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Partial ^-Algebras of Closed Linear
Operators In Hilbert

By

J.-P. ANTOINE* and w. KARWOWSKI**

Given a dense domain-^ of a Hilbert space, we consider the class of all closed operators which,

together with their adjoint, have @t in their domain. A partial *-algebra of operators on @ is a

subset of that class, stable under suitable operations of involution, addition and multiplication, the

latter when it is defined. We present two types of such objects and study their properties, both

algebraic and topological.

§ 1. Introduction

Unbounded operators in a Hilbert space have rather awkward algebraic

properties. The sum or the product of two operators is not always defined, and if one

insists on defining these notions, then in general the resulting operator fails to possess

the "nice" properties of the original operators (e.g. a dense domain or closedness).

Yet these partially defined operations generate a considerable amount of structure on

certain sets of unbounded operators, as we shall see.

Clearly, if one considers all unbounded operators, only trivial statements can be

made. At the other extreme, the class of all bounded operators and subsets thereof

are well under control, and we need not comment on the importance of the resulting

theory of C*- and W*-algebras.

The next choice is the set of all closable operators which, together with their

adjoints, are defined on a fixed dense domain and leave it invariant. In this case also

there exists an elaborated theory, developed e.g. by Vasil'ev [l], Epifanio et al. [2],

Powers [3], Lassner and his group [4], although many questions are still unanswered.
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Here, as in the case of bounded operators, one gets genuine *-algebras, the so-called

Op*-algebras.

However, there are indications that more general objects could be important,

too. Take for instance, in Quantum Mechanics, a single particle in a potential. In

the Hilbert space ^=L2(R3), the position operator jc, the momentum operator jj,

the angular momentum x/\jp, the free Hamiltonian Ho=p2/2m are all defined and

essentially self-adjoint on Schwartz space ^% and they all leave it invariant. But in

general the full Hamiltonian H = Ho+ V(x) will not, and one gets only H : &-*

%?. In such a case, algebras of unbounded operators leaving <? invariant are of little

use (the same difficulty arises frequently in the so-called Rigged Hilbert Space

formulation of Quantum Mechanics [5,6]). As a second instance where operator

algebras are not sufficient, one may think of Quantum Statistical systems for which

the thermodynamical limit does not exist in a C*-topology on the algebra of local

observables [7]. One may then use a locally convex algebra 81. However, its

completion 21 is no longer an algebra, but a more general object called quasi-algebra

by Lassner [8], since multiplication in 21 is only defined for certain pairs of elements

(see Example 2.5 below). As a third example, one may cite the generalized creation

and annihilation operators introduced by Grossmann [9] in his study of unsmeared

field operators ; they too can no longer be multiplied freely. The same phenomenon

appears systematically in the study of operators on partial inner product spaces [10].

In this paper we will restrict the analysis to unbounded linear operators in a

given Hilbert space %*. More precisely, we will consider collections of closed

operators with a fixed common dense domain ^C^, which they do not necessarily

leave invariant. This situation, although still restrictive, is sufficient to provide

genuine generalizations of C*- and Op*-algebras.

The starting point is the set C(&, <%*) of all closed operators A in ^such that

&c:D(A)nD(A*) [2] (for an operator A, we denote its domain by D('A\ its range

by Ran(A), its adjoint by A* and its closure by A). The central question-is then,

what kind of algebraic structure can one give to C(^, %?) ?

The vector space structure is easy, but the product is not. What is needed is a

definition such that, for some pairs A, B^C(&, %f) at least, the product is defined

and belongs to C(&, %?} also. So the restriction of the product to ^ must be

closable and have an adjoint defined on @. Then the obvious candidate for the

product AB would be the closure of the restriction of the ordinary product to ®.

But, first, B need not map ̂  into D(A\ and, even if it does, its restriction to ^,
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A (B | &), need not be closable, nor have an adjoint defined on ^ .

Lemma 1.1L Let A, B^C(&, 2?} verify the following two conditions ;

(WM1) RanCB|J?)cDU)

(WM2) RanU*|^)cl>(5*).

Then A(B\&) is a closable operator and the domain of its adjoint contains &.

Proof, By (WM1) and (WM2), one may write :

which proves that A(B\&) has an adjoint defined on & and Is therefore closable.

D

Whenever conditions (WM1), (WM2) are satisfied, we say that A Is a weak left

multiplier of B, and B a weak right multiplier of A, and we write A^LW(B\ or B

We emphasize that condition (WM2) Is sufficient for the closability of A(B \

but not necessary. Take, for instance, %*=L2(R), & = C~(R\ A — multiplication

by the characteristic function x of some finite interval [a, b] and B = i~r~- Then A*

-A and B* = B = (B\&) both belong to C(® , %f\ (WM1) Is satisfied, but (WM2)

is not. Yet the product A(B\^)=i%(x)—j—\Co> Is closable, since its adjoint Is

densely defined. Indeed, the domain of [^4(5 1^)]* contains all functions

such that /(0) = /(6) = 0, but only those! Hence A(B \ &) is a well-defined closable

operator, but the domain of Its adjoint (which equals B*A* since A is bounded)

does not contain &, so that

Of course we want our products to be defined uniquely. But C(& ', ^) does

allow ambiguities : It happens quite often that A\ and A2 both belong to C(&, %?),

with A 2 a proper closed extension of Ai, and then A\ and A2 coincide on & . There

are two canonical ways of defining a closed product In C(& , %?\ always under the

condition that

(i) A«B = A(B\@} (1.1)

(i i) A*B = [B*(A*\&)]*. (1.2)

One sees easily that (A ° B)<p = (A*B)<p = AB<p for every (p^^ so that both
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definitions are acceptable. In the first case, one gets a @ -minimal operator [11], that

is A ° B is the closure of its restriction to j^, whereas in the second case A # B is a

@-maximal operator [11], i.e. the adjoint of a ^-minimal one. Not all operators

in C(&, %f} are of these types, so it is useful to clarify this question before going

further.

Let A be any operator in C(&, %?\ Then its adjoint A* is in C(Sf, %*} too.

Furthermore, we define

(1.3)

so that

A*dA*dA\ (1.4)

Then the following relations are easily verified :

4" = U*)*, A** = A\0 = (A')*, A™ = A\ A*** = A*. In brief we get the
following picture :

*ci A*

The operators A*, A** are ̂ -minimal and interchanged by =£, whereas A*, A" are

^-maximal and interchanged by t- In the case of a symmetric operator A, Eq.

(1.5) becomes

A+=A++cAcA*cA*=A" (1.6)

All inclusions may be strict, as for instance in the well-known case of differential

operators on a finite interval [a, b]c:R9 with £T = L2(a,b) and & = G?(a,b\

Notice that in (1.6), A* is symmetric with adjoint At, whereas A^ is not symmetric

unless A* = A*, since its adjoint is ^4*. We will have more to say about this in the

sequel (see Sec. 4).

In conclusion, if we want to give to some subsets of C(&, jr) a structure of

"partial *-algebra", two candidates arise naturally : the set S(^ ) of all @ -minimal

operators, with the partial product A*B9 and the set &*(/)) of all ^-maximal

operators, with the partial product A * B. These two cases will be studied in detail

in Sections 3 and 4, respectively. However, the concept of partial * -algebra has

general features which are independent of those particular realizations, so we will

first study, in Section 2, the algebraic structure in full generality. Next, we will
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examine in Section 5 some topological aspects of our structure. In particular, we will

address the problem of finding topologies on 6 and £* such that the partial

multiplication is (separately) continuous whenever it is defined. Finally, Section 6

will be devoted to some considerations about commutants in the present framework.

Some of the results of this paper have been reported on in an earlier work [12].

We both want to thank gratefully Prof. L. Streit for the warm hospitality offered

to us at the "Zentrum fur interdisziplinare Forschung" Unlversitat Bielefeld, where

this work was completed. One of us (W.K.) is indebted to GMBH Kernforschung

Karlsruhe for financial support. We thank G. Lassner, W. Timmeraiann and C.

Trapani for interesting discussions, and also the referee for pointing out some

Inaccuracies In a previous version of this paper.

§ 2o Abstract Partial '-Algebras

We begin with the study of partial *-algebras In full generality, following

Borchers [13].

LI. A partial *- algebra Is a complex vector space SI with an

Involution x -> x + (i.e. (x+Ay)+ = x + + Ay+, x++ = x) and a subset F 0121x21 such

that:

( i ) (x,y)^r Implies

(II ) ( x , y i ) and (x,y2)^r implies (x,yi+Ay2)^P

(iii) If (x,y)^r, then there exists an element x°y^^i with the usual
properties of the product :

x °(yjt-z)=x °y+x ° z (2.1)
(x°y)+=y+°X + . (2.2)

Notice that we do not require the ° -product to be associative.

Definition 2020 The partial ""-algebra 21 is said to have a unit If there exists an

element 1^21 (necessarily unique) such that 1+ = 1, (l,x)^F and I°x=x°l = x

for every
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Whenever (x,y)^.F, we say that x Is a left multiplier of y, and y a right

multiplier of x. One may remark that those multipliers bear some resemblance to the

centralizers Introduced by Johnson [14] in the context of bounded operators. We

denote by L(x ), resp. R(jr ), the set of all left, resp. right, multipliers of x. Similarly

we introduce for any subset SRc8l :

LM= n LU), m= n RU> (2.3)
jreSl jreSR

with the conventions L{x} = L(x), R{.r} = R(.r). These sets of multipliers will

occupy us for the rest of this section. First we notice some Immediate facts. We use

the notation W+ = {x+\x<=%l}, for any subset

Proposition 2.3. Let 31 be any subset of 21. Then :

( i ) LSR rarf RSR are vector subspaces of 81, a/zrf 6ctfA contain the unit

element 1, if

( I I )

Next we consider the set of all spaces of multipliers. As we shall see, this set

exhibits an interesting lattice structure, analogous to the one analyzed by Gustafson

and one of us [15, 16] In the context of partial Inner product spaces. The reason Is

in fact the same, namely in both cases one studies the structure generated on a certain

set by a binary relation. Here It is the subset Fc2lx2l :

(2.4)

This binary relation in turn defines a Galois connection on the complete lattice

of all vector subspaces of 81. This means that the two maps L : SR •— > LSR and R :
9? >-» R91 (31 may be an arbitrary subset or a subspace of 31) both reverse order :

and

and have the closure property :

3tCLR3fJ and

This In turn Implies the relations :

L = LRL and R=RLR. (2.5)

Then, from Proposition 2.3 and the general theory of Galois connections (see [15],

[16] or any textbook on universal algebra), we obtain the following result. Let J^
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be the set of all subspaces 91 of 91 that verify the relation SJt = LR?t? ^R the set of

those for which 3ft = RLSft. Both sets are partially ordered by inclusion.

Let J^L and jn* be as above. Then :

( I ) ^T is a complete lattice with respect to set intersection and LR-closure

of vector sum. The elements of jrL are exactly all spaces of left multipliers:

5le^L iff 9l=LS)J for some *J3C2L

The maximal element of J^l is 2l = LR2l and the minimal one is LSI.

(II) ^R is a complete lattice with respect to set intersection and KL-closure

of vector sum. The elements of j^R are exactly all spaces of right multipliers, and

its extremal elements are Sl = RL3l and RSI.

(III) L is a lattice ant!-isomorphism from >J?~R onto j^L3 and similarly for

(Iv) The involution x <-»x+ generates a lattice isomorphism 31<-»$l+ from

J^L onto ^R and vice-versa.

(v) The set J?l n jrR of those subspaces of 21 that belong both to ^L and

to JH* is invariant under involution ; it contains in particular all +-invariant

elements of ^1 and of J^.

Remark. J^ and J^"R are In general not sublattices of 3^(21), since the

supremums are different in all three cases.

A concise formulation of this result is obtained by considering the set

with the following partial order

SK2) iff 5li^9^2 and 9Jli^9Jl2=

By Proposition 2.4 ( I ), ( II ) ^l X ̂ R is a complete lattice with respect to the

operations :

The minimal element is (LSI, 81), the maximal one (81, RSI). Consider now the

following subset of
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Then statement (iii) of Proposition 2.4 means that fr is a complete sublattice of

Finally, the involution on

is a lattice anti-isomorphism and ^~"r= ̂ >- The elements of ^r are quite useful (see

also Sec. 5) so we give them a special name, and call them matching subspaces. For

instance, one sees readily that the following statements are equivalent :

( i ) Uy)er
( ii ) there exists a pair (SB, 2Jt)ejrr such that j; eSR, ye3R.

This formulation, which makes essential use of the Galois structure, is very

convenient in practice. Comparing the present situation with that of partial inner

product spaces [10, 16], we see that matching subspaces here correspond to dual pairs

there.

For several purposes it is necessary to restrict further the concept of multiplier.

We say that x is a multiplier of y if it is both a left and a right multiplier : x e

M (y ) iff x G L(y ) D R(y ). Accordingly we define

MSR = LS(inRSR (2.6)

and consider M as another map on 5^(21). Again M reverses order and MM is a

closure : ?lCMM$R. Thus M = MMM and the set J^M of all subspaces 31 such that

3l=MM3l is a complete lattice, with an anti-isomorphism 31++M31 and an

isomorphism 31 <-» %l+. This lattice ^M plays a rdle in the study of commutants, if

one uses the natural definition, for any subset 31C81 (see Sec. 6) :

W={xeVL\x*=M3l,xoy=y°x, Vy^W}. (2.7)

Remark. The lattice ^"M has nothing to do with the set j?~Lf}jrR considered in

Proposition 2.4 (v).

We conclude this section with some examples of partial *-algebras.

Example 20§» Let 21 be a locally convex ^-algebra, such that the multiplication

(x, y) •-» xy is separately continuous and the involution x •— » x+ continuous. Then

the completion 21 is in general not an algebra, but only a partial *-algebra, called

quasi-* -algebra by Lassner [8]. Given a pair x, y^W, their product xy is defined

(by continuity) only if one of them at least belongs to 81. So, for every jce8l,
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=R(jc )-2t ; but If 3/eI\2l, L(y) = R(y) = $i. In other words the lattice structure Is

trivial, the two lattices J^L and ^R coincide and consist only of the two elements 21,

21 (the corresponding situation for a partial Inner product space Is the case of the

so-called trivial compatibility [16] ; this happens e.g. for spaces of distributions). A

typical example [8] Is $l=C(a, b), the algebra of all continuous functions on a

compact Interval [a, b], with the topology given by an //-norm. Then ^ — Lp(a, b),

which Is not an algebra, but a quasi-*-algebra.

Example 2eS0 Take the space C(& , %f] Itself. It has natural algebraic

operations, namely the strong sum A ̂ B = A + B, the involution A^* A* and the •

product defined In (1.1). However It Is not a partial *-algebra, because the strong

sum Is not associative. For instance, if AdB, A^B, then (B3r A)+( — 5) = 2A:P

( — B) = A, whereas B-£(A-*f-( — B)) — B^-Q = B. Moreover, the identity operator Is

not a unit, since A° 1 = 1 ° A = A*(^A, where the restriction may be proper.

The lesson of the last example Is that strict extensions of operators are

incompatible with the structure of partial * -algebra. Thus we are left with two

solutions. Either we consider ^-minimal operators only, with the • product (1.1),

or only ^-maximal ones, with the * product (1.2). This will be done In Sec. 3 and

Sec. 4, respectively.

§ 3o Partial * -Algebras of j^-Mimimal Operators

In this section, we will consider only j^ -minimal operators, that is, closed linear

operators for which ® Is a core. These are all elements of the set :

(3.1)

Since the domain *& Is fixed throughout, we write simply £ for £(^). We will show

that £ Is a partial *-algebra for appropriate operations.

( I ) Vector space structure : for A, B^C(&, ^), we define

Then with the + addition and the corresponding multiplication by scalars, £ Is a

complex vector space (In particular, the + addition is associative and ^44- Q = A).

Notice that, for A,B^&, A + B = A + B^3A + B, where the extension may be

proper.



214 J.-P. ANTOINE AND w. KARWOWSKI

(ii) Involution : for Ae£, A* = A*\& belongs to £ again and A*-* A* Is an

involution. In particular, A** = A.

(iii) Partial multiplication : given A, B<^C(&, %*}, we say that A Is a left

multiplier of B and B a right multiplier of A if they verify the conditions :

(Ml)

(M2)

We write A^L(B\ B^R(A) and notice that L(B)dLw(B), for every

&). Hence we may use the • product:

(33)

These three operations are compatible, for we have :

Proposition 3010 Given a dense domain &, let £ = £(^) be the set of all
^-minimal operators. Equip £ with the + addition, the involution A <-» ̂ 4* a«rf
the • multiplication restricted to those pairs A, B where A^~L(B). Then £ is a
partial *-algebra with the identity operator I as unit.

Proof. We know already that £ is a vector space for + and that A^A* is an

involution. We have to verify the conditions of Def. 2.1 :

( i ) A^L(B) 4»fl*eLU*) follows from conditions (Ml), (M2).

( ii ) Distributivity of multiplication, i.e. Eq. (2.1) : A+B^L(C) if A^L(C)

and 5<EL(C), and (A^-B)* C = (A • C)+CB • C), as can be checked readily.
(iii) Whenever A^L(B), one has A • BeE and (A *B)*=B* • A*. Indeed,

for any ̂ , ^^^, we may write :

which shows that ^ Is contained in the domain of [A(B| ̂ )]* = (A e -B)* and then

the assertion follows. Finally /eg and I * A = A° I=A9 VA&&. D

Although K is a partial ^-algebra with unit, multiplication in £ Is not

associative. Of course, in the context of a partial algebra, associativity means that,

whenever (A ° B) • C Is well-defined, then A • (B ° C) is also and the two are equal.

This does not hold In £, but only a weaker statement (In the formulation of which

we use a 9 product of elements of C(&9 3T\ not necessarily in g) :
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o20 Let 4,B,Ce(£, A^L(B), CeR(B) and A

Then B • C is a weak right multiplier of A** and (A °B)°C = A** • (B • C).

Proof. Under the assumptions made, (^4 • B) • CeK. Then we have, succes-

sively, for any (f>, $^ @t :

? (U • B) • C)*#> = <(U • B)

= <C#, U • J5)*#> = <C#, (J5*

The equality between the eighth term and the first two means that B

and then the last term gives the desired relation. D

A corresponding statement is obtained for .4° (B ° C), using the involution

A^A*. As shown by Proposition 3.2, the lack of associativity stems from the fact

that A* may be a proper restriction of A*. Indeed, one has :

3o3o ( I ) Under the assumptions of Proposition 3.2 and, in

addition, that A* = A*, one has B»C^^iw(A) and (A°B)° C = A°(B° C).

(ii) The same conclusion holds, in particular, if A is self -adjoint.

(ill) If A • SeL(C) and B • CeR(A), then one has

The discussion so far suggests a natural class of partial ^-algebras of operators,

namely partial ^-subalgebras of E.

. 3o40 Let & be a dense domain. A partial ^-algebra of ^-minimal

operators Is a vector subspace 911 of E(^) such that :

( I ) le2R

(ii) m*=m
(Hi) If A, B^Wl and A^L(B), then A

Let us give some examples :

(1) e = S(^r) Itself.

( 2 ) B(%*\ the ^-algebra of all bounded, everywhere defined operators on ^

and any ^-subalgebra of B(^) (this holds for every dense domain j^)0
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(3) The algebra L+(^) = {A\A^L+( at )}, where L+( & )=
?\ A@}^@ , A*@^ @} is the algebra of unbounded operators considered by

Lassner [4] and also by Epifanio et al. [2] (who denote it C»). Indeed, statement (iii)

of the definition follows from the relation A ° B = A(B\^) = (AB)\& .

(4) The algebra SS={A|.Ae8l}, for any Op*-algebra 21 on ^, i.e. a

*-subalgebra of L+(&) containing the identity.

( 5 ) Any non-empty intersection of partial *-algebras of -^-minimal opera-

tors (all on the same domain &\

( 6 ) In particular, for any subset 91 of E(^), the set 2R[SR] = n9Jl«9 where 2R«
a

runs over all partial *-algebras containing 31. The partial *-algebra 9Jl[SJl] is the

smallest one of these, and will be called the partial *-algebra generated by St. Let

us give a concrete example.

Example 3.§0 Put ^=L2(R\ & = Co(R) and consider the following set of

closed operators: SR = |l, ex,%,x—r~, Sr. Here ex and % are tne operators of

multiplication by ex and the characteristic function of a fixed interval, respectively ;

an<i tne operator S is defined as follows :

where a is a fixed positive number. The operators /, ex, and % are selfadjoint ;

(^-^r)* is the closure of (1+^-j[r)l^ that is, 1+^-J^-), and S* is the

tollowing operator :

•/(*-*),
0 , —a<x<a

.f(x + a\ x<—a.

S* is an isometry, and S is a contraction : SS* = 1, S*S<1. Accordingly, when

n— »oo, Sn tends to 0 and (S*)" tends to 0 weakly. Next we compute products.

Since S is bounded, Ran(jr-J^|^ )cD(S), but Ran(S*|^ )c/

so that S^l^(x-~-\. On the other hand, Ran(S|^)c£)f jc-^-J and of course
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Ran - z - f ! ^ C/XS*), so that S e R c - . Furthermore, Ranfol^) Is

"contained neither In D(X-^—\ nor In D((X—J—} } so that % and X~J~ are not

multipliers of each other. All other ° products are well-defined, including powers

of each operator, which we define as A(n) = A(n~l) ° A(n = 2, 3, ...).
From these results, one may visualize the algebra Wl[3l] generated by 31 as the

set of all those polynomials In the operators of 31 that contain only products allowed

by the rules above.

Remark 3,6. A general operator AeS need not be a multiplier of Itself!

Of course, If It does, It Is both a left and a right multiplier. Let Indeed AEi.'L(A).

Then A(2} = A° AEL& and (AW)* = A*W=(A2)*. Higher powers are trickier.

For Instance, If A • ̂ 4 Is both In L(A) and R(A), then, by Corollary 3.3. (iii),

A • (A ° A) = (A °A)°A = A(3). Let In particular A be symmetric, AdA*9

which is equivalent to A = A*. Then A • A^l^(A) Iff A • A^^(A\ so that the

usual rules of associativity apply.

Let 3K be a partial *-algebra of ^-minimal operators. Its natural domain Is the

subspace j^(ajl)= H D(A\ which contains ^. On ^(9Jl) we consider the

3Jl-topology tm defined by all seminorms 01— Hl^ l^U, A^^Ol. Since every A^W is

closed, its domain D(A) Is complete In the graph topology, thus ^(SK) Is

tm~ complete, although ^ need not be. However, contrary to the case of Op*-

algebras [2-4], ^(2R) need not coincide with the completion 3^[tm] of ^ (this

fact was overlooked in [12]). A sufficient condition is that the seminorms ^|— > || A<j> ||,

AeaJl, be directed [17], i.e. that for every A, BeSK, there exists Ce3R such that

\\A</>\1 \\B<f>\\^ \\C<fi\\. This happens, for instance, if every element Ae3Jl has a

"square" A* • ,4e2R, I.e. A® dD(A*\ VA^^Jl, In particular if SK is an Op!!!-algebra.

For a general partial *-algebra 3JI, the problem is open and we get :

&<2&[tm]c:&('m) (3.4)

where both inclusions may be proper. Accordingly we extend the terminology

familiar In the case of Op* -algebras [2-4] and make the following distinction :

Definition 3o7o A partial ^-algebra 2R of ^"-minimal operators is said to be

closed If ® Is complete In the 3Jl-topology, & = i&[tm\. It is called fully closed If,
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In addition, ^ = .0(2R).

We believe that there are closed partial *-algebras which are not fully closed,

but we have no example so far. Anyway, such objects, if they exist at all, are likely

to be quite pathological.

In the case of the partial ^-algebra SC^), it is interesting to compare it with its

subalgebra L+(&). Denoting &_=&(L+(&)) and t+ the L+(j^)-topology, we get

the following inclusions :

&CL&[t*\^0(&)^&[t+] = &_ (3.5)

Thus, If the Op*-algebra L+(&) is closed in the usual sense that & = &_, the partial

*-algebra EC^) is fully closed. Of course the converse need not be true.

It is a standard result [2-4] that an Op*-algebra may always be embedded into

a minimal (fully) closed algebra, called Its closure. In our case the situation is more

complicated. Let 501 be a partial ^-algebra on ^, non fully closed. Every A^$R

maps ^(501) into «£*, continuously for the 501-topology. Since & Is a common core

for all A&5S19 so are 3r[t<m] and .0(311). Conversely, let A be an element of

(£(•0(301)), so that A = A\0($Jl)9 and construct the operator A\Sf . If the latter

belongs to 501, then its domain contains 9f (501) and A\^ =A\^(3R) = A. Therefore,

501 may be Identified with a vector subspace 501 of && [tm] ), and also with a subspace

50i of ® (.0(210), and all three Involutions coincide. In particular, one has (£(.0) =

(£(.0|Yff]) = (£(.0((£)) as vector spaces with involution. Of course the argument

does not apply to any domain larger than .0((£), such as jjt_. If an operator A&

(£(.0) does not belong to L+(^)9 Its domain D(A) need not contain &_, and there-

fore, in general, S(^)cS(^). For instance [18] if Sf Is a set of second category

In ^, L+(&) contains only bounded operators and thus ^_=^, {§,(,&) = B (<%").

So, if SK is any partial *- algebra on 3f , its vector space structure extends to

& = 3F[tm] and ^(SK). What about the structure of partial "-algebra ?"

Let A^L(B) In 501 ; In particular B maps ^ Into D(A). The graph topology

on D(A) is a projective topology, namely the coarsest topology on D(A) such that

A and 1 map It continuously into <%*. Therefore the map Bi ^-^D(A) Is

continuous iff the composed map A ° B : &-»<%* (remember that (A • B)<f> = AB$,

V^e^) is continuous, and this Is the case since A ° J5e5JJt by assumption. Thus

B : &-»D(A) may be extended by continuity to the respective completions, i.e.

B maps lit continuously Into D(A), and therefore B verifies the condition (Ml) in
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3Jl=9Jl(3^). The same Is true for (M2) using the Involution A«^> A*. Conversely, If

AG=L(B} In 501, the same Is true a fortiori In 3R. In conclusion 2R Is a closed partial

^-algebra on Jr, and It has same structure of partial ^-algebra as 501.

The preceding argument does not extend to 501 = 501(^(501)), if &(Wl)^3f.

Indeed, A^1>(B) In 501 implies the relation In $01, but not conversely In

general: A&^D(B) does not Imply A&($K)^D(B) although A Is well defined

on ^(500- Of-course, If yleLCB) both in 501 and In 501, then the product A • 5 is

the In both cases. This situation is best described by introducing the following

concept.

A A homomorphism of a partial *-algebra 9K into another one 31

Is a linear ^ : 2R—»-K such that

( I ) a(x+)=[a(x)]+

(II) if jceL(y) in 501, then <r(jc)eL(<7(:y)) In 91 and a(x °y) = a(x)° a(y).

The map a Is an isomorphism If It Is a bljection and the inverse map a~l: !K—»2Jl Is

also a homomorphlsm.

Using this terminology, the discussion above may be summarized In the

following statements.

3<J0 Let W be a partial ^-algebra of ^-minimal operators, J?

the completion of & in the ^R-topology tm, ^(Tl)= Pi D(A). Denote by SK, resp.

^ the same set of operators as 5K, but considered as closures of their restriction

to 5r, resp. ^(5K). Then :

(i ) $R is a closed partial ^-algebra over Sf, isomorphic to 3JI.

(ii) ^ is a fully closed partial *-algebra over ^(501), a^rf the identity is a

homomorphism of 9^ onto Wt,

Naturally the partial *-algebra 9JJ will be called the closure of -JR.

We conclude this section by discussing, for a given partial ^-algebra aJtcS^sO,

the spaces of multipliers described In Sec. 2. Let 91 be any subset of 5ffl Then we

may consider left and right multipliers L-K, R5R, that is, multipliers in E, but also

internal multipliers:



220 J.-P. ANTOINE AND W. KARWOWSKI

For these we may develop the whole lattice machinery of Sec. 2, and In particular

obtain the minimal classes LuSOl, RmSffl. We give two examples.

(1) Take S itself. Then A<ELK means Ran(Z?| &)dD(A) andRan(yl*|^)C

D(B*) for every B^E. The first condition implies that A is bounded. Were it not,

there would exist f<£D(A), and then the projection operator |/></| would map

& on f^D(A). Similarly the second condition implies that ^4* maps & into ^(S)

= 0 D(A\ In the same way, JSeRE means that B is bounded and maps & into
/iee

Thus we verify that ,4 (ELS iff ^4*<ERE. Moreover, if £ is fully closed, &

), then ME^LEflRE consists of the (closures of the) bounded elements of

(2) Take for SOI the partial *-algebra 2R[5R] of Example 3.5. Then Lm3Jl consists

of all polynomials in /, ex
9 S*, and RmSR of all polynomials in I, ex, S.

Spaces of multipliers are convenient for discussing the associativity of the *

multiplication, as in Proposition 3.2. Let 31 be any subset of E. Then to say that

A • SeL(C) for all £<E3f}, A^L3l, CeRSft is equivalent to the relation LSJl • 3ld

LRSR. In addition, we have always SRcLSR - 91, since /eLSft. So if m = LE3l, i.e. $n

ejn., the statement is equivalent to 3l = L3l°3l, i.e. L5JI maps 31 onto itself by

multiplication. A similar discussion can be done of course for right multiplication

and the two cases are Interchanged by the involution $ft<->SR*. Thus we get sufficient

conditions for associativity to hold.

Lemma 3.10. Given any subset -KC®, consider the following conditions:

-5RcLR5R; (A2) 31 • R3ldRL3l ; U3) 5R = W*.

Ml)+M3)=>M2), U2)+(>13)=»Ul), fl/irf every pair of conditions

implies associativity of multiplication on L31 x3lx "R31. In particular, equality holds

in (All resp. (A2), if 3l = LRm, resp. W = RL3l.

Similar statements can be made in any partial '"-algebra 3R. In particular,

conditions (Al) and (^42) always hold for 3H itself, so that we have finally :

Proposition 3.11. Let 9JJ be a partial *- algebra on &, LvM and RmSR the

corresponding spaces of internal multipliers. Then the ° multiplication is associative

on

of 3t-I

A closed operator A^C(^,<%*) is called ^"-maximal Iff its adjoint ^4* is
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-minimal. Thus the set of all & -maximal operators is :

Again we often write simply ®*. As can be expected, the set £* is also a partial

*-algebra with respect to appropriate operations, which are to some extent dual to

those of S.

( i ) Vector space structure : for A, B^C(& , %?\ define :

(4.1)

Notice that we have always A + B = (A+B)" = (A*+B*Y, where A' =
Indeed :

It follows that A+B^A+B for all A,

(ii) Involution : for A^S*, one has A*G.&* and

Lemma 4.1. K* is a vector space with respect to + and corresponding

multiplication by complex numbers ; A4^ A" is an involution on it,

Proof. Let^B.CeC^EEC. Then M = (M)ner3 A+B^&'9
= A and addition is associative :

Furthermore, ^feS* and (A + B)*=A'+B*. D

(iii) Partial multiplication: for A, B<E.C(&3 %?\ we say that A is a fe/f

^-multiplier of S and B a ng7i£ * -multiplier of ^4 if the following conditions are

satisfied:
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(*M1)
(*M2)

We write A^L*(B), BeR*(,4) and notice that L(B)c:Lw(B)c:L*(B)9 for every 5
e C(9t,3T\ Then, we define the * -product :

(42)

We also notice that, in this case, (A%B)$> = A*fB$>, for

Proposition 4,2o Le£ S* = £*(^) &£ £Ae set of all ^-maximal operators.
Then S* is a partial *- algebra with respect to the + addition, the involution A^

A* and the %- multiplication restricted to those pairs A,B for which

Moreover, the identity operator is a unit for K*8

Proof, It remains only to verify the properties of the product.

( i ) A<=L*(B) iff j^eL'U*), by (* Ml) and (* M2).
( ii ) The involution property holds :

(iii) The multiplication is distributive : A+B^L*(C) if A, 5eL*(C) and

(iv) Finally, 7eL*U), V-AeE* and /*24 = ̂ */ = A D

We have seen in Section 3 that the • multiplication is not associative on ®. But

the result of Proposition 3.2 suggests that the # multiplication, which is less

restrictive, might be associative on £*.

4.3. Let A,B,
L*(C). rACT S*CeR*(A) a/irf we have (A%B)* C = A^ (B * C).

Proof. For any 0, ^e^, we have :
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which Implies that (5*0^7X4"), A^^D((B * C) f ) and

This proves the two assertions (of course, we have A f t =^ and

by definition). D

The natural definition of partial *-algebra is now obvious and entirely parallel

to Definition 3.4,

4o4o Given a dense domain &, a partial * -algebra of 9f- maximal

operators is a *-subalgebra of K*(^), that is, a vector subspace -JRcE*, containing

7, and stable under the involution A++A* and the * multiplication.

Examples of such partial *-algebras are easy to give. If 501 is any *-subalgebra

of £, the set SK* = U* 1 4e2R} is a *-subalgebra of 6* called the adjoint of 2R. One

gets in this way, for instance, 5* itself, B (<%*), \L+(& )]*. But in fact there are more,

because the * multiplication is less restrictive than the * multiplication, since in
general L(5)CL*(B). To understand the situation clearly, it is useful to make a

comparison between £ and £*.

Let A, B^C(^, JT). Then 4*, ^**e®, Af, 4ne6* and the two pairs are

adjoint of each other by Eq. (1.5). The following relations are readily verified :

(4.3a)

(4.3b)

This means that the involution A «-» A* extends to an antilinear isomorphism of the

vector spaces (£, +) and (K*, +). But for multiplication, the situation is not

symmetric anymore. Let A, jBe® with A^L(B). Then A neL* (5 ft) and one has

)* = 5*->4* (4.4b)

(notice that one has always >l*B = ̂ *5 t t=A t t*5 = ̂ t t#jB t T) . But the

converse does not hold. Let A, J3ee*. Their adjoints are A*, 5*, but
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does not Imply that B*^L(A*) or A**^L(B**). Therefore two corresponding

partial *-algebras 3JICE and 3R*ClS*are anti-isomorphic as vector spaces but not as

partial algebras. More precisely, the linear map A*-* A** = ^4n is a one-to-one

homomorphlsm (Def. 3.8) of 911 onto 3JI*, but in general not an isomorphism.

These considerations clarify also the question of closedness of *-subalgebras of

E*. Let Wl be a partial *-algebra of j^ -minimal operators on some domain ^C

). The adjoint partial *-algebra 2JJ*5 also defined on ^, has for natural domain

) = p| D(A*\ which is complete in its graph topology tw- Obviously

Z)jir(2JJ), and the topology tm- coincides with tm on &(SK) and on @. ln

general, &(3R) is smaller than ^(2R*), but the condition that they are equal seems

of little interest, in contrast with the case of Op*-algebras [3-4], where self-adjoint

algebras have distincly better properties. In the case of E*, however, the two notions

are linked. Write, as usual [18], & * = @({V '(&)]*) = A(£\^f)(A*\ Then we

have :

(4.5)

Thus, if L+(&) is self-adjoint, i. e. & — &^ the partial "-algebras E(^) and

are both fully closed.

Taking adjoints again, we obtain simply 2Ji** = 9K. Of course the difference with

Op*-algebras [3, 18] is that here every operator A^2R is closed, and we consider the

adjoints ^4* themselves, not their restrictions to ^(SUl*). As a consequence, ^(SK**)

= BQt+D(B*) = &(Wl), and the double adjoint <m** = <m offers nothing new.
As the reader will have noticed, our construction bears a strong resemblance to

that used by Powers [3] for representations of algebras of unbounded operators.

Although we won't discuss here the notion of representation of partial ""-algebras, we

want to stress the analogy. Let 2R be a *-subalgebra of S(^), and n the embedding

(identity) of 2Jt into E. Then x is a * -representation of 3K in K, in the sense of

Powers. The adjoint representation x* is given by :

that is, ;r*(3R)=[;r(2K)]*, a representation of 2R in E*. In this analogy, a

representation by ^-minimal operators corresponds to a hermitian representation TC.

In fact, this remark suggests what the genuine analog of self-adjoint represent-

ations might be in the case of partial *-algebras.
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4»So An operator A£=& Is called standard If A* = A*. A subset

Is standard If all its elements are standard operators.

Lemma 4»6o An operator A^& is standard iff A&&*. A subset 2JJCS is

standard iff 3RC&*.

So the set of all standard operators (on j^) is exactly £ D K*. In particular every

bounded operator Is standard, and every symmetric (A = A*) standard operator is
v

self-adjoint. However, even if A and B are standard, their sum A-\-B need not be,

neither their product A * B if it exists ; In other words A + B =#= A + B and A * B =/=

^4 • 5 are possible. Thus, for a partial *-subalgebra the condition of standardness

must be Imposed on each element separately. Then the following result is immediate.

Proposition 4o7«, Let 2ft be a standard *-subalgebra of £, i.e.
A V

Then the two additions + and + coincide on 2JI and so do the two multiplications
e and * . In particular the latter are both associative.

Let us consider again Example 3.5. The operators /, %, S, S* are bounded, ex is

self-adjoint, so they are all standard. Similarly \x--j— 1 —\x~J~j =(l+x—7—]\&

as can be checked easily, hence (%~J~~) and \x~~J~~} are also standard. Finally the

d t d \m

same is true of all powers of X—T~, as well as all products ( x—r~ j ° S", and all

sums of such elements. In other words, the partial ^-algebra 3Jt|jft] is standard.

Finally, we come back to spaces of multipliers In S*, or in any *-subalgebra 2R

of It. As discussed In Sec. 2, the spaces L*!Jt, for all subsets 5RC2R, form a complete

lattice, and so do the spaces R*5R. The smallest elements are, respectively, L*3Jl and

R*2R. In the case of S* itself, these may be computed easily, exactly as we did in

Sec. 3 for LS and RK.

Lemma 4efL ( i ) R*K* consists of all bounded operators that map ^ into

*
( i i ) L*S* consists of all bounded operators B such that their adjoint B*

maps Sf into
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In Section 3 we have discussed closedness of a partial *-algebra 2K and the

associated topology on the natural domain &(9Jl). We begin this section with some

remarks concerning natural domains of subsets of C(&, ̂ ) and the associated

topologies. The first one is immediate.

sition 5.1. If StcC(^? /P) contains an invertible operator, then @,

with the topology given by the seminorms

is a Hausdorff space.

The same result applies to the natural domain ^(30— Pi D(A). Of course theAe«
condition is always satisfied If 21 contains 7, in particular for any *-subalgebra of £

or g*.

Preposition §020 Let 9ld& (9flcg*) and 91 the vector space spanned by 91
with the + ( + ) addition, then &(9l) = &(9t) and the topologies defined on

by the two families of norms

with (a) A runs over 91, (b) A runs over 91, are equivalent,

Proof. Let $JlcS. Then, & ( $)= ^Q. D(5)c & (Sfl)= ^D(B) because
3?C$, but DU + fl)Z)Z3U)n/)(5), for ^JSeSR. Hence*J? (31) = Sf ( 91 ).
The equivalence of topologies follows from the relation ||^m$s<||^m+ ||^|U3 for

any ^e^(Sfl) and A, 5eSR. The argument for ^CS* is identical. G

We already know that in both S and E* the corresponding distributive laws

imply L(*)5R = L(*)5l and R(5fc)?l-R(!!!)^, and both are vector spaces.

So3o If 5RCS (^CS*), then

r. Let 5Jlc£. We have ^(LRSDc^Ol) because SRCLRSR. Let
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), both non zero. The rank one operator U=\<f>X<f>\ belongs to RSR and

hence ^e ^(LR?l), which means that ^(yi)d^(LR3l). The case SRcE* Is similar.

D

Although 31 and URSl have the same natural domain &(gi) = &(LR3l\ the

$l-topology and the LR-K-topology, as defined In Proposition 5.2, need not coincide

on it. However5 since the domain Is complete In both, the two topologies define the

same bounded sets, exactly as for two closed Op*-algebras on the same domain [19].

In what follows v/e shall, as before, consider & as a topologlcal vector space

with the locally convex topology given by the seminorms || <p \A— \A4> ||, 0£ & and

A running over C(^? ^). Note that the set of seminorms remains the same If we

let A run over 5 or S* only. Let E(^) denote the set of all bounded subsets of &.

Unless stated explicitly (Props. 5.4 and 5.8), we do not assume @ to be complete In

the S-topology, although we could do so in view of Proposition 3.9 (the assumption

is usually made when defining topologies on 0p*-algebras).

We shall discuss first some topological properties of £* and its subsets. Let 3t,

S, S^cze* with 5tCR*3fJ and SdL*SK. We two quasi-uniform topologies

[4, 20] on 31, by the following seminorms :

'v\\ (5.1)
<P<^aSS <P<c/f

where C runs over $R and o^^B(^), and

VII (5.2)

where A runs over S and<^^B(&). We denote the first topology by rKSR), and

the second one by r*(£).

We also equip K* with r*= rI(/)= r*(/) (where / stands for the set {/}), given

by the seminorms

(5.3)

This topology on £* Is very natural In view of the following result.

m §A Let K* be fully dosed. Then the three topologies rJ(R*E*),

ri(L*K*) and r» on S* are equivalent.

Proof, Since 7eR*K*, the topology r*= rj(/) is not stronger than rJ(R*E*).
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On the other hand, by Lemma 4.8, every BeR*S* is bounded and maps & into

itself, since j^ = ̂ (e*) by assumption. Hence, given 5eR*S* and^^SC^), we

have for every A^&* :

lAp-^sj^

Clearly B&^ is bounded if ^ is bounded. Also there is no loss of generality to

consider only those B^R*&* with ||B|| = 1. Thus we have

< sup\\A<p\\ + supM Vlh I
v^jr v^jr

where jr=Ba^(JG^<EB(@). Similarly for r£(L*&*). D

Proposition 5.5. E* is complete in r*.

Proof. Let {Aa}^&*(&) be a Cauchy net. Then for any <p^@ the vector nets

{Aa?>} and {Aj^} are strongly convergent. Put <f and f for the corresponding limits

and define Aop = g, BQ<p = £. If q>^^ then

<^, ^4«^>-^<^, Ao<p>

and

Thus <^? Ao^>= I<So^, ^>, so that SodA*. Hence ^40 has its adjoint densely

defined and so it is closable. Let A = At*. Then A* =B3\ A and Af belong to K*

and Aa9~* A<p, Al<p-^A^<p, V <p^&. It remains to prove that Aa~ *A in the

topology r*9 i.e. ||^4 — ̂ lalK-^O for all bounded sets<*r efi(j^). Let ^e^. Then :

For (2, /? sufficiently large, the first term on the r.h.s. is smaller than any given e/2,

and the second one tends to zero as /?— »oo. It follows that, for a large enough and

all ^^^, \\(A-Aa)</>\\<£/2 and this implies \\A-Aa^<e. D

5o6. Ler 3^Cg*. // we consider SR, R*5R a«rf 5Ji* R*gfj fl

spaces with topologies rJCR*^), ri($Il) ^z^rf r* respectively, then the #

multiplication, considered as a map from 5RxR*5Jt mto £*, is separately continuous,
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Proof. Let A&31 be fixed. We have for

Given e>0, If \B\A"£< e, so is |U * 5 IK- If SeR*?{ is fixed, then ||A * Bir

= II A \\B'°* and \\A\\B^< £ implies the same for || A * B|K O

Of course a corresponding statement holds, mutatis mutandis, for continuity of

the multiplication L*SRx5R-*®*.

Proposition 5.7. Let SRC®* a/irf assume that the topology r i (SR) on R*9t &

stronger than T* restricted to R*3fl. FAe/i R*?l is complete in r i (SR). Similarly

L* SR & complete for rJ(SR) whenever the latter is stronger than r* 0w L*-K.

Remark. The assumption that r i (SW) is stronger than r* on R*!K is satisfied,

for example, when

Proof of the proposition. Let {Ba}cR*?l be a Cauchy net in ri(?l). Then it

is also Cauchy in r* and by completeness of &* there is a r*-limit, say 5eg*. On

the other hand the fact that {Ba} is Cauchy and continuity of multiplication imply

that for any A^%1 the net {A%Ba} is r*-Cauchy and again by completeness of K*

there is a r*-limit

Let <p<^@. We have
* Ba9 ~ Q9\ = 0. (5.4)

But A*Ba9 = ABa9- ^MtBa9 = 9a. Clearly^ - > <p = B<p. Since A is closed we

conclude that

A<pa-^ Q<p = A</> = AB<p. (5.5)
Thus Q | ̂  = >1( J5 1 ^ ) which means that

(5.6)

But Qe£* implies ^CD(Q*). If 97, T)^@ we get

This shows that
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The formulas (5.6) and (5.7) Imply B^R*W. On the other hand, It follows from (5.4)

and (5.5) that the r*-limit of A * Ba is A * B or that the riOt) limit of Ba Is 5.

The proof of the second statement Is Identical. D

Finally we consider spaces of multipliers, M*3t = L*5ft D R*SR. If SR f = 9t, the two

topologies r£(9l) and ri(5R) coincide on M*$R as can be seen from the expressions

(5.1) and (5.2) of the seminorms. Then, by Proposition 5.7, M*3l Is complete for that

topology. We will come back to these multipliers In Section 6.

In the definition of the topologies rj, ri, r* as given by Eqs. (5.1) - (5.3), we

let &f run over all bounded sets of ^. We may therefore weaken each topology by

restricting the family of bounded sets to some subset Bo(&)dB(&) (the same for

all topologies). Then Propositions 5.5, 5.6 and 5.7 remain valid : E* and its spaces

of multipliers remain complete, and the # multiplication remains separately

continuous. As for Proposition 5.4, It remains true, provided fiGER*®*,©^^^^)

implies B^^BQ(^\

All four propositions are valid, In particular, If one takes for Bo(&) the set of

all finite subsets of 3f. In that case, the topology r* on 6* reduces to the familiar

strong *-topology [21], for which completeness of C(&, %*} or ffi* has been proven

before [22].

We shall now discuss similar problems concerning (£. Let SR, S, SRC® be such

that 3JCR5JI, ScLJt. As before we define two quasi-uniform topologies on 31, by

the seminorms :

M (5-8)
^atf qp^atf

where Ce9t and^eE(S'), and

HBlh-^supMBpH + supllBMVll (5-9)
<p ^ aff <P S odf

where ^4e2 ando^f efi(^)9 and denote them by rj(3?) and r i (C) respectively. In

analogy to the previous case we equip £ with the topology r*= r!(/)= r i ( /X given

by the seminorms

(5.10)

Here also we may replace B(&) by some subset B*(&) and obtain weaker
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topologies, in particular r* reduces to the strong *-topology on £ if we take only

finite subsets of j^.

Then, with proofs entirely similar to those of the corresponding propositions in

the £* case, we have:

i 5o§o Let £ be fully closed. Then, the topologies r£(R£), r i(L£)

r* 0ft £ are1 equivalent,

Proposition! §.9)o £ is complete in r*.

5.1®. Z,ef 9iC£. // 31, R31 fl/irf 31°R31 ar£? equipped with

topologies rJ(R91), ri(9t) and r* respectively, then the • multiplication, considered

as a map from SlxRSl into £, w separately continuous.

Let Sftcg and leSft. Assume that [Ba}cRSR is a Cauchy net in the z

topology. Exactly as before we can show that is a r*-limit i?e£ of Ba and

that A ° Be£ is the r*-limit of A ° Ba- However, in general we can conclude only

that (A ° B)* = Bi[ ° A*. Hence B is not necessarily a ri(9t)-limit of J5U so that

R9J does not have to be complete.

Here again a similar statement holds, with the appropriate topologies, for the

multiplication LSR X 91-* £.

This brings us to a further remark, namely comparing sets 91 and RL9J or

LR91, and similarly in £*. Since 91 and LR91 have the same set R31 of right

multipliers, the topology rJ(R5R) on SJI is simply the one induced by LR91. On the

other hand, R91 has now two natural topologies, namely r i (Sf t ) and ri(LRSK). A

priori the latter is stronger, but they might be equivalent in certain cases. This is true,

for instance, for 5R={1}. Then R9t = £*, and Proposition 5.8 applies (and also 5.4).

The general case is open.

Actually this would be a reason for considering only RL- and LR-closed

subspaces, namely matching subspaces (SR, 2R), 9t=L3Jl, 3Jl=R91, as defined in

Sec. 2. Then the topological situation becomes completely symmetrical between left

and right, and moreover, in the £* case at least, subspaces are automatically

complete in their mutual topologies.

Our last observation follows from comparison of the r* topologies on £ and £*.

Corollary 5.11. The linear map A*-* A** from £*[r*] onto £[r«] is
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continuous and one-to-one. The same is true for the inverse map 5—>S*t.

Finally we may remark that other topologies can be introduced on E, E* and

their subsets. For instance one can consider E as a set of continuous linear maps

from Sf or &($) into JT, with the (strong) topology inherited from L(@, &). For

topologies of this kind, we proved in [12] that the • multiplication is jointly

sequentially continuous and separately continuous.

§ 6. Commiitants

Let A^E*. According to the general definition, Eq. (2.7), we define its

commutant in E* as the set:

U}; = {Xeg*|A'eM*C4) and X*A = A*X} (6.1)

where, as in Sec. 2, M*(A) = L*(A)r\R*(A). Similarly, given any subset ftcE*, its

commutant in E* is :

(6.2)

From Eqs. (6.1) and (6.2), it follows that ftcait implies Sfti=)3Jli.

The bicommutant is defined in the obvious way :

ft;; = (ft'*);. (6.3)

Then one has, as usual, that ftcft;; and 9li = 9tiii.

What is the structure of the commutant ft; of a subset ftd£* ? First the

distributive law (see Proposition 4.2) implies that ft; is a vector space. Next, given

X, yeU};, if ̂ ^ F exists am/ belongs to L*U) or R*(A\ then X* Y^{A}*

(X<^L*(Y) alone does not imply that X* Y^L*(A)l). Indeed we have, by

associativity (Proposition 4.3) :

= A*(X*Y).

Similarly, when X, Y<^W*, if X * Y exists and belongs either to L*W or to

then X * Fe5R;. If (X, Fi) and (X, F2) are two such pairs, then X * ( ri

If, in addition, ft = ftf, then also 9i; = (ft;)+. This means in particular that, if
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X, Y and X* Y belong to 9T*, then also (X * YY=Y**X^W*. Indeed, if

J?Te9t*, then for any A<E9l we have JT* A = A* JT. But A f Is also In SB, so that

'**, which implies A*X*=X*

We collect those facts In the following

Proposition 6.1. If 91 CK*, ^Ae/i 91* £s & vector space. If moreover 91 = 91%

91* fr a partial ^-algebra with addition +, involution f, a«^? multiplication #,

w/YA ?Ae restriction that a pair of elements X, F^9l* & multiplicable only if

X*Y exists and belongs to L*9l or to R*9t.

In other words, 91* is a partial * -algebra, but ?io£ a subalgebra of S* in general,

since it is not stable under # multiplication without the additional restriction : 9li

is a subalgebra of ®* iff every element of 9li * 9li belongs either to L*9l or to R*9l.

Since 9t'*c:L*9tnR*9t it Is equally natural to equip 9T* with the rj(9t) or the

ri(9l) topology. However, since the elements of 91 and 91* commute, the

corresponding norms are equal, so that the two topologies coincide ; we will write

simply r*(9l). Let /<E9l and {JCje9t* be a Cauchy net for r*(9t). Then, since ®*

Is complete, the following r*-limits exist :

J\. a •**• y -**• a ^ -^

which Immediately implies that Xa~^ X in r*(9l). Moreover A * X = X * A means

_X^e9l*. Thus we have proven :

Proposltlom 6o20 If Je9lc®*, then 9li is complete in the topology r*(9t).

Let again 9l = 9lf, and consider its bicommutant 91* *. Again the topologies

ri(5i;)=rj:(3i;)=r»(SR;) coincide on 9i;7*, and r*'* Is complete, since 9T* = (9i;)t.

Thus, as before :

sition 6o3, Let 31 = 31^®*. TA^ rA^ bicommutant 9i;i 15 a

^-algebra, complete in the topology r*(9l*). 7^ /5 a partial ^-subalgebra of S* i

every element of 9i;;*5R;; feto/igj eiYAer to L*9l'* or to R*9li.

When the last condition is satisfied, 91** Is a partial * -subalgebra of S*
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containing 31, hence it contains also the partial *-algebra 3R[3l] generated by 9^ :

. (6.4)

It would be interesting to find under which conditions they coincide, i.e.

31*'*. We leave this problem open, as well as the question as to whether -Jti* is the

closure of 31 in some topology. Results in this direction have been obtained recently

by F. Mathot for Op*-algebras [22]. Clearly a similar analysis is needed in the

present case.

We turn now to the study of commutants in E, which is entirely similar. Given

and SJJcS, we define naturally :

°A = A*%} (6.5)
(6.6)

Exactly as in the case of (£*, we can prove :

Proposition 6.4. If 3ld&, then 31' is a vector space. If moreover 31 = 31* 9

then 31' is a partial ^-algebra with addition +, involution 4= and multiplication ° ,

with the restriction that a pair of elements X, Y^3l' is multiplicable only if

X ° Y exists and belongs either to L31 or to R-K.

As before the topologies rl(3l) and T*(3l) coincide on 31', but the result about

completeness is different. Namely we have now :

Proposition 6.5. If 3ld& and 31 = 31*, then 3l' = (3l')* and 31' is complete in

r,(30.

The necessity to assume that 31 = 31* comes from the fact that completeness of £

implies the existence of the r*-limits

If however 9? = ^*, which implies that 3l' = (3lT, we have
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which Is sufficient to conclude that X is a r*(;K)-liniit of the Cauchy net {Xa} and

belongs to 5R'.

Let us give a (trivial) example. Let 9fl = L+(^)cE. Then, M$l consists of all

operators AeS such that A and A* map St into ^(9i), i.e. MSfl is the closure of 91,

since here Jr[^] = ^r(5R). From this one sees easily that W = {AI\A^C] and 3d" =

g. Similarly for SK=[L+(^r)]*CC*> gji; = {^/} and SR^E*. This gives a natural

definition of irreducible partial *-algebra.

[ 1 ] A.N. Vasil'ev, Theor. Math. Phys. 2 (1970), 113.

[2] R. Ascoli, G. Epifanio, A. Restivo, Commun. Math. Phys. IS (1970), 291; Rivista Mat.

Univ. Parma 3 (1974), 21.

[3 ] R.T. Powers, Commun. Math. Phys. 21 (1971), 85 ; Trans. Amer. Math. Soc. 187 (1974),

261.

[4] G. Lassner, Rep. Math. Phys. 3 (1972), 279; Wiss. Z. Karl-Marx-Universitat Leipzig,

Math.-Naturmss. R. 24 (1975), 465 ; and subsequent papers.

[5 ] I.E. Roberts, J. Math. Phys. 7 (1966), 1097 ; Commun. Math. Phys. 3 (1966), 98.

[ 6 ] A. Bohm, The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics,

78, Springer, Berlin 1978.

[ 7 ] See, for instance, G.G. Emch, H.J.F. Knops, /. Math. Phys. 11 (1970), 3008 or H. Narnhofer,

Acta Phys. Austr. 49 (1978), 207.

[8 ] G. Lassner, Physica A 124 (1984), 471.

[9] A. Grossmann, Commun. Math. Phys. 4 (1967), 203.

[10] J -P. Antoine, A. Grossmann, /. Fund. Anal. 23 (1976), 369, 379.

[11] G. Epifanio, C. Trapani, /. Math. Phys. 20 (1979), 148.

[12] J.-P. Antoine, W. Karwowski, in Quantum Theory of Particles and Fields, J. Lukierski and

B. Jancewicz (eds.), World Scientific Publ. Co., Singapore (1983) 13-30.

[13] H.J. Borchers, in RCP 25 (Strasbourg) 22 (1975), 26, and also in "Quantum Dynamics I

Models and Mathematics", L. Streit (ed.), Acta Phys. Austr. Suppl. 16, (1976), 15.

[14] B. E. Johnson, Proc. London Math. Soc. (3) 14 (1964), 299, and subsequent papers.

[15] J.-P. Antoine and K. Gustafson, Adv. in Math. 41 (1981), 281.

[16] J.-P. Antoine, /. Math. Phys. 21 (1980), 268.

[17] S. Gudder, W. Scruggs, Pacific J. Math. 7® (1977), 369.

[18] G. Lassner, Beitrage zur Analysis 8 (1976), 85.

[19] K. Schmiidgen, Math. Nachr. g§ (1978), 161.

[20] G. Lassner, Wiss. Z. Karl-Marx- Univ. Leipzig, Math.-Naturmss. R. 30 (1981), 572 ; also

in "A!g£bres d'operateurs et lews applications en physique mathgmatique" (Proceedings



236 J.-P. ANTOINE AND w. KARWOWSKI

Marseille 1977), A. Connes, D. Kastler and D.W. Robinson (eds.), Editions du CNRS, Paris

(1979), 249-260.

[21] See, for instance, O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical

Mechanics I, Springer, Berlin 1979.

[22] F. Mathot, J. Math. Phys. 26 (1985), to appear.


