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Cramer-type Formula for the Polynomial
Solutions of Coupled Linear Equations

with Polynomial Coefficients

By

Tateaki SASAKI*

Abstract

This paper derives a determinant form formula for the general solution of coupled linear

equations with coefficients in K[XI, ....... xn], where K is a field of numbers, the number of

unknowns is greater than the number of equations, and the solutions are in K(x\, ..., Xn-i)[xn]-

The formula represents the general solution by the minimum number of generators, and it is a

generalization of Cramer's formula for the solutions in K ( X I , ..., xn)- Compared with another

formula which is obtained by a method typical in algebra, the generators in our formula are

represented by determinants of quite small orders.

§ 1. Introduction

Let K be a field of numbers and let xi, ..., xn be Indetermlnates. In the

following, we often represent xn as jr. Let S denote the field K(XI, „.., xn-i)> This

paper considers the general solution of the following coupled linear equations

(Xi, ..., Xn)ys = Pl,8+i(Xi, -., Xn\

[Prl(Xi, ..., Xn)y\~\ ----- \-Prs(x\, ..., Xn }ys = Pr,s + l(Xl, ..., Xn),

with unknowns y^ ..., ys in S[x], where r<s and Pye/f [zi, ..., Xn]<

It is well known that coupled linear Diophantine equations with coefficients in

Z are solved by the Euclidean algorithm and the general solution is represented by

generators the number of which is not greater than s-r if there exist solutions. Since
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the Euclidean algorithm applies also to polynomials in S[x], we can solve (1) by

applying the Euclidean algorithm successively and obtain s~r generators. However,

the procedure is quite tedious and often causes severe coefficient growth (see, for

example, ref. 2).

As for coupled linear equations over fields, Cramer's formula gives the general

solution in a determinant form. We may, therefore, well expect the existence of

determinant form formula which gives all the s~r generators of the solutions of (1).

With such a formula, we can calculate the solutions easily without introducing

unnecessary coefficient growth. The purpose of this paper is to derive such a

formula.

§ 2. Basic Lemmas

In this paper, the variable xn
 = x is treated as the main variable, and the degree

and the leading coefficient in the main variable x of polynomial P are represented

by deg(P) and lc(P), respectively. Furthermore, the resultant of polynomials F and

G in x is represented by res(F, G). The greatest common divisor, to be abbreviated

to GCD, over the field K is defined by omitting numeric factor which is unit in K.

The following two lemmas are essential in solving (1).

Lemma 1. Given polynomials F, G, H in K[XI, ..., Xn\ satisfying

(GCD(F, G) = l,

ldeg(F)+deg(G)>deg(#),

there exist polynomials A and B in K\x\,..., xn} such that

cAF+BG+RH=0,

I R=res(F, G), (2.2)

UegUXdeg(G), deg(5)<deg(F).

Proof. Let deg(F)=/, deg(G)=JW, deg(ff ) = k, and represent F, G, H as

*0,

gm*Q, (2.3)
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Multiplying F, G, and H to, respectively, the last columns of the following

determinants A, B, and R, and considering determinants which are coefficients of or*,

i = Q, ..., l+m — l we see that (2.2) is satisfied :

/
/O

..... /• • • • • • / < )

/O

g0 0

wrows

(2.4)

/rows

gm gm-l ° ° ° ° ° ° ° ° ° g0 0

hh hk-i • • • • • • • • • • • • • • • fe0 0

< ---- l + m + 1 columns ---- >

B = [replace the last column of A by (0 ... 0 xl~l ... x° 0)T], (2.5)

R= [replace the last column of A by (0 ,0, 0 0 08. 0 l Y ] . / /

Notes : Expanding R with respect to the rightmost column, we obtain famous

Sylvester's determinant for the resultant. The above determinants and Lemma 1 were

discovered in the process of generalizing the polynomial remainder sequence in

ref. 1. See, also refs. 2 and 3. It is easy to prove that A and B in the above lemma

are unique.

Removing the degree restriction in (2.1), we obtain the following lemma.

Lemma 2» Let F, G, H, and R be the same as those in Lemma 1 except that

deg(//)^deg(F)-hdeg(G). Then, there exist polynomials Af, Bf, A" and B" in

K[XI, 0 = 0 , Xn\ such that

,
, deg(B')<deg(F),

(A"F+B"G+gSTl-m+lRH = Q,
tdegU")<deg(G), "

Proof, It is evident from the following determinants :
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ft /i-i /o

ft f^ /„
h k— / + lrows................... •

fl fl~l /0 "Q i. (2.8)

/rows

go 0

ho 0

« £+2 columns >

Br— [replace the last column of A

B" = ± [exchange / and m, fi and g*,

i=Q, ..., max{/, m}, in A},

A" = ± [replace the last column of B"

by (O...O.rm-1....r00)rU (2'U)

The next lemma is essential in deriving a Cramer-type formula.

Lemma 3. Let D& be the following determinant of order r + 2 with elements
3

W, i = l,..., r + 2, /= l , . . . , r , f , v :

'" Pir Pi§ Ply

; ; ; , (2.12)
Pr+2,l '" Pr+2,r Pr+2,$ "

where $ and rj are any two elements of [a, /?, 7, 5}. T/ze«, we have

Dfi7 = §. (2.13)

Proof. For r = 0 and 1, we can easily prove (2.13) by direct expansion of

determinants. Assume (2.13) is true for r = Q, 1, ... , £ — 1, and consider the case of

r—t. Defining

(a, b)=(b, a)=PiaP

we can represent Da^D7S, DarDs^ and DasD/j7 as
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(1,1) - (1,0 (1,7) (1,5)

( f , l ) - ( t , t ) ( t , r ) ( t , S )
( a , 1 ) ••• (ar .O (ar, r) (a, 8)
(0,1) - (0,0 (0,7) (0,c

(1,1) - (1,0 (1,5) (I,/

U, 1) — U, 0 U, 5) (M
(ar . l ) - (ar .O (a r ,5 ) U,0)
(7,1) - (7,0 (7,5) (7,0)

(1,1) - (1,0 (1,0) (1,7)

(ar . l ) - (a, 0 (ar ,0) (ar, r)
(5,1) - (5,0 (5,0) (5,7)

Let us expand these determinants with respect to the last two rows and columns,

and consider the coefficient factor in the term proportional to (a, a)(@, 6X7, c)(8,

d\ i.e., the factors other than (a, a)(@, 6X7, c)(8, d) in the term.

Case 1 : Terms proportional to (a,0)(r,8\ (a, r)(8,0\ and (a,8)(0, 7).

We easily see that, except for the sign, the coefficient factors of these terms are the

same, the top-left minor of order t. Hence, the sum of these terms is found to be

zero.

Case 2 : Terms proportional to (a, i)(@, /X7, 8),I^i^t,l^j^t9 hence t^

1, or terms proportional to (a, i)(@, i ) ( y , c)(8, d\ l^i,c,d^t, hence t^2.

There are only two terms which are proportional to (a, i)(0, /)(7, 5), and they

come from Da7Ds^ and DasDp?. We easily see that, except for the sign, the

coefficient factors of these terms are the same. Hence, terms proportional to (a, i )(0,

y)(7, 8) cancel each other. The same is true for terms proportional to (a, i)(0,

0(7, c)(S, d)- (Note that the top-left t X t submatrix is symmetric.) Similarly, the

terms proportional to (a, 0(7, j)(8,0)9 etc. and terms proportional to (a, f ) (7 ,

i ) ( S , d)(0, b\ etc. disappear.

Case 3: Only the remaining terms are those proportional to (a, a)(j3, 6)(7,

c)(5, d\ 1^0, b, c, d^t, and a, b, c, d are different from each other, hence £^4.
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There are three terms containing (a, a)(P, £)(/, c ) ( S , d), and the coefficient factor

of each term Is the following determinant of order t — 2 :

(1,1) - (1,0
: i <-no (c'9 •), (df, •) rows

(U) - ( f , 0
t no (-, a\ (% V) columns

where {&', c', rf' } = {6, c, d}. If we call the last two columns of the determinant in

(2.12) additional columns of types £ and #, the above determinant is nothing but the

product of two determinants of the form (2.12), where the order of the determinants

is now t~2 and the additional columns are of types a and b' for one determinant

and of types cr and d' for the other. Hence, the problem reduces to the case of r =

§ 3o Solutions of Single Equation

We first investigate the following single equation :

P.+i, (3.1)
i, o.o , Xn], * =1, ... ,

Without loss of generality, we may assume that

deg(D) = 0 where D = GCD(Pi, ..., P«). (3,2)

(If deg( Z))=/= 0, D must pseudo-divide Ps+1, i.e., Ps+i/D is a polynomial in S[r] so
far as (3.1) has solutions. Hence, we have only to divide (3.1) by D, satisfying (3.2).)

Furthermore, without loss of generality, we may assume

GCD(A, P,)=l. (3.3)

The reason is as follows : If condition (3.3) is not satisfied, we may construct

such that GCD(Pi, P2')=l and consider the equation
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Suppose, for simplicity, that

deg(P,)<deg(Pi)+deg(Pa), f = 3, ... , s + 1. (3.4)

Then, Lemma 1 tells that there exist polynomials At and Bi in K[XI, ... , xn] such

that

Multiplying /? to (3.1) and using (3.5), we obtain

Since GCD(A, ^2) = !, this equality is equivalent to

(3.6)

(3.7)

where #2^S[r]. Since R is a unit in S, we can solve (3.6) and (3.7) for arbitrary

3>s5 oo, , Vs* and w2 in S[r]. Therefore, representing the general solution of (3.1) as

(3.8)

Uj, j = 2, ... , 5, are arbitrary elements in S[x],

we obtain the generators y(2\ aao , j7
(s) and a particular solution j7(s+1) as

-A/fl, 0. . .0), (3.9)
= (At/R, Bi/R, 0 ... 0, 1, 0 ,„ 0), / = 3, = = = , s, (3.10)

+1//?> -Bs+i/R, 0. . .0). (3.11)

Since ^4,-, B,- and /? are represented by determinants whose elements are coefficients

of Pi, P2, and Pi, the above generators are of Cramer type.

The only remaining task is to remove the restriction (3.4), which is quite easy if

we use Lemma 2. That is, if

, (3.12)

we generate At and Bi, i = 3, ... , 5 + 1, in K[XI, ... , xn] such that
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degU,-)^max{deg(P2)-l, deg(P,)-deg(A)}, (3.13)

.degCB,)<deg(Pi).

Then, (3.1) is reduced to the coupled equations

(3.6')
(3.7')

which are directly solved to give the general solution.

§ 4. Solutions of Coupled Equations

Suppose equations in (1) are linearly independent over K(x\, ... , xn}- Then,
without loss of generality, we may assume

A=
Pll - PIT

I i *0. (4.1)

Pn ••• Prr

With this assumption, we can rewrite (1) as

y\ = —A\,r+iyr+i ----- di8y8+di,8+i,
— • (4.2)

where Aik, l ^ f^ r , r + l^A^s + 1, is the following determinant:

Pll OBO Pl,i-l Plk Pl.i + i "00 Pir

(4.3)
oos p p p .,, p

rl JLr,i-l *rk i r,z + l /IT

The following theorem is essential for proving the main theorem given later.

Theorem 1-1. Let /S±Q, and for some i and j, l^i^j^r, let di,r+i±Q,

4;,r+i*0, and GCD(J, J,-,r+1)=GCDU, Jj,r-n)=l. For t = i and t=j, define

Rt as

\Rt —X— / — V ~ , — E.7 -T1 , , .^v

max{0, deg(J«)-deg(J-J(>M.
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For k=r + 2,..., s + 1, construct Atk and Btk satisfying

Then, we have

(4.6)

Proof, We note that the Rt9 Atk and Btt satisfying (4.4) and (4.5) can be

calculated by using Lemma 1 or 2. Moving the ith and /th columns in A etc. to the

rightmost, and representing A, Aitr+i, Ait, Aj,r+i, Ajk as determinants of the form

given In (2.12) with additional columns of types i, /, r + 1, k, we obtain the

following relation by Lemma 3 :

(-Ai,r+i) = ®, (4.7)

where AM is the following determinant :

Pll - Pi,r+l - Pi* - Pir

Aijk= : I : :

Pri "• Pr,r+l °°° Prk a'° Prr

(i) (j) «— column number

Let GCD(J, AU, Au) = D9 then (4.5) Implies D\Bik and D\Bjk. Hence, defining

we can rewrite (4.5) and (4.7) as

(4.50

(4.5")

(4.T)

Eliminating AM and ^JA from (4.5') and (4.5"), we obtain

Eliminating A'jkAi,r+i from (4.7') and the above equation, we obtain

'u4ljk\ (4.8)

We consider only the case of deg(z/ ) > deg( D ), because if deg(/f ) = deg( D ) then fi,-*
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= Bjk = 0- Then, since GCD(J', ^,r+i) = l, (4.8) gives

Similarly, we obtain

4'\4k(RtB'j*-RjB't*

Since GCB(^', JJA, Jj*) = l, these relations imply

or

Since deg(zf )>deg(J3z-*X deg(B/&), the above relation leads to (4.6). //

Theorem 1-1 and (4.8) give the following corollary.

o The Ajk, j^i, is calculated from Aik, Bik, Rt and Rj

ik. (4.9)

This relation is quite useful in actual calculations because calculation of /?,-, Aik and

Bik is quite time consuming.

Theorem 1-1 is slightly generalized as follows:

Theorem 1-2. Let J=£0, and for t = i and t = j, I^i±j<r, let

At.r+i/Dt) = l, (4.10)

,)>0? deg(J« ir+i/D«)>0.

Furthermore, let

For A=r + 2, ... , s + 1, construct Atk and Btk satisfying

, we have

2l\(RiBJk-RjBtk) where A = A/GCI3(A, DtDj). (4.13)
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Proof, Putting At = A/Dt, Atk — AtklDt, t = i, j, we can rewrite (4.12) and

(4.7) as

= 0? (4. 14)

+ AikAj,r+i - AjkAi,r+i = 0,

where Aijk = AmGCD(A, D i D j ) / D i D j . Note that Aijk^K[xi, ... , *»] because

(4.7) Implies DiDj\A°Aijk- Since A\Ai and A\Aj, and equations In (4.14) are of

the same forms as (4.5'), (4.5") and (4.7'), we obtain (4.13) by performing the same

calculation as that in the proof of Theorem I- 1.//

If deg(zf) = deg(A-) — deg(4/) in Theorem 1-2 then we have

Now, we prove the main theorem.

-1. Let A±Q, and for i = l,...,r let Zf^r+i^O and GCD(J,

itr+\) = \- Representing the general solution of (I) as

Ujj j=r + l, eoo , s, are arbitrary elements in S[x],

the generators y(r+l\ „„„ , j7(s) and a particular solution y(s+1) are given as

f y(r+»=(4l,r+1/Rr, ... , Ar.r^lRr, -AJRr, 0 ... 0),

, ... , Ar.r^/Rr, Br,r+2/Rr, 1, 0 ... 0),

yW=(Ai,/Ri, ... , Ars/Rr, Brs/Rr, 0 ... 0, l),

where Rt, At*, and Btk, t = l, ... , r, k=r + 2, .«,. , 5 + 1, are defined by (4.4) and

(4.5).

Proof. We first solve the last equation of (4.2) by the method described in § 3.

Representing the general solution of the equation as
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y'=(yr,yr+i,... ,y«),
we obtain

y'{r+l}=(4r.r+l/Rr, -J/flr, 0 ... 0),

r, Br.r+2/Rr, 1, 0 ... 0),

7'(s)=Urs/J?r, Bn/Rr,O...Q,l),
r, 0 ... 0).

Substituting the above solution y' into the fth equation in (4.2), we have

- (Ai,r+lBrs + Rrdis ) Us/ Rr

+ (di,r+lBr,s + l + Rrdi,s+i)/Rr.

Consider the coefficient of Uk and the last term of this equation :

Using the relation (4.5), we can rewrite this expression as

= — A ik^/Ri — /li,r+l(RrBik — RiBrk )/RiRr.

Owing to Theorem 1-1, the last term of this expression vanishes and we obtain

Therefore, y^S[x]9 i = l, ... , r — 1, and combining the above solution and y', we

obtain the generators (4.16).^

Notes : We can calculate the solutions of (1) by successively solving each

equation of (1) and substituting the solution into the yet unsolved equations. This

method introduces extremely large factors which exactly cancel each other between

the numerator and denominator. However, proof of the cancellation is quite tedious.

Theorem 2-1 is slightly generalized as follows.
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2-2o Let A^Q and

, , ... , , , ... , , n

ldeg(Dr)=0,

+i/D,)=l, f = l, ... , r, (4.18)

, i = lf ... , r. (4.19)

Construct Aik and Btk, A=r+2, ... , s + 1, according to the formulas (4.12) w/YA

(4.11). TAe^, formula (4.16) wiYA ?Ae following replacement gives the general

solution of (1) :

>W/?< -> Ai*/Rt + 4i.r+l(RrBik-RiBrk)/4RiRr. (4.20)

Proof. Solving the last equation of (4.2) after dividing it by Dr, and

substituting the solution into the /th equation of (4.2) and dividing it by Dz-5 we have

A&i = + (Ai,r+iAr}Ur+llRr

where Ai = AlDi and 2lik = ̂ iklDi as before. We have Ai\Ar over S because

deg(Dr) = 0, and Theorem 1-2 with /=r implies J* |(/fr5/*-/?/fir*), A=r + 2, oao ,
5 + 1. Hence, the y{ in the above equation is in S[z] for arbitrary #r+i, 080 , ^s in

S[z]. (Note that, because Dr^S, we can delete the common factor Dr in the

generators.) //

The conditions (4.18) may not be satisfied in many actual cases. In such a case,

we have only to construct

i, ... , Xn-l], (4.21)

such that GCD(A/Di, di,r+i/Di) = l, i = l, ... , r, and consider the equations

r Ayi=—A(,r+iyr+l~Ai,r+2yr+2 ----- Ais
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where yk=yk-A^yr+i9 k=r+2,..., s.

§ 5» General Case (Mare Case)

If the conditions in Theorem 2-1 are satisfied, the general solution of (1) is given
by the beautiful formula (4.16). If the conditions are not satisfied but the conditions
in Theorem 2-2 are satisfied, we have less beautiful but still simple formula (4.16)
with the replacements (4.20). The latter condition of (4.17) will be satisfied in most
practical cases, and the condition (4.18) will also be valid in such cases so far as the
transformation (4.21) is applied. We must, however, consider the rare cases in which

deg(£>,)*0 for all i = l f... , r, (5.1)

where Z),- = GCD(^, Zfz, r+i, ... , Ats\ In this case, if any of the conditions

Di\Ai,s+i over S, i = l, ..., r, (5.2)

is not satisfied, the coupled equations (1) have no solution. Hence, we assume (5.1)
and (5.2) throughout this section.

Following Theorem 1-2, we introduce the following quantities:

C*=GCD(J,Z)iZU i = l,...,r-l,fC,-
\Cr =

Note that CV| C*. Defining Ai and y{ as

{ Ai = A/d. i = l,..., r.
_ _ •_ (5-4)

we can rewrite (4.2) as

(5.5)

where Aik = AiklDi as before. Note that yr = yr because Cr = Dr and Ai\ Ar* i = l,

... , r — 1, because Cr\d. Furthermore, since Di\d, / = !, ... , r, we have

Generalizing the Theorem 2-2, we have the following theorem which gives the
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general solution of (5.5).

2-3o Let J=£0 and GCD(J, J£ir+i) = Z>f=£l , 1 = 1, ...,r. Gwi-

struct Aik and Bik, k=r + 2, ... , 5 + 1, according to the formulas (4.12) with (4.11).

i, the general solution y=(yi, ... , yr, 3>r+i, ... , 3>s) 0/ (5.5) fe give/i by (4.16)

following replacements :

(5.6)

Proof, Theorem 1-2 is true even if deg(Dr)^0. Hence, the same proof as for

Theorem 2-2 applies to this case. //

Finally, we must solve coupled equations (Ci/Di)yi — yi, / = !,..., r — 1, with

y{ given as Ci,r+iUr+i + ~a + CiSus + Ci,s+i, dk^S[x], k=r + l, 000 , 5 + 1. That is,
we must solve the coupled equations of the following form :

(5.7)

where P,-, Pih^K[jCi, ... , Xnl and deg(Fz-)^05 i = l, 000 , T. (If deg(P£) = 0 then the

zth equation of (5.7) is satisfied by arbitrary yr+i, ... , ys in S[r], hence we can

delete it.) Note that if (1) is already of the form (5.7) then (5.5) is identical to(5.7).

The coupled equations (5.7) can be solved in the following way. We assume, as

before, GCD(FZ-, P,-fr+i) = l, f = 1, ... , r. We construct R{, Aik and Bik, k=

... , 5 + 1, such that

' }

Using Aik and Bik, we can transform the fth equation of (5.7) to the following

equations
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(5.10)

where ut is an unknown in S[r]. These equations are such that the first equation

is automatically satisfied by any m in S\x\ Hence, equating the right hand side of

the second equation of (5.10) to that of equation for i = r, (5.7) is transformed to the

following r — 1 coupled equations:

+ (RiBrs RrBis )ys — (RlBr,s+l RrBi,s+i)9

............... (5.11)

RrBr-1,8 Ws = (Rr-lBr,s + l RrBr-l,s+lJ.

Coupled equations in (5.11) are the same form as those in (5.7) but simplified in that

the number of equations is decreased by one. Note that the degrees of the coefficient

polynomials in (5.11) are never greater than those in (5.7). Therefore, the problem

is reduced to a simpler one. Continuing the above reduction, we can solve (5.7) with

suppressing unnecessary coefficient growth.

§ 6. Comparison with Another Formula

Using the idea of Hermann [4] (see, also Seidenberg [5]), we can easily represent

the generators of the solutions of (1) in a determinant form. Equations in (4.2) show

that (1) has the following solutions

C yS+1)=04i.r+i, ... , Jr.r+i, "Jf 0 ... 0),

(6.1)
^J5}=(Ji.,...f J^O.- .O, -J).

We call these solutions apparent solutions. Let

|i = l, ... , r;j = l, ... , s}. (6.2)

Then deg(zf ) and deg(^Ja) are less than or equal to rd. Following Hermann, it is

easy to prove that every solution of (1) with dcg(yi)^rd for some i can be

represented by apparent solutions. The remaining solutions can be represented as
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(6.3)

Substituting (6.3) into (1) and equating coefficients of z * terms, A = 0, ... , rrf + rf — 1,

to zero, we obtain r(rd+d) coupled equations for srd unknowns cy Since cy^

S, the solutions of these equations are given by Cramer's formula.

The method described above is given in refs. 4 and 5, and it is a typical method

in algebra. The degree in x of a generator obtained by this method is less than or

equal to rrf-1, which is the same as our formula. However, in this method, the order

of numerator and denominator determinants is rd(r + l) which is considerably

greater than 2rd—l, the order of determinants for A ,•* and /?,-*. Furthermore, the

number of generators in the above method is as many as rd(s — r — l) + (s— r),

which is very inconvenient in actual applications. On the other hand, the number

of generators in our method is only 5 — r. Hence, our formula is much more

beautiful and useful than the formula obtained by the above method.

Finally, we present an example for the case of r = 2 and 5 = 5.

The A and dt*, i = l, 2, £=3, 4, 5, are calculated as

These polynomials give the resultants Ri and R2 as
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Hence, the conditions in Theorem 2-1 are satisfied. Using determinant representa-

tions (2.4) and (2.5), we can calculate Aik and /?,-*, 3 = 1, 2, A: = 4,5, as

Bi4 = 12(+454.r3H-282.r2+511.r+82),

Ai5=12(+470x3+604jr2+341jr + 199)

5i5=12(-188.r3-204.r2-152.r-53),

Formula (4.16) gives the generators of the general solution as

y(3)-Ui3,J23, -J fO,0),

y(4)=Uu//?i, A^lRi, £24/J?2j 1, 0),

j7(B)=Ui5//?i, A25/R2, B25/R2, 0, 1).

That these generators satisfy (6.4) is easily checked. Furthermore, we can easily

check the validity of relations (4.6) and (4.9).
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