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Some Implicit Fourth and Fifth Order Methods
with Optimum Processes for

Numerical Initial Value Problems

By

Masaharu NAKASHIMA*

§ I. Introduction

Many areas of engineering and scientific analysis require methods for solving

ordinary or partial differential equations. The progress of digital computer has

significantly increased our ability to carry out the numerical solution of such

equations, numerous papers have been published which deal with both the

theory and practice of such solutions.

In the present paper, we concern with the numerical method of the following

initial value problem of ordinary differential equation:

( y'=f(x,y)
(1-1)

I X*o) = JV

In addition to the first-order scalar equation, it is possible to consider a

system of equations or an equivalent high-order single equation. In this paper

we consider only (1.1) because the numerical formulas for the system is almost

same to that of scalar equation.

The discretization method for (1.1) may be classified in two categories;

implicit and explicit ones. The main advantage of explicit methods is that they

afford the solution explicitly at each step. However, no explicit methods are

.4-stable, they are inapt for stiff systems. Many authors have studied the sta-

bility problems so that several stable formulas have been proposed. The draw-

back for classical Runge-Kutta methods in the stability can be overcome by

introducing implicit formulas.

J. C. Butcher [1] was the first who considered implicit Runge-Kutta method.
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The general r-stage implicit Runge-Kutta method is defined by

(1-2) yn+i=

kt=f(xn + aih, yn + h bukj) (/=!, 2,..., r),
7=1

where yn is an approximation to the exact solution y(xn) of (1.1) at the point

After him many attempts to derive implicit Runge-Kutta method have
been made. A good source of information on this topic will be found in the

papers of Butcher [1], [2] and [3].

In [8] and [9], the present author has studied some explicit pseudo-Runge-

Kutta method:

r

If — ff"Y 17 ^ If — f f ~ y i; ^
KQ—J V-*n-l? yn-lJy *•! ~~J V-^ws Jn) 9

i-1

7=0 IJ J '

We may replace xn-l9 xn9 yn_± and yn on the right-hand side with xn9 xn+l9yn and

yn+i9 respectively, to obtain the following implicit Runge-Kutta type method:

(1.3) yn+i=yn + v(yn-yn+l) + h<P(xn9 xn+l9 yn9 yn+l; h)9

r

^5 Xn+l9 yn> J n + l ? ^)= E W i - l^i- l5
i=l

) =f(xn, yn), fei =f(xn, j, yn + ±),
i-1

7=0 U J '

We note that (1.3) is r-stage method since the value yn+1 is obtained by
using r times functional evaluations k{ within the interval xn and xn+l. Butcher's
r-stage fully implicit Runge-Kutta method of order 2r is all ^4-stable. Such

method does, however, suffer a serious practical disadvantage that if an r-stage
implicit Runge-Kutta method is applied to an m-dimensional system of ordinary

equations, then a system of mr non-linear simultaneous algebraic equations
will have to be solved exactly for the function kt (i = !9 2,..., r) at each step by

some iterative processes. But the algorithm (1.3) reduces the effort to solve
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non-linear equations since there is only one m-dimensional system of equations.

Next, the fully implicit Runge-Kutta method requires a suitable starting approxi-

mation of kj (/ = !, 2,..., r) for convergence, especially if the derivative/(x, y)

varies rapidly at x = xn and y = yn. But our algorithm (1.3) is much easy to

obtain a suitable initial approximation yn+{, as will be mentioned later.

The mathematical problem of numerical integration is to give the analysis

for the discretization error of numerical solution. One would be interested not

only in attempting to estimate the error but also in deciding whether or not the

error will grow as n increases. Thus the asymptotic behavior of error as n

increases is the notion of stability. Consider a simple test problem y' = ky\

j>(x 0)=l , which has the exact solution j;(x) —exp {A(x — x 0 ) J . For AeC and

Re /l<0, we have |XX)I~*0 as x increases. Thus, it is natural that numerical
solution for the above problem with fixed h tends to zero as n increases. We

shall call the numerical method is A -stable if the numerical solution yn for

y' = ky tends to zero as n-»oo for any AeC and Re/l<0. Moreover, the

method is said to be L-stable if it is ^-stable and, in addition, the value \yn+ilyn\

tends to zero as Re A-» — oo.

In recent years Cash [4] and Cash and Moore (Cash-Moore) [6] have

proposed some methods which are closely related to (1.3). They have studied

some special algorithms. Cash [4] has proposed L-stable method with y = c/ = 0.

Cash-Moore [6] has proposed ^-stable and symmetric method of order 4 in

the case of f = 0 in (1.3). Based upon these results Cash-Singhal [7] has

derived ^[-stable and symmetric methods of order 4, 6 and 8, Cash [5] has

proposed some difference schemes of those methods.
We have developed some methods (1.3) which combine aspect of Newton

iteration scheme with Cash's methods. We also discuss them in more details

and describe of their properties.

Firstly, the author shall discuss the attainable order of the method. Sec-

ondly, we discuss the stability of the method. Thirdly the local truncation error

of the method is analysed, and the choice of parameters will be also discussed.

Finally some numerical tests are given. Our algorithms are superior to Cash's

one in the following two points: first our algorithms increase the accuracy if we

compare our algorithms with Cash's one in the same stage number, second our

algorithms seem to be computationally more economical than Cash's one in

solving non-linear equations. Refering to the local accuracy and the number

of function evaluation per step, say the stage number, one has
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P(3)=4,
and

X4) = 5,

contrary to the ^-stable Cash-Moore method [6], where one only has

X3)=4,

and to Cash [4], which is L-stable, where one has,

Here, we have put p(r) to denote the order of r-stage.

§ 2. Derivation of the Method

We consider three- and four-stage methods which are obtained by setting

r = 3 and 4 in (1.3) respectively.

Throughout the paper, the coefficients are constrained by

Let D be the differential operator defined by

x S

We introduce the shortened notations

and we also introduce an abbreviation,

Assume that yn— X^n) = 0(/i5). By the Taylor series expansion about

(xa, yn), we obtain the followings.

(2.1) y^^
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+ C6f*T+ Cj

The constants {A,}, {B,-} and {C,-} are given by

(EO) ^-

(Ell) A2=-^

(E21) ^3=-

(E22) ^4=-

(E31) B^

(E32) B2 =

(E33) B3=

(E34) B4= --|-o- w0+ £

(E41) C^

(E42) C 2 =— -

(E43) C3 = - ip + w0 + E

(E44) C4=

(E45) Cs=

(E46) C6 =

(E47) C 8 =—

(ESI)

(E52)

(E53)
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(E54) D4

(E55) D5 =

(E56) D6 =

(E57)

(E58)

(E59)

(E510)

(E512) D14 =

(E513) D15 =

where

Pi = c2 + 1 + 2b2 j , P2 = c2 + l + 3b21, p3 = c2

- a|), 0 8 = 20c3(a2 + a3) (p2 - a\) ,

g9 = 20c3(a2 + a3) (/?2 - «!) ,

a, = a £ +l (i = 2 ,3) .

2.1 Fifth-order Formulas with r = 4.
To obtain fifth-order formula, the equations

(2.2) ^ = 1, A2 = \, ^3 = ̂ 4 = -i, ^ = i (i = l ,2, 3, 4),
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are satisfied, which follow by equating each terms in (2.1) to the correspondings

in the expansions of y(xn+1). (See [10].) From (E32) (E33) (E45) and (E46)

we have

(2.3) Pi=«i Pz = ̂ 2-

From (E21), (E22), (E41), (E43) and (2.3) we have

(2.4) 4l3=ai 323 = «3-

We see then that the condition (2.2) can be replaced by

(2.5, (-.y-^ + ̂ -^^-fe+iL „_, 5),

(2.6) Pi=al, p2 = al, qt=al, q2 = a\,

(2.7) - w0 + Z «3,w, = -kc +1), E w, = o + I.
-> i=0

Since there are now twelve equations in fourteen unknowns, there exists
two-parameter family of solutions.

The partiqular case w3^0 leads to the solution

(28) a -U-»j a

— 3a| — 2a| ,

provided that a2^0, a2^a3, 10a2 + 5^0, i.e.

a2̂ -Q.6, -0.5, -0.4,0.
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2.2 Non-existence of sixth order formula with r = 4.

We have seen that there exists four-stage method of order 5, it is natural to

ask whether it is possible to increase the order in the same stage numbers. The

method (1.3) is of order 6 if, in addition to (2.2),

(2.9) A- = -f 0=1,2,...,15).

By going through the same procedure as above, we start the discussion. We

now consider two cases according as w3 is equal to zero or otherwise,

(i) The case w3^0.

From (E58) (E59), (E41) and (E45) we have

(2.10) p3 =aj,

(2.ii) *33=a*.
From (2.3) (2.10) and (2.11) we have

Pi=«i P2 = a2, P3 = a2,

which have no solution,

(ii) The case w3 = 0.

From (2.5), (2.9) and (E51) we have

(2.12) DtU^Q, D2U2 = Q,

where

/I 1 1 1 \
1 0 a2 1/2

1 0 a\ 1/3

\1 0 a\

/ I 01 1/31
&\ 1/4

\

W0

W2

\» + l ,
v\

V2

v + l1 «1 1/5 /

a simple calculation leads to

det(D1)=-a2(2a2-l)(a2-l)/12,

det (D2) = a\(5a2 - 3) (a2 -1)/60.

The equation (2.12) is solvable if

(2.13) det(D1) = 0, det(D2) = 0.

From (2.13) we have a2 = l which contradicts to a2^
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2.3 Fourth order formula with r = 3.
When we may try to make fourth order method, it is required that

(2.14) ^ = 1, A2 = ±, A3 = A4^3, 8^(1 = 1,2,3,4).

As already observed in (2.2), (2.14) simplify to

- — — --, . _ j . - -- --7^jjy j -- -TJ

There are now eight equations in seven unknowns and there exists one-
parameter family of solutions. The resulting method is

(2.16)

KQ =SJ \Xn> ^HJJ ^1 ==J

However, when one of wf (/ = 0, 1, 2) is equal to zero, (2.15) has no solution.
For instance, let us choose w0 = 0 and we obtain

(2.17) £>3t/3=0, 04l/4 = 0,

1 l /
<?2 1/2 , t/3= [

0 + 1 ,

o + l .

A simple calculation leads to

1
]
1
1
1
1

1
«2

a22

a2

al

«2

{

1/2
1/3

1/2
1/3

1/4
, U4 =

det (D4) = 5 2(2a 2 -1) (a 2 - 1)/12.

In the same reason as in (2.13), we see that the equation (2.15) has no solu-
tion. By repeating the same analysis we can prove that for M^ =0, or w2 = 0 the
equation (2.15) has no solution.
2.4 No existence of order 5 with 3-stage.

Of further interest is the problem of attainable order of three stage. Let us
start the discussion in a similar wav as the case r = 4.
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By setting w3 = 0 in (2.2), we have

(2.18) D5U5 = Q, D6U6 = Q,

1
1
1
1
1
1

«2

51

al

3$
a\

a\

1 \
1/2 , U5 =

1/3 /

1/2 \

1/3

1/4 /
9 6

W1 \
W2

t> + l/

Wj

W2

I? + l
A simple calculation leads to

det(D5) = fl2(3a2-l)(a2-l)/6.

det(D6) = det(D4).

Solving det(D5) = det(jD6) = 0, we obtain a2 = l, which contradicts to a2^Q.

We therefore have the following theorem.

Theorem. The attainable order of 3 and 4 stages is 4 and 5 respectively.

We will make the numerical comparison of our methods with the Cash's

method and Cash-Moore method. To this end, we present here the Cash's

method of order 3, which is L-stable

(2.19)

-y/7,

+ 1 - V1' y» + 1 " ~i~
and Cash-Moore method of order 4, which is /4-stable and symmetric,

(2.20) >W i

o =f(xn, yn\ fci =/(*„+ 1 » ^11+ 1) .

§3. Stability Analysis

We apply our method (1.3) with r = 4 to the test equation y' = hy. This

yields
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where

(3.1) di = (14- v) 4- {w0 - c2w2 - c3w3}/t

+ c2)w2

+ 632 + 632e2)w3}/z2 + b32b21w3h
3 (h = A/I) .

By the definition, the formula (1.3) is ^-stable if \dlld2\ < 1 for all complex A

with Re(A)<0. The maximum modulus principle implies that ^-stability is

equivalent to the following two conditions

(i) Mi /^ 2 l ^ l for Re(A) = 0,

(ii) ^1/^2 ls analytic for Im (A) = 0 .
From (2.8) and (3.1) we have

putting h = iy we have,

(3.1) |^|-|d/i| = {(2

with w1=60(2a2 + l), w2 = 3(4a2 + l), i/3

u4 = a2 + l, t/5=-(4a2 + 3), w6= -6(10a2

On substituting the value ut (i = l, 2,..., 6) into (3.1), we obtain

We see that the condition (i) is satisfied if

(a) 720(4c / 2 +l) (26/ 2 +l)<0 ,
(b) 2a2 + l > 0 ,

and the condition (ii) is also satisfied if (b) holds.

Thus we find that the method (1.3) with coefficient (2.8) is /4-stable in the

domain

D = {(a2, v); - 0.50 <a 2 <- 0.25, v*-l] .

In the case of 3-stage fourth order method, stability factor djd2 is exactly

the same as that in [6], then the method (1.3) with r = 3 is /4-stable.
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§ 4. The Optimal Method

4.1 Consideration to the local error.

We define the local truncation error T(xn, yn\ h) at xn = x0 + nh by

T(xn, yn', h) = y(xn+l}-yn+{.

If we assume that

di+Jf(x, y)
dx'dyJ

Then the local truncation error T(x,,, y,,; h) for the formula (1.3) with r=4 is

T(xn, ym; h^RiMLW .

The constant Rt in the inequality is estimated by

2\ + \D2 + 4DS\ +4\D3\ + \2D3 + 3£>4| + \4D3 + 3/>4|

+ |D13 + 3D9| + \2D13 + 3A, +D6\ + \D13+D9 + D6\ + \D14\ + \D,

Let us denote the expression on the right hand side as m(a2, v). The error

bound m(a2, v) is shown in Figure (1). We see that m(a2, v) is minimized if

we set v= — 1 which implies R^—Q. Unfortunately it is impossible to take

v= — 1 . If we set, for example, t>=0.0 and a2 = -0.25 ~ —0.35, then we have

/?,= 0.03 -0.05.

The local truncation error for the formula (2.16) is

where the constant R2 is estimated by

Let us denote the expression on the right hand side as m(v), the error bound
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m(v) is shown in Figure (2).

If we set i? = -0.07- -0.08 in (2.16), then we have

R2= 0.02 -0.08.

The error bound for Cash-Moore method (2.20) is

#2 = 0.05.

4.2 Consideration to the iteration.

We first observe that the formulae (1.3) may be rewritten as

yn+i=yn + (l + v){yn + h$(xn, xn + i,yn, yn+1; h)-yn+l}9

where

In this equation w,- (/ = 0, 1, 2, 3) are equal to wi (i = Q, 1, 2, 3) by imposing

i? = 0 in (2.8), respectively. In general, this form is non-linear equations, there-

fore we must solve the equation by some iterative processes. Natural is the

successive substitution procedure.

(4.1) yftp^y

where the superscript indicates iteration number. From the stand point of

economic computation, the rate of convergence to the solution is important.

Using the mean value theorem, we have

J^-jWi^U

where

9 y, u, v),~~

In order that the iteration (4.1) converges for all j^Vu it is necessary that

|r< s ) |<l. If the value of $l} is large, we may choose h so that \(l + v)h$v\<l

and \rW\ = \—v + (l + v)h$v\<l. Clearly, the smaller is v, the faster is the rate

of convergence of the processes (4.1).

Thus, for stiff problems, the optimum value of v lies near zero.
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-0.52 -0.44 -0.36 -0-28 -0.20 -0.12 -0-04 0-0
3z

Figure 1. The error bound for the method Figure 2. The error bound for the method
(2.1) with the coefficients (2.8) (2.15) in the domin D={v\ |v|^
in the domainD={(a2, v); —0.5 1}.
<02<-0.25, |v |^ l} .

§ 5. Numerical Example

In this section, we present some numerical results for the equations which

have been often taken up in the literature of the numerical analysis.

We use the following initial- value problems.

-3, X*) = exp(-;c)-4exp(-10.x),

z'= 5y-6z, z(0) = 6, z(x) = exp(-x) + 5exp(-10x),

exp(-lSOOx)

Ill- |/ = a01-(a°1+>; + z)[1+(3; + 1000)(j; + 1)]J X0) = 0,
I z' = 0.01 - (0.01 + y + z) (1 + z2), z(0) = 0.

The problem 111 is non-linear stiff, whose Jacobian has the eigenvalues

-1012 and -0.089 at x = 0 and -21.7 and -0.089 at x = 100. Since it has no
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analytical solution, we compute an exact solution using the fourth order explicit

Runge-Kutta methods with very fine step-size. To keep the ^-stability of the

fourth order Runge-Kutta method in 0^x^100, we take the step size to be

5 x iO~4.
We set the initial approximation yj,!^ on the iterative processes (4.1) by

J ; H + i = J

We use the quantity

as an control of the iteration number. The iteration is continued until e(,,n

become smaller than £, where £ is a pre-assigned tolerance. From Tables it can

be seen that the advantage of our methods lies in the following points. Firstly

comparing both methods in the same stage number, our algorithms are more

accurate than Cash's one, lastly, we see that the convergence of the iteration of

our algorithms are faster than Cash's one, especially when the value yn varies

rapidly. From those results, our algorithms are more efficient than Cash's one.

Computations were done in double precision arithmetic on the FACOM

M-200 of Kyushu University.

The folio wings are comparison of the error incurred by using the Cash's

methods (2.16), (2.20) and the methods (2.8), (2.16).
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Table 1 (1)

Problem 1, /z=l/25, E = 10~7, M: number of iterations.
Absolute Error

Cash's method Method (2.1)
(2.20)

X

0.0625
0.1875
0.3125
0.5000
0.7500
1.0000
1.5000
2.0000

yn—y(xn)

0.182E-4
0.153E-4
0.724E-5
0.165E-5
0.579E-7

-0.804E-7
-0.891E-7
-0.680E-7

zn~z(xtt)

-0.230E-4
-0.202E-4
-0.938E-5
-0.247E-5
-0.417E-6
-0.122E-6
-0.108E-6
-0.859E-7

M

9
9
8
7
6
4
3
3

with (2.16) (v- -0.09)

yn-y(xn)

0.182E-4
0.153E-4
0.727E-5
0.166E-5
0.871E-7

-0.209E-7
0.335E-9
0.272E-7

zn-z(xtt)

-0.230E-4
-0.202E-4
-0.938E-5
-0.245E-5
-0.415E-6
-0.843E-7
-0.111E-7

0.934E-8

M

1
6
6
5
5
4
4
4

X

0.0625
0.1875
0.3125
0.5000
0.7500
1.0000
1.5000
2.0000

Cash's
(2.

yn-y(xn)

0.648E 0
0.102E 0
0.986E 0
0.796E 0
0.533E-5
0.385E-6

-0.202E-6
-0.181E-6

method
19)

zn-z(xn)

0.1 38E 0
0.503E 0
0.688E 0
0.713E 0

-0.724E-5
-0.970E-6
-0.226E-6
-0.200E-6

Method (2.1)

M

31
13
12
11
8
6
3
3

with (2.8) (a2

yn-y(xn)

0.230E-5
0.170E-5
0.801E-6
0.177E-6
0.234E-7
0.111E-7
0.304E-8
0.160E-7

--0.35, v=-0.09)

zn-z(xn)

-0.287E-5
-0.271E-5
-0.928E-6
-0.284E-6
-0.484E-7
-0.267E-7
-0.619E-8
-0.285E-8

M

10
9
8
7

6
5
4
4
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Table 2 (1)

Problem 11, h = l/211, E=10~7, M: number of iterations.

Absolute Error

Cash's method

(2.20)

X

2/2"

4/211

8/211

14/211

20/211

1.0
2.0
5.0

10.0

20.0

yn-y(xn)

0.595E-5
0.576E-5
0.262E-5
0.531E-6
0.786E-7

-0.164E-7
-0.158E-7
-0.192E-8
-0.295E-7
-0.421E-7

zn-z(xn)

-0.896E-5
-0.862E-5
-0.395E-5
-0.789E-6
-0.128E-6

0
0
0
0
0

M

10
9
8
7
5
2
2
2
2
2

Method (2.1)
with (2.16) (v= -0.09)

yn-yM
0.594E-5
0.576E-5
0.262E-5
0.515E-6
0.582E-7

-0.275E-7
-0.268E-7
-0.122E-7
-0.389E-7
-0.497E-7

zn-z(xn)

-0.896E-5
-0.861E-5
-0.396E-5
-0.782E-6
-0.114E-6

0
0
0
0
0

M

1
1

6
5
4
2
2
2
2
2

X

2/211

4/211

8/211

14/211

20/211

1.0
2.0
5.0

10.0

20.0

Cash's
(2-

yn-y(xn)

0.122E-3
0.117E-3
0.545E-4
0.106E-4
0.170E-5
0.207E-7
0.208E-7
0.337E-7
0.440E-8

-0.113E-7

method
19)

zn-z(xn)

-0.183E-3
-0.176E-3
-0.817E-4
-0.158E-4
-0.251E-5

0
0
0
0
0

Method (2.1)

M

14
14
12
10
8
2
2
2
2
2

with (2.8) (a2

yn-y(xn)

0.685E-6
0.696E-6
0.317E-6
0.869E-7
0.123E-7
0.465E-8
0.606E-8
0.225E-7

-0.135E-8
-0.755E-8

= -0.35, V--0.09)

zn-z(xn)

-0.103E-5
-0.987E-6
-0.473E-6
-0.922E-7

0.124E-8
0
0
0
0
0

M

10
10
9
7
6
2
2
2
2
2
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Table 3 (1)

Problem 111, /z = 5/104, E = 10~7, M: number of iterations.
Explicit Runge-Kutta Method (order 4)

X

0.001
0.002
0.004
0.007

0.010
1.0
2.0

10.0
20.0
40.0

100.0

X

0.001
0.002
0.004
0.007
0.010
1.0
2.0

10.0
20.0
40.0

100.0

Cash's

yn-yn

-0.136E- 1
-0.212E- 1
-0.400E- 1
-0.697E- 1
-0.996E- 1
-0.766E-10
-0.751E-10
-0.726E-10
-0.732E-10
-0.701E-10
-0.260E-10

yn

-0.199E-1
-0.299E-1
-0.498E-1
-0.798E-1
-0.109E+0
-0.199E-1
-0.299E-1
-0.109E+0
-0.209E+0
-0.408E+0
-0.991E+0

Table 3 (2)

Absolute Error

method
(2.20)

zn-zn M

0.992E- 2 6
0.199E- 1 6
0.398E- 1 5
0.697E- 1 4
0.996E- 1 2
0.761E-10 2
0.761E-10 2
0.736E-10 2
0.736E-10 2
0.699E-10 2
0.314E-10 2

Ztt

0.996E-2
0.199E-1
0.399E-1
0.698E-1
0.997E-1
0.996E-2
0.199E-1
0.997E-1
0.199E+0
0.398E+0
0.983E+0

Method (2.1)
with (2.16)

yn~yn zn-zn

-0.136E- 5 0.996E- 2
-0.212E- 1 0.199E- 1
-0.400E- 1 0.398E- 1
-0.697E- 1 0.697E- 1
-0.996E- 1 0.996E- 1
-0.808E-10 0.812E-10
-0.810E-10 0.807E-10
-0.754E-10 0.749E-10
-0.677E-10 0.683E-10
-0.408E- 10 0.406E- 10

0.495E- 8 -0.554E- 8

M

6
1

5
5
2
2
2
2
2
2
2
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Table 3 (2)

Cash's method Method (2.1)
(2.19) with (2.8) (a2= -0.35, v= -0.09)

-v y*—yn zn-zn M y\—yn zn—zn M

0.001 -0.143E-1 0.996E-2 17 -0.136E-1 0.996E-2 10

0.002 -0.218E-1 0.199E-1 14 -0.213E-1 0.199E-1 9

0.004 -0.402E-1 0.398E-1 11 -0.400E-1 0.398E-1 7

0.007 -0.698E-1 0.697E-1 9 -0.697E-1 0.697E-1 5

0.010 -0.996E-1 0.996E-1 7 -0.996E-1 0.996E-1 3

1.0 -0.96JE-5 0.636E-5 6 -0.616E-6 0.432E-6 2

2.0 -0.136E-4 0.103E-4 6 -0.881E-6 0.686E-6 2

10.0 -0.475E-4 0.436E-4 5 -0.311E-5 0.289E-5 2

20.0 -0.953E-4 0.910E-4 5 -0.627E-5 0.601E-5 2

40.0 -0.220E-3 0.214E-3 4 -0.145E-4 0.141E-4 2

100.0 -0.205E-2 0.210E-2 2 -0.130E-3 0.136E-3 2
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