv ) gv.

177

Then applying these to the formulae for tier numbers (4.2) iii), (4.5.1) and (6.3.1) and

for the exponents (7.1.1), we obtain the formulae in Assertion.

q.e.d.

(12.7) Corollary. Let the notations be as before. Then we have the following

proportionalities.

T T M
(12.7.1) m;z:“ = tzgz(rlf’,gRG')G) for a<|l,
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(12.7.2) Mirga

KYOII SAITO

L (Tr R
Ma H(Izv.e

) for w€<|l|.

Proof. Use ii), iii) and iv) of the Assertior. One may also check the

proportionality, directly from the tables of (12.4).

[1]
[2]

[3]
[4]
(5]
(6]
(7]

(8]
[9]

[10]
(1]
[12]
[13]
(14]

[15]
[16]

(17]
[18]

These proportionalities are the last statements of this paper.
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Added in Proof.
1. The complete intersection of quadric cones defines a sequence of singularities, called D,
(see F. Knorrer [8]). Recently in a private letter [34], W. Ebeling has informed to the author
that he found a strongly distinguished basis of the middle homology group of the Milnor fiber
of the singularities, which are intersecting in the form of the diagram as defined in (8.2)
Definition of the present paper and that the Milnor’s monodromies of the singularities are
identified with the Coxeter transformations as defined in (9.7). (cf. also [31])

2. It might be worthwhile to notice that the Lemmas A, B of the present paper is an analog
of a result of Coleman [36], who has calculated systematically the Betti numbers (exponents)
for simple Lie groups, by showing the existence of regular eigen vectors for a Coxeter
transformation. Another analog of the result for the case of indefinite root systems will be
shown in a forthcoming paper.






