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Introduction

In his paper [46], P. Wagreich introduced two numerical invariants, the
geometric genus p, and the arithmetic genus p,, to the normal two-dimensional
singularity (cf. Notation). After his definition, a normal two-dimensional
singularity (V, p) is called elliptic if the condition p(V, p)=1 holds. In this
decade, a great deal of work has been done on this singularity (e.g., [28], [34],
[431], (48], [49], [50], [51],..., etc). Among others, H. B. Laufer has given the
criterion for the absolute isolatedness (cf. Section 4 of this paper) and proved
the theorem which identifies Artin’s fundamental cycle with the maximal jdeal
cycle for the minimally elliptic singularity (Theorem 3.13, Theorem 3.15 of [28])
as analogies of the casc of the rational singularities. The minimally elliptic

singularity is a special elliptic singularity characterized as the Gorenstein elliptic
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singularity with p,=1. Following [28], S. S. -T. Yau developed his theory in
the case of general elliptic singularities. Among his results, the criterion for the
absolute isolatedness and the identification theorem are extended to more
general classes, compared to the minimally elliptic singularities ([48], [50], [S1]).

The goal of this paper is Theorems (7.4) and (7.8), which extend the results
on the subjects mentioned above to some general forms in the case of normal
two-dimensional Gorenstein singularities with p,=1 (see also guidance for
contents).

It seems that our method is quite different from those of H. B. Laufer and
S.S. -T. Yau, even though we restricted our concern to the case of p,=1. Ours
is rather similar to the method of M. Reid [36]. One of the most important
tools for our study is the p,-formula, which is expressed in terms of the resolution
process of the singularity by the composition of the blowing-ups with smooth
centers. The geometric genus p, can be computed by the infinitely near Hilbert-
Samuel functions in the sense of (2.1). (This is rather conceptual. See also
guidance for contents below.)

Let us explain the content of each section. We assume the singularity is
defined over the infinite field after Section 3, the algebraically closed field after
Section 4, and the complex number field after (7.8).

Section 1. For the later use, we shall collect some general results about
blowing-up. Conceptually, the p,-formula (2.7) belongs to the formula (1.3).

Section 2. A p,-formula for the two-dimensional hypersurface isolated
singularity is given in the terminologies in this section as follows ((2.1) and
Theorem (2.7)):

= bV, = 3 {105)=2(0r,_ ),

where

107) ~1(0p,) =+ (pi=D@2p,— 1) 5 LW Wi

J<i i
+ (2= D)W+ L (o= 1)p(Or,)
for all ;.

Section 3. The virtual arithmetic genus p,(Y,) of the maximal ideal cycle
Y, is discussed. Combining the equality (1.3) and the results by P. Wagreich
and H. B. Laufer, we shall prove the formula (3.4) which relates the integer
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pY,) with the ring theoretic information of the singularity.
Section 4. Based on the results of the previous seciions, we shall prove the
following decomposition theorem of Zariski’s canonical resolution.

Theorem (4.6). Let (V, p) be a normal two-dimensional Gorenstein singu-
larity with p V, p)=1. Then Zariski’s canonical resolution is obtained by
the composition of the blowing-ups with smooth centers as follows:

U=Uj— U «— Uy — -+ — Uy
(*) Ul Uty Ut s Ul W Wy Ul

VaVy e Vi e Wy e e - Vg,
where V < U is the minimal embedding, \r; the blowing-up of U;_, with smooth
center I';cV,_,, and V; the strict transform of V,_, 1Si<N. Moreover we
have: There is an integer M (< N) such that (i) V; is normal for i< M, (ii) ;
is a blowing-up with point center p; such that (V;_,, p;) is Gorenstein of maximal
embedding dimension of multiplicity =3 (see Section 4 about the definition),
for i< M, (iii) at each stage, in which V, is normal, there is at most one non-
rational singularity, (iv) mult,Vy, <2 for any point q € Vy, and (v) in Zariski’s
canonical resolution for the singularities of V,,, each normalization is trivial or

is obtained by one blowing-up along (reduced) P'.

Section 5. The adjunction formula (5.4) which induces the canonical bundle
formula (5.2) in the resolution diagram (=) of (4.6) (not necessarily with p,=1)
is established by following the method of J. Wahl and J. D. Sally.

Section 6. We shall collect general results on the dualgraph theoretic studies
of the singularity with p,=1. Among all the effective divisors we shall especially
characterize the elliptic sequence of Yau by numerical condition, by which the
elliptic sequence becomes more useful.

Section 7. By using the results in all sections, we shall reach the main
results of this paper.

Theorem (7.4). Let (V, p) be a normal two-dimensional Gorenstein sin-
gularity with p(V, p)=1, yr: (V, A)=(V, p) the minimal resolution of (V, p)
and E the minimal elliptic cycle on (V, A).

() (V, p) is absolutely isolated if and only if the inequality (E)*< —3
holds.

(ii)y Zariski’s canonical resolution gives the minimal resolution of (V, p)
if and only if the inequality (E)*< —2 holds.
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In addition we shall extend the identification theorem about the fundamental
cycle to the following corresponding theorem between Zariski’s canonical resolu-
tion and the minimal resolution without the condition about the integer (E)2.

Theorem (7.8). Let (V, p) be a normal two-dimensional Gorenstein sin-
gularity over C with p(V, p)=1. Let yr: (V, A)—(V, p) be the minimal resolu-
tion of (V, p) and {Zy; i=1,..., 1} the elliptic sequence on (V, A) (cf. (6.3)).
Let us consider Zariski’s canonical resolution ¢: V,—V and the following
commutative diagram:

Let the sets of indexes {iy,..., i,,} and {ji,....J,,} be the subsets of {1,..., N}
defined canonically in (4.7) and (7.7). (Note especially that i,< j, for all h.)

(i) There is a sequence of the integers 1<k, <---<k, =1 such that the
following equalities hold:

ki
i; Zp, =14(W;) =" =14(W},) ,
kn '
2 Ly =t (W) ==1(W},),
i=kp-1+1
kpg
ik . ZB;=T*(W:',,9) = =T*(Wj,,g) .

(ii) The equality k, _=I1—1 holds. Hence the divisor (W) (==
(W}, by (i)) is the minimal elliptic cycle on (¥, A) (cf. (6.8)).

The following diagram gives a relationship of the sections in this paper.

§2 §5
\ \
§1 §4 > §7
\§3/ 56/

For more details about the contents of the individual sections, we refer to
their introductory remarks.

This article involves a certain amount of material of an expository nature
for the convenience of the reader.
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I am very grateful to Professor S. S. -T. Yau for the inspiring discussions
during his stay in Kyoto. In particular, (i) of Theorem (7.4) was suggested to
me by him as a Conjecture at that time. During the preparation for this paper,
1 have learned so many basic facts about blowing-up and others from Professor
H. Hironaka. For that I am also very grateful to him. [ would like to thank
Professors K. Saito and I. Naruki and other members of the singularity seminar
and the complex analysis seminar at the Research Institute for Mathematical
Sciences of Kyoto University for their encouragement, interest, and useful
suggestions.

After having submitted the early version of this paper, I received some papers
about near topics of Chapter 1 of this paper from Professor M. Morales ([54],
[557, [56], sec (1.4) and (3.5) of this paper). For that [ am very grateful to him.

Theorem (4.6) and (i) of Theorem (7.4) have already been announced in [44].

Notations. Let (¥, p) be a normal two dimensional singularity and :
(V, A)—(V, p) a resolution with the decomposition into the irreducible com-
ponents of the exceptional set A= \'3 A;. Then we use the following notations
in this paper: a

The geometric genus of the singularity (V, p) is the integer p,(V, p) defined
by p,(V, p)=dim R'1,0; [46].

The arithmetic genus of the singularity (V, p) is the integer p,(V, p) defined
by pAV, p)=sup {p D) | D: the effective divisors on ¥ whose supports are
contained in A}. Here p,(D) is the virtual genus of D [46].

Artin’s fundamental cycle for Y is the divisor Z, which is the minimal
element among the set {D; the non-zero effective divisor on ¥ whose supports are
contained in 4 and satisfies the conditions D- 4;<0 for j=1,..., m} [4].

m

The maximal ideal cycle for ¥ is the divisor Y, defined by Y, = j;l (IS"TP
vi(f))- A;, where v; is the valuation on Oy , defined by v,(f)=the vanishing
order of Y*(f) on A; for fe O, ,, 1< j<m [48].

Let D be an effective divisor on ¥. Then we denote the supports of D by
|D|.

Let E be an effective divisor on V with |E|<A4. Then E is a minimal
elliptic cycle if p,(E)=1 and p,(D)<0 for any non-zero effective divisor D such
that D< E [28].

For details about the materials above, we refer to the references cited after
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them. See [4], [8], [26], [28], [30], [31], [43], [46], [48], [52] for the basic
facts on two-dimensional singularities and those numerical invariants.

Chapter I. p,-Formula and Hilbert-Samuel Functions

§1. Generalities of Blowing-up

(1.1) In this section, we shall collect some general results concerning
blowing-up which we will use in this paper. First we shall discuss the computa-
tion of the difference of Euler-Poincaré characteristics of the structure sheaves
of the projective algebraic schemes by blowing-up. Second we shall discuss the
description of the strict transforms of the varieties.

(L.2) Let V be a projective algebraic complete scheme and I' a closed
subspace of V which is defined by the Oy ideal sheaf #;. Let yy: ¥V, -V be the
blowing-up of V with center £, and ., the invertible Oy, sheaf defined by £,
=y~1#,. Then, for the function

k — x(FF[LF); NU {0} — Z,
there exists a polynomial P(t) € Q[t] such that
P(k)=y(FE|FEY) k>0,

In fact, this polynomial P(t) is given in the following form. P(t)=x(O,
FE[ L5 (see [7], [15]). We note the following equality.

Proposition (1.3). Let the situation be as above. We have the following
equality:

10y, = 1(Or) = T (P()—1(T', HF)} .
Here, if V, is an empty set, regard Oy, as the zero sheaf.

Proof. By the theorem of Grauert-Remmert (Theorem 2, 1 Chapter IV[6],
or E. G. A. III (2.6.1) [15]), there is an integer k; (=0) such that R/ (£&)=0
for any k=k,, and for any i=1. By the theorem (2.3.1) E. G. A. III [15], there
is an integer k, (=0) such that the canonical morphism £k—.(£E) is an iso-
morphism for any k=k,. We take an integer k' Zmax (k,, k,). It follows that

k'~1 — — — ,
20p) = k;() WV, 28) =2V, L5} +2(Vy, SE)

k=1 - ,
=% P(O+UTy, 58).
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By Leray’s spectral sequence for
1V, £E) = §>_’O(~1)"x(7, R (#E))=x(V, #F) .

Here, the second equality follows from the assumption on the integer k'.
On the other hand, we have

A1 _ _ — ,
1On) = XV, I = (V. I} 0V, A1)
k=1 _ )
= T 1IHIED (V. I

The assertion follows from the above equalities.

Remark (1.4). Consider the function k—y(I', Op/#tY); NU {0} - Z, in
the above situation. There is a polynomial Q(f) e @[] such that

Q(k)=x(0y|s£E+) k>0.

Let the degree of Q(t) be s and {a;, i=0,..., s} the integers defined by Q(z)
s ; k’
-3 as_,.<“l?’ . We have the equality 3 {P(k)— (I, £X/.£51)) = —Q(—1)
i=0 k=0

= —a,, for large integer k'.
Hence by (1.3), the equality

x(Op)—x(Op)= —a,

holds. In this form, (1.3) is proved for the special cases by D. Kirby [24] and
J. Lipman (23.2) [30] (see also Morales [54, 55, 56]).

(1.5) Let V' be a scheme embedded in a scheme U and I” a closed subspace
of U defined by Oy ideal sheaf I,. Let y: U,—U be the blowing-up of U with
center I, and @ the closed subspace of U, defined by Io=y~'I,.. The strict
transform of V by s is defined as the minimal closed subspace V; of U, such that
Vily,~e=¥~'(V=TI). Then the ideal sheaf I, for V; is given by

(1.5.1) I, =\U@I,: 1% in Oy,
k20

(see 0.42 of [11], [21]). The map ¥ |,,, which is the restriction of y to V,, is the
blowing-up of V with center 1.0, ([21]).
We shall need the following lemma for later arguments.

Lemma (1.6). Let the situation be as above. (i) The equality I5nly,
=14 Iy, holds for k=0. (ii) The equality Y. (I%-Iy) =I5 ny(Iy) in
V(Oy,) holds for k=0.
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Proof. (i) The relation I§nI, 2Ik-I,, is clear. We shall show the
converse inclusion relation. The assertion is local; hence we restrict ourselves
to the relatively compact subdomain of U. Then there is an integer v, such that
the equality I, =(¥~tI}: I%) holds for k>v,. Since I% is an invertible O, -ideal
sheaf, we have the equality I%-I, =I5ny~'I, for k=v,. Wehave Yy, n
Itvo= I I, < Iy - (I50 Iy, ) S Iste n Iply, =I5 0 (Ip 0y~ y) =15t
Yy, for k=0. Hence we have the equality I4*vo. I, =1y -(I§nIy,) for k=0.
Since Iy is Oy, -invertible, the equality I%-I, =I%5n1I,, follows for k=0.

(i) The equality Y. (I%nIy)=v.(I6) NY.(Iy,) in Y(Oy,) can be easily
checked. Thus the equality (i) induces the assertion. Q.E.D.

Lemma (1.7). Let the situation be as in (1.3). Suppose that the center I’
of the blowing-up {r is smooth and connected and that V'is a locally hypersurface
in a neighborhood of I

Then we have the equality P(k)=y(I', #%|#%Y) for k=p. Here the
integer p is the multiplicity of V at points in a Zariski open set of I'.

Proof. We shall show that the integers k, and k, in the proof of (1.3) can
be taken to be the integer p. Hence the problem is local. From now on, we
restrict ourselves to the following situation. We employ the notations in (1.5)
and assume that Vis an open set of ¥ such that V has an ambient manifold U
and that the defining ideal I,, of Vin Oy is Oy invertible. Since the center is
smooth, we have the following equalities; ¥ ,(I%)=1% for k=0, and R¥{,.(I%)=0
for k=0,i=1. By (i) of (1.6), we have

0—I4-I,, — I — I§-0y,, —> 0, for k=0.

Taking the direct image ¥, we have

0 — ¥ (I§-1y,) — If — Y4 (1§:0y,))
— RYW,(I§-I,) — 0,  for k20.

Since Iy is Oy invertible, we have the equality Y~ 1, =I, -I%. Hence, for
k=p and for i=1, we have R (I5-I,,) =R, (15 *Q@yY~,)=I,-RiY,(I%57)=0
by the projection formula. Therefore we can take k; to be p.

On the other hand, for k= p, we have the following equalities.

Yallb- Iy )=V NYx(Iy)  ((iD) of (1.6))
=y (I§) NV (Ip) NYu(ly,)  (since k=p)
=1 ny(Ip-1Iy)  ((iD) of (1.6))
=TIk ny, 0~ U)=In 1, (by the projection formula).
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Hence we have
0— IfnI, — If — Y, (I§-0y) — 0, for k=p.

By the isomorphism If/Ifnl,=(If+1,)/I,=1k -0, and the above exact se-
quence, we can take k, to be p. Q.E.D.

(1.8) Let the situation be as in (1.5) and suppose that I' is of dimension
zero. We denote this point also by p. Let H be a closed subspace of U defined
by the Oy ideal sheaf I,;. We say V and H intersects tangentially at p if the
equality in the ring of the initial forms gr,, (Oy,,) (this is defined by gr,, (Oy,,)
= k@o (mp)"/(m,,)"“)

(1 8. I) grm,,(IV) +grm,,(IH) =grm,,(]V + IH)

holds. Here m, (=I;) is the maximal ideal in Oy, Let H (resp.(H nV),)
be the strict transform of H (resp. (H n V)) by the blowing-up .

Lemma (1.9). If H and V intersect tangentially at p, then the equality

Proof. By taking Proj, the equality (Iy,+1y,)-Og=Iynyy, -0 follows
from (1.8.1) in Og=Proj(gr, (Oy,)). Hence the equality Iy +Iy +Ip=
Iigayy,+1e holds in Oy,. In general the inclusion relation Iy +1y, S1yap,
can be easily checked. By the equality above, we have

Tyomy, Elg,+1y,+Ue NI yamy,)
=Ily,+1y,+Ue I yauy,) (by (i) of (1.6)).
By Nakayama’s lemma, the equality Iy, + Iy, =1y, follows. Q.E.D.

Remark (1.10). In general, if the equality (V'n H), =H, n V; holds, graded
97m,(Oy,,) modules gr,, (Iy)+gr,(Iy) and gr, (Iy+1Iy) are T. N. -isomorphic
in the sense of E. G. A. 11 [15].

Assume that the equality Iy=h- Oy , at p for some element h of Oy , holds.
In this case, the following sufficient condition to satisfy (1.8.1) is given by H.
Hironaka.

Proposition (1.11) (Proposition 6 [20]). Let the situation be as above.
The following conditions are equivalent to one another.

(i) HR=HP for all t=0.

(ii) h is not a zero-divisor (and hence non-zero) in Oy and (m,)**10,
N h-Oy=h(m,)*0y for all k=0.
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(iii) the image h of h in gr}, (Oy) is not a zero-divisor in gr,, (Oy).
(iv) h is not a zero-divisor in 97w, (Oy) and the natural homomorphism
(1.11.1) 97m,(OV)[ ] - g1, (Oy) — g7 (Oyap)
is bijective.
Note that the bijectivity of (1.11.1) is equivalent to the condition (1.8.1).
Here the function H{® is defined by
HO (k) =dim ((m )t - Oy/(m, )1 0y).

Then the functions {H{"; t=0} are defined inductively by the following rule:
k
HP (k)= ¥ HY ™).
i=0

We will need the following fact for the later arguments (in the proof of
Theorem (4.5)).

Proposition (1.12). Let the situation be as in (1.8). Let B be the one-
dimensional closed smooth subvariety of V. Let y: U;—U be the blowing-up
of U with center B and V, (resp. H,, resp.(V N H),) the strict transform of V
(resp. H, resp. VN H). Moreover we assume the following conditions:

(i) H and Vintersect at p with the conditions in (1.11).

(ii) Vis normally flat along B.

(iii) The equality S+ Iy =m, holds in O,.

Then we have the equality Vi nH,=(Vn H);.

Proof. By (iii), we have the natural surjection

ol (ngB(OV)/mp g7, 5(0y)) — grnxy(OVnH)-

We shall show that o is bijective. By Corollary 2 of Chapter 2 [19], the
normal flatness of V along B induces the equality Z ranko, (g1}, (0y)) =
H{® (k) for k20. On the other hand H{Y ,) = H{}, ij) holds by (i). By the
Ojp-freeness of grs _(0y), we have

dim (gr’,(Oy)/m,-gri,(Oy)) =ranke,(gr},(Oy))  for jzO.

Combining the above equalities, we obtain
dim (975 ,(Oy)/m, - gr5 ,(0v) =H n (/) =dim (75, (Oyn))  for j=O0.

Hence « is bijective. Taking the Proj, we obtain the equality V; N H, n @
=(VnH), n©. By the same arguments in (1.9), we obtain the equality V; n H,
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=(Vn H),. Q.E.D.

§2. A p,Formula for Two-Dimensional Hypersurface Isolated Singularities

(2.1) Let (V, p) be a normal n-dimensional isolated singularity and y: ¥V
— V a resolution of the singularity (V, p). The geometric genus of the singularity
(V, p) is the integer p,(V, p) defined by p,(V, p)=dimg(R"""(0p)). This is
independent of the choice of resolutions. By Theorem (3.8) of [5], we can take
a representative V of (V, p) to be algebraic. Let V be a compactification of V
such that Vis an open subset of V. We fix this compactification V. The singu-
larity (V, p) can be resolved by a succession of blowing-ups with smooth center

as follows:
V= Vo(— V‘ - V2<—~ s e—— VN=I7
(2.1.1) NN Yy Ny, 0oy Yy N
V=V0<—-- V1 <————V24-——— e e—— V=V

Here, y;: Vi—V,_, is the blowing-up with center £, and I'; the closed sub-
manifold of the singular locus of V;_ defined by O,, , ideal sheaf .#;. Then
W;: V> V,_ is the blowing-up of V,_, which is canonically induced from ;.

By Leray’s spectral sequence for the map yo---off,, we have the equality
107)—x(Op)= X (- Didime (R'4(0p)), since the equality ¥.(03)=0y
holds. In partlcu]ar if Oy, is a Cohen-Macaulay local ring, we have the vanish-
ings R, (0O5)=0for | <i=n—2(see [17], [52]). Hence we have the following
equality.

(=17 1p,(Vs D=205) = 1O = 3 (x(0r)~1(Oy,.)}.

By (1.3), if we know all the functions

NU{0} — Z; k V> x(I';, £},-Oy,_,[FF1 -0y, )

in the resolution diagram (2.1.1), the geometric genus p,(V, p) can be computed.
However, in general, it is difficult to describe the behavior of the above functions
explicitly. We shall prove an equality. which we call “p,-formula”, in the case
of the two-dimensional hypersurface isolated singularities (Theorem (2.7)).

Example (2.2). Before we proceed to study the hypersurface two-dimen-
sional case, we shall consider the case where the dimension of the center I' is zero.
Then at this point, which we denote also by p, the function k—y(I', £k/FE1)
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becomes the Hilbert function of Oy ,, and P(t) the associated Hilbert polynomial.
In some special cases, they are written explicitly as follows.

(i) Let (V, p) be of dimension n and embedded in (C"*2, 0) as a tangential
complete intersection. Let the couple of integers (d,, d,) be the degrees of the
standard basis, in the sense of H. Hironaka, of (V, p) with respect to (C"+2, o).
If n=1, we have y(Oy,)—x(Op)= % d,d,(d,+d,—2) (Northcott [33]). If n=2,
HOy) = 1(0p) = — 133 {2d; +d3)* ~ dyd, = (dy +d3) +11}.

(ii) Let (V, p) be of dimension 2 and a Cohen-Macaulay of maximal
embedding dimension; then the equality dimgm,/m2=mult, V41 holds (see
Sally [40]). Then we have dim (m,)*/(m,)*** =(mult,V)-k+1 for k=0.
Hence x(Oy,)—x(0y)=0.

(iii) Let (¥, p) be of dimension 2 and a Gorenstein of maximal embedding
dimension of multiplicity greater than 2; dim m,/(m,)>=mult, V'>2 (see Sally
[40]). Then we have dim (m,)*/(m,)**'=(mult, V)-k for k=1. Hence x(Oy,)
—21(0p)=—1.

(2.3) We need some information (2.3.1) from the ambient spaces in the
resolution (2.1.1) for our p,-formula.

U=Uo‘-_U1‘_—U2‘—‘_"“'—'UN

U U ¥y U ¥y U ¥, Uy U
(2.3.1) V="V, « Vie— Vye— oo — Vy=

n n n n n

V=Voe— Ve Vye— e — Vy=T.

|2 <X

Here, Vis embedded in U as in (1.5). ;: U;—U,_, is the blowing-up of U;_;
with center I, which is defined as the kernel of the natural map Oy,_,—
Oy,_/#r,-Oy,_,=0, . V,is the strict transform of V;_, by ¢,. V; is defined
in the same way as in (2.1.1).

Now we shall go a step further by introducing the following notations:

On U, the divisor ©4? is the exceptional set of y; defined by Y7 (I;). Then,
on U, (i< j), the divisor ©{/ is the strict transform of @{" by ¥;,o---ofy;. On
OV, h; is the line bundle on O defined by Iow/(Ig®)?, where Iow is defined
as Igw =Yy 1(I,) above. On V,, the divisor E; is the exceptional set of ;| : V;
—-V,_y defined by ¥7i(I;):-Oy,. On 7, the divisor W, is defined by

Wo--o¥, )7 ) - Oy

Lemma (2.4). Let the situation be as above. Suppose that V is a hyper-
surface in U. We have the following equality:
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1(05) = 1(05,.) = =%, 1(6F, (Lo)*/(Io)* ®L,).

Here, the integer p; is the multiplicity of V;_, at points in a Zariski open set of
the center I';. Iy, is the defining ideul of V; in Oy..

Proof. By the equalities (1.3), (1.7) and (1.2), we have the following
equality. x(Oy)—x(Oy,_,)=x(0y [(Ie®»)? - Oy)— x(Oy,_ /(1 )" - Oy,_,). By (i)
of Lemma (1.6), we have the following exact sequence.

0 — 1, ®(Oy,/(1g®)??) — Oy, /(L)
— Oy, [(Ig»)* 0Oy, — 0.
Since (ip)i21y,_,, we have Oy,  [(If)Oy, =0y, [U;)r:. Furthermore,
we have the equalities Y ((Ig®)*)=(r)* for k=0, and R ((Ie»)*)=0 for
k=0,i=1. Hence, by Leray’s spectral sequence for y;, we have
1Oy [(Le®))=x(Oy,_,[(r)P)=x(Oy,_,[(1; )" - Oy,_).
The assertion follows from the equalities above.

Proposition (2.5). Let the situation be as above. Suppose dim V=2. We
have the following equalities.

(i) IfdimTI;=0,

x0v) =10y, )= —6Lp,-(p,~- D(pi=2).

(i) Ifdiml;=1,
107) =10y, )= = pi- (0t 1) (0= D) (h)* = 3o, = Dpg,—1—7))
=120:- (pi= D)+ (0i=2)- (h)? =4 (ps— 1) (E)?
——}p,--(p.-—l)-(g,-— .

Here the integer g; is the genus of the curve I';. For the definition of r;,
note the following decompositions Pic (0{")= Z - h,®y # Pic (I';) and Num (©(?)
=Z -h®Z-f. Heref;is the fibre class of @) —TI';, We have the decomposi-
tion by which we define the integer r;, E;=p;t;—r.f; in Num (@(9). The integers
(h;)? and (E;)? are self-intersection numbers over @{.

Proof. (i) We have the data ©{Y=P2, h;=0p,(1), the canonical line

bundle of P2= —3h;. From (2.4) and the Riemann-Roch formula (p. 433 [17]),
we have the equality
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HOr)=1(0p,. )= =" 1P, Opllc=py)
= —%pi(pi-l)(prz)-

(i) We have the data @ = P((I - /(I )?)*)—£L5 T, the canonical line bundle
of OP=—2.h;+(2g;—2+(h)?)-f; in Num (6'?) (cf. the arguments in §2 of
Chapter V [17]). From (2.4) and the Riemann-Roch formula, we have the
equality

pi

W0p) =10y, )=~ % 1O, 0w ((—pitk)-hi+r;-f)

=1

k=0

- —%pi(pi+ D(pi— 1)(’?,')2—_:]2 plpi—D(gi—1—=1).
Furthermore the equality (E;)?=(p;)%(h;)>—2p;r; induces the later equality

of (ii). e

The following lemma helps the computations of the integers (h;)?> and r;.

Lemma (2.6). Let the situation be as above. We have the following
equalities.
(i) Ifdim =0, (W)= —p;.
If dim Iy=1, (W)*= —p(h)* +7;.

(i) ri=3 PV W;
i<i Pi

Here the integer W;-W; is the intersection number of W, and W; over v,
for j<i.

Proof. (Cf. the proof of Theorem 2.7 [46].) From the characteristics of
the intersection number ([25]), we have the equality

Wi Wi=2(0p) = 1(Fw) = 1(Fw )+ 1(Fw, - Fw) on V=TVy
for any couple of integers (i, j) with j<i. This equals the number

X(Ovi) - 1(195" : OVl-) - X((‘/’j°' : '°l//i)-1(1r,) : Ovi)
+xow - (Yjor--oy)~!(Ir) - Op)
by Proposition 6 in p. 299 of [25]. We have the following exact sequences:

00— IGim'OVi —_ OV‘- —_ O@i(u@()Vl

> 0,
and
00— o - (‘//j°"'°‘h)—1([r,-) “Op,—— (Yjor--oth))"1(Ir) - Op
— O @((Yjo---oy;)" (1) - Oy,) — 0.
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These sequences induce the equality
Wi Wi=x(06>®@0y,) — 10> @((Yjo---o4)"'(I1,) - Oy) -
In general we have the relation [, ®Ogw =1y,- Og@ by (i) of Lemma (1.6).
Hence we have the following exact sequence:
0—1,®0p®> — O — 0y,®0g»> — 0.

Tensoring the Og-invertible sheal (;o---oY;) (I )®0g to the above exact

sequence over Ogw, we obtain the following exact sequence:

00— ((fyooth) (U )®0e)R(y,®0p )
— (Y jeeoh) "M YO g
> ((¢j°"'D‘//i)~1(1r1)®09;(‘))®(0V;®09i“)) — 0.

Furthermore the relation (¢ o---oy)~ (Ir)- Iy, = ;0---o¥)"'(Ir,) N I, can
be easily checked by using the fact that V; is a hypersurface in U;. Hence the
equality (Yjo---of) M) Oy, =(h oY) (I )®O0y, holds. From this we
obtain the equality Ogw® ((;o--o¥) 1 (Ir)-0y) = (0> @0y ((Yjo---o
) U r)®0g).

Combining the equalities above, we have the following:

W;- Wj = X(Oe,.‘”) - X(IV,.®09.-‘"’) - X((‘//j"' “olfr)” 1(Ir,)® 09;‘")
+ X jo---oth) U )®0) (1, @0 pn)) .

(1) In the case of i=j, the equality just above induces the equality (W})*
= —(E;)- h; from the characteristics of the intersection number over @ [25].
This is nothing but our assertion.

(if) In the i-th stage, we have the decomposition of sheaves

(yorop)~Wy)=1, - 1_[' {(‘///0"""/11')_1(11,)}"“ .

is

This induces the following equality in Pic (©!"):
0=—E;+p;-hi+ g_Pj((‘//j°'"°l/’i)—'(11,)®oef‘>)-
j<i

We can write (Yrje---<tf)" (I )=5;-f; in Num (@) by some integer s;, [or
j<i. Then the equality W;- W;= — p;s; holds for the pair (i, j) with the condition
j<i. Hence the assertion follows from the equality
O=(=E)-hitpi- () + T p;- (o) I Y)®0o) - .
J<i

Q.E.D.
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Now we shall obtain the p,-formula as a corollary.

Theorem (2.7). Under the assumptions of Proposition (2.5), we have the
following equality.
piWiW,;

x(O0p)—2(0yp,_ )= %—(p,- -1)-(2p;— 1)% _fT_

+ (P =) (W) + (9= Dpit(Or,)

Remark (2.8). In the case of mult, V=2, the p,-formula for the canonical
resolution stated in Lemma 2 of [43] can be also induced from our formula (2.7)
(cf. the argument in (4.8)).

Here, we shall give some examples computing the geometric genus from

our formula.

Example (2.9). Let (¥, p) be a complete two-dimensional scheme ¥ over C
with a reference point p in which the isomorphism (V, p)=({(x, y, z)e C3| z3
=x3+y3}, 0) exists. We shall construct the resolution of this singularity (¥, p)
by two different processes. The first one is a resolution by composition of
blowing-ups with permissible centers (i.e., the blowing-ups with smooth centers,
where the multiplicity is constant everywhere), we shall call this resolution (A).
The other is a resolution by composition of blowing-ups with not necessarily
permissible centers, we shall call this resolution (B). Consider (V, p) only as
the germ ({z3=x%+y3}) below.

(A), (B), Step 1. Blow up V at p, say y,: V;—=V. In V; the singularity
appears along P! as follows: The analytic space {z=0} in U is denoted by H,
and the strict transform of H in U, is denoted by H, (the other notations are as
same as those in (2.3.1)). The singular locus Sing(V,) of V; equals [H, n V|
(=104 n H,|) as the analytic sets. There are five points, call them p,, ps, pa, ps,
De» in which the singularity (V;, p;) is isomorphic to the singularity ({s3=1t?u}, 0)
for i=2, 3,4, 5, 6. The multiplicity of V; at the points in [H, N ©|—{p,, ps,
Pa> Pss Po} iS twWO.

(A), Step 2. Blow up V, at the five points p,, ps, Pa, Ps, Do, 58y the
blowing-up ¢;: V;—V;_, with centcr m,,2<i<6. In the 6-th stage, the singular
locus Sing (V) of V, equals |@$ n V| which is isomorphic to P!. The multi-
plicity of V, at the points in Sing (V) is two.

(A), Step 3. Blow up V, along Sing (V,) (with reduced center), say y,: V;
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—V,. Then the composition of ; 1<i<7, gives a resolution Y, : V,—V.

(B), Step 2. Blow up V; along |H, n Vy| (with reduced center), say ¢: Vp
—V,. Then the composition of ¢, and ¢ gives a resolution Yz: Vz—oV.

These resolutions have the same dual graph of the exceptional sets as
follows:

The fundamental cycle Z, is A, + A4,
+A3+A4‘T‘As+3As-
Pa(Zy)=2 and p.(V, p)=2.

W;, and Wy (the divisor on Vj defined by ¢~ '(I g np,))) are written as
follows:

Wi=A,+A,+ A+ A+ As+34,.
Wi=4;_;, 25i=6,

W,=24,,

Wp=A +A,+As+A,+As+24,.

The numerical data p;, pg, r;, and rgz are as follows: p;=3 for 1<i<6,
p7=2, pp=2,

2i77 7J =12, and ;-B=M= 3.
is6 P Ps

Let us consider the differences of the Euler-Poincaré characteristics of Oy,
and Oy,.

Step 1. y(Or)—x(Oy)=—1. (A), Step 2. y(Op)—x(Op,_)=—1for2<i
£6. (A), Step 3. x(0yp,)—x(Op )=3. (B), Step 2. y(Oy,)—x(0, )=—2.

Hence p,(V, p)=3. The Euler-Poincaré characteristics for the resolution
(A) oscillate.

Example (2.10). Let (¥, p) be a complete two-dimensional scheme ¥ over
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C with a reference point p in which the isomorphism (V, p)= ({(x, y, z) € C?|
x84 y8 4284 x2y222=0}, o) exists. Let us construct a resolution of (¥, p) by
a composition of blowing-ups with permissible centers and compute p,(V, p)
from (2.5) without using Lemma (2.6).

We denote the coordinate system (x, y, z) by the following figure:

c3

Here, H, (resp. H,, resp. H,) is the hyperplane in C? defined by x (resp. y,
resp. z). Consider (¥, p) only as the germ ({x8+y® 4 z8 + x2y2z2 =0}, 0)
below.

Step 1. Blow up Vat p, say y,: V;—V. From (i) of (2.5), x(Or,)— x(Oy)
= ——é— +6.(6—1)-(6—2)=—20 follows. The singular locus Sing(V;) of V,
equals the union of three P'’s |@{" n(H,),|U|©{" n(H,),| U |0 n(H.),|.

(Hs) (Hz):

/ (Hx)l \
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The multiplicity of ¥V, at the points in Sing(V;) is two.

Step 2. Set I',=|0{" n(H.),| as the center of the blowing-up of V;, say
wZ: Vz'—’ V1.

/ (HY). /| v
z (\/

The dotted curve in &% is E:.

Let us employ the notations in (2.5). Since p,=2and g, =0, (0y,)—x(Oy,)
= -—%(EZ)2+ 1 follows. Compute the integer (E,)? as follows: Let D, be the
divisor on @%2 defined by |©% n(H.),|. Letf, be the fiber class of ,: @ —T,
in Num (©%’). We have the decomposition Num (@?)=Z-D,® Z-f, with
the equality D, -f,=1. Note the decomposition

I (5, = Or((Nryy o) )@O0r,((N . ¥)

on I',. D, is the divisor on % =P((I,/(I1,)*)*) corresponding to Ny, .,
in the terminologies of [13]. By (1.7) [13], the equalities Ny, g2 = Np,jom
®((Nryyu.)*) and (D) =degree of Np, o over P*=2 hold. Thus we can
write E,=2-D,+b,-f, in Num (©%?) for some integer b,. In addition, by
using the explicit defining equation, we can easily check the equality E,-D,=8.
Hence b, =4, (E,)?>=24, and x(Oy,)—x(Oy )= —5.

The singular locus Sing (V,) of V, equals the union of two P!’s, |@{® n
(H),|u10P n(H,),|. The multiplicity of V¥, at points in Sing(V,) is two.
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Step 3. Set I';=|0{? n(H,),| as the center of the blowing-up of V,,
say Y5: V3—V,. As in Step 2, we decompose Num (@) by Num (0P)=
Z-D;@Z-f;. Here D, is the divisor defined by [©$ n (H,),|, and f5 the fiber
class of Y/5: O —T5.

[ N
VU (Hy)s ~/ \/‘

The dotted curve in @ is Es.

By using similar methods to Step 2, we can obtain (D5)?=3 and D, - E;=8.
Hence E;=2-D;+2-f; in Num (0%) and x(0y,)—x(Oy,)= —4.

The singular locus Sing (V3) of V; equals @ n(H,);|. The multiplicity of
V, at points in Sing (V3) is two.

Step 4. Set I',=|0{ n(H,),| as the center of the blowing-up of Vj, say
Wqa: V,—>V;. As in Step 2, we decompose Num (@) by Num (@#)=2Z-D,
@®Z-f,. Here D, is the divisor defined by [©{* n(H,),|, and f, the fiber class
of Yy ,: O T ,.
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/ (H

The dotted curve in @' is E,. v

By repeating Step 2, we can obtain (D,)>=4 and D,-E,=8. Hence E,
=2D, in Num (0®) and x(0y,)—x(0Oy,)=—3.

V, is non-singular. Hence, the composition of ¥/,..., {, gives a resolution
V,—V. We have p,(V, p)=32.

In (2.10), fortunatelly, we have a very explicit decomposition of I./(I})?
which is useful in computing the integer (E)2.

However, in general, we can not expect section D of @ to be as good as it is
above. Therefore we must try to compute p, by using Lemma (2.6). Then the
problem is deduced to the computation of the intersection numbers (W;- W;) and
the genus of the centers of blowing-ups.

Remark (2.11). There is a different method to compute p, of the hyper-
surface two-dimensional singularity in terms of numerical data appearing in
embedded resolutions. This is the method to compute the Milnor number
(e.g., by the method [10]) and to relate it to p, by Laufer’s formula [27].

§3. Maximal Ideal Cycles

(3.1) Let (¥, p) be a two-dimensional isolated singularity and ¥ : (¥, 4)
—(V, p) a resolution of (¥, p) with the decomposition into the irreducible compo-
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nents of the exceptional set 4= \") A;. The maximal ideal cycle for the resolu-
tion y is the divisor ¥, on Vdefi;lled by
=3 (min (N4,
J=1 femy,p

where v; is the valuation on 0, , defined by v,(f)=the vanishing order of y/*(f)
on A; for feOy ,, 1 £ j<m (cf. (1.4) of [43]). In this section we shall study
the virtual arithmetic genus p,(Y,). Let us discuss the relation between the
integer p,Y,) and the generic section of (V, p) by the hyperplane from the
ambient space (3.4). This is a composition of (1.3) and the results by P.
Wagreich and H. B. Laufer (see (3.5)). By noting the basic properties for one-
dimensional Cohen-Macaulay local rings, we can obtain the non-negativity of
p(Y,) for the normal two-dimensional singularity (¥, p), which is similar to the
non-negativity of p,(Z,) for the fundamental cycle Z, ([3], [28]).

Throughout this section, let us assume that the base field k is infinite (see
(3.3)) and that Oy , has at least one non-zero divisor in my ,. Hence (V, p)is a
reduced isolated singularity (cf. [32]).

(3.2) Let us consider the following situation:

Let (V, p) be a two-dimensional isolated singularity. There is a compact
projective algebraic surface ¥ such that Vis an open set of V, V is embedded in
PV and that V—{p} is non-singular. Take a resolution y: ( v, A)—(V, p) such
that y~!(my, ,) is an invertible Oj ideal sheaf. Let H be a hyperplane in PY
containing p and set C=H nV. Let C’ be the divisor on V defined by the part of
the divisor ~1(C) off A. By the universal mapping property of blowing-up, we
have the following commutative diagram:

PNV

ull ul
H = C Y1 z

Here @: PN— PV is the blowing-up of PV at p, ¢: V;—V the blowing-up of
Vat p, and C, (resp. H,) the strict transform of C (resp. H). The other arrows
are induced morphisms.

Let us assume the following three conditions:



A py-FORMULA AND ELLIPTIC SINGULARITIES 319

(3.2.1) The equality Y~ (Sc) =S¥y~ (my ) holds.
(3.2.2) C has an isolated singularity at p.
(3.2.3) The equalities mult, C=mult, V and embdim, C =embdim, ¥—1 hold.

(3.3) From the arguments below, sufficiently many hyperplanes H may
satisfy three condiiions above.

First of all, choose a system of hyperplanes {H,..., Hy;} which satisfy the
following two conditions: We denote the defining equation of H; in Opn , by h;.

(3.3.1) (hy..., hy) - Op ,=my ,

(3.3.2)  min v, (h)= min wv,(f) holds for any irreducible component

1SisM femy p

Ajof A (A= \ / A;). Here v, is the discrete valuation defined by Oy ,, 1<
<w (see (1.4) of [43]).

(3.3.3) There is a non-empty Zariski open set Ty in kM such that the equality
M
vy ( .Z a:h)= min v, (f) holds for any A; and for any (a)) e T,.

Sfemy,p
We denote the hyperplane associated to 2 a;h; by H,, where a =(a,,...

ay)e kM. Tt is easily seen that the hyperplane H, satisfies (3.2.1) for acT,.
For (3.2.2), we note the following:

Theorem (3.3.4) (Flenner, Tessier, Bruns, Satz (4.1) [12]). There is a non-
empty Zariski open set T, in kM such that the relation Sing(H,nV)<H,
n Sing (V) at p for a€ T, holds.

For (3.2.3) it is sufficient to see the following:

(3.3.5) There is a non-empty Zariski open set T, in kM such that % a;h;
d_e_ﬁnﬁa superficial element of Oy , for a€ T; (i.e., it defines non-zero e1:;11ent
Z a;h; of gri(Oy ;) and there is an integer ¢ such that (0: (X a;h)gr,(Oy ) N
gr,,,(OV »)=0for k=c).

For the properties of superficial element, see §3, Chapter 1 [38].

We may assume that the elements 3" a;h; above are not contained in any
associated prime of Oy , (i.e., it defines a non-zero divisor of Oy ).

Note, by (3.2.2), that C, is reduced and so the natural morphism O¢,
- 7,(0¢) is injective.

Proposition (3.4). Let us assume the conditions (3.2.1), (3.2.2) and (3.2.3)
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for the hyperplane H. Suppose h defines a non-zero divisor of Oy,. Then
the following equality holds.

PY)=1(7:(0c)[0c )+ Z {Pie.n(K)—Hcp(K)}-

Here H ¢ ,(h)=dimy (m¢ ,)"/(m¢ )**! is the Hilbert-Samuel function of Oc,
and P ¢, (h) the Hilbert-Samuel polynomial associated to H ¢ ,) (hence P ¢ ,(h)
=mult, C for h20).

Proof. First we shall show the following equality: x(Og.)—x(0Og)= — x(Fe-
®O0y,). By (3.2.1), we have
0— Y1 — S —> I ®0y, — 0.
Combining with
0— Sp.— 05 —> O — 0,

we have the equalities y(Oc)= x(0%)— x(fe) = x(0%) — x(y~(Fo)) — (S
®O0y,). By Leray’s spectral sequence for i/, we obtain x(03)—x(Oy)= ¥ -
0

(= DUR407)—1Oy). "
The projection formula induces the equality at p;
R (0p) = I @ R (07) = RW (Y~ (f)) for ¢20.
Tensoring ¢ to the usual Ker-Coker exact sequence
0— A — Op — Y, (0p) — # — 0,
we obtain the following equality at p:

00— IF®@A — I —> Y (Y7 '(F)) — Fc®@# — 0.
4 I
A H
Since the supports of sheaves R1,(0%) (9=1), o and s are contained in
{p}, we have the following equalities: y(R1.(0%))=y(RW.(y~(#))) (g=1).
21 (0%)) — x(07) = (W (Y~ 1(F)) — x(Fe). Furthermore Leray’s spectral sequ-
ence induces the following equality:

2WHI)) — 1 Fe) = (= DU(RW (¥~ (He))) —2(Fc) -

420
Combining the equalities above, we obtain x(03%)—x(Op)=x(¥~*(F)) —
xFe) and  x(Oc:)=x(0c) —x(Fc- ®0y,) -

By a characteristic of the intersection number of Cartier divisors (Kleiman
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[25]), we have the following equalities: —(Y,)2=Y,oC'= y(0%)— x(Sc-)—
Iy )+ (I Iy )=1(0y,) — x(Fc- ®Oy,). Hence we obtain the following
equality:

(3.4.1) 20c) —x(0c)=—x(Oy,) —(¥,)>.
By (1.3), (3.4.1) can be written as follows:

(YY) —(Yy)* —1=x(0¢") = 2(O¢,) + x(Oc¢,) — x(O¢)
=x(0¢)—x(0c) + éo{Pm,p)(k)—H(c,m(k)}-

By Leray’s spectral sequence for m, x(O¢.)—x(O¢,)=x(n«(0¢)/Oc,). By
(3.2.3), Pcp(k)=mult,C=mult, V. By Wagreich's theorem (Theorem (2.7)
[46], see also our proof of (2.6)), mult, V= —(Y,)?. Note the equality H ¢ ,,(0)
=1. Therefore we obtain the desired equality from the equalities above.

Remark (3.5). When the characteristic of the base field k is zero, we may
choose H such that C’ is regular by the Bertini second theorem on 7. Then the
left side of (3.4.1) is the conductor number of (C, p); we shall write it 6(C, p).

From the Riemann-Roch theorem on 17, the equality (3.4.1) can be written as
follows:

5(C, p)=l<LYvL2_‘.(Lrlf)2_.

Here K3 is the canonical divisor of 7. In this form, the equality (3.4.1) had
already been announced by H. B. Laufer [29], and is proved by J. Giraud [53]
and M. Morales [54].

Remark (3.6). In the equality (3.4), the isolatedness of the singularity
(V, p) is essential, as can be seen in the following: Let (V, p) be a reduced (not
necessarily isolated) singularity. Then we can prove the following equality
easily as in (3.4):
Pa(Yy)=21(n(0¢:)[O¢) +kzl {Pic,py(k)—He,p)(k)}
—x°?"(Og, ¥+(0%)/0y) ,
where the integer y4(B, C) is the intersection number in the sense of Serre [41].

Here we have the inequality x°P¥(Og, ¥.(03)/0Oy)=0. The equality holds if
and only if (V, p) is an isolated singularity (see [41]).

(3.7) Next let us discuss the relation between p,(Y,) and p,(Y,) for two
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different resolutions ¥ and ¢. Let us consider the following commutative
diagram:

(V, p) < d 7, 4)

S~ A

v, 4)

Here ¥ : (V, A)—(V, p) (resp. ¢: (V', A")—(V, p)) is a resolution of (V, p)
with the exceptional set A (resp A’), and 1 is the holomorphic birational map
such that ¢=1or. Let A= U A; (resp. A'= U A ;) be the decomposmon of
the exceptional set A (resp. A ) mto the 1rreduc11b]e components. Assume A
the strict transform of 4; by 7, for j=1,..., m. Let D be the divisor on V" of the
form D=§1 d;- A}, where d;e Z for j=1,...,m’. Then we shall denote the

divisor ,il d’;- A; on V by 1,(D).
Lemma (3.8). Let D be an effective divisor on V', whose support is con-
tained in A’. Then the following equality holds:
Pu(D)=p,(t+(D))—dim R'7,(Fp) —dim (S, (p)/74(Fp)) -
Proof. Taking the direct image 7, of
00— Sp— 0y, —> 0, — 0,
we obtain
0 — 74(#p) — Op — 14(0p)
— R!7,(fp) — R't4(0y-) — R'14(0p) — 0.
Here note R17,(0y)=0. Hence we obtain

Pd(D)=1—x(0p)=1—x(t4(0p)) — x(R'14(0p))
=1—x(Op/t4(Fp)) —dim Rlt,(Fp).

By noting the relations t,(fp) S, py and p(14(D))=1—x(0p/ L, 1)), We
obtain the desired equality. Q.E.D.

Proposition (3.9). Let the situation be as above. (i) The inequality
p(Yy)=p(Y,) holds. (ii) Assume that ¢~'(my ) is Oy.~invertible. Then the
equality p,(Y,)=pJY,) holds if and only if Yy~'(my ,) is Op-invertible.

Proof. (i) We have the relation 7,(Y;)=Y,. Hence the assertion is clear
by (3.8).
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(ii) We have the relation Y- A4, <0 for j=1,..., m’ (see Section 1 of [43],
(3.2.1)). By Theorem 12 of [30], we have the vanishing R't4(#y,)=0. Hence
by (3.8), pu(Y) = p(X) —dim (Fy, 1@ '(my ). I pu(Y,)=pi(Y,), then .5y,
=14(d71(my ) = 1. (t7} (Y '(my ,))) holds. Hence 17 (Sy ) =171 (t4(z™ (Y ~!
(my M) =11 (my ). By Lemma (5.3) of [46], the equality £y, =y~ '(my ,)
follows.

In general we have the relation y~'(my ;) S 14z (Y7 (my ) € Fy,,-
Hence the converse is clear. Q.E.D.

Corollary (3.10). Let y: (V, A)—(V, p) be a resolution of a normal two-
dimensional singularity (V, p).

(i) y~Ymy ) is Op-invertible if and only if the integer p(Y,) is the mini-
mum among the set of integers {pY;)|¢: (V', A)~»(V, p) a resolution of
singularity (V, p)}.

(ii) Suppose that y~'(my ,) is Op-invertible and that the equality p(Y,)
=paV, p) holds. Then ¢~'(my ) is Oy--invertible for any resolution ¢: (V', A")
=V, p).

Proof. (i) is obvious from (3.9). (ii) In this case, the set {p,(Y,)|¢: (V',

A")—>(V, p) a resolution of (V] p)} coincides with {p,(V, p)} by (i) and the defini-
tion of p(V, p). The assertion follows from (i). Q.E.D.

(3.11) We shall remark the non-negativity of the integer p,(Y,) below.

Let (V, p) be a normal two-dimensional singularity. In particular Oy , is
Cohen-Macaulay. Oc, is also Cohen-Macaulay if and only if h defines a non-
zero divisor of Oy ,. We must remark the following facts on “the boundedness

of number of generators of ideals of Cohen-Macaulay local rings’’.

Theorem (3.11.1) (see, e.g., Chapter 11l [38]). Let (R, m) be a one-dimen-
sional Cohen-Macaulay local ring with maximal ideal m. Then the following
inequalities hold:

dimg,, (m*/m**)<mult, R for kz=0.

Theorem (3.11.2) (Abhyanker [1], [37]). Let (R, m) be a Cohen-
Macaulay local ring with maximal ideal m. Then the following inequality
holds:

(3.11.2.1) embdim R £mult,, R+dim R—1.
Theorem (3.11.3) (Sally [39]). If the equality holds in (3.11.2.1), then
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the Cohen-Macaulay type of (R, m) equals mult, R—1. In particular, if
(R, m) is Gorenstein of mult,, R=3, the following inequality holds:

(3.11.3.1) embdim R <mult,, R+dim R—2.

Corollary (3.12). Let y: (V, A)=(V, p) be a resolution of a normal two-
dimensional singularity. Then the inequality p,(Y,)=0 holds. In addition if
(V, p) is Gorenstein of multiplicity =3, the inequality p,(Y,)=1 holds.

Proof. If Y~'(my ,) is Op-invertible, the inequalities follows from (3.4),
(3.11.1), and (3.11.3). Hence by (i) of Corollary (3.10), the assertions follow.
Q.E.D.

The reader may expect to have more precise results provided in Section 4.

Chapter II. Studies on the Normal Two-Dimensional
Gorenstein Singularities with p,=1

§4. Decomposition of Zariski’s Canonical Resolution

(4.1) Using the results of the previous sections, we shall prove the existence
of a resolution with a special condition for the normal two-dimensional
Gorenstein singularity with p,=1. Let (V, p) be a normal two-dimensional
singularity. A resolution of the singularity (V, p) is obtained by the following
process (due to Zariski, see e.g., [31]);

og.: V=V  the blowing-up of Vat p,
T,: V,»V, the normalization of V,,
o,: V,—V, the blowing-up of ¥, at a point in the singular locus of ¥,
T,: V-V, the normalization of V,,
and so on.
Moreover this process ends in finite steps.

This resolution is called Zariski’s canonical resolution. We shall simply
refer to it as Z.C.R. in this paper. The singularity (V, p) is called “absolutely
isolated’” if all normalizations in Z.C.R. are trivial. It is well-known that the
normal two-dimensional rational singularity is absolutely isolated (Lipman [30],
Tjurina [42]). We shall prove the decomposition theorem of Z.C.R. in our
situation by a composition of blowing-ups with smooth centers (4.6). First we
shall show that (¥, p) is Gorenstein of maximal embedding dimension or of
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multiplicity two. Then the tangent cone of the singularity is Gorenstein by
Sally [39]. This fact is basic for our study. This section is the first step toward
the theorems in Section 7 (The criterion for absolute isolatedness, etc).

Throughout this section, let us assume that the base field k is an algebraically
closed (hence infinite) field.

Theorem (4.2). Let (V, p) be a normal two-dimensional Gorenstein singu-
larity of multiplicity =3 with p(V, p)=1.

(i) (V, p) is Gorenstein of maximal embedding dimension (i.e., the
equality holds in (3.11.3.1)), and the equalities H, ,(k)=p-k for k=1 hold
for some integer p.

(ii) Let yr,: Vi—V be the blowing-up of V with center my ,, then V; is

normal Gorenstein.

Proof. (i) Let y: V-V be a resolution as in (3.2) and (3.3). The condi-
tion p,(V, p)=1 implies the equality p,(Y,)=1 by (3.12). Hence by (3.4) and
(3.11), we obtain the following equalities:

(4.2.1) xm(Oc)/Oc)=0,
(42.2) Pep(K)=He k)  for k22 and P p(1)=Hcpy(1)+1.

The last equality of (4.2.2) means that (C, p) is Gorenstein of maximal embedding
dimension. By the condition (3.2.3), (V, p) is also Gorenstein of maximal
embedding dimension. The later assertion in (i) is due to Sally [40].

(ii) By the main theorem of Sally [39], gr,(Oy) is Gorenstein. Hence we
can assume that the defining equation h of H defines an element k of grL(0y),
which is a non-zero divisor of gr,(0,). By (1.11), ¥V and H intersects tangen-
tially at p, and C, is a locally principal divisor in ¥, with the scheme theoretic
relation C; =V, n H,.

Next we shall show that V; has only isolated singularities. Put B=|V,
n 0| (ie., [Y7i(p)| in ¥V,). B is a one-dimensional reduced scheme. By the
Bertini theorem over algebraically closed ground field (Theorem (8.18) and
Remark (8.18.1) Chapter II [17]), we may assume that Bn H, is a finite union
of reduced zero-dimensional points. Let us blow up ¥, with center the ideal
S5, which is the defining ideal of B, we shall write it as &: V,—V,. Moreover
we shall assume that 7~1(.#y) is an invertible Oz-ideal. Now we can obtain the
following diagram;



326 MASATAKA TOMARI
v

vV
C\ /C

ve——7V

<k

2
C<—¢G
Here # is the map from the universality of the blowing-up ¢. The other

morphisms are the induced morphisms. We know that C, is also reduced and
so that the following equalities hold:

(4.2.3) x(0c)—x(0c,)=0.

4.24) 2(0¢,)—x(0g )=0.

Let |B n C,| be the set {q,,.... q,}. Since BnC,=BnH;nV,=BnH,, the
morphism ¢&|q,: C,—C, is the blowing-up of C,; with center the product l:l'[1 m,,
of maximal ideals ([21]). By (4.2.4) and the formula (1.3), we obtain the equality
i [ Y {Pc, () —Hc, (k)}]1=0. Since(C,, q;) is one-dimensional reduced
(ll_lénclz‘egois Cohen-Macaulay), the equalities Pc, . (k)—Hc, ,,(K)=0 for k=0
follow for i=1,..., s by (3.11.1). Hence (C,, g;) is regular for i=1....,s. In
general, we have relations dim 7, =dim C, + 1 and embdim V; £embdim C, + |
at any point of C,, since C, is a locally principal divisor of V, (see pp. 41-42 of
[38]). Hence (¥}, q;) is also regular for i=1,...,s. Noting that H, intersects
with all irreducible components of B, we may conclude that V, is regular except
at finite points over B, so that V, has only isolated singularities.

In addition the Gorenstein-ness of gr,(0,) implies the Gorenstein-ness of
V, (Theorem (5.1) [39], Lemma (5.1.10) [14]). Therefore V, is normal
Gorenstein by Serre’s criterion (Theorem 39 [32]). Q.E.D.

Before we proceed to consider the case of multiplicity two, let us note the
following:

Theorem (4.3). Let (V, p) be a normal two-dimensional singularity. Let
Wi (V, A)=(V, p) be a resolution as in (3.2). Suppose that the equality p Y,)
=0 holds. Then the following two statements are true:

(i) (V. p) is Cohen-Macaulay of maximal embedding dimension (i.e.,
the equality holds in (3.11.2.1)) and the equalities Hy, ,(k)=pk+1 for k=0
hold for some integer p.

(if) Let V,—>V be the blowing-up of (V, p); then V| is normal.
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Proof. Note, first of all, that the equality p,(Y,)=0 holds for any resolu-
tion p: (", A")—(V. p) as in (3.2) by (3.9). By (3.4) and (3.11), the equality
pY,)=0 implies the following equalities:

(431) X(TC*(OC')/O('[)=01
(43.2) PepK)=He k) for k1.

The last equality means that (C, p) is Cohen-Macaulay of maximal embedding
dimension. With the aid of Sally’s results [39], [40], the remaining parts of
proof can be said to be parallel with the proof of (4.2).

(4.4) Let (V, p) be a normal two-dimensional singularity of mult, V=2
with p(V, p)=1. Lety,: V;—V be the blowing-up of V with center m, ,. Let
us assume that V; is not normal. (V, p) is a hypersurface of (k3, o) (by (3.11.2),
see also [43]), hence the singular locus Sing (V;) of V; is seen as a subvariety of
P2=0'". The following fact has been proved for the complex analytic case by
the author (in §§1 and 2 of [43]):

Theorem (4.5). Let the situation be as above. (i) The one-dimensional
part of |Sing (V)| is a straight line in P2, call it B, in the same sense. (ii)
Let ry: Vo=V, be the blowing-up of V| with center the defining ideal .#g of B.
Then V, is normal and v, is the normalization of V.

Proof. (i) Let y: V-V be a resolution as in (3.2) and (3.3). By (4.3),
we have the inequality p,(Y,)=1. Hence the condition p,= [ implies the equality
pY,)=1. We know the fact that (C, p) is a hypersurface of multiplicity two of
(k?, 0) and so the equalities 2=P ,(k)=H ¢ ,(k) for k=1 hold. By the
formula (3.4), we obtain the following equality:

(45]) Z(TC*(OC—)/OCI)= l.

We can assume that ¥ and H intersect tangentially at p, and that C, is a
Cartier divisor on ¥V, with the relation C, =V, n H, (by the same argument as
(4.2)). Let B be the one-dimensional part of [Sing(V,)|. Since V¥, is a non-
normal hypersurface, B is non-cmpty by Serre’s criterion. By the Bertini the-
orem over algebraically closed ground ficld (Theorem (8.18) and Remark (8.18.1),
Chapter U [17]), we can assume that B n H, is a finite union of zero-dimensional
reduced points. Blow up V, with center the ideal .#5, which is the defining ideal
of B, we shall write it as &: V,—V,. In addition, assume that n~1(.#p) is an inver-
tible Op-ideal. Now we can obtain the following diagram as same as in (4.2):
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the center of £ is

We know that C, is also reduced and therefore one of the following equalities
(A), (B) holds:

(A) x(Oc))~x(0c,)=1 and x(O¢,)—x(0c)=0.
(B) x0ec)—x(0:,)=0 and x(Of,)—x(0c)=1.

However, (A) does not occur (since if (A) holds, we can show that ¥, is normal
by the arguments in the proof of (4.2) (ii)). Hence we obtain (B).

Let |BnC,| be the set {q,...,q,}. Since BNC,=BnH,nV,=BnH,,
the morphism ¢|,: C,—C, is the blowing-up of C; with center the products

ﬁ m,, ol maximal ideals ([21]). From the formula (1.3), the equality i
i=1 i=1

[ Y {Pic,anlk)—H, .0(k)}]1=1 is obtained. Since (Cy, ¢;) for i=1,...,s are
k=0

one-dimensional reduced (hence Cohen-Macaulay), there is one point, say gy,

where the following equalities hold:

P(Cx,an)(o)_H(Ch‘Il)(O):1’ P(Chlll)(k)=H(Cl,qﬂ(k) for k=1,

and P, .o(k)=H ¢, (k) for k=0, i=2,...,s.

Hence (C,, ¢;) for i=2,..., s are regular, and (V,, ¢,) for i=2,..., s are also
regular, since C, is a Cartier divisor on V; (by the same arguments in the proof
of (4.2)). This means that s=1, since B is contained in Sing(V,). B is one-
dimensional reduced and of degree one in P2, hence is a straight line.

(ii) V, is also a local hypersurface. ¥V, is normally flat along B, since
mult, ¥; =two for any g € B (Theorem 2 of Chapter 2 [19]). Hence dim y5'(¢)
is constant for ¢ € B. 1, is a finite map. The fact which we have to prove is
the normality of ¥,. We shall show that ¥, has only isolated singularities.
Then the normality of V, follows from Serre’s criterion.

Here we note the following fact: Since (C,, q,) is a hypersurface of
multiplicity two, the equality H{Y , ,=H(9 _ ) can be easily checked. Hence, by
(1.11) and (1.12), C, is a Cartier divisor on ¥, with the relation C,=H, nV,, if
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H, does not contain B.

Let us separate the proof into the following two cases:

Case 1. There is a fiber f of ©4?’— B such that |E, n f| consists of distinct
two points.

Then E, n fis a union of the reduced two points. Hence E, is regular in
a neighborhood of E, n f. Since E, does not contain any fiber of @%'—B,
f intersects with all the irreducible components of E,. Hence E, has only
isolated singularities. Since E, is a Cartier divisor on V,, V, also has only
isolated singularities (cf. the proof of (4.2)).

Case 2. |E, n f|is one point for any fiber f of @~ B.

Since | |E,| n fl=|E, n fl, |E,| is irreducible. E, is written as E,=2|E,|
in @2, Let |E,|nH,={q'}. Since |E,|nC,=|E,|]nH,n V,=|E,| n H, and
mult, (E; NH,)=2, |E,| nC, is a reduced point. Blow up V, with center the
ideal 4|, |, which defines |E,|. We already have the equality (O¢)—x(O¢,)=0
in (B) of the proof of (i).

Now the remaining part of the proof of the normality of V, is parallel with
the proof of (4.2) (ii); hence we shall omit it.

Combining Theorems above, we obtain the following:

Theorem (4.6). Let (V, p) be a normal two-dimensional Gorenstein sin-
gularity with p,(V, p)=1. Then Z.C.R. is obtained by the composition of
blowing-ups as follows:

U=Uy & U, &2 Uy e oo 2N U,

(%) unroun ull ull ull
V= VO < V] < V'2 e v VN

where Vo U is the minimal embedding, \; the blowing-up of U,_, with smooth
center I'y'cV,_, and V; the strict transform of V,_{, 1Si<N. Moreover we
have: There is an integer M (< N) such that (i) V; is normal for i< M, (ii) s,
is a blowing-up with point center p, such that (V;_,, p;) is Gorenstein of maximal
embedding dimension of multiplicity =23 for i< M, (iii) at cach stage, in which
Vi is normal, there is al most onc non-rational singularity, (iv) mult, V<2
for any point geVy, (v) in £.C.R. for the singularities of V,;, each normali-
zation is trivial or is obtained by one blowing-up along (reduced) P*.

Proof. We shall prove only (iii), since the other parts are the combination
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of the results which we have already proved.

Let us consider the following situation. Let y: (V, A)—(V, p) be a res-
olution. Suppose there are two effective divisors on ¥, say D, and D,, whose
supports |D,| and |D,| are contained in A with the condition |D,| n[D,|=¢.
Then there is an effective divisor D5 such that [D,| n|Ds| and |D,| n |D5] are both
non-empty and discrete, and that p,(D;)=0. The inequality p,(D,+D,+ D)
= pADy)+ puD,) can be easily checked. Hence we obtain the inequality p,(V, p)
= > pVi q) for the normal V.. Q.E.D.

qevs

(4.7) Let us compactify V;, i=1,..., N, of diagram (*) of (4.6) as in (2.1.1).
We shall see the behavior of the integers y(Oy,), i=1,..., N. Let the set of in-
tegers {j, =1<-<jy=M<jy+,<--<jp} bethe subset of {1,..., N} such that
y;, is the blowing-up with point center of multiplicity greater than or equal to
three, or the blowing-up with center P!.

Proposition (4.8). Let (V, p) be a normal two-dimensional Gorenstein
singularity such that Z.C.R. for (V, p) is obtained with the diagram () of
(4.6) (not necessarily p,=1) and {j,,..., jr}, the index set as above. Then the
following equalities hold: (i) x(Oy)—x(Ov,_)=—1 for i=ji,...,jp. (ii)
1(0p)—x(Oy,_)=0 for other index i. Therefore we obtain the equality
F=pyV, p)-

Proof. The assertion about (ii) follows from (i) of (2.5). The assertion of
the cases i=j,, for h=1,..., M, has been checked in (ii) of (2.2). Now let us
consider the cases i=j,, for h=M+1,..., F (i.e., [';=P'). By (2.7), we have the
following:

W W
10v) =10y, )=o) @pi=1) x LT

+ (=D (FP+5 (0= Dp(Or)

1
=5 W1+ W,

Jh

1
+ —2‘(W,-,,)2 +1 (by Theorem (4.5)).

Now we shall show the equality W; _, =W, . Let us consider the following

commutative diagram:

Up, 2 Vi
o Al
OfixV = 0fix l Vi \l
\Ujh_l > v,
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We obtain the following equalities:

2 — —1) — / -1 —_ 2
2 ) = Un—1) = . Uy = (1 ) .
(Ir, )00ln, =1y, _Opynv=_{{ ;) (Iv,h_,)os,;‘_l ({o §in 2y, 035{‘1’1 .

i . Uy = . [T ai , . Uy = j is
Since Ieﬁn Ogjigl I O(,jhh_ln, we obtain I, 091{."—1 0951»..31 . This means

Ih

that V;, n @Y%, is an empty set so W, _, =W, holds.
By Theorem (2.7) of [46], (W, _,)*=—2 holds. The assertion follows
from these cqualitics. Q.E.D.

§5. Calculation of the Canonical Divisor

(5.1) The purpose of this section is to establish the adjunction formula
(5.4) which gives the following theorem as a corollary:

Theorem (5.2). Let (V, p) be a normal two-dimensional Gorenstein
singularity which has a resolution with the conditions in (4.6) (not necessarily
p.=1).

U=U, Ly, L ... 2y,
Uik ul ull ull
V=Vye— V, —— -+ — Vy.

Let the set of integers {j,.... j,.v.p} be the subset of {1,..., N} defined in
(4.7) (¢f. (4.8)). Then the canonical divisor K, in this resolution is written
as follows:

Kyy= hpZ::l Wi

Comparing this with “the formula of the canonical divisor by the sum-
mation of the elliptic sequence’” (by S. S.-T. Yau [48], see Section 6 of the
present paper), we obtain Theorem (7.8) and Corollary (7.9), by which we can
deduce some precise results on the resolution process of the maximally elliptic
singularity (in [45]).

Theorem (5.2) follows from Theorem (5.4) directly (see (5.5)). In the proof
of Theorem (5.4), we shall construct a syzygy of the Rees algebra of the sin-
gularity, which has a self-dual property in the T. N. -isomorphy sense. This is
done by the following Wahl-Sally’s method for “the lifting of the syzygy from the
tangent cone to the original local ring [47], [40]"". Their method is essential in
our proof of Theorem (5.4).

(5.3) To make the problem clear, let us fix the situation. Let (¥, p) be a
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normal isolated Gorenstein singularity embedded in a regular scheme U with

codimension r. Let us consider the following resolution diagram:

U=U, & U, &2 Uy e— .- & Uy
(5.3.1) ur o u ul ul ul
V=Vy— V, < Vy.

V2<— e ¢

where ; is the blowing-up of U;_, with smooth center I'; contained in the sin-
gular locus Sing (V;_,) of V;_, and V; the strict transform of V;_, for i=1,..., N.
Let : Uy—U be the morphism which is the composition of ¥;’s and K, the
canonical divisor on V, whose supports are contained in |[¢y~1(p)n V| (cf.
§2 of [43] or [18] for the existence of such a divisor). We shall consider in the

neighborhood of the inverse image of {p} in each stage.

N
Problem (5.3.2). Find a divisor D on Uy of the form D= Y a;- O™,
i=1
where a;€ Z for i=1,..., N, which satisfies the condition D|, =Ky, (i.e.,
0y ([PD®Oy ([Ky,]), where [D] denotes the line bundle associated to the

divisor D).
This is equivalent to the following:

Problem (5.3.3). Find a divisor G on Uy of the form G= % B:OMN, where
Bie Z for i=1,..., N, which satisfies the condition Extp, (O::, 0y ([GD)lvy
=0y,.

Indeed the equivalence of these problems is seen as follows. Let E be the
divisor on Uy defined by the functional determinant of ¥: Uy—U. Actually E
is written by E= % ((codimp, U;_ 1) — 1) - (Y;4 10--oy)"Y(OP) and satisfies the
equality .Q{}NQOU:(I[E]), where R is the dimension of Uy. Here we note the
equality Exty, (Oy,, Q8 )lv,=0y([Ky,]). Hence if (5.3.3) is solved by the
divisor G, then the divisor E — G satisfies the condition of (5.3.2). The converse

is also clear.
If (V, p) is a hypersurface in U, the answer is well-known. In fact the

equality Exth,, (0, Ouy([—ViDlyy % Oy, holds and §~1(1y) = [T Wisse
o) (lew)?i -1y, is trivial in the neighborhood of ¥~'(p). Such an
argument is seen in the proof of Satz 1 [8]. (See (2.6) for notations.).

We have an answer under the following conditions below:

Condition (5.3.4). There is an integer M’ (< N) such that the following

conditions are satisfied: (i) V) is normal isolated Gorenstein at every point of
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Vi, for k<M'. (ii) , is a blowing-up with point center I\, which is also de-
noted by p,, for ksM'. (iii) (Vi_,, p) is not a hypersurface for k<M’'.
(iv) All singularities of V. are hypersurface singularities. (v) 9rmy,_, o
(Oy,_,.») is Gorenstein for k<M'. (vi) Let (V;,_y, p)S(W,_y, p,) be the min-
imal embedding to a regular scheme W,_, at p, for kSM'. Let S, denote
9rmw_, pOw,_, p)- The condition (vi) is the existence of a graded free
Si-resolution of grmy,,_, ,,(Oy,_, ,.) of the form

0 — Si(—a, )b — Si(—ay,)ose-t —
== S (—a)’t — Si(—a;- )l —
- = Si(—a)t — §— g"mr,\_,,,,k(Ov,\_,,,,,‘) — 0,

where 0<a,<a,<---<ag, whose localization at (my, _, ,.)- Sy is a minimal
resolution for kSM'. Here the integer s, is the codimension of V,_ in W,_,

(by ().

Theorem (5.4). Assume that the condition (5.3.4) is satisfied in (5.3.1).
Let G be the divisor on Uy of the form G= % (ag,+7r—5) (Wi qo--0Yy) 1 (OD).
Here, for the case of iZM'+1, the intege;fclzsl is defined as the multiplicity of
Vi:_, at points in a Zariski open set of center I'; and the integer s; the embedding
dimension of V,_, at the points in the center T'; (i.e., s;y=dim V;_,+1). Then
we obtain the equality Extp, (O, Oy ([GD)ly,=Oy,.

(5.5) Proof of (5.2). By Sally’s analysis [39], [40], the conditions of
(5.4.3) are satisfied under the assumption of (5.2). The divisor E— G cited after
(5.3.3) is written by

N
E-G= Y (s;—dim Fi_asi_l)(l/li+1°"'ole)—1(@§i))
i=1

by Theorem (5.4). Since (V,_,, p,) is Gorenstein of maximal embedding
dimension, we have the equality a, =mult, V;_; from Sally’s computation
[40]. By noting the equality s,=dimV,_;+mult, V,_,—2 from the
assumption of such a situation, we can see that (5.2) follows directly.
Q.E.D.
The rest of this section is devoted to the proof of Theorem (5.4).
(5.6) First of all, we shall localize the problem.

Lemma (5.6.1). Let the integer i satisfy 1Si<M’. Let & be an invertible
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Oy -module sheaf. Suppose the trivialization £|, =0y |y, and £|,,=
Oy |y, is given for an open covering {%,, ¥,} of V; such that ¥, =V,—O®
NV, and , an open neighborhood of V;n @ in V. Then we have the isomor-
phism £ =0, over V.

Proof. There is an open neighborhood %3 of p; in V;_; such that (|
V) (¥3)€ %, Since V;_, is normal, we obtain the following:
L(Wilv)~'(73), Oy,) — (% 0 (Yily,) ' (73), Oy))
Ul n I
r( VZ” OVi-y) ——_E-_-'_) F(Vs— {pi}’ OVi—l) .
By assumption, there is h;e ['(#%;, &) which is nowhere-vanishing over
#, for i=1,2. By the diagram above h,/h, and h,/h, extend to the sections g
and g' over (Yl,) '(¥3) with the relation g-¢g'=1. Hence g is nowhere
vanishing over (y;],,,)"'(#3)and sois g-h,. Then iy and g - h, define a nowhere

vanishing section of .% over V. Q.E.D.

Lemma (5.6.2). Let & be an invertible O, -module sheaf. Suppose

that the trivialization £, =0y |y, is given for an open covering {Uy, U}
N

of Vy such that ¥, = VN—( V] @‘N)) nVy and %, an open neighborhood of
=M'+

N
(U OM™)nVy. Then we have the isomorphism £ =0, over Vjy.
i=M’'+1

The proof is similar to the proof of (5.6.1), hence we shall omit it.

Suppose F is an invertible Oy, -module sheaf such that Extj,
(Oy,_,, Ply,_, =0, _, for some integer i such that 1<i<M’'. If we prove the
isomorphism Exty, (Oy,, Oy (b[O{’])],,=0,, in a neighborhood of @ nV;
for some integer b, we obtain the isomorphism Extp, (Oy, (V)'F®
0y (b[O{PD)ly,= 0y, over V; by (5.6.1). Furthermore, we have the isomorphism
Exty, (Oy, Oy)ly =0, by the Gorenstein-ness of V. Hence, by (5.6.1) and
(5.6.2), the proof of (5.4) can be deduced to the proof of the following two

statements:

(5.6.3). The isomorphism Exth, (Oy. Oy((a;+r—s)[OP])]y, =0y, holds
in a neighborhood of V;n O for i=1,..., M.

(5.6.4). Theorem (5.4) holds under the assumption embdim, V=dim V+1.

(5.7) In this paragraph, we shall prove (5.6.3) under the assumption
Wo=U for i=1. We denote W, by Z and its strict transform by Z, as usual.
To construct the desired isomorphism, we use the following:
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Lemma (5.7.1) (Artin-Rees-Wahl, Lemma 1.6 [47]). Let (O, m) be a
local ring with the maximal ideal m and ECF finitely generated Oz ,-modules.

Give F the m-adic filtration and E the induced filtration: E,=Enm"-F so
that gr Ecgr F. If gr E is generated by homogeneous elements of degree q,
then Enm"t4F=m".E for all nz0. The ¢lements e,,..., e, of E minimally
generate E if and only if their initial forms é,,..., &, minimally generate gr E.

Corollary (5.7.2) ([47], see also [40]). Let (Oy,, in) be a local ring as
above and let I be an ideal of Oz , such that O /I has homological codimension
s over Oy ,. If

0 Fy oo Fy 2 F oy

—— F0=S — gr,,,(OZ.,,/I) — 0

is a free resolution for gr,(0y /1) over gr,(Oz) (which we denote by §,) of the
form F ;=5(—a;)*i which satisfies the condition (vi) of (5.3.4), there is a minimal
Oy ,-free resolution of Oy ,/1

0 Fyms o — F; Y, F,

_ FO=OZ,p —_— OZ,I)/I——'—) 0

such that (Kerd;) nm"*%.F,=m".(Kerd;) for n,j=0. This induces the
former graded resolution of gr, (O ,/I). (See the proof of Theorem 1.7 of [47].)

Let us apply the Corollary above to our situation as I=1,. Set S= @ m»
nz0

and (Fj), by (F;),=0 for n<a; and (F;),=m""%.F; for nza;. We denote
@ (F;), by F;. Then by (5.7.2), we obtain the complex of graded S-modules
nz0

0 F, 2 F | — o — F; %, F, .
(5.7.3) —  Fy=S— @m"0y,——0
nz0

which is an exact sequence in the sense of T.N.-isomorphism over S. Here
the degree preserving graded S-morphism d; is defined by d j="(-PO(a' n» Where
(d)w=4djl(r;,- Note the equality F;=S(—a;).

We shall consider the dual complex (Homg (F., S(—ay))).

Assertion (5.7.4). There is a surjective S-morphism 6: Homg (F,, S(—ay))
— @ m"- 0y, such that

nz0

0 — Homg (Fy, S(—ay) — -
— Homg (F;_,, S(—a,) {425 Homs (F,, S(—a,) — -
— Homyg (F,, S(—a,)) 2> @ m"-0y , — 0

nz0
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is exact in the sense of T. N. -isomorphism over S.

Proof of (5.7.4). Note first the following two important facts: The first
thing is the symmetry among the integers {a;} such that a;+a,_;=a,for 0<i<s,
where we define a, by 0, due to the Gorenstein property of gr,,(Oy ,) (see p. 179
of [40]). The second is the following fact below due to the Gorenstein property
of Oy ,:

There is a system of Oy ,-bilinear non-degenerate pairings {¢;}: ¢;: F;
®o,,,Fs—i—Fs for 0=i<s, which induces the isomorphism of complex {t;}

0— F, o —s  F; A R
(5.7.5) W o N ual
0 — (Fo)* — -+ — (F,_))* (Fyejar)* —> -
(ds- j+|)*
—F,
M o)
___)(Fs)*

by defining t; as t;: F;—»Homg,  (F,_; F)=(F,_))*; a—d¢(a, ) (see Theorem
L.5 pp. 454-455 of [9]).

We shall lift {t;} to the correspondence between (5.7.3) and (5.7.4). By the
symmetry a;+a,_;=a, for 0<i<s, we can easily check the following canonical
isomorphisms Homg (F,_;, Fy)= (-B Homy, , (Fs—;, (Fy),) for 0<is<s. Let us
define the isomorphism (#;),: (F,),,—»Hom(,z , (Fs—i (Fy),) by the Oy ,-bilinear
pairing ¢;, which is nothing but the restriction of ¢; to (F;),. By using those we

obtain the S-isomorphisms ¢;: F;—»Homg (F,_;, F,) as t;= (—B (t,), for 0Zi<s.
The remaining point which we have to check is the commutatmty of the
following:
0 _— FS —_— e

0 —> Homg(F,, F,) — -~

tjl tj—lJv
- HomS(Fs—jl Fs) - HomS(Fs—j+la Fs) e
e — Fo =S

N

- — Homg(F,, F,).
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For any element G—) f, € F,, where f, € F;, we have the relations #;_;(d( @ )

=t (© ()= ® ¢, (df) Ye @ Homo, |, (Fooii1s (Fye,. . by the
deﬁmlxons of #_, and d;. Furthermore we have t( @ f,,)— ® ofn )E

n_a

® Homg,  (Fs_; (Fy)y1a,_,)- Lookingat the followmg commutatlve diagram:

(ds-i+1)ag—i+1
fy ———— 3 .
Fs-1+1 (F t)a,_iﬂ

\ M‘m)l(l’s-i)as-in

(Fs)n+a,_ i+1—as-i—aitas
| by the symmetry of a;’s
(Fs)n+a_;-i+1 ’

we obtain the equality @ m,=(d_ ,H)*(t( 6—) f,,)), where 7, is defined by the
above diagram and actuall)'/ is contained in HomOZ (Fs—iz1> Fntay_is,) By
the commutativity of (5.7.5), we obtain n,=(d,_;, )*(d(f,, N=¢:-1(d(fs ))-

This completes the proof of the assertion (5.7.4).

On Proj(S), (5.7.4) induces an isomorphism Exty, (Oy,, Oz (a O]y,
~0,, in a neighborhood of @ n ¥,.

(5.8) Now we shall discuss (5.6.3) for i=1 when V< U is not necessarily
the minimal embedding. We use the notations Z and Z, instead of W, and its
strict transform as in (5.7). We have the following:

E}*=Ext},, (Oy,, Exth,, (0z,, Oy (b[O])) =>Extp,, (Oy,, Oy, (b[O(V])

for any integer b ((2.9.2) [2]).
Since V, and Z, are Cohen-Macaulay, this degenerates and induces the
isomorphism

Exty,, (Oy,, Exts (07, Oy (b6[0V)) = Exty, (Oy,, Oy, (b[OV]).

We can show the equality Extys (Oz,, Oy, ((r—s) [0{V])=0,, easily. (Actu-
ally this is well-known. We note that this can be shown by the same arguments
in (5.7) if we consider the couple Z, and U, instead of the couple V; and Z,.)
By this isomorphism, the proof of (5.6.3) is obtained.

(5.9) Proof of (5.6.4). We have already seen (5.6.4) for the case where V
is a hypersurface in U (5.3). Here we shall discuss about (5.6.4) when VU
is not necessarily the minimal embedding. We shall use the notations Z and Z;
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fori=1,..., N, instead of W, and its strict transform in U, for i=1,..., N. Sim-
ilar to (5.8), we have the following:

E}"=Extp,, (Oy,, Extb,, (Ozy, Oy ([G'D)== Exty, (Oy,, Oy ([G'])

for the divisor G’ on Uj,. ((2.9.2) [2]). This degenerates too. Hence, for the
proof of (5.6.4), we have to show the isomorphism Extj$ (0z,, Oy ([G']) =
0, for the divisor G'= él (r—s)W; 4 1o-oPn)"H(O). Here s=dim V+1. For
the proof of the above isomorphism, we localize the arguments. Actually by
noting the equalities H}, (0,,_)=0for j=0, 1 and for i=1,..., N, we can prove
a localization lemma which is similar to (5.6.1) by a way similar to the proof of
(5.6.1). The proof at each step after the localization which is corresponding to
(5.7), is easy. Details are left to the reader.

This completes the proof of Theorem (5.4).

§6. On Yau’s Elliptic Sequence

(6.1) For the study of the singularity satisfying the condition p,=1, the
elliptic sequence introduced by S. S.-T. Yau [48] is very effective. The elliptic
sequence is originally the set of divisors on the minimal good resolution with some
special properties (Definition (3.3) of [48]). In this section, we shall extend the
definition of elliptic sequence to all resolution of the singularity with the condition
p.=1, and characterize them among all the effective divisors by some numerical
conditions (Theorem (6.4)). This characterization will play an important role
in our studies.

(6.2) Let (V, p) be a normal two-dimensional singularity and y: (V, A)
—(V, p) a resolution of (V, p). Let B be a reduced connected divisor of ¥ such
that B A. We denote the Artin’s fundamental cycle on B by Z,. Before we
proceed to define the elliptic sequence, let us note the following:

Proposition (6.2.1). Let {C;; i=1,...,r} be the set of reduced connected
divisors on V such that C;< A and that C; and C; have no common irreducible
component for any couple of integers (i, j) with i#j. Then the following
inequality holds:

S Pu(Ze) < pu(Z0).

This easily follows from “Laufer’s computation sequence methods’’ (see
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[28], [48]). Here we shall omit the proof of (6.2.1).

Definition (6.3) (the elliptic sequence). Let the situation be as in (6.2).
Let us assume the condition p,(Z,)=1 (cf. Remark (6.5)). Wc shall define the
set of reduced connected divisors {B;} on V by the following canonical inductive
procedure. (i) Set B, by A=B;. (ii) Define B;,; from B, as follows: Put
B; by Bi="U,4 <, such that zs,-4,-0 4;. Decompose B; into the connected com-
ponents as B;= \mj D;j. If the condition p,(Zp,)=0, j=1,..., m;, hold, stop.
The set of divisc;r—s1 {Zy,; h=1,..., i} is called the elliptic sequence. If there
exists a component, say D;;, such that p(Zp )=1, set By, by B;,;=D;.
Here note that there is at most one component as above by (6.2.1).

Clearly B, , is properly contained in B, for any h. Thercfore, the process
above stops in finite steps.

The following statement gives an intrinsic characterization of the elliptic
sequence:

Theorem (6.4). Let the situation be as in (6.3). Let {Zy ; k=1,..., I} be
the elliptic sequence on (V. A). Then the following equality holds:

{D; non-zero effective divisor on V such that (i) |D| < 4

(i) D- 4,50 for j=L,.om (iid) pdD)=pAV, Py =1{ 3 Zp; k=L,..., I}
i=1

I

The divisor Y, Zg, is characterized as the unique maximal element among
i=1

the set {D; p(D)=1, D>0 and |D|c A4}.

Proof (cf. the proof of Theorem (3.7) of [48]). First we shall show the
inclusion relation that the former set < the latter set. Let F be a non-zero
etfective divisor on ¥ which belongs to the former set. By the definition of
fundamental cycle Z,, the divisor F— Z, is effective. If Z,— F=0, this agrees
with our assertion. Hence we may consider the case of F—Z,>0. We have
the following:

12V, p)=pLF) (by the assumption of F)
=pF— Zo)+p(Zo)+(F—2Zy)- Zy—1
=p(F—Zo)+(F—Z,)-Z, (by pZ,)=1)
<p.V, p+(F—-Z2,)- Z, (by the definition of p,).

Since (F — Z,)- Z, <0, we obtain the relations p(F — Z,)=p,(V, p)and Z,-A;=0
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for any 4, |F — Z,|, i.e., |F— Z,| < B,.
Next we shall show the equality F—Z,=B,. Let B’ be any reduced
connected divisor on ¥ such that B’ A. Then we have the following:

Pa(Vs P) gpa(F— ZO + B,)
=pF—Zy)+pB)+(F— Z,)-B'—1
2pV, P)+(F—Z,)-B'—1 (by p(B)20).
This means the inequality (F— Z,)-B'<1. Hence |F— Z,| is connected. There-
fore |F— Z,| is contained in B, by the definition of the elliptic sequence. Let
A; be any irreducible component of B,. Then we have the following:
Hence we have |F— Zy|=B,. Therefore we have checked that F— Z, belongs
to the set {D; non-zero effective divisor on ¥ such that (i) |D|< B, (i) D- 4 ;=0
for any A;< B, (iii) p.(D)=p(V, p)}.
Repeating the arguments above, we can obtain the desired inclusion relation.
Now we shall show the converse inclusion relation. We already know that
k
pV, p)=1 above and p,( Z Zg)=1for k=1,..., 1. Hence, the only thing which

we must show is the fact that Z Zp,-A;=0 for j=1,...,m, k=1,...,I. Before
we proceed to prove it, we must note the following fact (see [46] p. 443):

Fact (6.4.1). Let (W, p) be the normal two-dimensional singularity and
W (W, A)—(W, p) a resolution of (W, p) with the decomposition into the ir-
reducible components of the exceptional set A= UA Then there is an effective
divisor D, on W whose support is contained m A such that p(Dy)=p W, p)
and p,(Dy+ E)<p W, p) for any non-zero effective divisor E whose support
is contained in A. Moreover for such a divisor D,, we can easily check the
relation Dy- A; <0 for j=1,...,m

We take D, as in (6.4.1) in our situation. Then Dy is writlen as Dy=
Z Zy, for some integer ko =!I by the former arguments. In fact k, is equal to
1 as follows: If ky#1[, the equality pa(D0+ZBk0?l)= pa(Dg) contradicts the
condition in (6.4.1). Hence we obtain the relation El Zp,-A;=0forj=1,..,m

k
Let us discuss the divisor Z Zp, for k<. 1If A; is contained in B, then

k
> Zp,-A;=0. If A;is not contained in B,,,, we have Z Zg -A;=0. Hence
i=1

X i=k+1
we obtain



A pg-FORMULA AND ELLIPTIC SINGULARITIES 341

k 1
Z A Z ZBl z ZB.‘ * AJ é 0 .
i=1 l=k+1
The remaining assertion is clear from the arguments above. Q.E.D.

Remark (6.5). As we mentioned in the proof, we have checked the state-
ment “p,(V, p)=1 if p(Z,)=1"’, which is originally stated in [46] and proved
by many authors (cf. Remark (2.2) of [43]).

Remark (6.6). With the aid of our theorem, we can change the procedure
from B; to B;,; in (6.3) in the following way: Assume that we have already
defined {B;; k=1,...,i}. PutL; by L;=\U . A;. Choose

A;CA such thﬂtkélzsk'Aj=0 I’
the connected component, say L, ,, of L; such that p,(Z L.+ =1. Suppose that
such a divisor L;,, exists. Clearly B,,, is contained in L;,,. However we can
check the equality B;,, =L, as follows. We have the following equality:

1—7.1(,‘21 ZB,“*'ZL,H) = Pa(kg1 Zg,) +pZ1,.,) +(kz§1 ZBk)'ZL,uH_l

=p(2. Zp,)
k=1
=1.

Hence we obtain ‘é Zy + Zngi Zg, by (64). Hence Z, , < Z ZBk
Therefore we obtali‘ﬂ 1the relation a,fo_c;ut the supports of each side of th1s in-
equality L;,,=B;.,. Hence L;,;=B;,,. This equality means that the Laufer
sequence in [51] is nothing but the elliptic sequence. (This fact was already
proved by J. Stevens in the appendix to §1 of [57].)

For the arguments in the next section, let us note the following statements:
Even if the statement below seems differ from the original in the reference, it is
only an easy modification of the original. Hence we shall only give the out-
line of the proof of it here.

Corollary (6.6.1) (Proposition (2.1) [49]). Let (V, p) be a normal two-
dimensional singularity with p,=1 and y: (V, A)-(V, p) a resolution. Let
{Zp,;i=1,...,1} be the elliptic sequence on (V, A). Then the inequalities
(Z,,i)2<(ZBm)2 fori=1,...,1—1, hold.

J+1
Proof. Z& Zg,-A,=0 for any irreducible component of A. Hence
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(2~ (Zs.. V=%, Zs)(Z5,~ Z5,.) SO. QED.

Proposition (6.7). Let (V, p) be a normal two-dimensional singularity with

PV, p)=1. Let us consider the resolution diagram as in (3.7).

(V, p) e——L—— (¥, 4)

N

Let {Zy;i=1,..., 1} (resp. {Zy;; i=1,..., I'}) be the elliptic sequence on (V, A)
(resp. on (V', A")). Then the following equalities hold. 1=1" and 1"(Zy)=
ZB; fori=1,..., I

Proof. First of all, 77'(Zp,)= Zp; is well-known by Proposition (2.9) of
[46]. Hence Zp -Aj=Zp; -1 '(4;) holds for any irreducible component 4;
of A. Then we can easily check the relation t~!(B,)=B;. Therefore the
procedure to define {B;;i=1,...,1} is parallel with the procedure for {Bj;
i=1,.,1]. Q.E.D.

Here recall that (V, p) is called numerically Gorenstein if there exists a
divisor K’ of the form K'= i d;-A;, where d;e Z for j=1,..., m, such that
K'-A;=9% - A; holds for j=1’,—.l.., m for some (hence for every) resolution i:
(V, A)=(V, p) (in the usual notations).

Theorem (6.8) (Theorem 3.10 of [48]). Let (V, p) be a normal two-
dimensional numerical Gorenstein singularity with p (V, p)=1. Let y:
(V, A)—(V, p) be the minimal resolution and {Zg,; i=1,..., 1} the elliptic se-
quence over (V, A). Then —K'= Zl', Zy, holds and Zy, is equal to the minimal
elliptic cycle E on (V, A). o

Outline of the proof. It is well-known that — K’ is contained in the former
k
set of Theorem (6.4). Hence there is an integer k, such that —K'= Zo Zy,
i=1
holds. In fact ky=1 as follows. If k,# 1. the equality

pn(ZBkOJ.l):%ZBqu.;'(K-’_F ZBk0+1)+ l =—%_(ZBL_D+‘)Z + 1

contradicts the fact p(Zp, ,,)=1. The remaining part of the assertion is cheked
as follows: By the uniqueness of the minimal elliptic cycle E, we have the
relation ES Zp,. With the aid of Lemma (3.3) of [28], we can easily check
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that —K’'—E is contained in the former set of Theorem (6.4). Hencc there is
ki

an integer k, such that —K'— E= 3 Z,. Then k; must be [—1 from the above
i=1

equality for K'. Q.E.D.

Theorem (6.9) (Theorem 3.9 of [48], Proposition 2.2 of [51]). Let (V, p)
be a normal two-dimensional singularity with pfV, p)=1 and {Zy;i=
1,..., I} the elliptic sequence on some resolution of (V, p). Then the inequality
PV, P)S the length of the elliptic sequence | holds.

This is nothing but Proposition (2.2) of [51] by Remark (6.6).

According to S.S.-T. Yau, we introduce the following:

Definition (6.10) (Definition 3.10 of [48]). A normal two-dimensional
singularity (V, p) with p,(V, p)=1 is called maximally elliptic if (V, p) is a
numerical Gorenstein singularity with the condition p,(V, p)=the length of the
elliptic sequence.

Theorem (6.11) (Thecorem 3.11 of [48]). Lvery maximally elliptic sin-
gularity is Gorenstein.

§7. The Correspondence of Zariski’s Canonical Resolution
and the Minimal Resolution

(7.1) Based on the results of the previous sections, we discuss the relation
between Zariski's canonical resolution and the minimal resolution of the normal
two-dimensional Gorenstein singularity with p,=1.

(7.2) Let (V, p) be a normal two-dimensional Gorenstein singularity with
p.=1. Let us consider the diagram (*) of Theorem (4.6)

U= Uy S Uy o &Y U, SN
(721) ui Ul ull Ul ull
V:.-VO@——Vle———---e——T/Mf——---<—VN

which is the decomposition of Zariski's canonical resolution of (F, p) into the
composition of the blowing-ups with smooth centers. (cf. Theorcm (4.6)
for the various conditions and the notations about this diagram.)

The first problem in this section is “When does this resolution give the
minimal resolution of (V, p)?’.  Then we also discuss thc absolute isolatedness
of (V, p). We note the following well-known fact:
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Theorem (7.3). Let (V, p) be a normal two-dimensional singularity of
multiplicity two. Then (V, p) is absolutely isolated if and only if (V, p) is

rational.

This is proved by many authors (D. Kirby [23], E. Brieskorn [8], G. N.
Tjurina [42], J. Lipman [30], M. Reid [35], E. Horikawa [22]). Here we note
that this follows also from Theorem (4.3) and our p,-formula of Section 2.

Hence the normal two-dimensional Gorenstein singularity with p,=1 is
absolutely isolated if and only if the singularities of V,, are rational in diagram
(%) of Theorem (4.6).

Theorem (7.4). Let (V, p) be a normal two-dimensional Gorenstein sin-
gularity with p,=1, y: (V, A)—(V, p) the minimal resolution of (V, p) and E
the minimal elliptic cycle on (V, A). Then the following numerical criteria
hold :

(i) (V, p) is absolutely isolated if and only if the inequality (E)*< —3
holds.

(if) Zariski’s canonical resolution of (V, p) gives the minimal resolution
of (V, p) if and only if the inequality (E)?< —2 holds.

Proof. Let ¢: Vy—V be the Z.C.R. which is obtained in (4.6). First of
all, we shall show the fact that V dominates V), as follows: If M=0 (i.e.,
Vy=V), this is trivial. If M=1 (ie., mult, V=3), the equalities p,(Y,)=
PV, p)=1 are obtained in the proof of (4.6). Hence by (3.10), y~!(my ,) is
an invertible Op-ideal sheaf. We obtain the morphism u,: V-V, such that the
relation Y =p, oy, holds. Indeed u, gives the minimal resolution of the sin-
gularities of V;. Repeating this argument, we obtain the following diagram:

V
/ J{ \ T
11 BM -1 MM
VM—1

V N Vi V2 [2Y; Vu UM+ UN Vn

UM -1

Here p; is the morphism which commutes the above diagram and gives the
minimal resolution of the singularities of V; for i=1,..., M.

(i) Suppose (V, p) is not absolutely isolated. There is a singularity
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Pru+1 on Vi with p,(Vy, py-1)=1. Then by the uniqueness of the minimal
elliptic cycle E on (V, A), we obtain the relation of supports |E| < |unt(par+1)l-
Hence the inequalities ——(E)Zg—(ZW;'J(,,MHH)ngultpV follow by (6.6.1),
(6.8) and Theorem (2.7) of [46].

Conversely suppose there is no non-rational point on V. Then
Ps(Var—1, Py)=1 by (4.8), so that (V},_;, py) is a minimally elliptic singularity.
In general, Z.C.R. of the rational singularity gives the minimal resolution
([30]). Hence ¢ gives the minimal resolution of (V3,_;, py). By Theorem
(5.2), the canonical line bundle on Vy is written as [ — W,,] in the neighborhood
of |(Yprer--o¥n)"Upy)l. By Theorem (3.4) of [28], the divisor W,, coincides
with the minimal elliptic cycle on (Vy, |(Y o --o¥n)"(pa)l)- Hence the unique-
ness of the minimally elliptic cycle on Vy=V implies the equality E=W,,.
Therefore the equalities —(E)*= —(W)*= —mult, Vj,_,2=3 hold by Theorem
(2.7) of [46].

(i) We have already seen that Z.C.R. ¢ of (V, p) gives the minimal
resolution of (V, p) if and only if ¢ gives the minimal resolution of the sin-
gularities of V,, in the above diagram. Hence the problem is in the case where
there is a singular point p,; ., in Vy with p (Vi Py )=1. Then the relations
2=mult, = Vy= ~(Z,,,;ll(,,ml,,)zg —(E)? hold by the uniqueness of E over
(v, A).

Suppose the inequality (E)*< —2 holds. Then we obtain mult, _ Vy=
—(Z]u&l(pMH“)z. By Theorem (2.7) of [46], up'(my,, ,, .,) 1S an invertible

Op-ideal in the neighborhood of |u3(py<:)|. Therefore ¥ dominates the
normalization of ¥, ,. Repeating this argument, the equality Vy=¥ follows.
Conversely suppose the equality Vy= ¥ holds. Let us assume that l/l_/-"q is
the final blowing-up with the center P!'. The natural morphism V=Vy—
Vi, -2 induces the minimal resolution of the singularity Vi, 2+ Pj,,-1)- By
the same argument in the later half of proof of (i) the equality E= Wi, follows.
On the other hand the equality W;,,-1=W;, is proved in (4.8). Therefore we
obtain (E)2=(W_,.M_1)2=~multp,py_ Vi, ,~2=—2 by Theorem (2.7) of [46].

Q.E.D.

Remark (7.5). (i) of Theorem (7.4) extends thc results in [28] and [50]
about the absolute isolatedness in the case of p,<2.

(7.6) Second, we consider the relation of the Z.C.R. and the minimal
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resolution without the condition on the integer (E)? in the minimal resolution.
We shall represent the relation in correspondence with the inverse images
{W;; i=1,.., N} of the center of the blowing-ups on ¥y and the elliptic sequence
{Zy,,; i=1,.., I} on the minimal resolution (V, A). To state our result, we need
the following terminologies. Let us consider the diagram (x) of (4.6). Let the
set of integers {j;,..., j, } be the subset of {I,..., N} defined in (4.7) (cf. (4.8)).
In particular V; is normal for h=1,..., p,, Then we shall call the following

p,(V, p) normal points:

Definition (7.7) (Definition 7 of [44]). In diagram (x) of (4.6), the normal
point g is a starting point if q is one of the following points.
(i) (¥, p). (i) Point g on V;, which satisfies the condition p,(V;,, 9)=1.

Let the set of integers {iy,..., i, } be the subset of {l,..., N} such that
¥;, is the blowing-up with the center “a starting point”’, for h=1,..., p,, and that
the inequality i, <i,., holds for all h. In particular the relations i, =1 and i,
=jp-1+ 1 for h=2,..., p,, follow from the definition of the starting points.

Combining with (ii) of Theorem (7.4), the following statements extend thc
results about the description of the maximal ideal cycle by S. S. -T. Yau (Theorem
3.15 of [48], Theorem 2.1 of [50]):

Theorem (7.8). Let (V, p) be a normal two-dimensional Gorenstein sin-
gularity over C with p,=1. Let yr: (V, A)=(V, p) be the minimal resolution of
(V, p) and {Zy; i=1,...,1} the elliptic sequence on (V, A). Let us consider
Zariski’s canonical resolution ¢: Vy—V and the following commutative

diagram:

(i) There is a sequence of the integers 1=k, <---<k, =1 such that the

following equalities hold:

hy

;Zl ZB,=5*(W.'1)=”‘=T*(W,'1)’
k]| :

S Zp=1(W)==14(W,;),

i=kp-1t1
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kpg
Zp=t(W;, )= =14(W}, ).
i=kpg-1+1

(i) The equality k, _,=I—1 holds. Hence the divisor r*(W,-pa)(=m
=1*(ijq) by (i)) is the minimal elliptic cycle on (V, A) (cf. (6.8)).

Corollary (7.9). Let (V, p) be a maximally elliptic singularity over C
and Y (V, A)=(V, p) the minimal resolution of (V, p). Then the maximal
ideal cycle Y, coincides with the fundamental cycle Z,,.

Proof of (7.9). By the definition of maximally elliptic singularity (6.10),
we have the relation I=p,(V, p) in (7.8). Hence the equalities k;=i, for i=
I...., p,. follow. Q.E.D.

The rest of this paper is devoted to the proof of Theorem (7.8). The proof of
(i) is divided into three parts as follows. First of all, we shall show the following
claim: In the proof of this, we shall use the assumption that the singularity is
defined over C.

Claim (7.10). The equalities t,(W;)="--=14(W,,) hold.

Proof of Claim. If the multiplicity of V at p is greater than or equal to
three, the equality i, =j, holds by the definition of the indexes {i,} and {j,}.
We shall consider the case of multiplicity two. As we have seen in (4.8), the
equality W; _,=W; holds. Hence if V| is non-normal (i.e., j, — | =1 holds), the
equality W, =W, induces our claim.

In the rest of this paragraph, we shall discuss the case that ¥, is normal.
Let us represent the singularity (V, p) in the following form:

V. p=W{(x, y, z) e C|z2—g(x, y)=0}, 0).

(Cf. §1 of [43] about this description in detail.) We shall employ the notations
of §1 of [43].

By using the projection = from V to (x, y)- plane H, which is defined by
H={z=0}, the following diagram is induced from Z.C.R. of (V. p).

W
U(—'—-— Ul <—£l— e/ UT(,,)+),“

ul ul ull
V“-‘VJ““""—VT(,.)+7,. (T(n)+y,=N)
in 11!1 l“T(n)%-y"

H——H; «— - —— Hr(nyiy, -

I
{z=0}
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Let us denote the discriminant locus {g=0} in H of = by D. Here mult, D
=three by the assumption that V| is normal. The discriminant locus for =, is
(D), U E{V, where (D), denotes the strict transform of D by ¥, and E{ the
exceptional locus of ¥, in H, (ie., @V nH,=E{"). The computations by
E. Horikawa and D. Kirby (Lemma 5 of [22], §§2.7-2.8 of [23]) say “If the
condition mult, (D), U E{P <3 holds for all points of (D), nE{", then (V, p)
is an absolutely isolated singularity (hence a rational singularity).”” Since
pV, p)=1 holds by our assumption, there is a point of (D), n E{?, say gq,,
such that mult, (D), U E{">4 holds. In fact the conditions mult, (D), =3,
(D); N E{Y'={qo} and mult, (D), UE{"’=4 hold. In particular the equality
qo=p, holds. Blow up V, at p,, say yr,: V,—V,. Then V, has the singularity
along P'. The normalization of V, is obtained by the blowing-up of V, along
this P!, say y;: V3;—V,, as in (4.5). This means that j, is thrce. Hence we

have the following diagram:

U U, U, U,
0[PV | I/ U | I VSR ¥ [
14 V, V, V3
l" l’f 1 HN /‘ 3
H H, H,.

The discriminant locus of 7, is (D), U E{® U2-E$. Here (D), (resp. E{?)
denotes the strict transform of (D), (resp. E{V’) by i, and E$» the exceptional
locus on H, of ¥, (ie., E¥=H,n ©%). Then the equality @) n H, = E{?
holds in this diagram (see §1 of [43]). The discriminant locus of 7 is
(D), U E®). As we have seen in (4.8), the intersection @ nV; is the empty
set. Applying the arguments of (4.8) to the data (H, E, D), we can see that the
emptyness of E{¥) n(D), follows from the equality mult, D=mult,, (D),.
Hence V5 is non-singular in @» U @{®. Therefore we obtain the relation

W,=F+W; on Vy,

where F=0{ nVy. Hence the supports |F| and |W,;| have no common
irreducible component.
Furthermore, by Theorem (5.2), we have the relation

Pg
——KVN=IZ1 W;, on Vy.

The adjunction formula induces the equalities
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Pg ~
—Kp=1(—Ky )= ;121 (W) on V.
Then the equalities of the supports 4=|—Ky|=|t.(W;,)| on ¥ means that |F|
is contracted by 7. Hence the equality 7.(W,)=1.(W;) follows.
Finally our claim is established.

(7.11) By using the claim above, we shall show the existence of the integer
k, of (i).

First we note the following well-known relation:

(W) A;=Y, - A;£0 for any irreducible component A4; of A.

By Lemma (3.8), the equality

PdW;,)= paolT(W;))) —(non-negative integer)
holds. We already have checked the equality p,(W;)=1 in Section 4. Hence
the equality p,(t«(W;))=1 holds. Since ktlhe equality t.(W;)=1.(W;) holds,
there is an integer k; such that t,(W; )= El Zjg, holds by Theorem (6.4).

(7.12) We shall discuss the divisors 1,(W;) for h=2. As we mentioned
in (7.10), the equality
—Kp=3$' 7 (W,) on ¥
h=1
holds. Furthermore by a theorem of Yau ((6.8) in the present paper), the
following equality holds.

! -
—Kp=>X Zy on V.
=1

1 Pg
Hence by the result of (7.11), we obtain the equality 3. Zp = 3 1.(W,) on
- =k +1 h=2
V. In particular we obtain the equality of supports

(7.12.1) By 1=Itx(W;))| on V.
Leta: V' —V;, be the proper modification of ¥;, which is induced from the

minimal resolution of the singularities of ;. Let us consider the following
commutative diagram:
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Here f and y are canonically induced.
Clearly the equality 7.(W,)=7.(«(W;,)) holds. In fact (W) is the

maximal ideal cycle of the singularity (V;,, p;,) with respect to the resolution o.

19

Then we have the relations of supports
[y~ (oW DI 21B(W ) =la (pi,)] on V7 .

We shall show that these three sets are indeed the same as the one below.
By (7.12.1) and the definition of the elliptic sequence (6.3), we have the relations

~

T(W;,) - t(W;,)=0 for h=2, on V.
Moreover, by Claim (7.10) they imply the relations
T(W) t(W;,)=0  for h22 1<i<j, on V.
On Vy, the divisor ™ !(1,.(W;)) is written in the following form:

T (W) =W;+F; on Vy,

where the divisor F; is not necessarily effective but the support |F;| is contracted
by 7. Hence the equality F;-t7'(1.(W;,))=0 follows for h=1 and for all i.
We obtain the equalities

(7.12.2) Wit (1 (W;,))=0 for h=22, 1<i<j, on V.

Lemma (7.12.3). Let (X, p) be a normal two-dimensional singularity
and y: (X, A)=(X, p) a resolution of (X, p) such that Y (my,) is Ox-
invertible. Let us consider the following diagram:

, X
/\Lv
X «— v X, -

Here y,: X,—X is the blowing-up of X with center my , followed by the

normalization, and v the induced natural morphism.
Then an irreducible component A; of A is contracted to a single point of
X, by v if and only if the equality A;-Y,=0 holds.

This is well-known (cf. [42]).

In general we have the relation W, -A4;=<0 for any irreducible component
A; of A in our situation. Hence (7.12.2) for i=1 induces the relations

W, - A;=0 for any irreducible component 4; of |t~1(t.(W;,))l.
By (7.12.3) and the connectedness of |77 (t.(W;, )|, |t~ '(z+(W;,))| is contracted
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to a point of V;. By the same argument as above, the support |t7!(t,(W;,)| is
contracted to a point of ¥, for 2£i< j,. Hence we obtain the equality

(7.12.4) Iy~ (e W5 D1 = o (pi, )l -

Since the neighborhood system of |a~'(p;,)| in V’;, blows down to the
singularity (V},, p;,), there exists the elliptic sequence {Zg,:i=1,...,1"} on
(V' o= (pi,)l) such that the condition Bj=|a"'(p;,)] holds (cf. Definition
(6.3)). Then the elliptic sequence on (V’;,, [y~!(4)|) is the set of the divisors of
the form {y~'(Zy); i=1,..., I} by Proposition (6.7). Hence by the relation
(7.12.4) and the definition of the elliptic sequence (6.3), we obtain the equalities

')’—I(ZB;‘H,-):ZB:' for lélé/” on V/;’.

We apply the arguments in (7.10) and (7.11) to the resolution « of the singularity

(V;,. pi,)- Then we obtain the equality fi,(W;,)=ff,(W,,) and the integer k, such
2 h 2 Jz

that the relation B (W)= 3 77'(Zp) holds. Therefore we obtain the

i=k;+1

equalities Tu(W;,) =pu(Ba(W:,) = u(Ba(W,) =Tu(W;,) and

k> k>
T (W) =1:B«(W))= X v:(y"(Zp))= 2 Zg,.
i=ki+1 i=k,+1
Repeating the arguments in this paragragh (7.12), the assertion of (i) follows.

(7.13) Proof of (ii). Let ¢: Vy—V be the Z.C.R. of (V, p) and Ey, the
minimal elliptic cycle on (Vy, |¢~'(p)]). By the same arguments as the later
half of proof of (i) of Theorem (7.4), we can obtain the equality Wi,,—1=
W;,,=Ey, on Vy. The equality p,(t!(E))=1 implies the relation t=(E)
= Ey, on Vy by the definition of minimal elliptic cycle. Hence the following
relations hold:

E=T*(T—1(E))éf*(EvN)=T*(Wj,,g) on V.

Therefore the integer k, _, should equal to the integer [— 1 by the equality E=
Zg, (6.8) and (i) of Theorem (7.8).

This completes the proof of Theorem (7.8).
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