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Stability of Periodic Solutions
to a Coupled Nonlinear Equation

Yoshihisa MORITA*

We shall consider a linear difference coupled equation with time delay and discuss a Hopf

bifurcation of this equation. In the case of weakly coupling, it will be shown that two types of

periodic solutions bifurcate from the steady state for some parameter values, and that those periodic

solutions exchange the stability under certain conditions ; moreover, under another conditions one

of those periodic solutions changes its stability twice at least. Sufficient conditions for the

occurrence of such phenomena will be presented along with specific examples.

Many variety of oscillatory phenomena appear In electronics, biology

chemistry. Models which describe such phenomena have been proposed by using

ordinary and partial differential equations, also differential equations with time

delay. Hutchinson [9] has Introduced the following differential equation with time

delay as a biological model, representing oscillatory phenomenon occurring In the

growth process of a single species :

(El) -y(s)=

v(rt}Put x(t)= jf 1. Then this equation can be transformed into

(E2)
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where a — ar, and the steady state y = K of (El) corresponds to x = 0 of (E2). It is

known that for a > it 12 the equation (E2) has a periodic solution, as first proved by

Jones [11]. Also one will find in [3] and [8] that when the parameter a passes

through the value n/ 2 a Hopf bifurcation occurs and that the bifurcating periodic

solution from the steady state x=0 is stable near the bifurcation point.

In this paper, using the above equation (E2), we shall consider the following

linear difference coupled equation :

(E3)
a

. dt'

where a=-^-+fi, y ^ O ; we shall focus on a bifurcation problem for a periodic

solution to (E3), and discuss the stability change of the bifurcating periodic solution.

It is clear that for //>0 (E3) has a periodic solution (xl(t\ X 2 ( t ) ) = ( p ( t ) j

p(t)\ which is called the in-phase solution, where p ( t ) is a periodic solution to

(E2). We also see that another periodic solution to (E3) bifurcates from the steady

state (xl, X2) = (Q, 0) for suitable parameter values p. and y. This periodic solution

is called the anti-phase solution to (E3) (for the details, see § 3).

By the usual Hopf bifurcation theorem (see [3] and [8]), we can discuss the

stability of those bifurcating periodic solutions. Actually, for any fixed positive y,

letting jj. be a bifurcation parameter, we see the stability of bifurcating solutions to

(E3) near the bifurcation points. For example, for each positive y the in-phase

solution of (E3) is virtually stable on some interval of JJL. However, the stability

region of // (that is, the set of all p for which the bifurcating solution is stable) may

vary according to y, even if it continues to be non-empty. This suggests the

possibility of the occurrence of stability change, which might be observed when we

vary y.

In this paper we shall discuss this. In the equation (E3), applying Theorem 1

obtained in § 2 yields that the stability region of the in-phase solution shrinks as y

tends to zero ; that is, for sufficiently small y, the in-phase solution to (E3) loses its

stability fairly near the bifurcation point. Moreover, then we see from Corollary 7

in § 4 that the anti-phase solution to (E3) recovers its stability for suitable parameter

values ft and y ; hence those solutions exchange the stability.

We will formulate the differential delay equations (E2) and (E3) in general form
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of functional differential equation (see (1.1) and (1.2)), and discuss the bifurcation

of the In-phase and the anti-phase solutions of (1.1). Next we shall study the

linearized stability of those periodic solutions in quite a general framework.

Corollary 7 In § 4 gives sufficient conditions for the occurrence of exchange of the

stability, for (//, y) sufficiently small. And from Corollary 8 In § 4 one will see that

the anti-phase solution changes its stability twice under another conditions.

The studies of two coupled systems of nonlinear oscillators using ordinary

differential equations (without time delay) will be found In plenty of works

Including [1], [5], [14], [15], [21]—[23]. The occurrence of stability change of the

In-phase or anti-phase solution to such coupled systems has been already suggested

by perturbation methods and numerical experiments. One will also see that the same

arguments In the case of functional differential equations can apply to that of linear

difference coupled systems using ordinary differential equations (without time

delay), provided that one replaces function spaces, Inner products and other

notations by appropriate ones. This application with a specific example (bio-

chemical model, the Brusselator) will be found In § 5 ; Example 2.

The author would like to express his gratitude to Professor Masaya YamagutI

for his continued encouragement. He also expresses his sincere acknowledgement to

Professor Masayasu Mimura for his stimulating discussions.

Let ROT be the w-dlmenslonal Euclid space, and let C([a, b] ; Em) be the set of

all continuous functions defined on [a, b] with values in Rm.

C([a, b] ; R772) Is a Banach space equipped with supremum norm || ° ||. We simply

write C[a, b] instead of C([a, b] ; Rw). For any x^C[a~r, b] and /e[a, b] the

notation xt will denote the element in C[— r, 0] defined \yy Xt(0) = x(t + 0), — r^

0^0, where r Is a positive number.

Let a function F(°, ° ) be a sufficiently smooth function of RxC[— r, 0] Into

Rw, which satisfies

where I0 is an open Interval containing the origin. The notation D will denote a

continuous linear operator of C[— r, 0] Into Em.
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Now we shall consider the following functional differential equation :

where ° denotes —jr. We call the equation (LI) a linear difference coupled equation

of

(1.2) x ( t ) = F(ft, xt)=L(t*)xt+ G(fJL9 xtl

where L(fji) and G(ju, ° ) are the linear part and the higher order nonlinear part of

F(ju, °) respectively.

In this section we shall discuss a bifurcation of a periodic solution to (LI) from

the trivial solution under suitable conditions. Theorems for a Hopf bifurcation

found in [3], [7] and [8] might apply to (LI). Their methods, however, can not make

clear whether or not the bifurcating periodic solution changes its stability. We also

discuss the occurrence of the stability change In the later sections.

First let us consider the linearized equation of (1.1) around the steady state

(1.3) I .8 j = l , , , ), v^O,

which is also written as

fyl(*A (L(ti 0 \(y}(t)\f-vD vD\(y\(t)\
<U) (wH 0 LwX>K») + ( KD -^)U«)}

After the change of variables

(1.5)

(1.4) Is transformed into

(U) v*™,
As L(//) and D are continuous linear operators of C[— r, 0] Into Rm

9 by RIesz?
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representation theorem are mX m matrices functions r](d ; //) and rj'(0\ — r^

0^0, whose elements have bounded variation In 0 on [ — r , 0], such that

(l.Tb)

Let Cm be the w-dlmenslonal complex space. The domain C[— r, 0] of L(JLI) and

D is naturally extended Into C([-r, 0] ; Cm\ and (1.7a), (L7b) hold for ^e

C([- r, 0] ; Cm). Hereafter we also denote C([- r, 0] ; Cm) by C[- r, 0] as long as

there Is no confusion.

The characteristic equations of (1.6) are defined by

(1.8a) detQl- F
J-T

(1.8b) detUJ-

where I denotes the mXm identity matrix. The root of (1.8) gives the eigenvalue of

the equation (1.6) (or (1.3)) (see Hale [7 ; Chap. 7]).

We that

(Al) (1.8a) has a pair of simple complex conjugate roots M/*)> Mp) such that

A(0)=icoo ( ty 0>OX Re^(0)^0;

(A2) the remaining roots of (1.8a) have strictly negative real parts,

Since (1.8a) Is the characteristic equation for

which Is the linearized equation of (1.2), from the above assumptions (Al) and (A2)

it follows that in the equation (1.2) a Hopf bifurcation occurs at ju = Q ; that is5 there

is a family of periodic solutions which bifurcate from the zero solution In a

neighborhood of // = 0. (See Hale [7 ; Chap. 11].) Then we also see that a periodic

solution to (1.1) bifurcates from the steady state (x1, x2) = (Q,Q) at // = 0 because

(P(t\ P ( t ) ) Is a solution to (1.1) for a solution p ( t ) to (1.2).
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Next consider the equation (1.8b). From Appendix A we see that there is a

number vr, and there exist functions,

(1.9) /i = /*o(v) (//o(0)=0), a = a*(v) (flr0(0)=o>o), i/e[0, w],

such that for ye[0, yr] and /JL = IJIQ(V) the equation (1.8b) has the simple roots,

± ia0(v). Let A(ju, v} be the roots of (1.8b) which satisfies A(/jto(v), v}=ictv(v). By

the assumption (Al) there exists a number 17, 0< J7<y r, such that

(1.10) -^G"o(vX v)^0 for

If (7o(y)^:cyo (y^(0, 17]), by letting /^ be a bifurcation parameter, the Hopf

bifurcation theorem in [7] can apply to the equation (1.1) ; there exists a periodic

solution bifurcating from the zero solution at ii — ^ii).

Thus we can obtain two types of periodic solutions to (1.1) bifurcating from the

zero solution. In the rest of this paper we shall discuss the stability.

To simplify our notation for the derivatives of F(/^, u), in this paper we write

^-F(tt,Q) (=L(ti»,

and so forth. Furthermore, before concluding this section, we introduce some

notation and function spaces which will be used in later arguments.

Let (?o(y) and ^*(v) be vectors satisfying

(l.lla) (iaMl

(l.llb) (-wro(v)/- f
^—

respectively, where *[^(8 ; • , • ) ] denotes the transpose of [dfj(° ; % 9 )]•

Define the (formal) product as
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(1.12) <^6, 0>v

for ^<=C[-r,0] and ^eC[0, r],

where (-, ° ) is the hermite product In Cm, i.e.,

n
(1.13) ($„ b)— b&— 2

»=i

We let

(1.14a) [

(1.14b) [

Then we can take £\(v) and %*(v) as satisfy

(1.15)

Furthermore,

(1.16) «

(1.17) <ft(j ,

l*o(v), v)}

hold (see [7; Chap. 7]).

^2,o( v) and %2,o(v) will denote the vectors determined uniquely by the equations,

respectively, and define

(1.19)

When i/=0, we write
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(1.20a) fo^o(OX Co*^fo*(OX ?i^£i(0),

(1.20b) £2.0^2,0(0), fa.o^ £2.0(0), £^

By the smoothness of £0(y), £o(y), |2,o(v) and <f2,o(y) with respect to v, for

sufficiently small y we obtain

f£o(l/) = ?o + o(^X £o*(l/) =

Finally we define the function spaces P2?r P2
(ir

(1.22a)

(1.22b)

P27r and P2
(y are Banach spaces with norms || u || = sup

', respectively.

§ 20 StaMIIty Change ©ff ttfiae Im-Ptoss© Solmtiem

As seen In the preceding section, under the assumptions (Al) and (A2) (1.1) has

a periodic solution which bifurcates from (0,0) at fjt = Q. This periodic solution has

the form (x^t), J C 2 ( t ) ) = ( p ( t ) , p ( t ) ) , where p(t) Is a periodic soutlon to (1.2). We

call this periodic solution the in- phase solution to (1.1). It Is clear that the In-phase

solution to (1.1) exists for p In some Interval Independent of the parameter y,

In the equation (1.2), applying the Hopf bifurcation theorem yields a family of

periodic solution p(t ; s), 0<£<£#, which exists for // = //(e) and has period T =

27tlo)(e), where p(e) and co(e) are smooth functions In e having the forms

Moreover, the above periodic solution has the Floquet exponents 0 and /?=/3(e),

where @(e) is given by



COUPLED NONLINEAR EQUATION 55

(See [8] and [19].) Therefore, If /32<0? then there Is a number £0j 0<£o<£if ? such

that for £^(0, £o) the periodic solution p(° ; e) to (1.2) Is "asymptotically stable"

(hereafter we simply say "stable"). In the present paper we assume

Under the assumption (A3) the ln-phase solution (xl(t), X 2 ( t ) ) = ( p ( t ; e),

p(t ; e)) to (1.1) Is stable with respect to homogeneous perturbation, however, It Is

not clear whether or not the ln-phase solution Is stable with respect to inhomo-

geneous perturbation ; where the homogeneous perturbation means perturbation

having equal components. Therefore, to discuss the stability of the ln-phase

solution, we shall Investigate Floquet exponents of the linearized equation of (LI)

around the solution.

After adopting new variables s = Q)(e)t, yi(s)=x*(t) U = l,2), (1.1) Is written

as

/i*>(2.3)

where

The linearized equation of (2.3) around ( y ( s ', e\ y(s ', e))^(p(s/a)(8) ; e\

p(s/Q)(€) ; e)) is given by

(2.4)
2

By the same transformation as in (1.5), the equation (2.4) is transformed into

(2.5)

The first equation of (2.5) coincides with the linearized equation of (1.2) around the

solution y(s ; e)=p(t ; e), therefore it has the Floquet exponents 0 and /3(e) ; all
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the rest of Floquet exponents have negative real parts for £^(0, £0).

Next we shall consider the second equation of (2.5). This equation has the same

form as the one appearing in [19 ; § 3]. So, applying the result of Lemma A in [19 ;

§ 3] yields the exponents of the second equation of (2.5), for ^=-^-i^2£2, in the

following form :

(2.6) 7=7(e, V2)=

where 72=72(^2) satisfies

(2.7a)

(2.7b) fii^foa-A<2Re-(0),

(fi, £<? are defined in (1.20a) and //2, (1)2 are as in (2.1)). More precisely, there exists

£S3 0<£ s<£(b such that for each £^(0, es) and fjL = fi(e\ v—-y-V2.e2 the in-phase

solution has the Floquet exponents 7=7(£, 1/2) having the form (2.6), where i>2

is not a double root of (2.6). Furthermore we easily see 7(6, y2)~3> 0 or 0(e) as

1/2 -> 0.

Thus from the above it follows :

Theorem 1. Consider the equation (1.1) under the assumptions (Al), (A2)

and (A3). If Re(Bi(Dfi, £<f)) w ^ equation (2.7) is positive (resp. negative), then
there exist numbers su and vu such that for each (e, y2)e(0, £M )x(0, vu\ [* —

and v^-Vie2 the in-phase solution is unstable (resp, stable).

§ 3o A off the Anti-Phase

In the preceding section we have discussed the stability of the in-phase solution

which bifurcates from the steady state (xl, X2)=(Q, 0). As seen in § 1, in the

equation (1.1) another periodic solution bifurcates from the steady state for some

parameter values IJL and v. In this section we shall study the bifurcation of this

periodic solution more precisely.

Let f£o(v) and a0(v) be functions as in (1.9). Put /jt = jLt0(ir)+{jif. After the

change of variables s = at, vi(s) = xi(t) (i = l, 2), (1.1) is transformed into
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'

Fix any yely and let // be a bifurcation parameter, where Iv Is as In (1.10). If av(v)

3=o)o, then the equation (3.1) satisfies the hypotheses of the Hopf bifurcation theorem

at ^' = 0, and we obtain a periodic solution bifurcating from the steady state. For

^ = 0 the usual Hopf bifurcation theorem can not apply to (3.1), since the linearized

equation (1.3) of (3.1) has double eigenvalues ±ia)0 at // = ;/ = 0, which Implies

breaking the assumption for the Hopf bifurcation.

In what follows, however, in a specific function space we can construct periodic

solutions to (3.1) for yelv uniformly ; then we do not need to assume ao(^)^a)o> If

/*o(y) (v >0) Is a positive Increasing function, we also see from this that for any fixed

V = /*Q(VQ) ( i/o^(0, 17 ]') a periodic solution bifurcating at y = y0 continues to y = 0-

As seen In the case of the in-phase solution In § 2, letting v continue to decrease to

zero, we can see whether or not the stability change occurs. Therefore, the argument

mentioned above will be necessary for discussion of the stability change of this

periodic solution.

Before Introducing the function space, we note that a 2 ̂ -periodic solution to

(3.1) which bifurcates at JJL = JJ.Q(V), y=£0, has the form (vl( s), V2( s) ) = (</>( s),

$(s — x ) ) 9 where $(s) Is a 2;r-periodic function : In fact, If (v1, V2)=((f>1(s), </>2(s))

Is a 2;r -periodic solution to (3.1), then ($2(s)f ^(s)) Is also so. Uniqueness of the

bifurcating solution Implies (^(s), <j>2(s))=:((/>2(s — /), $l(s— /)) (/ Is some

number), from which l — n follows. Hereafter we call such a periodic solution the

anti- phase solution to (3.1) (or (1.1)).

Considering the above property of the anti-phase solution, we shall discuss the

bifurcation problem of the anti-phase solution In the space P'2n defined by

where P2n Is defined In (1.22a). It is clear that finding a solution to (3.1) In the space

P2Jt Is reduced to finding a solution to the equation

(3.2) a--v(s) =

Thus we consider the equation (3.2) instead of (3.1).

Let <f(jw, y) be an eigenvector corresponding to A(f£, v\ that Is,
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(3.3)

and suppose that (fC/^oC^X v) = ^o(^). Differentiating (3.3) with respect to // and

putting fjL = fjLQ(v) yield

(v), v)=o,

(y) is defined in (1.17)). By (l.llb), (1.15) and (1.17) we obtain

(3.4)

Next let us define the operator /(i/) acting in P2x as

(3.5)

for

where S)(/(v)) denotes the domain of J(v). The formal adjoint operator J*(v) of
/(v) is defined by

(3.6) J*(

where

" ',.?)]<!>(- 6), ^ec[0, r],

, r],

For each yelw the null spaces 5R(/(y)) and 3fl(/*(y)) are spanned by

(3.7) z(v)^So(v)eu, z(v),

(3.8) «'(v)^«(j/)e", ~^M,

respectively, where fo(i^) and fo(v) are as in (1.11).
We define the product in P2x as
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(3.9) (u, V^^~2^J (u(s\v(s))ds, u,v^P2x*

Then for the operator J(v\ the next follows from [7 ; Chap. 9]:

Lemma 2o Let P2n be the space defined in (1.22). Consider the equation

(3.10) J(v)u=h, h^P2* (i/ely).

The equation (3.10) is solvable for w€E3)(/(v)) ( = P2
ln} if and only if

(3.11) (fe,;

Furthermore, there is a continuous projection PN(V) : Pi* — » Pin such that 9t(/( v)

= (/— PN(v)}P2n and there is a continuous linear operator K(v)\ (I —

-» (/-77)P2ffn®(/(i/)) swcA fAaf 7r(v)fe & fl solution of (3.10) /or eacA

(I— Pjv(y)XP27o wAer^ 77 ( i/) fe a continuous projection of P2K onto 3l(J(v))\

moreover 77 (i/), PJV(V) ^^^ 7f (v) are smooth in

By Lemma 2 we obtain the proposition about the bifurcation of the equation

(3.2) as follows :

i 3o Consider the equation (3.2) under the assumptions (Al), (A2)

(A3). Le£ fAe interval Iy 6e as /w (1.10). TAe^i /or each yGEly a periodic

solution bifurcates from the steady state v^Q at /i' = Q : More precisely, there exists

a number €>Q, and there exists functions n' = f / ( e , v), @ — a(e, v\

, f
 2, /T(0f °)=05

such that for each v&>v, £^(Q, e) and f£ = p0(v)+fji'(£, y) there is a periodic

solution v(s ; e, v) wiYA period 2%, where //0(v) «^<^ ffo(v) ^^ ^^ in (1.9).

40 Consider the equation (1.1) (OF (3.1)) under the same hypotheses

in Proposition 3. Then (1.1) A^s a periodic solution (called the anti-phase solution)

bifurcating at (//o(y), v), veljy. r/r& periodic solution has period T = 27r/a(e, y)

the form (x^t), x2(t))=(v(at ; e, i/) f v(a(t-T/2);e, v)) for (e, v}

^re flr = #(e, y) aurf t?(s ; e, y) are as zw Proposition 3.

By using arguments analogous to those in [19; §2] and using the relations
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(1.17), (3.4), the coefficients of lower order terms in e of //(£, v\ a(e, v) and v(s ;

£, is) in Proposition 3 are easily calculated. Considering (1.20) and (1.21), for

sufficiently small v we obtain

v(s ; e, v)=0i(s ; y)e+t;2(s ; v)e2+ v(s ;
vi(s ; i/)=

2 * S 2 ' S £2.0,

(3.14)

(3.15)

under the condition

(3.16) [^,

where f2,o> ^2,0, ?2 and f 2 are defined in (1.20b).

§ 4o Om the Stability off the Anti-Phase Solution

In this section we shall discuss the stability of the anti-phase solution to (3.1)

(or (1.1)) by using the same technique as in [19 ; § 3]. The linearized equation of

(3.1) around the anti-phase solution is given by

dwl(s)

, ^dw2(s)
ds

* ; £, v})wl,a(£,v)+vD[wl,a(e,v)—wl,a(e,v)] \

a,a(e,i/)— wl,fl(e,i/)] /.'(e, I/), Vs-n,a(etv)(' ', 6,V

where //'(e, ix), flr(e, i/) and z;(s ; e, y) are as in (3.12) and (3.13). Hereafter, for

simplicity of notation, we shall omit v as long as there is no confusion.

To determine a Floquet exponent 7 of (4.1), we have to find a solution to (4.1)
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In the form

(4.2)

Substituting (4.2) into (4.1) yields the equation

s ; e, y£ s , a < e , e
r~(s ; £, v}(ps,a^ea(E)-)+r*(s ; e,

where

r+(s ; e, v)=-^{Fu(^+tJ-'(£), vs,a(e)(° ; £))+Fu(

F~(s ; s, v)={F a(^o+^'(e) , ys,a(£)(- ; e ) )— FU(HO+IJ.'(£), Vs-x#<.o(° ; e))}-

As seen in the calculation of the Floquet exponent of the in-phase solution, after the

scaling 2v = v2£
2, we shall seek 7 which is of order O(e2).

First we shall introduce the function spaces PZn = Pz^Pzn and P^^P^X

P&, where P2n and P&' are denned in (1.22). PZK and P^ are Banach spaces with

norms \\<(v\ V2)\\ ̂  \\vl\\ + \\V2\\, t(v\vz)^P2x and \\<(v\ V2)\\\ ^ Ml + I l l ^ l l l ,
t(vl, v2)^P(2n respectively. We difine the product in P2n as

(4.4) (u, v)2*^(u\ vl)2*+(u2, V2)2n

for u=t(u\ u2), v = *(v\ v2)^P2«.

Next let us define the operator /0 acting in P2a as

(4.5) '•«'

where /( v) is defined by (3.5). It is clear that the null space of Jo is spanned by the

elements zt, Zi (/ = !, 2),

(4.6) *i^'U(0 ),()), Z2^£(0,^(0)) U(i/) is as in (3.7)).

We define the formal adjoint operator J$ by
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By the definition of J$,

(4.7) /o*^ = losif=0 (i = 1,2),

z?^'U*(0), 0), *S^'(0, *'(())) (z*(i/) is as in (3.8)).

Furthermore, let

(4.8) PN^PN(G)XPN(Q\ K^K(Q)xK(Q), n^n(Q)xn(o),

where /V(i/), K(v) and 17 (f) are the operators denned in Lemma 2. Then for the

above operator J0 Fredholm alternative holds in the space P2n by Lemma 2 ; that

is, the equation

is solvable for Ke®(/0)( = F^), if and only if

(*,*?)2* = (*,Jri)a« = 0 (* = 1,2).

We also see <3t(Jo)=(I-PN)P2x, and for &e3fl(Jo), ^^ belongs to

o).
Now we shall find the solution to (4.3) in the form

(4.9)

Q*"" /n.cr ;p(i)f «*— n in n.(* • (\\=t(\(i—n ill / i f c - i
? l^/j;tz Jr 2n\ I —U, l/y *o/i\o ? U J ' ^ U v ^ —U? 1/? K^ /VO , I

under the condition

where the notation [ ° , • ] is defined as

[P..«., U'^lp,*,, M'^lo+tff...., »ai"0]o.

([• , -]v is as in (3.16)).
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Note that In general Q and 7 will be obtained as complex valued functions In £, and

that from (3.12) and (3.14) we see that

+ 0(e8),

a(e, v)-^o+

hold for i> in (4.9).

Substituting (4.9) Into (4.3) and (4.10) yields the following equations, from

which we get the coefficients QQ, Qi and Q iteratively :

(4.11) JoQo=0, [Q0,

M 1-n J ^ ( \(4-12) /oOi(s) = , . u
), Po(s))/

(4.13) J0Q-J?(£? f ,_^i, Vi, V2, ^ Q),

lO,zf] = [Q,2rJ]=0 (/ = l,2) f

where the remaining term R can be expressed as

, 7, ^i, ^i? ?72, rj2, Q) = Rl(e9 7, ^, ^1, ?2, ^, Q)

+ £j?2(e, 7, ?i, 7i'f ?72, ^2? Q),

, f, ^1, ^l, ?72, 7?2, Q)(s) = L(Q)(Qs,a(£,v)—Qs,a>0)

2,8,0)0,

2,s,a)0, Qo,s,o)o) + Fuu(Q)(y l,s,o)o, Pl,s,o)0+!>s,a(e,v))

O~-H O~-T^WM /v3^i»s,fi>o> o,s,o)0,

o~^WMZ/(0)(yi,s,cyo? @0,s,0)o, $0,8,0)0)
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where yly y2 are as in (3.13), and note that yi(s — n)=—yi(s\

Solving (4.11) and (4.12) in QQ and Qi gives

(4.14) QQ(s)=(Cl + 7]l)

(ci, ci, C2,

(4.15) Qi(s) =

+ (

(?2,o, f2,o are defined in (1.20b)).
Finally we shall solve the equation (4.13). Using the operator K and PN in

(4.8), we get the equations which are equivalent to (4.13),

, 7, ?i, ?i', ?2, V2, Q),

By applying the implicit function theorem to the first equation of (4.16), we get the

solution Q=Q*(£, f, T?I, ̂ i, rj2, 7]2)(^P2ln) which is smooth in its arguments and

satisfies Q*=-^-=-^-=-^-=Q (i = l ,2) for £-0. Substituting Q* into the
07 o?7£ orji

second equation of (4.16) yields

PNR(e, ?, Vi, Vi, ?2, V2, Q*(e, 7, Vi, ̂ i', ?72, ̂ ))=0,

which implies (/?, 2r?)2« = (J?,^J)2w = 0 (f = 1, 2). Let

(4.17)

e, 7, vi, vl, ^72, VJ)

(R(e, 7, vi, Vl, ̂  ri, 0*), 2r!)2Jr = 0 (f = 1, 2),

, 7, vi, rt, ^2, vO

, 7, vi, ̂ , ^ ^, G*), zj)ajr = 0 (i = l,2).

After a little tedious calculation, using the relations (1.15)-(1.17), (3.4) and

), (flr7) in Appendix, one will see that WP(Q, 0, 0, 0, 0, 0) = 0 (f, ; = 1, 2) hold
if and only if

(4.18a) (
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(4.18b) (

(4.19a) (

(4.19b) (

hold, where B\ Is given by (2.7b) and (3.15). Thus, If j2 satisfies the equation

(4.20)

then there exists (ci, cis £2, Cz) satisfying (4.18) and (4.19) such that (ci, ci)=£0,

Cz = Cz = 0. And If 72 satisfies the equation

(4.21) 722-(2ReB1)72 = 0,

that Is, 72 = 0 or £}2, then there exists (ci, ci, Cz, Cz) satisfying (4.18) and (4.19) such

that Ci = ci = 0, (c2, C2)=£0, where £2 Is as in (2.2).
Under the condition (4.20) or (4.21) for 72, applying the implicit function

theorem to the equation (4.17) yields the following lemma :

Lemma §* Consider the linearized equation (4.1) around the anti- phase

solution to (1.1) under the hypotheses in Theorem 1. Let 72=72(^2) be a root of

the equation (4.20). Suppose that 72(^2 )=£(), 02 and that 72(1/2) is not a double wot

of (4.20). Then there exists a positive constant es depending on v2, such that for

each ee(0, e*), v=-y-i>2£2 and fJL = t**(v)+n'(e,v) the equation (4.1) has the

Floquet exponents 0, /3(e) and 7= 7(6, 1^2)=^ 72(1^2) £2+ r(e, i>2)€
2 (f (0,0 = 0),

where 0(e) and 02 are as in (2.2). Furthermore /(e, 0 & smooth in e.

The proof of Lemma 5 will be left to Appendix B. The next theorem

immediately follows from the above lemma :

Theorem 60 Suppose that the hypotheses in Lemma 5 hold. If

fo*)) is positive (resp. negative), then for sufficiently small v there exists a value jj,

for which the anti-phase solution is stable (resp, unstable), where B\ is given by

(3. 15).

Now, if Re(D?i, ?0*)>0 and Re-^-(0)>0, then /^0(y)>0 for sufficiently small

(see (a6) in Appendix A). This Implies that the in-phase solution (resp. the
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anti-phase solution) of (2.1) Is stable (resp. unstable) if we take p (resp. //)

sufficiently small for a fixed y>0. Also If Re(D?i, ?o*)<0 and Re-^-(0)<09 a

similar fact holds by replacing the signs in the above. Considering this and the

equations (2.7a), (4.20) yields

Corollary 7. Let the hypotheses in Theorem 6 hold and let Re(Z)?i, fo*)x

Re-^(0)>0,Re(5i(Dfi, fo*))>0. Fix y>0 sufficiently small. Then the in-phase

solution of (2.1) loses its stability for some parameter value p while there exists a

value fi for which the anti-phase solution of (1.1) recovers its stability.

Furthermore, from the equation (4.20) it follows:

Corollary 80 Assume the hypotheses in Theorem 6. Let Re(.Bi(Z)fi, ?o*))<0.

// Ref (0»0 («*.«)) and

A**, v) (A = l, 2, 3), p-l<fjf<fjf (resp. ^1>/^2>//3), swcA rAa£ the anti-phase

solution is stable for (p1, v), (/j3, it) and is unstable for (//2, v); this means that

the stability change of the anti-phase solution occurs twice at least.

§ So Applications

In this section we shall apply the results obtained In § 2 and § 4 to some specific

equations.

a) First let us consider the following linear difference coupled delay-differen-

tial equation:

where i/^O. In the scalar equation,

(5.2) x(t)=

a Hopf bifurcation occurs at fj, = 0 and its bifurcating periodic solution Is stable near

the bifurcation point as mentioned in the Introduction ([3], [8]).

The linear part and the nonlinear part of (5.2) are
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for

respectively. In the equation (5.1), the operator D in (1.1) is

0[#] = #(0) for 06EC[-1, 0].

The bilinear form, in this case, is denned as

-(5.3) <#, #>„

i, £? and 5i in (1.20a) and (3.15) are easily calculated as

£i*(0)=*e''> O^tf^l (£„*=*),* =

(see [19 ; § 5]). Hence we get

which Implies that, in the present ease, the conditions In Corollary 7 are satisfied.

Next, In the (/£, y)-plane, we shall calculate slopes, at the origin, of the curves

/i and /2, in which the stability changes of the in-phase and the anti-phase solutions

occur respectively. Let y2,s be the value 2Re(Bi(D£i, to*))/ |(Dfi, fo*)|2=-f-, for

which (2.7 a) has a zero root, and let y2>c be the value — ReSi/Re(Dfi, fo*)1^

— ̂ -^r — -, for which (4.20) has a pair of pure imaginary roots. p.(e) In (2.1), In thisZ _
case, is given as i*(e) = — TO, — 62+O(s3); from which the slope of /i at (JLC? j/) =

/ y V2,se
2 \ ,

(0, 0) is given by I ,-. I ~ ^—^ For tne value ^=yi/2,ce2, we get

+ o(e3)
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~ 5

by (3.12), (3.14) and (a6) (in Appendix A), so the slope of 12 is -~- — ̂  /

^-=—=-jp Furthermore, 1 /"^"(O)—T" S^ves a slope of a bifurcation curve of the

anti-phase solution at the origin (0, 0). Thus we obtain Fig. 1 in a sufficiently small

neighborhood of the origin.

0 *

Figure 1. l\ and 12 are the curves of stability change for

the in-phase and the anti-phase solutions

respectively. /3 is a bifurcation curve of the

anti-phase solution.

b) If F(ft, * ) in (1.2) satisfies

for#eC[-r,0] f

where /: loXR7"— » ROT is a smooth function, then the equation (1.2) is identified

with the ordinary differential equation (without time delay),

(5.4)

Thus, our results obtained in the preceding sections hold for the linear difference
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coupled equation,

*\

where D Is an mXm matrix. Note that In this case, L(/0=-~— /(//, 0), <°? °>i/ =

( ° , ° ) and so forth.

Now let us consider a biochemical model, the Brusselator, that is,

y(t)=Bx-x2
yj

where ^4 and B are positive constants (see [24]). The equation (5.6) has the steady

state (x(t\ y ( t ) ) = A, --. Let B = A2 + l + t*. Then In the equation (5.6) a Hopf

bifurcation occurs at /* = 0 and this bifurcating periodic solution is stable near the

bifurcation point.

Using the equation (5.6), we shall consider the equation,

where di^O (1 = 1,2). After a little tedious calculation, we get fi, £? and J5i as

-A ff = 2 '

Hence,

For simplicity, we put ^2 = 0. Then one will easily see that the equation (5.7)

satisfies the conditions in Corollary 7 (resp. Corollary 8) for sufficiently large (resp.

small) value of A.
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Appendix A.

Let us consider the equation,

(al) J(<»,^y)£o^(iW-/y"W

We shall seek smooth functions n = ̂ (ii), Q)=aQ(v) and fo = <fo(y) satisfying (al)

for small y. The argument below is along the line found in [7 ; Chap. 7].

For #=y=09 <?o=£o and Q)=O)Q satisfy (al), that iss

(a2) J(cy0,0,0)?o=(too/-

The assumption (Al) implies that the null space !K(zf ((y0j 0,0)) has dimension one,

and Cm is decomposed as

, 0,0))03l(J(fl>0> 0,0)X

Since £0* as in (1.20a) belongs to $R(^(<y0j 0, 0)X

o, 0, 0))-

Let ^0 be a projection of Cm onto %l(/l(a)Qy 0, 0)). Then (a I) is reduced to the

equations,

(flr3) A(o)*, 0, 0)f0*=(/-^o)[J(^o, 0, 0)- J(o>, /i, i/

o, 0, 0)-

Applying the implicit function theorem to ((j3) implies that there exists a

smooth function %*= £*(a), p, v, to) satisfying (^3) for (cy, //, v ) in a neighborhood

of (o)0, 0? 0). Since (#3) is a linear equation, £*(Q), [*, v, ?i) can be written as

£*(&, P, v. ?o) = d(o), IJL, v}^, 3(a)0, 0, 0)=0,

Hence (^3) and (#4) are equivalent to the equation

;ro[J(o>o, 0, O)-
This implies

(aS) H(co, v, i/)^
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G(a>, ft, v)^[A(a)0, 0, 0)- J(o>, ft, v)](I+8(a>, ft, v)).

is easily checked that

», 0, 0)=0,

o, 0, 0)=-i((/-jrfe"""[^((9 ; 0)])?o, Co*)

ro, ro')=-i (see (1.17)),

, ?o ) = - ( 0 ) (see (3.4)).

Define a vector function H(co, ft, v)^t(^eH(co, n, v), ImH(a), n, v)). Then

0, 0, 0)=0,
0 -1

^) lmf(0)

Thus, by (Al) and the implicit function theorem we get smooth functions a) = aQ(i/)9

A*=/*o(v) and ^o^^oCy)^ ?o+5((2o(y), A/o(v),v)fo which satisfy (orl) for y small.
Next for the functions ao(v) and JMO(V) obtained above we shall calculate the

derivatives, -^jp-(O) and -^-(0) . Differentiating the relation

ia*M&(v)-L(M)(eia^

with respect to v and putting y = 0 yield

By putting y=0 in (1.14), (1.15), (1.17) and (3.4), we see from the above that

holds. Hence we get
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(aT)

Appendix B.

We shall solve the equation (4.17). We assume that /2 is a root of (4.20); a

similar proof will hold if /2 is a root of (4.21). In this case, (c\, ci)^0, €2 = 02 =

0, and the equation (4.17) can be written as

First assume that /2 is a complex root of (4.20), and consider the case Ci=£0.

Then we put ^ = 0. Let W ^ (Wi(1\ Wt2\ W2
(l\ W2

(2)) and write 3^(D&, {To*),
5i^ Re 5, 52^ Im<S, 61^ Re5i, &2^ Im5i. From

)=(of o, os o, o)

2Ai) (from (4.18a)).

Thus, if 72^= 1/2(^1 4- 61) (which means that 72 is not a double root of (4.20)) and 72

=£0, 2bi(=/32)? then ($2) is not zero. This implies that the implicit function theorem

applies to (01), to obtain a solution (7, 0, ??i, ?2, ^) = ( ?UX 0, tfi'UX ̂ (e), tfiXe))

of (/SI) for sufficiently small e.

If Ci = 0 (cl^O), then putting rj{ = Q and replacing ^i by TJI in the above proof

yield a similar conclusion.

Finally let 72 be a real root of (4.20). Then we seek a real valued solution of

(4.3), which implies c'i— Ci 77,'= rji (i = 1, 2). Using a similar argument found in

[19 ; Appendix], one can solve the equation ($1) ; the details of the proof will be left
to the readers.
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