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Lang [16] discussed the higher dimensional analogue of Mordell's conjecture for

curves of genus ^2 In terms of hyperbolic manifolds due to Kobayashl [10] and

posed a relative formulation of the problem for algebraic families of hyperbolic

varieties:

If there are an infinite number of cross sections, then the family

contains split subfamilies, and almost all cross sections (i. e., all but a finite

number of cross sections) are due to constant ones.

Moreover In the split case, he conjectured the following :

Lamg's eomjectareo Let M be a projective hyperbolic variety and N any

algebraic variety. Then there are only a finite number of surjective rational

mappings of N onto M.

The main purpose of this paper is to give some affirmative answer to the above

Problem. We also make clear how Lang's conjecture relates to the above Problem

(see (3.1) and the Main Theorem (3.2), (Hi) In Section 3). Several finlteness theorems

motivated by Lang's conjecture were obtained by [15, 23, 8, 28]. In Section 4 of this
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paper we shall show Lang's conjecture for compact hyperbolic Kahler manifolds M

with the first Chern class Ci(M)^0 and for compact complex spaces N ', while we
do not require M and N to be algebraic (Theorem (4.1)).

Let (X, Tt., R) be a compact normal fibre space over a compact complex space
J?1}; i. e., X is a compact normal complex space and n : X^R is a surjective
holomorphic mapping of which general fibres Xt= x ~ 1 ( t ) with t^R are irredu-

cible. Let R be a Zariski open subset of /?, X=x~l(R) and n=7t\X the

restriction of n over X. We say that (X, x, R) is a hyperbolic fibre space if Xt =
n~l(t) are hyperbolic for all t^R ; that is, the Kobayashi hyperbolic pseudodis-

tances dxt are true distances (cf. [10, 11]). We denote by J?reg the set of regular
points of ~R. Assume that Rd~Rres. We set dR = R-R. Let F be the set of all

meromorphic cross sections of the fibre space (X, ft, R) and set F(t)= ( s ( t ) ; s^
F} for t^R. The main result of this paper is the following :

Main Theorem (3a2)0 Assume that (X, TC, R) is a hyperbolic fibre space and

that

(3.3) (X, x, R) is hyperbolically imbedded in (X, T, ~R) along dR

(see Definition (1.3) in Section 1). If there is a point to^R such that F(to) is

Zariski dense in Xto, then there are a compact complex space R' and a surjective

holomorphic mapping A : /?'— > R satisfying the following properties :

( i ) A: /?'—>/? is a finitely sheeted unramified covering, where R'= A ~1(R) and

A=^A\R'. _ _
(i i) There is a bimeromorphic mapping 0 : R'XRX-^>R'xXtQ such that the

restriction @=@\R'XRX is a holomorphic isomorphism from (R'XRX, #', /?') to

(R'XXt0, P, R') as fibre spaces, where nf : R'XRX~*R' and p: R'xXto-*R'
denote the natural projections.

(iii) Moreover, assume that Xto satisfies property (3.1) (see Section 3) or Aut(Xt0) =

{!}, where Aut(X*0) denotes the holomorphic automorphism group of Xt0- Then we
have ~Rf=R and R' = R.

This Main Theorem (3.2) implies an affirmative answer for the above Problem

(see Corollary (3.6) in Section 3). Let (X, ft , R ) be a projective algebraic fibre

Complex spaces are assumed to be reduced and irreducible, unless otherwise mentioned.
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space defined over an algebraically closed field k of characteristic 0 ; i.e., XdRX

Py with the N-dimensional projective space P% over k and n is the projection of

X onto R. Let K be the function field of R and ̂  the generic fibre of (X, ft , R),

which is a projective variety defined over K. Then, assuming the conditions of the

Main Theorem (3.2) for (X, n, R) and (X, K, R), we have the following:

If the set ^(K) of K-rational points of g? is dense, then there is a finite

extension K' of K such that £? X KK' is isomorphic over K' to a variety ^0 defined

over the constant field k.

This is an analogue of Mordell's conjecture for curves over function fields

proved by Manin [18] and Grauert [4], who did not assume condition (3.3). Mordell's

conjecture for curves over function fields is easily reduced to the case of dim R = l

(see, e. g., [18, 27]). In the case where dim Xt = dim /? = !, property (3.1) is nothing

but de Franchis' theorem and moreover we see that condition (3.3) is essentially,

automatically satisfied (see Theorem (5.2) in Section 5). Therefore, in this case, (iii)

of the Main Theorem (3.2) holds and we have K' = K in the above assertion.

Some results in this direction were obtained by [24, 22]. We discuss the

relationships among theirs and the present one (see Remark to the Main Theorem

(3.2) and Remark to Corollary (3.6) in Section 3).

The proof of the Main Theorem (3.2) Is mainly based on the fundamental results

of [2] on hyperbolic manifolds (or spaces). In the case of dim Xt = l, Green [7]

suggested the similar observation to ours and we will discuss it In Section 5.

The author had useful discussions on the subject of Section 5 with Professors M.

Suzuki and T. Nishino, to whom he expresses his sincere gratitude.

§ lo Hypcrbolically Fntore

Let X and R be complex spaces and n : X—»R a proper holomorphic mapping

such that general fibres Xt — n~l(t) with t^R are irreducible. We call the triple (X,

ft, R) a fibre space. If Xt are hyperbolic for all £€E/?, then we call (X, n, R) a

hyperbolic fibre space. Here we define the hyperbolicity for reducible connected

complex spaces exactly In the same way as In [10, 11]. We denote by d* the
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Kobayashi hyperbolic pseudodistance of a complex space which may be reducible

but connected. Set X\A = n~l(A) for a subset

Lemma (1.1) ([29, Theorem 4]). Let (X, x, R) be a hyperbolic fibre space and

A an open connected subset of R. If A is (complete) hyperbolic, then X\A is

(complete) hyperbolic,

Let T(X) denote the Zariski tangent space over X, h a hermitian metric on

X and set \v\h=(h(v, ~~v))112 for v^ T(X). We denote by Fx the infinitesimal form

of the hyperbolic distance dx (see [25]). Royden [25] proved in general that X is

hyperbolic if and only if there is a constant C>0 for any compact subset K<^X such

that Fx(v)^C\\v\\h for all v^T(X)\K. Combining this with Lemma (1.1), we
have the following.

Lemma (1.2). Let (X, it, R) be a hyperbolic fibre space and t^R. Then

there are a neighborhood U of t and a constant C>0 such that

Fx\u(v)^C\\v\\h

for all v^T(X\Ul

Let (X, %s R) be a fibre space such that RuR, 3R = R—R is a proper

analytic subset of R , X = X \ R and x=x\X. If A" is compact, we say that (X, x,

R) is a compactification of (X, x, R).

(1.3)« We say that the fibre space (X, x, R) is hyperbolically

imbedded in (X, 71 , R ) along dR if for any point t e dR, there is a neighborhood

C/C R of t satisfying the following condition :

(1.4) For arbitrary distinct points x\ and %2 of Xt, there are neighborhoods

~X\ U of xt, 1 = 1,2 such that dx\(u-dR)( V i f t X ,

where we set

dx\(u-BR)(V^X, V2nX)=inf{dx\(u-dR)(yi, J2); yt^Vt, i = l, 2}.

It is clear that (X, x, J?) is hyperbolically imbedded in (X, x, R) along

if and only if
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(1.5) for an arbitrary point x^Xt with any t^dR, there are neighborhoods

U of t and arbitrarily small V, W of x such that V d W and dx\(u-dR)

, (X\(U-dR))-W)>Q.

We give a similar criterion of the hyperbolic imbeddedness to [9, Theorem 1].

Lemma (1.6). Let (X, x, R) and (X, ~n, ~R) be as above. Then (X, x, R)

is hyperbolically imbedded in (X, x, R) along dR if and only if for any point t G

BR there are a neighborhood U of t in R and a constant C>0 such that

for all v^T(X\(U-dR)l

Proof, The inequality (1.7) obviously implies that (X, ft, R) is hyperbolically

imbedded in (X, x, R). We show the converse. Assume that it is not true. Then

we can take a decreasing sequence {C7v}"=i of neighborhoods of t in R and

increasing sequence {rv}?=i of positive real numbers such that Uv+i are relatively

compact in Uv, fl?=i U»= {t}, lim^oofi, = +00 and there are holomorphic mappings

fv : D(rv)-*X\(Uv— dR) with ||/i/(0)|U=l, where we set f v ( z ) = f v * ( ( d / d z ) * ) for

z£=D(rv). Then by [2, Lemma 2.1] we have holomorphic mappings yv: D(TV)

-»X\(U»-dR) such that \\g»'(0)\\h=l and \\g'(z)\\h<av(z) on D(rv\ where

rl

Since {^v} converges to 1 uniformly on compact subsets, {^y} is equicontinuous. By

Ascoli-Arzela's theorem, we have a subsequence of [gv] which converges uniformly

on compact subsets to a holomorphic mapping g :C—»Xt- For the simplicity, we

denote the subsequence by the same {g»}. Since ||<7i/(0)|U = l, ||<7'(0)IU = 1, so that g

is not a constant mapping. Take z'^C so that g(zf)^g(0), and put

We may assume that rv>\z'\ for i/ = l, 2, 8 8 ° . Since x°gv(D(rv))c: Uv and li

= +00, we have for any neighborhood U of t and for any neighborhoods Vi of xt

f = l, 2,
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Therefore (X, n, R) is not hyperbolically imbedded in (X, it , R) along dR.

Q. E. D.

The following is a direct consequence of Lemma (1.6).

Corollary (1.8). The fibre space (X, n, R) is hyperbolically imbedded in (X,

TC , R) if and only if for every point t^dR there are neighborhoods V and W

of t such that VdW, V is relatively compact in W, X\(W — dR) is hyperbolic

and X\(V — dR)is hyperbolically imbedded in X\W (in the sense of [11, p. 366]).

§ 2. Convergence of Cross Sections

Let (X, K, R) and (X, n , R) be as in Section 1. In general, a mapping 5 :

R-+X is called a cross section of the fibre space (X, n, R ) if x°s = id. In this

section we assume that (X, n, R) is a hyperbolic fibre space and hyperbolically

imbedded in (X, K , R) along dR. We have the following by Corollary (1.8) and

[11? Section 3]:

Lemma (Id). Let s be a meromorphic cross section of (X, x, R). Then s

extends to a unique meromorphic cross section s of (X, x , R)', moreover, if R

is smooth and if dR is of pure codimension 1 and has only normal crossings, then

s : R—*X is a holomorphic cross section of (X, it , R ).

Let F denote the set of all meromorphic cross sections of ( X , K, R). In the rest

of this section, we assume that R is smooth, and that 3^? is of pure codimension 1

and has only normal crossings. By Lemma (2.1) F coincides with the set of all

holomorphic cross sections of (X, x, R ) and all s^F have holomorphic extensions

s on R. By Lemma (1.1) and the general theory of hyperbolic spaces (cf. [10]) we

see that F forms a normal family.

Theorem (202)0 The family {s; s^F} forms a normal family.

For the proof it suffices to show the following lemma :
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Lemma (203)0 Let the notation be as above. Let {Si/}?=i be a sequence of sv

which converges uniformly on compact subsets of R to s€=I\ Then the

sequence {s»}™=i converges uniformly on compact subsets of R to s.

Proof. Let t^dR be an arbitrary point. Then there is a relatively compact

neighborhood U of £ in R with holomorphic local coordinates system (z1, ..., zn)

(72 = dim R) such that U Is biholomorphic to the ^-dimensional unit polydisc Dn

f = (0 f . . . , 0 ) and

for some l^k^n, where we identify U with Dn. We first consider the case of k

= 1. Therefore 9R^Dn = {zl = Q} and R^Dn = D*xDn-\ where D* = D-{0}.

Let z=(z2
1 ..., zn)<^Dn~l and let 0' be the origin ofDn~\ We show that {svU1,

£')}"=i converges uniformly on compact subsets of DxDn~l to s^1, #'). Suppose

It does not hold. Put 5 (0, O') = x. Then there is a neighborhood Wofx such that

W is biholomorphic to an analytic subset of the unit ./V -dimensional open ball BN

with center at the origin in CN and x corresponds to the-origin. We Identify W with

the analytic subset of BN. By the assumption, for any positive integer ^e N and any

S >0, there are an Infinite number of Sy such that

X D(8 )n~

We denote by BN(w ; r) the open ball of radius r>0 with center at w in CN and

put BN(r) = BN(O; r). There are /^0^ ^V and 0<5o<l such that ~s(D(l/f*0)

xD(do)n~1)^BN(l/8\ where £)(1///0) is the closure of D(l/jM0). Let dD(l/f*) =

— D(I/fji) be the boundary circle of D ( l / f t ) . Since {s"y}i/ converges

uniformly on 3D(l/^)xD(50)7Z~1 to 5, we can choose a subsequence {5^}

{5i/}v and a sequence {^}^=i of ^eDt^o)11"1 such that lim^«,;2£= O7 and

( ' }

Hence there are points z^D(l/fjt), f* = l, 2, ... such that

(2.5)
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Put Sf*=~s»ft(D(l/f*\z'lt)nBN(xft; 1 / 8 ) , Then by (2.4), Z? are l-dimenslonal
analytic subvarieties of BN(XV ; 1/8). Thus the euclidean volumes Vold^) of 2?
in BN(xp\ 1/8) satisfy

2 0 = 1,2,-.

Let h be a hermitian metric on X and VoU(^ ) denote the volumes of S? with
respect to h. Then there is a positive constant C\ such that

(2.6) VoUU^JiCiX), 0 = 1,2,-.

Let Ifl (resp. H2Fx.D%xDn_1) denote the 2-dimensional Hausdorff measure defined by

h (resp. FX\D**D*-I). Then there is a positive constant £2 such that

(2.7) VoU^)^C2Fl(^X 0 = 1, 2,

Put 3^ = s^(0, z'JmdZ^Zr-b,}. Then we have that m(S^ = Hl(S%\ We
may assume that U is chosen so that Lemma (1.6) holds. Hence there is a positive
constant Cs such that

(2.8) m(s^m(s^^c^H^^(z%i 0=1, 2,
Let a denote the Poincar6 metric on D* and HZ the 2-dimensional Hausdorff

measure defined by a. Then we have by the decreasing property of hyperbolic

distances for holomorphic mappings that

where €4 is a positive constant. It follows from (2.6)-(2.9) that

This is a contradiction.

Now we consider the general case of k ̂  1. Then we have that Dn — dR = (D* }k

XDn~k. Applying the above result, we infer that {^i/Ji/ converges uniformly on

compact subsets of (D*)k~1XBn~k+1 to 5. Thus the induction on k completes the

proof. Q.E.D.
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§ 3o Malm TiaeoFem

Let (X, n , R ) be a compact fibre space and a compactlficatlon of a fibre space

(X, n, R\ Assume that X Is normal and RdRreg. Let P denote the set of

meromorphlc cross sections of (X, K, R) and put

r(t)={s(t);

for

Relating to Lang's conjecture In Introduction, we consider, In general, the

following property for a compact complex space Y :

(3.1) For any compact complex space N, there are only a finite number of

surjectlve meromorphlc mappings from N onto Y.

See the next Section 4 for several sufficient conditions for Y which Imply property

(3.1).

(3o2)0 Assume that (X, n, R) is a hyperbolic fibre space and

(3.3) (X, x, R) is hyperbolically in (X, z, R) along dR.

If there is a point to^R suck that F(to) is Zariski dense in Xto, then there are

a compact complex space Rf and a holomorphic mapping A :R'-^R satisfying the

fallowings :

( i ) A: Rf—*R is a finitely sheeted unramified covering, where /?'= A ~1(R) and

A=1\Rf.e
(II) There is a bimeromorphic mapping 0: R'XRX—»RXXtQ such that the

restriction 0\RfXRX is a holomorphic isomorphism from (R'XRX, x', R') to (R'X

Xto, P, R') as fibre spaces, where nf: RfXRX-»Rf and p : RfXXt<r»Rf denote the

first projections.

(III) Moreover, assume that Xto satisfies (3.1) or Aut(JG0)={l}, where Aut(Xt0)

denotes the holomorphic automorphism group of XiQ. Then we have R'=R and
p^ _ oK — K.

Remark, In the previous paper [22] we proved a similar result to the Main

Theorem (3.2) In the case where (X, n, R) Is an algebraic smooth fibre space and
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the tangent bundle T(Xt) is negative (see, e.g., [22]) for generic t^ R, while we did

not assume any condition such as (3.3). If T(Xt) is negative, then Xt is hyperbolic

and satisfies property (3.1) (see [12, 15, 23, 28, 8]).

We first reduce the Main Theorem (3.2) to the case where R is smooth, 3R is

of pure codimension 1 and has only normal crossings, and X is normal. Assume the

assumptions in the Main Theorem (3.2). By Hironaka's theorem, there is a

desingularization a: RQ—»R such that R0 is smooth and RQ—a~l(R) has pure

codimension 1 and only normal crossings. Put RQ = a~l(R). Then a\'Ro : Ro—*R is

biholomorphic. Put

XQ =

Let ;TO' : XQ-+RQ and XQ : Xo~*Rf be the natural projections. Let 0 : Xg-^Xo be
the 'normalization of XQ. Since XQ is biholomorphic to X and X is normal, X is

biholomorphic to /J'KJfo'X which is denoted by XQ. Put n 0= it o'°£ and XQ =

it o I XQ. We easily obtain the following :

Lemma (3A)0 Let the notation be as above. Then the fibre space (XQ, KQ, RQ)

is hyperbolic and hyperbolically imbedded in (XQ, KQ, RQ) along dRo.

Proof of Main Theorem (3.2). By Lemma (3.4) we may assume that R is

smooth and that dR has pure codimension 1 and only normal crossings. Then, by

Lemma (2.1) all s^F are holomorphic and have holomorphic extensions on R.

Therefore F is identified with the set of holomorphic cross sections of (X, n , R ).

We endow F with the compact-open topology. It follows from Theorem (2.2) that

F is compact. By [3] F carries a structure of complex space such that the mapping

V : ~RxFE3(t,s)-*s(t)^~X

is holomorphic. We show that there is an irreducible component FQ of F such that

¥ ( R X F Q ) = X. Assume that there is no such FQ. Take any irreducible component

Fi of r and set Fi(t)={s(t); s^Fi} for t^R. Then we have

Hence AUo) is a proper analytic subset of Xt& so that F(to) is a proper analytic

subset of XtQ. This is absurd. We denote W \ R XF0 by the same letter W. Thus
we get a surjective holomorphic mapping
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¥ : ~

Let T(X) (resp. T(R)) denote the Zariski tangent space over X (resp. R).

Set T(R)=lr-lT(R) and let n* : T(X)-»f(R) be the morphism Induced by

T*: T(X)-+T(R). Set

F=\Jxex{0xf=Uom(T(R)x, T(X)X); x*°ax = id}.

Then F naturally carries a structure of a complex space and the natural projection

q: F-^X Is holomorphlc. Put Fx = q'l(x) for x^X. The differential s * ( t ) :

T(R)t-^T(X)s(t) of seFo naturally defines an element s*(t)^F8(». We set

which Is a holomorphic mapping. Since FQ Is compact and Fx Is an analytic subset

of some CN, W'(n(x), r*)r\Fx is a finite set Putting E= ¥'(RxrQ),wQ have a

finite cover over X

q\E: E-+X
which may be ramified. Let k be the number of sheets of the cover q\E : E-^X and

set

f]x — ~r-2 ae(q\E)-i(x)O

for x^X, where the sum Is taken with counting multiplicities. Let v be a

holomorphlc vector field on an open subset UaR. Then v naturally defines a

holomorphlc cross section v^H°(X\ U, T(/?)). Here one notes that T(R) is a

holomorphic vector bundle. Therefore rjx(v)^ T(X)X for x^X\ U and

is a holomorphlc vector field. Since X is normal, rj(T}) is extended as a holomorphic

vector field on X\U. By definition we have

Therefore TJ defines the holomorphlc horizontal direction field In the fibre space (X,

ft , R ). We see by the general theory of fibre spaces that (X, K , R ) Is a fibre bundle

with typical fibre Xt0 and with structure group Aut(XtQ) such that for a sufficiently
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small neighborhood U of a point t^R, there Is a trivialization X\ U = UxXto

and y ( v ) = v@O^T(U)®T(Xt0)^ T(X\ U) for v^T(U). It follows from [26]
that the bundle (X, n , R ) comes from a monodromy pe Hom(;ri( /? ), Aut(Xt0)\

where Ki(R) denotes the fundamental group of R. Since Aut(XtQ) is finite ([11,

Theorem 9.2]), we have a finite unramlfied covering A :R'—»R such that Is a

holomorphic Isomorphism 0 from the fibre space ( R ' X - R X , f t ' , R') onto (R XXt0,

~J,~R'), where "p : ~RfX^~X-^Rf and ~£~: 7F' X A"*0->7P are the natural projec-

tions. Therefore we have proved ( 1 ) and ( li ).

If Aut(Xt0)={l}, then p Is trivial, so that (X,~x,R) Is globally trivial.

Assume that Xt0 satisfies (3.1). Let U be an arbitrary simply connected subdomaln

of R. Then we have a trivialization, X\U= UxXtQ- The holomorphic mapping

W | U X Fo : [7 X /V-> 17 X Xto Is written In the form

Set ^ I t fxToU, s)=U,&(s))et7x.X"f0 for (f, s)eE7x/o. Then ^: F0Bs

*-»<pt(s)^Xt0 are holomorphic surjections for all £G [7. It follows from property

(3.1) that (fit is constant In t. We denote It by 0. Thus we have

Hence all s^F0 are locally constant cross sections and 7jS(t) = l$*(t) for s^Po and t

^R. Thus we deduce that p is trivial and then (X, it , R) Is globally trivial.

Q.E.B.

By the above proof we have the following corollaries.

Corollary (3o5)0 If R is smooth and dR has only normal crossings in the

Main Theorem (3.2), then A : R'— »R is an unramified Galois covering and 0 is

a holomorphic isomorphism between the fibre spaces,

Corollary (3o6)0 Let the notation be as in the Main Theorem (3.2). Assume

that X and R are algebraic varieties and that F is infinite. Then there is a fibre

subspace (Y, n\ Y, R) of (X, K, R) (i. e., Y is an irreducible complex

subspace of X and ( Y , n \ Y , R ) is a fibre space) satisfying the following

properties :

( 1 ) Y t= ft~l(t) are irreducible curves for
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(ii) Let a: Y f— •» Y be the normalization of Y and set x ' = n °a, Y' =

n'~l(R) and n — Tt'\ Y'. Then there is a bimeromorphic mapping q> from Y'

onto RX Yi with some t^R.such that (p—<p\Yr is a holomorphic isomorphism

of ( Y'9 nf, R) onto (Rx Y/, pi, R)as fibre spaces, where pii Rx Yt'-*R is the

natural projection,

(iii} F contains an infinite number of rational cross sections of (Y , n\ Y , R)

and hence of (Yr, Tt'.R], all of which, except for a finite number of ones, are

due to constant cross sections of (Rx Yt', pi, R).

Proof. By the proof of the Main Theorem (3.2), F Is a compact algebraic

variety of positive dimension which may be reducible. One can find a compact

Irreducible curve CcF such that the dimension of the of the holomorphic

mapping

V: ~RxC^(t,s)^s(t)^~X

isdim/? + l. Set~F"=ST(7exC). Then T and ~Yt = ¥ ( t, C ) are Irreducible. Put

Y = (x\ Y)~l(R). Then (Y,x\Y,R) is a hyperbolic fibre space and hyper-

bolically imbedded in ( Y , it \ Y , R) along QR. Hence our assertions easily follow

from the Main Theorem (3.2) de Franchis' theorem (cf. Section 4, a)). Q.E.D.

Remark, RIebesehl [24, Satz 6.3] proved Corollary (3.6) in the case where R

— R.Risa smooth curve, XdRXPN(C), n is the restriction over X of the

projection from RxPN(C) to R and

(3.7) every fibre Xt with t^R carries a differential metric with strictly negative

curvature.

(See [24, Section 1].) By [12] the condition (3.7) implies that Xt Is hyperbolic, and

property (3.1) holds for such Xt (see [8, 28]).

Let A be a simple Abellan variety of dimension n and C an

algebraic curve contained In A. Let A<^PN(C) be an imbedding such that there Is

no hyperplane containing A and there are hyperplanes Hi, ..,, Hn-\ such that Hi H

— nHn-inA^C. Let PN(CY be the dual projectlve space of PN(C) and <H>

denotes the corresponding point of a hyperplane Hc:PN(C). Let R be the linear

subspace in PN(CT generated by <Hi>, „,, <#„-!>, X=\J<H>**{<H>}x(HnA)
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CIRXA and n : X-+R the natural projection. Since any proper subvariety of A is

hyperbolic ([6, Theorem 1]), (X, n, R) is a compact hyperbolic fibre space and

contains a trivial subfamily CxR. One notes that Xt are of general type for t^R

and hence satisfy (3.1) (cf. Section 4, b)). Let F be the set of all rational cross

sections of (X, n, J?). We show that F(t) is not Zariski dense in Xt for any t^

R. Assume that there is such a point to^R. Then by the Main Theorem (3.2) we

have an isomorphism

0: RxXt^XdRxA.

We set 0(t, x} = (t, <p(t,x))^RXA We have a holomorphic mapping R^

t>-*<p(t,x)^A for every fixed x^Xtv Since R = Pn~2(C\ v(t,x) is constant

in t. This is a contradiction.

Here one notes that the metric on a curve in A induced by the flat one does not

necessarily have the strictly negative Gaussian curvature. For instance, let C be a

hyperelliptic curve of genus 3 of which Jacobian variety A is simple. By comparing

the dimensions of moduli spaces of hyperelliptic curves with that of polarized

Abelian varieties which are not simple, one easily sees the existence of such C. Then

by [17], the Gaussian curvature of the metric on C induced by the flat one on A

vanishes at the Weierstrass points of C. (Unfortunately, the remark of [16, p. 780] is

false, but Green [6] proved the hyperbolicity of a proper subvariety of a simple

complex torus by a different method.)

§ 4» Lang's Conjecture and Property (3.1)

In the Main Theorem (3.2) we considered property (3.1) which is related to

Lang's conjecture in Introduction. It is conjectured that compact hyperbolic spaces

will satisfy (3.1). We first recall several known results on sufficient conditions

implying (3.1) from the view point of hyperbolic manifolds.

a ) The case of curves. Let C be a compact complex algebraic curve. Then C

is hyperbolic if and only if the genus of C is greater than 1; in this case, property

(3.1) is nothing but de Franchis' theorem.

b ) The case of higher dimension. Let M be a compact complex manifold.

Kobayashi and Ochiai [15] proved that if M is of general type (cf. [15]), then there
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are only finitely many surjective meromorphic mappings from any compact complex

manifold onto M.

c ) The case of surfaces. It is recently proved by [ 19 ] that a complex

projective smooth surface is of general type If and only If It Is measure -

hyperbolic In the sense of [10, Chap. IX]. In general, hyperbolic spaces are measure-

hyperbolic. Combining these with the above Kobayashi-Ochiai's result b), one sees

that complex projective hyperbolic surfaces satisfy (3.1).

See [8, 15, 23, 28] for the other related results.

In this section we show the following partial answer to Lang's conjecture, while

manifolds are not assumed to be algebraic but Kahler.

Theorem (4.1). Let M be a compact hyperbolic Kahler manifold with Ci(M)

^0, and N a compact complex space. Then there are only finitely many surjective

meromorphic mappings from N onto M,

Proof. By HIronaka's theorem on deslngularlzation, we may assume that

N Is smooth. Then all meromorphic mappings from N Into M Is holomorphic ([11,

Section 3]). Let Hol(JV, M ) be the set of all holomorphic mappings from N into

M endowed with compact-open topology. By [3] Hol(N, M ) carries a structure of

complex space such that the mapping

Is holomorphic. Since M Is compact and hyperbolic, Hol(JV, M) Is compact. Let

S be the complex subspace of all /eHol(W, M ) such that f ( N ) = M. It Is noted

that E is open and closed In Hol(N, M), We show that dim 3 = Q.

Assume that dim S>0. Then we have a holomorphic mapping fEiS and a non-

trivial Infinitesimal deformation o^H°(N, f~lT(M)} of /, so that p°q°a=f,

where q : f~lT(M)-*T(M) Is the natural homomorphlsm induced by /, and p :

T(M)— »M is the projection. Set Z = q°a(N). Then Z Is a compact complex

subspace of T(M) different to the zero-section, and p\Z:Z— »M is surjective.

Therefore p\Z : Z—*M Is a finite ramified covering, of which sheet number Is

denoted by /. Taking Into account the elementary symmetric polynomials of degree

/ In 3/1, ..., yi£=(p\ Z)~l(x) for general x^M, we find a non-zero holomorphic

cross section T<^H°(M, SLT(M)), where S1T(M) denotes the /-th symmetric
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tensor power of T(M). Since M is hyperbolic, the universal covering M of M Is

hyperbolic, so that there Is no euclidean factor in the de Rham decomposition of M

(cf. [14, Chap. IX, Section 8]). By [13, Theorem 7] we see that H°(M, SLT(M)) =

{0}, while T±Q. This Is a contradiction. Q.E.D.

§ So to the Ca§© of Xt=l.

By making use of the method of [2], Green [5] and A. Howard independently

proved the following theorem :

Theorem A. Let M be a compact complex manifold and D a union of

irreducible hypersurfaces D\, ..., Di which may be singular. Then either

( i ) M — D is complete hyperbolic and hyperbolically imbedded in M,

(ii) there is a non- constant holomorphic mapping /: C-^M — D, or

(iii) there is a non-constant holomorphic mapping f: C—*Diir\aa°riDik—

(Dtk+l\J'~ \JDu) for some choice of indices {flf O O B , ii} = {l, ..., I},

Applying this Theorem A or more precisely the arguments of the proof, Green

[7] claims the following :

(5.1) Let 7 : W— *D3d~3 be a local universal deformation of stable curves of genus

g ̂  2 and S ( W ) denote the set of singular fibres in W . Then (W-S(W),

7\(W-S(W)\ D3g-*-r(S(W))) Is hyperbolically imbedded in (W, 7,

) along r(S(W)).

Then he [7] suggested a proof of Mordell's conjecture for curves over function fields

(cf. [18,4]).

In general, W may have singularities, while the fact that Di are locally principal

hypersurfaces was crucial in the proof of Theorem A. It seems to be unknown if the

claim (5.1) holds in its form. Here we show it in the case where the base space (the

parameter space) is 1 -dimensional. Mordell's conjecture for curves over function

fields is easily reduced to the case where function fields have transcendental degree

1 (see [18, 27]). Therefore, to get a proof of that conjecture, it is sufficient to consider

this case.

Let R be a smooth irreducible curve and R a non-empty Zariski open subset

of R. Then 8R Is a finite set of points of R. Let (X, p, R) be a fibre space such
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that X is smooth, Xt are smooth Irreducible curves of genus g^2 for all t€=R.

§02)o Let the notation be as above. Then there is a compactifica-

tion (X, / / , / ? ) of (X, p, R) such that (X, p, R) is hyperboticatty imbedded in

(X, "pT, ~R} 9R.

Localizing the problem around the points of 31?, we let (Z, //, D*) be a fibre

space such tha,t Z Is a 2-dimensional complex manifold, p, is everywhere of rank 1

and Zt are smooth Irreducible curves of genus g^2 for all t^D*. For the proof of

Theorem (5.2) it suffices to show the following lemma.

Let (Z, n, £)*) be as above. Then there is a fibre space (Z,

IJL, D) such that ~Z\D* = Z,~fJi\Z = f* and (Z, n, D*) is hyperbolically imbedded in

(Z,~P,D)abng 3D* = {0}.

Proof. We put di : DB^-^eD for a positive integer l^N. By [20,

Sections 1 and 3] there are some l^N and fibre spaces (Z, //, D) and (Z'9 //', D)

such that

I ) Z=~Z\D* and fJt=~j*\Z,

II ) (Z', !*', D) is the lifting of (Z, ~jt9 D) by dly

ill) Z' Is normal,

iv) the order of any Irreducible component of Zo is 1,

v) the singularities of Zo are only ordinary double points,

vl) the singularities of Z' are Isomorphic to the normalizations of the singulari-

ties at the origin defined by the equations of the form

In C73, where k and q are coprlme positive integers and k>q] moreover, the local

irreducible components of Zo at the singularlt:es are defined by x =0, y = Q or xy —

0 (cf. [1, Section 2] and [21, Section 4]),

vii) there Is no smooth rational curve in Zo which Intersect the other Irreducible

components of Zo at 1 or 2 points. Let Oi : Z'— »Z be the natural holomorphlc

mapping such that $1° JJL' = p, °di. Then 61 Is a finite holomorphlc mapping, Zo^

6ll(ZQ) and

(5.4) 0i\Z' : Z'—*Z Is an unramlfied covering,
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where Z'=Z'\ D*. Let U be a neighborhood of the origin 0, x^ Z0, f = 1, 2, and

Vt neighborhoods of xi such that ViCL~Z\ U. Put U' = dr1(U). Let x'i be an

arbitrary point of dll(xi) and V'(x'i) the connected component of 6Tl(Vi)

containing x\. It follows from (5.4) and [10, p. 48, Proposition 1.6] that

Therefore it suffices to show that (Zf ', //, D* ) with // = p r \ Z' is hyperbolically

imbedded in ( Z f , yf, D) along {0}. Assume that this is false. By vi) any local

irreducible component of Zo at any point is principal. Hence, as in Howard's proof

of Theorem A, we can use Hurwitz's theorem to show that the locally uniform limit

of a sequence of non-vanishing holomorphic functions is either non-vanishing or

identically 0. By the assumption, the same arguments as in the proof of Lemma

(1.6) yield a non-constant holomorphic mapping /: C7— »Zo which is a locally

uniform limit of holomorphic mappings /„ : D(r^)— »Z', v = l, 2, ..., where TV t oo

as y— »oo. We see by vi), vii) and Hurwitz's theorem that / maps £7 into an

irreducible curve of genus ^2, into an elliptic curve minus one point or into Pl(C)

minus three points ; here it may be only the non-trivial case where f(C) is

contained in a singular rational curve C which intersects at least one of the other

irreducible components of Zo at a point P and has a node P' . In this case, assume

that P'e/(CO- Applying vi) at P', one sees that x°f=0 and y°/=0. Hence /

must be constant. This is absurd. Thus we have P'$f(C). Because of the same

reason, we have P^f(C). Taking the normalization of C, we deduce that / maps

C into Pl(C) minus three points. In any case, we have a contradiction. Q.E.D.
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