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Introduction

In his paper [46], P. Wagreich introduced two numerical invariants, the

geometric genus pg and the arithmetic genus pa, to the normal two-dimensional

singularity (cf. Notation). After his definition, a normal two-dimensional

singularity (K, p) is called elliptic if the condition pa(V9 p)=\ holds. In this

decade, a great deal of work has been done on this singularity (e.g., [28], [34],

[43], [48], [49], [50], [51],..., etc). Among others, H. B. Laufer has given the

criterion for the absolute isolatedness (cf. Section 4 of this paper) and proved

the theorem which identifies Artin's fundamental cycle with the maximal ideal

cycle for the minimally elliptic singularity (Theorem 3.13, Theorem 3.15 of [28])

as analogies of the case of the rational singularities. The minimally elliptic

singularity is a special elliptic singularity characterized as the Gorenstein elliptic
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singularity with pg=l. Following [28], S. S. -T. Yau developed his theory in

the case of general elliptic singularities. Among his results, the criterion for the

absolute isolatedness and the identification theorem are extended to more

general classes, compared to the minimally elliptic singularities ([48], [50], [51]).

The goal of this paper is Theorems (7.4) and (7.8), which extend the results

on the subjects mentioned above to some general forms in the case of normal

two-dimensional Gorenstein singularities with pa=l (see also guidance for

contents).

It seems that our method is quite different from those of H. B. Laufer and

S. S. -T. Yau, even though we restricted our concern to the case of pg= 1. Ours

is rather similar to the method of M. Reid [36]. One of the most important

tools for our study is the /yformula, which is expressed in terms of the resolution

process of the singularity by the composition of the blowing-ups with smooth

centers. The geometric genus pg can be computed by the infinitely near Hilbert-

Samuel functions in the sense of (2.1). (This is rather conceptual. See also

guidance for contents below.)

Let us explain the content of each section. We assume the singularity is

defined over the infinite field after Section 3, the algebraically closed field after

Section 4, and the complex number field after (7.8).

Section 1. For the later use, we shall collect some general results about

blowing-up. Conceptually, the /^-formula (2.7) belongs to the formula (1.3).

Section 2. A ^-formula for the two-dimensional hypersurface isolated

singularity is given in the terminologies in this section as follows ((2.1) and

Theorem (2.7)):

where

for all /.

Section 3. The virtual arithmetic genus pa(Y^) of the maximal ideal cycle

YJ, is discussed. Combining the equality (1.3) and the results by P. Wagreich

and H. B. Laufer, we shall prove the formula (3.4) which relates the integer
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pa(Y^ with the ring theoretic information of the singularity.

Section 4. Based on the results of the previous sections, we shall prove the

following decomposition theorem of Zariski's canonical resolution.

Theorem (4.6). Let (V, p) be a normal two-dimensional Gorenstein singu-

larity with pa(V, p)—\. Then Zariski\s canonical resolution is obtained by

the composition of the blowing-ups with smooth centers as follows:

U==UQ « - ^ < - U2< ---- < - UN

(*) Ull Ull i//, Ull \l/2 Ull ^3 i///v Ull

where V^U is the minimal embedding, i//r- the blowing-up of I/,--! with smooth

center ric=.Vi^1, and Vi the strict transform of Vj-l9 l^i^N. Moreover we

have: There is an integer M (^N) such that (/) V{ is normal for i^M, (//') i//f

is a blowing-up with point center p{ such that (V^, p;) is Gorenstein of maximal

embedding dimension of multiplicity ^3 (see Section 4 about the definition),

for i^M, (Hi) at each stage, in which V{ is normal, there is at most one non-

rational singularity, (iv) multqVM^2 for any point qe KM, and (v) in Zariski's

canonical resolution for the singularities of VM, each normalization is trivial or

is obtained by one blowing-up along (reduced) JP1.

Section 5. The adjunction formula (5.4) which induces the canonical bundle

formula (5.2) in the resolution diagram (*) of (4.6) (not necessarily with pa=l)

is established by following the method of J. Wahl and J. D. Sally.

Section 6. We shall collect general results on the dualgraph theoretic studies

of the singularity with pa= 1 . Among all the effective divisors we shall especially

characterize the elliptic sequence of Yau by numerical condition, by which the

elliptic sequence becomes more useful.

Section 7. By using the results in all sections, we shall reach the main

results of this paper.

Theorem (7.4). Let (V, p) be a normal two-dimensional Gorenstein sin-

gularity with p f l (Kp)~U i//: (K A)-+(V, p) the minimal resolution of (K, p)

and E the minimal elliptic cycle on (V, A).

(0 (V, p) is absolutely isolated if and only if the inequality (E)2^—3

holds.

(ii) ZariskVs canonical resolution gives the minimal resolution of (V, p)

if and only if the inequality (E)2^ —2 holds.
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In addition we shall extend the identification theorem about the fundamental

cycle to the following corresponding theorem between Zariski's canonical resolu-

tion and the minimal resolution without the condition about the integer (E)2.

Theorem (7.8), Let (F, p) be a normal two-dimensional Gorenstein sin-

gularity over C with pa(V, p) = 1. Let \j/: (V, A)->(V, p) be the minimal resolu-

tion of (F, p) and {ZE.\ /=!,..., /) the elliptic sequence on (V, A) (cf. (6.3)).

Let us consider Zariski's canonical resolution $: FN->F and the following

commutative diagram:

* v

Let the sets of indexes {il5..., ipg] and {Ji,...,./Pg] be the subsets of {!,..., N}

defined canonically in (4.7) and (7.7). (Note especially that ih^jhfor all h.)

(/) There is a sequence of the integers 1^/q < • • • <kpg = l such that the

following equalities hold:

kpg

i=kpg-i+l

(//) The equality kpq.l = l — l holds. Hence the divisor T*(Wip ) ( = • • • =

) by (0) is the minimal elliptic cycle on (F, A) (cf. (6.8)).

The following diagram gives a relationship of the sections in this paper.

§2

§6

For more details about the contents of the individual sections, we refer to

their introductory remarks.

This article involves a certain amount of material of an expository nature

for the convenience of the reader.
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I am very grateful to Professor S. S. -T. Yau for the inspiring discussions

during his stay in Kyoto. In particular, (i) of Theorem (7.4) was suggested to

me by him as a Conjecture at that time. During the preparation for this paper,

I have learned so many basic facts about blowing-up and others from Professor

H. Hironaka. For that I am also very grateful to him. I would like to thank

Professors K. Saito and I. Naruki and other members of the singularity seminar

and the complex analysis seminar at the Research Institute for Mathematical

Sciences of Kyoto University for their encouragement, interest, and useful

suggestions.

After having submitted the early version of this paper, I received some papers

about near topics of Chapter 1 of this paper from Professor M. Morales ([54],

[55], [56], see (1 .4) and (3,5) of this paper). For that I am very grateful to him.

Theorem (4.6) and (i) of Theorem (7.4) have already been announced in [44].

Notations. Let (K, p) be a normal two dimensional singularity and i//:

(V, A)-+(V, p) a resolution with the decomposition into the irreducible com-
m

ponents of the exceptional set A = \J Aj. Then we use the following notations

in this paper:

The geometric genus of the singularity (V, p) is the integer pg(V, p) defined

The arithmetic genus of the singularity (F, p) is the integer pa(V, p) defined

by pa(V, p) = sup {pa(D)\D: the effective divisors on V whose supports are

contained in A}. Here pa(D) is the virtual genus of D [46].

Artin's fundamental cycle for \jj is the divisor Z0 which is the minimal

element among the set {D; the non-zero effective divisor on V whose supports are

contained in A and satisfies the conditions D • A^O for j = I,..., m} [4].
in

The maximal Ideal cycle for \l/ is the divisor Y^ defined by Y^ = £ ( min •
j = l /emjr.p

Vj(f))'Aj, where Vj is the valuation on 0Vtp defined by f//) = the vanishing

order of \l/*(f) on Aj for/eOFpp , l ^ j gm [48].

Let D be an effective divisor on V. Then we denote the supports of D by

|D|.

Let E be an effective divisor on V with |J^|eA. Then E is a minimal

elliptic cycle if pa(E) = l and pa(D)<Q for any non-zero effective divisor D such

that D<E [28].

For details about the materials above, we refer to the references cited after
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them. See [4], [8], [26], [28], [30], [31], [43], [46], [48], [52] for the basic

facts on two-dimensional singularities and those numerical invariants.

Chapter I. /^-Formula and Hubert-Samuel Functions

§ L Generalities of Blowing-up

(1.1) In this section, we shall collect some general results concerning

blowing-up which we will use in this paper. First we shall discuss the computa-

tion of the difference of Euler-Poincare characteristics of the structure sheaves

of the projective algebraic schemes by blowing-up. Second we shall discuss the

description of the strict transforms of the varieties.

(1.2) Let I7 be a projective algebraic complete scheme and F a closed

subspace of V which is defined by the Ov ideal sheaf J^r. Let if/: V^-^VbQ the

blowing-up of V with center ^r and Se the invertible OVl sheaf defined by Se

= \l/~lj'r. Then, for the function

k , - > x(St/S*r
+l)-9 NO {0] - > Z,

there exists a polynomial P(r)e Q[f] such that

1) k»0.

In fact, this polynomial P(t) is given in the following form. P(t) = %(0,

SelS*el) (see [7]> P5~P- We note tne following equality.

Proposition (1.3). Let the situation be as above. We have the following

equality:

Here, if V^ is an empty set, regard 0Fl as the zero sheaf.

Proof. By the theorem of Grauert-Remmert (Theorem 2, 1 Chapter IV[6],

or E. G. A. Ill (2.6.1) [15]), there is an integer /q (^0) such that R^*(./|) = 0

for any /c^/c l 5 and for any /^ 1. By the theorem (2.3.1) E. G. A. Ill [15], there

is an integer k2 (^0) such that the canonical morphism •/r-'^C/J) i§ an iso~
morphism for any k^k2. We take an integer k' ̂  max (fe l9 k2). It follows that

= k%
fc=0

k=0
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By Leray's spectral sequence for if/

^S')= Z (-i

Here, the second equality follows from the assumption on the integer k'.

On the other hand, we have

&=0

The assertion follows from the above equalities.

Remark (J.4). Consider the function /c^/(F, OF/J^+1); Nt) {0}-»Z, in
the above situation. There is a polynomial Q(f)e Q[f] such that

Let the degree of Q(t) be s and {ah i = 0,..., s} the integers defined by
4 / /4-/\ *'= Z as-i( 7 )• We have lhe eciuality Z {p(k)-x(r, jf£ij?k

r
+l)} = -Q(-I)

= — as, for large integer k'.

Hence by (1.3), the equality

holds. In this form, (1.3) is proved for the special cases by D. Kirby [24] and
J. Lipman (23.2) [30] (see also Morales [54, 55, 56]).

(1.5) Let Fbe a scheme embedded in a scheme U and F a closed subspace
of 17 defined by 0^ ideal sheaf 7;. Let \l/: Ul -»17 be the blowing-up of U with
center Ir and 0 the closed subspace of U1 defined by I@ — \l/~lIr. The strict
transform of Fby \jj is defined as the minimal closed subspace Vl of Ul such that

Vl lt/1-0 = l/'~1(J/— F). Then the ideal sheaf JFt for Ft is given by

0-5.1) IVl=\jW-*Iy:I%) in 0^,
fc^O

(see 0.42 of [11], [21]). The map \ji |F], which is the restriction of \fi to Vl9 is the
blowing-up of Fwith center Ir0v ([21]).

We shall need the following lemma for later arguments.

Lemma (1.6). Let the situation be as above, (i) The equality J| n IVl

=Ik
0'IVl holds for k^O. (U) The equality ^(/| - I V i ) = i/^/l) n $+(lVl) in

holds for feQ.
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Proof, (i) The relation /| n /Fl ii /| • /Fl is clear. We shall show the
converse inclusion relation. The assertion is local; hence we restrict ourselves
to the relatively compact subdomain of U. Then there is an integer v0 such that
the equality IVi =(^"1/F: I|) holds for k^ v0. Since J| is an invertible 0^-ideal

sheaf, we have the equality /|-/Fl=/| n ̂ ~J/F for /c^v0. We have i/r1/,, n
/|+vo= J|H-vo./Ki g/vo .(/| n /Ki)g/!+vo R /vo/^ = /|+v0 n (/vo p ̂ -1/F) = J|+v0 R

1^% for fc;>0. Hence we have the equality J|+v° - IVl=Iv
0° - (/| n /Fl) for fc^O.

Since /g° is 0^-invertible, the equality J|-/Fl=/| fl/Fl follows for fc^O.

(ii) The equality ^*(/|n/Kl) = ̂ *(/|) n^*(/Kl) in ^(0^) can be easily
checked. Thus the equality (i) induces the assertion. Q. E. D.

Lemma (1.7). Let the situation be as in (1.3). Suppose that the center r

of the blowing-up \j/ is smooth and connected and that Vis a locally hypersurface

in a neighborhood of F.

Then we have the equality P(k) = x(F, jFk
r/jf

k
r
+1) for k^p. Here the

integer p is the multiplicity of V at points in a Zariski open set of T.

Proof. We shall show that the integers kt and k2 in the proof of (1.3) can

be taken to be the integer p. Hence the problem is local. From now on, we
restrict ourselves to the following situation. We employ the notations in (1.5)
and assume that V is an open set of V such that V has an ambient manifold U

and that the defining ideal lv of V in Ov is 0^ invertible. Since the center is
smooth, we have the following equalities; \l/^(I^) = lk

r for fc^O, and Riij/^(Ik
9) = 0

for fc^O, f ^ l . By (i) of (1.6), we have

0 - >/|-/Fl - >/* - »/|-6>Fl - >0, for fc^O.

Taking the direct image \j/, we have

0 - > M/$-/Kl) - > Jr - > ^*(/l'0Kl)
- » Rl\l/+(I%.IYl) - >0, for k^O.

Since IF is 0^ invertible, we have the equality \l/~1Iv = IVi- Ifa. Hence, for

k^p and for z^l , we have 1?V*(^F1) = ̂ V*(^I"P®^"1M = ̂
by the projection formula. Therefore we can take k1 to be p.

On the other hand, for k^.p, we have the following equalities.

MJ& •^1)=>A*(4) n <M/Kl) ((ii) of (1.6))
= <A*ai) n ̂ f»(/6) n WF.) (since fc ̂  p)

=/f n \l/^~lly)=lk
r n /^ (by the projection formula) .
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Hence we have

0 - > / £ n / F - >/£

By the isomorphism /£//£ n/F=(Ir + /K)//F = /r • Ov and the above exact se-

quence, we can take k2 to be p. Q. E. D.

(1.8) Let the situation be as in (1.5) and suppose that F is of dimension

zero. We denote this point also by p. Let H be a closed subspace of U defined

by the Ov ideal sheaf IH. We say V and H intersects tangentlally at p if the

equality in the ring of the initial forms grmp(OUtp) (this is defined by grmp(OUtp)

= ® K)*/K)t+l)
fc^O

0-8-D 9 ?,„„(! v) + grmi)(IH) = gr,np(Iv + 1 H)

holds. Here mp ( = Ir) is the maximal ideal in OUtp. Let Hl (resp. (H n F)j)
be the strict transform of H (resp. (H n V)} by the blowing-up \l/.

Lemma (1.9). If H and V intersect tangentially at p, then the equality

(H^V)i=Hl(\Vl holds.

Proof. By taking Proj, the equality (/^H-//^)- O0 = I(Vf]H)l • O@ follows

from (1.8.1) in O0 = Proj(grmp(Ou>p)). Hence the equality IHl+IVl+Ie =

/ (HnF)l+/0 holds in 0Vl. In general the inclusion relation /Hl+/Ki

can be easily checked. By the equality above, we have

(fey (0 of (i.6)).
By Nakayama's lemma, the equality IHi +/Fl =/ (KnH)1 follows. Q. E. D.

Remark (1.10). In general, if the equality (Fn H)l=Hl n Vl holds, graded

9rmp(Ov,p) modules grMp(IH) + grmp(Iv) and grmp(IH + IY) are T. N. -isomorphic
in the sense of E. G. A. II [15].

Assume that the equality IH = h- Ov p at p for some element h of 0Ujp holds.

In this case, the following sufficient condition to satisfy (1.8.1) is given by H.

Hironaka.

Proposition (1.11) (Proposition 6 [20]). Let the situation be as above.

The following conditions are equivalent to one another.

(O Hfa£=Hpforal1feO.

(n) h is not a zero-divisor (and hence non-zero) in Ov and (mp)
k+10v

nh-Ov = h(m)kOyfor all
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(Hi) the image h of h in gr^p(Oy) is not a zero-divisor in grmp(0v).

(iv) h is not a zero-divisor in grmp(Ov) and the natural homomorphism

(1-11.1) grmp(0v)/h - grmp(0v) - > grmp(OVf]H)

is bijective.

Note that the bijectivity of (1.11. 1) is equivalent to the condition (1.8.1).

Here the function H^ is defined by

ff#»(fc) = dim ((mp}
k • Ov/(mpY

+l - Ov) .

Then the functions {//(/*; t^O} are defined inductively by the following rule:

We will need the following fact for the later arguments (in the proof of

Theorem (4.5)).

Proposition (1.12). Let the situation be as in (1.8). Let B be the one-

dimensional closed smooth subvariety of V. Let \l/: 171->L7 be the blowing-up

of U with center B and V1 (resp.Hl9 resp. (Fn#)i) the strict transform of V

(resp. H, resp. Fn H). Moreover we assume the following conditions:

( i ) H and V intersect at p with the conditions in (1.11).

(H) Vis normally flat along B.

(Hi) The equality Jr
B + Jr

H = mp holds in Ov.

Then we have the equality V1 nH 1 =(Fn/Oi-

Proof. By (iii), we have the natural surjection

We shall show that a is bijective. By Corollary 2 of Chapter 2 [19], the
k

normal flatness of V along B induces the equality £ rank0B (9rsB(Qv)) —

H$\p)(k) for fc^O. On the other hand H$\p} = H^J'^ holds by (i). By the

OB-freeness of grJ^B(Ov\ we have

dim (g^B(Ov)/mp'g^B(Ov)) = mnkOB(gr^B(Ov)) for

Combining the above equalities, we obtain

dim (gr^(0y)lmp - 0r> B(OF)) = H$\ H^(j) = dim (gr^Oy nH)) for

Hence a is bijective. Taking the Proj, we obtain the equality V1 n H^ n

= (Fn H)t n 0. By the same arguments in (1.9), we obtain the equality V1 n H1
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Q.E.D.

§ 2. A j^-Forraula for Two-Dimensional Hypersurf ace Isolated

(2.1) Let (V, p) be a normal ^-dimensional isolated singularity and \j/\ V

-> Fa resolution of the singularity ( F, p). The geometric genus of the singularity

(F, p) is the integer pg(V, p) denned by pg(V, p) = dim c(R
n~1^ *(0p)). This is

independent of the choice of resolutions. By Theorem (3.8) of [5], we can take

a representative V of (F, p) to be algebraic. Let Fbe a compactification of V

such that Fis an open subset of V. We fix this compactification V. The singu-

larity (K, p) can be resolved by a succession of blowing-ups with smooth center

as follows:

K= F0 < - Vl < - F2 < ---- < - FN = F
(2.1.1) n n ^, n ^2 n ^3 <A» n m

V= F0 — Ft — F2 « ---- — F^ F .

Here, ^.; K^F^ is the blowing-up with center e/r. and fr- the closed sub-

manifold of the singular locus of Vl_l defined by 0 1 / f_ 1 ideal sheaf <fr.. Then

^i: K-^Pf-i is tne blowing-up of Fj-_ t which is canonically induced from \l/im

By Leray's spectral sequence for the map iK0---0*//^ we have the equality

X(0?)-X(0F)= 2 (-lydimc^^Oi?)), since the equality ^*(0^) = Or1^1
holds. In particular, if OF>P is a Cohen-MacauJay local ring, we have the vanish-

ings Ri\//i,f(O^) = Q for I ̂ i^n — 2 (see [17], [52]). Hence we have the following

equality.

By (1.3), if we know all the functions

{0} - >Z;k\

in the resolution diagram (2.1.1), the geometric genus pg(V, p) can be computed.

However, in general, it is difficult to describe the behavior of the above functions

explicitly. We shall prove an equality, which we call "^-formula", in the case

of the two-dimensional hypersurface isolated singularities (Theorem (2.7)).

Example (2.2). Before we proceed to study the hypersurface two-dimen-

sional case, we shall consider the case where the dimension of the center F is zero.

Then at this point, which we denote also by p, the function fc^^(
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becomes the Hilbert function of OVitJ, and P(t) the associated Hilbert polynomial.

In some special cases, they are written explicitly as follows.

(i) Let (F, p) be of dimension n and embedded in (Cn+2, o) as a tangential

complete intersection. Let the couple of integers (rf l 9 d2) be the degrees of the

standard basis, in the sense of H. Hironaka, of (F, p) with respect to (C'l+2, o).

If n = 1, we have #(0Fl) - x(Ov) = dld2(d1 +d2-2) (Northcott [33]). If n = 2,

i2

(ii) Let (F, p) be of dimension 2 and a Cohen-Macaulay of maximal

embedding dimension; then the equality dimc mp/m* = multp F+l holds (see

Sally [40]). Then we have dim (mp)*/(mp)
fc+1 = (mult, F) • fe + 1 for fcj^O.

Hence *(OFl)-*(OF) = 0.
(iii) Let (F, p) be of dimension 2 and a Gorenstein of maximal embedding

dimension of multiplicity greater than 2; dim m/7/(mp)2 = multp F>2 (see Sally

[40]). Then we have dim (mp)
kl(mp)

k+^ = (multp F) • k for k^ 1. Hence /(0Fl)

(2.3) We need some information (2.3.1) from the ambient spaces in the

resolution (2.1.1) for our p^-formula.

U= U0< - Ul < - U2< ---- « - UN

u u <Ai u \l/2 u ^3 <A^v u
(2.3.1) F= F0 < - Fj < - F2 < ----- < - VN= V

n n n n n 1
F= FO — F, — F2 , ---- — FN= F .

Here, Fis embedded in 17 as in (1.5). \l/t: Ui-^Ui_1 is the blowing-up of Ui-1

with center 7r., which is defined as the kernel of the natural map 0Vi_^

Ovi-jSr^Ov.-i — Oi,- Vi i§ tne strict transform of Vi_l by \l/t. V{ is defined
in the same way as in (2.1.1).

Now we shall go a step further by introducing the following notations:

On Uh the divisor 0\° is the exceptional set of \l/t defined by \l/^l(Ir.). Then,

on Uj (i<j), the divisor 0\j) is the strict transform of 0W by ^i+i0---0^-. On

S\l\ ht is the line bundle on O\i} defined by /0p/(J0p)2
5 where /0co is defined

as I0^=^T1(Irl) above. On Ff, the divisor Et is the exceptional set of i/r£ |K| : V{

">K-_! defined by ^\Ir)-0Vi. On K, the divisor W^. is defined by

(^o...o^w)-i(/r|).0r.

Lemma (2.4). Let the situation be as above. Suppose that V is a hyper-

surface in U. We have the following equality:
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Here, the integer pt is the multiplicity of Vi,l at points in a Zariski open set of

the center Fr-. Iv. is the defining ideal of V{ in 0Vi.

Proof. By the equalities (1.3), (J.7) and (1.2), we have the following

equality. ^Ov^^OVi^)^^OvJ(I9^ - Ov)-x(OVi_J(Ir^ • OVt_J. By (i)

of Lemma (1.6), we have the following exact sequence.

0 - > IVi®(OvJ(^}pi} - > <W(/*f»)pl

- > 0Vil(Ie}n)ptOVi - > 0.

Since (Iry*^Ivt_l9 we have Oy^JQ^Oy^^O^^Kl^. Furthermore,

we have the equalities ^*((/e<'>)k) = (/ri)
k for ^^05 and R^((/0c»)fc) = 0 for

/<^0, i^l. Hence, by Leray's spectral sequence for \l/i9 we have

tiOUtl(I9i»W = 1(0 Vi _ J(Irt)P>) = 1(0 Vi _ , /(I, f)P. - Oy, _ J .

The assertion follows from the equalities above.

Proposition (2.5), Let the situation be as above. Suppose dim V=2. We

have the following equalities.

( / )

(ii)

A--l)(^2-

Here the integer Q{ is the genus of the curve r{. For the definition of rh

note the following decompositions Pic (6^°) = Z- h^ij/f Pic (Ft) and Num (0J0)

— Z-h^Z-fi. Here fi is the fibre class of @W->rt. We have the decomposi-

lion by which we define the integer r£, Et = pthf — rr-/£ in Num (0^). The integers

(hi)2 and (Et)
2 are self-intersection numbers over 0[n.

Proof, (i) We have the data 0\i) = P2^ ht = 0p2(l)9 the canonical line

bundle of P2 = - 3ht. From (2.4) and the Riemann-Roch formula (p. 433 [17]),
we have the equality
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2, (V(/c-
k-0

(ii) We have the data &W = P((/r./(/r.)
2)*)_iL>rf, the canonical line bundle

of 0(
i»==-2'hi + (2gi-2 + (hi)

2)'fi in Num(<9(.*>) (cf. the arguments in §2 of

Chapter V [17]). From (2.4) and the Riemann-Roch formula, we have the

equality

= - \Pi(Pi + 1) (Pi - 0 (h,Y - \ P,{pi - 1) (flf, - I - r,-) -

Furthermore the equality (E,)2=(p,)2(ht)
2 — 2pir, induces the later equality

of(ii). Q.E.D.

The following lemma helps the computations of the integers (/i,)2 and r:.

Lemma (2.6). Let the situation be as above. We have the following

equalities.

0 0 r . - z E L .
J<i Pi

Here the integer W{- Wj is the intersection number of Wj and Wj over V ,

Proof. (Cf. the proof of Theorem 2.7 [46].) From the characteristics of
the intersection number ([25]), we have the equality

rt'SwJ on V=VN

for any couple of integers (/, j) with j g /. This equals the number

by Proposition 6 in p. 299 of [25]. We have the following exact sequences:

0 - > I0}»-OVi - > Ov. -- ̂  O0w®OVi - > 0,

and

0 - > /e» • (- °^-r lI • 0 -^ O - o — r /) • O
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These sequences induce the equality

Wt - Wj = i(0e^®0v) - x(00<» ®((^°- - -o^.)- i(/r .) . 0Vi)) .

In general we have the relation lv.®O0^ = IV. - 00<» by (i) of Lemma (1.6).
Hence we have the following exact sequence:

0 -- > /K|®Oe<o - > O0ffo - > 0F.®O0cn - > 0.

Tensoring the 00f»-invertible sheaf (^/J-
o---oiAj)~1UrJ-)®^0 i

Cl) to tne above exact
sequence over O0co, we obtain the following exact sequence:

0 - > ((^'^irl(

o) —^ 0.

Furthermore the relation (^°--<°^/)~1(/rJ)-^F l-
=:( l/ r70f '<olAi)~1(^rJ) H /F. can

be easily checked by using the fact that Vt is a hypersurface in I//. Hence the

equality (^f'"^i)~
i(lr)'Ov. = (\l/f'"°\l/i)~

}(Irj)®Ov, holds. From this we
obtain the equality 00co ® (($. o . . - 0 ^//f.)~

1 (/fj) . OK.) = (O0p> ® 0F.) ® ((^- ° • • • o

Combining the equalities above, we have the following:

(i) In the case of f=./, the equality just above induces the equality (W-^)2

= —(£; ) • /? / from the characteristics of the intersection number over 0\i} [25].
This is nothing but our assertion.

(ii) In the /-th stage, we have the decomposition of sheaves

(«A,°-^/r l(M=^1- n {oA/°---^r la;J)]^.
y ^ »

This induces the following equality in Pic«9|-n):

o=-E,+P,-hl+ i pX(^"-°^r1(

We can write (^ i /-
ci"^^/)'1(/rf) = -'?y/F i11 N u m ( 6 > ( £ n ) by some integer s-, for

/ < /. Then the equality Wf- Wf= —pfij holds for the pair (/, /) with the condition
j<i. Hence the assertion follows from the equality

Q.E.D.
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Now we shall obtain the p^-formula as a corollary.

Theorem (2.7). Under the assumptions of Proposition (2.5), we have the

following equality.

Pi

Remark (2.8). In the case of multp F=2, the ^-formula for the canonical

resolution stated in Lemma 2 of [43] can be also induced from our formula (2.7)

(cf. the argument in (4.8)).

Here, we shall give some examples computing the geometric genus from

our formula.

Example (2.9). Let (F, p) be a complete two-dimensional scheme Fover C

with a reference point p in which the isomorphism (F, p)^({(x, y, z)e C3|z3

= xs + y5}, o) exists. We shall construct the resolution of this singularity (F, p)

by two different processes. The first one is a resolution by composition of

blowing-ups with permissible centers (i.e., the blowing-ups with smooth centers,

where the multiplicity is constant everywhere), we shall call this resolution (A).

The other is a resolution by composition of blowing-ups with not necessarily

permissible centers, we shall call this resolution (B). Consider (F, p) only as

the germ ({z3 = x5 + y5}) below.

(A), (B), Step 1. Blow up V at p, say \l/1: Vl-^V. In Vl the singularity

appears along P1 as follows: The analytic space {z = 0} in U is denoted by H,

and the strict transform of H in [/,- is denoted by H{ (the other notations are as

same as those in (2.3.1)). The singular locus Sing(F,) of Vl equals \H{ n F,|

( = |0(
1

1) n H1 1) as the analytic sets. There are five points, call them /?2, p3, p4, ps,

p6, in which the singularity (F l9 pf) is isomorphic to the singularity ({s3 = t2u}, o)

for / = 2, 3, 4, 5, 6. The multiplicity of V1 at the points in \H1 n O(1}\ - {p2, p3,

P4> Ps» Pb} is two.

(/I), Step 2. Blow up Vl at the five points p2, p$, p^ $$, pb, say the

blowing-up {//j'. Vi-^Vi.l with center mpj, 2g/g6. In the 6-th stage, the singular

locus Sing(K6) of K6 equals |6?(
1
6) n Fb| which is isomorphic to P1. The multi-

plicity of F6 at the points in Sing(F6) is two.

(A), Step 3. Blow up F6 along Sing(F6) (with reduced center), say \l/7: F7
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->F6. Then the composition of \l/t I r g i f g T , gives a resolution \j/A: F7-»K.

(B), Step 2. Blow up Vl along \Hl n KJ (with reduced center), say <£: KB

-frVV Then the composition of i/^ and $ gives a resolution \I/B: VB-+V.

These resolutions have the same dual graph of the exceptional sets as

follows:

The fundamental cycle Z0 is A^+A2

^ /i.(Zo)=2 and /».(K, p)=2.

Wt, and WB (the divisor on VB defined by (j>~i(I\0^r\Hl\)) are written as

follows :

The numerical data pf, pB9 r7, and rB are as follows: p,- = 3 for l^i^6,

and

Let us consider the differences of the Euler-Poincare characteristics of OFj

and OFB.

Step 1. x(Ort)-tiOv)=-\. (A), Step 2. x(0F i)-^(OP |_ I)= - 1 for 2^1

2.

Hence pg(V, Jp) = 3. The Euler-Poincare characteristics for the resolution

(A) oscillate.

Example (2.10). Let (V, p) be a complete two-dimensional scheme V over
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C with a reference point p in which the isomorphism (F, p)^({(x, y, z)e C3|

xs + j;8 + z8H-x2}>2z2 = 0}, o) exists. Let us construct a resolution of (V, p) by

a composition of blowing-ups with permissible centers and compute pg(V, p)

from (2.5) without using Lemma (2.6).

We denote the coordinate system (x, y, z) by the following figure:

Here, Hx (resp. Hy, resp. Hz) is the hyperplane in C3 defined by x (resp. y,

resp. z). Consider (F, p) only as the germ ({x8-f ys -f z8 -hx2j2z2=0}, o)

below.

Step 1. Blow up Fat p, say ^: Kj-^K. From (i) of (2.5), ;c(0Fl)-#(0F)

= —g--6-(6- l ) - (6-2)=-20 follows. The singular locus Sing(Kj) of Vl

equals the union of three Frs |0\1) n^JJ U \O{° n(HJ,)1| U l©^0 n(H,)1 |.

(Hy)



A /?g-FORMULA AND ELLIPTIC SINGULARITIES 315

The multiplicity of V1 at the points in Sing(Fj) is two.

Step 2. Set r2 = |0(,1) f](Hs){\ as the center of the blowing-up of Vl9 say

/\
(/A), / 1

L'
The dotted curve in ©(f ' is E* .

Let us employ the notations in (2.5). Since p2 = 2 and #2 =

= --r(£2)
2-f 1 follows. Compute the integer (E2)

2 as follows: Let D2 be the

divisor on 02
2) defined by |<92

2) n (//=)2|. Let/2 be the fiber class ofi//2 : 0(
2
2)-*r2

in Num(<92
2)). We have the decomposition Num(<9i>2))= Z- D2®Z-f2 with

the equality D2 «/2 = 1 . Note the decomposition

on T2. D2 is the divisor on 02
2) = -P((/r2/(^r2)

2)*) corresponding to A^KH..^
in the terminologies of [13]. By (1.7) [13], the equalities ND^0^ = Nr^0^

©((Wr2u//s)i)*) and (D2)
2 = degree of ND2\ew over P1=2 hold. Thus we can

write E2==2-D2 + b 2 - f 2 in Num (0^2)) for some integer b2. In addition, by

using the explicit defining equation, we can easily check the equality E2 • D2 = 8.

Hence b2 = 4, (E2)
2 = 24, and x(OV2)-X(OVl)= -5.

The singular locus Sing(F2) of V2 equals the union of two F15s9 \O{2} n

(H^2\ U I®i2) n(H,)2|. The multiplicity of F2 at points in Sing(F2) is two.
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Step 3. Set F3 = |®i2) n (Hy)2\ as the center of the blowing-up of V2,

say \l/3: F3-»F2. As in Step 2, we decompose Num(<9^3)) by Num(<93
3)) =

Z- D3©Z-/3. Here D3 is the divisor defined by |0£3) n (#y)3|, and /3 the fiber

class of \f/3: (93
3)-»r3.

The dotted curve in ®(
3
3) is

By using similar methods to Step 2, we can obtain (D3)
2 = 3 and D3 -E3 = 8.

Hence £3=2./)3+2./3 in Num(0(
3

3)) and x(0V3)-x(OV2)= -4.

The singular locus Sing (F3) of F3 equals |6)(
1
3) n (Hx)3|. The multiplicity of

V3 at points in Sing(F3) is two.

Step 4. Set T4 = |6)(
1
3) n (Hx)3| as the center of the blowing-up of V3, say

iA4: V4-+V3. As in Step 2, we decompose Num(<9l4)) by Num(0i4))=Z-D4

0Z-/4. Here D4 is the divisor defined by |<94
4) n (#x)4|, and/4 the fiber class
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(fly)

The dotted curve in <9(
t
4) is

By repeating Step 2, we can obtain (D4)
2 = 4 and D 4 -E 4 = 8. Hence £4

EE2D4 in Num(6>4
4)) and z(0V4)-%(OV3) = -3.

F4 is non-singular. Hence, the composition of i/^,..., ^4 gives a resolution

F4-» K We have p/F, p) = 32.

In (2.10), fortunatelly, we have a very explicit decomposition of Irl(fr)2

which is useful in computing the integer (£)2.

However, in general, we can not expect section D of 0 to be as good as it is

above. Therefore we must try to compute pg by using Lemma (2.6). Then the

problem is deduced to the computation of the intersection numbers (Wt- Wj) and

the genus of the centers of blowing-ups.

Remark (2.11). There is a different method to compute pg of the hyper-

surface two-dimensional singularity in terms of numerical data appearing in

embedded resolutions. This is the method to compute the Milnor number

(e.g., by the method [10]) and to relate it to pq by Laufer's formula [27].

§ 3e Maximal Ideal Cycles

(3.1) Let (V, p) be a two-dimensional isolated singularity and \l/i (V, A)

-*(F, p) a resolution of (K, p) with the decomposition into the irreducible compo-
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nents of the exceptional set A= \J Aj. The maximal ideal cycle for the resolu-

tion \l/ is the divisor 70 on V defined by

j-1 femVtp

where (;; is the valuation on Oy p defined by (;//) = the vanishing order of r//*(/)

on Aj for feOVtp, l^j^m (cf. (1.4) of [43]). In this section we shall study

the virtual arithmetic genus pa(Ylj/). Let us discuss the relation between the

integer pa(Y^) and the generic section of (V, p) by the hyperplane from the

ambient space (3.4). This is a composition of (1.3) and the results by P.

Wagreich and H. B. Laufer (see (3.5)). By noting the basic properties for one-

dimensional Cohen-Macaulay local rings, we can obtain the non-negativity of

pa(Ytj/) for the normal two-dimensional singularity (V, p), which is similar to the

non-negativity of pa(Z0) for the fundamental cycle Z0 ([3], [28]).

Throughout this section, let us assume that the base field k is infinite (see

(3.3)) and that Ov p has at least one non-zero divisor in mFjp. Hence (V, p) is a

reduced isolated singularity (cf. [32]).

(3.2) Let us consider the following situation:

Let (P, p) be a two-dimensional isolated singularity. There is a compact

projective algebraic surface V such that V is an open set of V, V is embedded in

PN and that F—{p} is non-singular. Take a resolution \l/: (F, A)-+(V, p) such

that \l/~l(mVtp) is an invertible Op ideal sheaf. Let H be a hyperplane in PN

containing p and set C = H n V. Let C' be the divisor on F defined by the part of

the divisor \j/~l(C) off A. By the universal mapping property of blowing-up, we

have the following commutative diagram:

Here $: PN-*PN is the blowing-up of PN at p, $: F1-»F the blowing-up of

Fat p, and C1 (resp. H^) the strict transform of C (resp. H). The other arrows

are induced morphisms.

Let us assume the following three conditions:
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(3.2.1) The equality ^

(3.2.2) C has an isolated singularity at p.

(3.2.3) The equalities mul t p C = multp V and embdimpC==embdimp V-l hold.

(3.3) From the arguments below, sufficiently many hyperplanes H may

satisfy three conditions above.

First of all, choose a system of hyperplanes {//,,..., HM} which satisfy the

following two conditions: We denote the defining equation of Hl in 0PNfp by hf.

(3.3.1) ( fc l , . . . ,M-0F,p = "V.P-

(3.3.2) min VA (/?/)= min VA (/) holds for any irreducible component
1 ^ i ^ M ' /em r,,, '

w
A}- of A (A— U Af). Here vAi is the discrete valuation defined by OVtA>, i^j

^w (see (1.4) 'of [43]).

(3.3.3) There is a non-empty Zariski open set I\ in kM such that the equality
M

vAj( X flifc|) = mm DAj(f} holds for any Aj and for any (a^E 7\.
'=1 f^mV,P '

M _
We denote the hyperplane associated to X flf/?f by Ha, where ^ = (a lv..,

i=l _
aM}ekM. It is easily seen that the hyperplane Ha satisfies (3.2.1) for aeT j .

For (3.2.2), we note the following:

Theorem (33.4) (Flenner, Tessier, Bruns, Satz (4.1) [12]). There is a non-

empty Zariski open set T2 in kM such that the relation Sing (H a fl V) e Ha

n Sing(F) at p for aeT2 holds.

For (3.2.3) it is sufficient to see the following:
M

(3.3.5) There is a non-empty Zariski open set T3 in kM such that ]T aihi1=1
defines a superficial element of OVtp for aeT3 (i.e., it defines non-zero element
~M ' _
£ athi of gr^(0Vip) and there is an integer c such that (0: (£ aihi)grm(OVtp)) n

For the properties of superficial element, see §3, Chapter 1 [38].

We may assume that the elements £ aihl above are not contained in any

associated prime of Ov p (i.e., it defines a non-zero divisor of OF>P).

Note, by (3.2.2), that Ct is reduced and so the natural morphism OCl

is injective.

Proposition (3.4). Let us assume the conditions (3.2.1), (3.2.2) and (3.2.3)
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for the hyperplane H. Suppose h defines a non-zero divisor of Ov p. Then

the following equality holds.

Here H(Cjp)(h) = dimk(mc>p)
hl(mCip)

h+1 is the Hilbert-Samuel function of OCp

and P(ctp)(h) the Hilbert-Samuel polynomial associated to H(Ctp) (hence P(C>p)(h)

= multpCfor /J^O).

Proof. First we shall show the following equality: /(Oc/) — %(OC) = — x(^cf

. By (3.2.1), we have

0 - > i/r-ij^ - >SC. - > <*c'®0^ - > 0 .

Combining with

0 - > J?c> - > Oy - > Oc> - > 0 ,

we have the equalities %(OC>) = /(Of?) - /0/b-) = /(Off) - /(^
®0r ). By Leray's spectral sequence for \j/, we obtain /(Op) — /(0F)=

The projection formula induces the equality at p;

R^^O^^^c^R^^O^^R^^-1^)) for

Tensoring ^c to the usual Ker-Coker exact sequence

0 - > tf - > OF - > *ls*(Oy) - > ^r - > 0 ,

we obtain the following equality at p:

0

Since the supports of sheaves R^^(0y) (q ̂  1), JT and jf are contained in

{p}, we have the following equalities: /(^^*(OF)) = /(^^*(^~I(^C))) («^1)-

/(^!,(00)-/(0F) = /(iAJ!:(^-I(^c)))-/(^c). Furthermore Leray's spectral sequ-
ence induces the following equality:

Combining the equalities above, we obtain

and

By a characteristic of the intersection number of Cartier divisors (Kleiman
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[25]), we have the following equalities: -(7^)2= Yll/oC/

. Hence we obtain the following

equality :

(3A1)

By (1.3), (3.4.1) can be written as follows:

By Leray's spectral sequence for n, /(OC0 —
(3.2.3), P(C^(k) = mu\tpC = mu]tpV. By Wagreich's theorem (Theorem (2.7)

[46], see also our proof of (2.6)), multp V= ~(Y,,,)2. Note the equality H(cfJ,)(0)

= 1. Therefore we obtain the desired equality from the equalities above.

Remark (3.5). When the characteristic of the base field fe is zero, we may

choose H such that C' is regular by the Bertini second theorem on V. Then the

left side of (3.4.1) is the conductor number of (C, p); we shall write it 5(C, p).

From the Riemann-Roch theorem on Tp, the equality (3.4.1) can be written as

follows :

Here K? is the canonical divisor of K In this form, the equality (3.4.1) had

already been announced by H. B. Laufer [29], and is proved by J. Giraud [53]

and M. Morales [54].

Remark (3.6). In the equality (3.4), the isolatedness of the singularity

(V9 p) is essential, as can be seen in the following: Let (V, p) be a reduced (not

necessarily isolated) singularity. Then we can prove the following equality

easily as in (3.4):

Pa

where the integer %A(B, C) is the intersection number in the sense of Serre [41].

Here we have the inequality X°PN(@H> ^*(^F)/^F) ̂  0- The equality holds if
and only if (V, p) is an isolated singularity (see [41]).

(3.7) Next let us discuss the relation between pa(Y^) and pa(Y^) for two
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different resolutions \j/ and 0. Let us consider the following commutative

diagram :

( V, p)

, A')

Here ij/i (F, A)->(V, p) (resp. 0: (V, A')-»(V, p)) is a resolution of (V, p)

with the exceptional set A (resp. A'), and t is the holomorphic birational map
m m'

such that 0 = i/(oT. Let A = \j A} (resp. A' = \J A'j) be the decomposition of
j=i y=i

the exceptional set ^4 (resp. ^4') into the irreducible components. Assume A'j is

the strict transform of Aj by T, for / = I,..., m. Let D be the divisor on V of the
m'

form D= £ d'j-A'j, where d} e Z for ; = !,..., m'. Then we shall denote the
m ^,

divisor £ d'rA, on Fby t^D).
j=i

Lemma (3.8). Let D fee an effective divisor on V, whose support is con-

tained in A'. Then the following equality holds:

Proof. Taking the direct image T* of

0 - >SD - > Ov, - > 0D - > 0 ,

we obtain

0 - > i*(SD) - »0V - > T*(<9D)

- > H1!*^) - > Rl?*(0v.)

Here note JR1TJH(OF,) = 0. Hence we obtain

pa(D) = 1 - x(0D) = 1 - xMOD))

= 1 - x(Orlrt(SDy) - dim R^(^D) .

By noting the relations T*(^i,)s^(I)) and pa(t+(D)) = 1 - K^r /^(I))), we
obtain the desired equality. Q. E. D.

Proposition (3.9). Let the situation be as above, (i) The inequality

pa(y^^pa(y^) holds, (ii) Assume that (j>-}(mVtp) is Ov,-invertible. Then the

equality pa(Y(})) = pa(Y[l/) holds if and only if^'^my^) is Op-invertible.

Proof, (i) We have the relation T#(y^)= Y^. Hence the assertion is clear

by (3.8).
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(ii) We have the relation Y+'A'j^Q for ; = !,..., ro' (see Section 1 of [43],

(3.2.1)). By Theorem 12 of [30], we have the vanishing Rl-c*(J?Y(l)= 0. Hence
by (3.8), Pfl(^) = /a^)-dim (^/T,(0-'(mKi,))). If Pfl( Yj = pfl( ty, then j^

= T!,(0-1(mF,p)) = T*(T-1(^'1(wKip))) holds. Hence f^y,) = T^T^T-1^'1

O«K.P)))) = T-I(^"I('WK,P)). By Lemma (5.3) of [46], the equality J?Y^-\mvJ
follows.

In general we have the relation i//~1(mFjp)g -c^(i~l(^j~'[(mv^)) g J^y^.

Hence the converse is clear. Q. E. D.

Corollary (3.10). Let \l/\ (K, A)->(F, p) fre a resolution of a normal two-

dimensional singularity (F, p).

(i) \l/~l(mv^ is Op-invertible if and only if the integer pa(Y$) is the mini-

mum among the set of integers {pa(Y$}\ 0: (V , A')~>(V, p) a resolution of

singularity (V, p)}.

(ii) Suppose that i/'~{(mVip) is Oy-invertible and that the equality pa(Y^)

— pa(V\ p) holds. Then 0~l(ftV.p) 's Oy-\nvertiblefor any resolution 0: (V, A')

-KF, p).

Proof, (i) is obvious from (3.9). (ii) In this case, the set {pa(Y^\ $: (F',

/4')->(K p) a resolution of (V9 p)} coincides with {pa(V, p)} by (i) and the defini-

tion of pa(F, p). The assertion follows from (i). Q. E. D.

(3.11) We shall remark the non-negativity of the integer pa(Y^} below.

Let (F, p) be a normal two-dimensional singularity. In particular 0V}P is

Cohen-Macaulay. Oc p is also Cohen-Macaulay if and only if h defines a non-

zero divisor of Ov p. We must remark the following facts on "the boundedness

of number of generators of ideals of Cohen-Macaulay local rings".

Theorem (3.11.1) (see, e.g., Chapter III [38]). Let (R, m) be a one-dimen-

sional Cohen-Macaulay local ring with maximal ideal m. Then the following

inequalities hold:

dimR/mOnklmk+l)<*multmR for k^Q.

Theorem (3.11.2) (Abhyanker [1], [37]). Let (R, m) be a Cohen-

Macaulay local ring with maximal ideal m. Then the following inequality

holds:

(3.11.2.1)

Theorem (3.11.3) (Sally [39]). // the equality holds in (3.11.2.1), then
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the Cohen-Macaulay type of (R, m) equals multmR — 1. In particular, if

(jR, m) is Gorenstein of multm R ^ 3, the following inequality holds:

(3.11.3.1) embdim£gmultmR + dim#-2.

Corollary (3.12). Let if/: (V, >4)->(F, p) be a resolution of a normal two-

dimensional singularity. Then the inequality ^(Y^)^O holds. In addition if

(V, p) is Gorenstein of multiplicity ^3, the inequality pa(Y#)*tl holds.

Proof. If ^~1(mVip) is 0^-invertible, the inequalities follows from (3.4),

(3.11.1), and (3.11.3). Hence by (i) of Corollary (3.10), the assertions follow.

Q.E.D.

The reader may expect to have more precise results provided in Section 4.

Chapter II. Studies on the Normal Two-Dimensional

Gorenstein Singularities with pa= 1

§ 4a Decomposition of Zariski's Canonical Resolution

(4.1) Using the results of the previous sections, we shall prove the existence

of a resolution with a special condition for the normal two-dimensional

Gorenstein singularity with pa = L Let (F, p) be a normal two-dimensional

singularity. A resolution of the singularity (V, p) is obtained by the following

process (due to Zariski, see e.g., [31]);

crl: F1-»F the blowing-up of Fat p,

7\: Vl -> Vl the normalization of Vl,

<72: F2-> YI the blowing-up of Fx at a point in the singular locus of Fl5

T2'- F2->F2 the normalization of F2,

and so on.

Moreover this process ends in finite steps.

This resolution is called ZariskVs canonical resolution. We shall simply

refer to it as Z.C.R* in this paper. The singularity (F, p) is called "absolutely

isolated" if all normalizations in Z.C.R. are trivial. It is well-known that the

normal two-dimensional rational singularity is absolutely isolated (Lipman [30],

Tjurina [42]). We shall prove the decomposition theorem of Z.C.R. in our

situation by a composition of blowing-ups with smooth centers (4.6). First we

shall show that (F, p) is Gorenstein of maximal embedding dimension or of
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multiplicity two. Then the tangent cone of the singularity is Gorenstein by

Sally [39]. This fact is basic for our study. This section is the first step toward

the theorems in Section 7 (The criterion for absolute isolatedness, etc).

Throughout this section, let us assume that the base field fe is an algebraically

closed (hence infinite) field.

Theorem (4.2)8 Let (V,p) be a normal two-dimensional Gorenstein singu-

larity of multiplicity ^3 with pfl(F, p) = l.

(i) (V, p) is Gorenstein of maximal embedding dimension (i.e., the

equality holds in (3.11.3.1)), and the equalities H(y^(k) = p • k for k^.1 hold

for some integer p.

( / / ) Let \l/l: V±-*V be the blowing-up of V with center mVmp, then Vl is

normal Gorenstein.

Proof, (i) Let i^: F-»Fbe a resolution as in (3.2) and (3.3). The condi-

tion pa(V, p) = l implies the equality pa(Y^) = i by (3.12). Hence by (3.4) and

(3.11), we obtain the following equalities:

(4.2.1) *(

(4.2.2) P(C^(k) = H(C,p)(k] for fr£2 and

The last equality of (4.2.2) means that (C, p) is Gorenstein of maximal embedding

dimension. By the condition (3.2.3), (F, p) is also Gorenstein of maximal

embedding dimension. The later assertion in (i) is due to Sally [40].

(ii) By the main theorem of Sally [39], grm(0v) is Gorenstein. Hence we

can assume that the defining equation h of H defines an element h of gr^Oy),

which is a non-zero divisor of grm(Ov). By (1.11), Fand H intersects tangen-

tially at p, and Cl is a locally principal divisor in V1 with the scheme theoretic

relation C1 = V1 n H{.

Next we shall show that V1 has only isolated singularities. Put 5 = 1 Ft

fl ©{^\ (i.e., |iAl1(p)l in ^i)- B is a one-dimensional reduced scheme. By the

Bertini theorem over algebraically closed ground field (Theorem (8.18) and

Remark (8.18.1) Chapter II [17]), we may assume that B nf?i is a finite union

of reduced zero-dimensional points. Let us blow up V1 with center the ideal

,/jj, which is the defining ideal of B, we shall write it as £•. F2->F1. Moreover

we shall assume that n~\^^ is an invertible Of -ideal. Now we can obtain the

following diagram;
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Here 77 is the map from the universality of the blowing-up f. The other

morphisms are the induced morphisms. We know that C2 is also reduced and

so that the following equalities hold:

(4.2.3)

(4.2.4)

Let I B n C j be the set {qi,....qa}. Since B n Cj =B n #! n F ^ B n f f i , the

morphism £ |c : C2-+C! is the blowing-up of Cj with center the product fl "^,
i=i

of maximal ideals ([21]). By (4.2.4) and the formula (1.3), we obtain the equality

Z C Z {^(Cli«i)W-"^(r,f^)('c)}] = 0. Since (Cl3 gf) is one-dimensional reduced
i= l fc^O
(hence is Cohen-Macaulay), the equalities P(Cl>g.//c) —H ( C l ) < ? t )(/v)==0 for fc^O

follow for /=], . . . , s by (3.11.1). Hence (Cls r/,) is regular for /=!,..., s. In

general, we have relations dim V1 =dim C± 4-1 and embdim F1 ̂ embdim Cj 4-1

at any point of C1? since C1 is a locally principal divisor of VL (see pp. 41-42 of

[38]). Hence (F1? g£) is also regular for i = l,..., s. Noting that Ht intersects

with all irreducible components of J5, we may conclude that Ft is regular except

at finite points over B, so that V1 has only isolated singularities.

In addition the Gorenstein-ness of grm(Oy) implies the Gorenstein-ness of

F, (Theorem (5.1) [39], Lemma (5.1.10) [14]). Therefore V^ is normal

Gorenstein by Serre's criterion (Theorem 39 [32]). Q.E. D.

Before we proceed to consider the case of multiplicity two, let us note the

following:

Theorem (4.3). Let (V9 p) be a normal two-dimensional singularity. Let

i//: (V, A)-+(V, p) be a resolution as in (3.2). Suppose that the equality pa(Ytl/)

— 0 holds. Then the following two statements are true:

(0 (Kp) is Cohen-Macaulay of maximal embedding dimension (i.e.,

the equality holds in (3.11.2.1)) and the equalities ff(F>p)(/c) = p/c+1 for fc^O

hold for some integer p.

(//) Let Vl-^Vbe the blowing-up of (V, p)\ then V± is normal.
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Proof. Note, first of all, that the equality pa(Ytl) = Q holds for any resolu-

tion /<: (F", /1")-KK p) as in (3.2) by (3.9). By (3.4) and (3.11), the equality

pa(Yll/) = Q implies the following equalities:

(4.3.1) ^*(Or)/0Cl) = 0,

(4.3.2) P(C§p)(fc) = tf(Cip)(fc) for fc^l.

The last equality means that (C, p) is Cohen-Macaulay of maximal embedding

dimension. With the aid of Sally's results [39], [40], the remaining parts of

proof can be said to be parallel with the proof of (4.2).

(4.4) Let (F, p) be a normal two-dimensional singularity of mult /7F=2

with pa( F, p) = 1. Let \\i x: V1 -> F be the blowing-up of F with center m Kjp. Let

us assume that F3 is not normal. (F, p) is a hypersurface of (fc3, 0) (by (3.11.2),

see also [43]), hence the singular locus Sing(F1) of Vl is seen as a subvariety of

p2 — 0\l\ The following fact has been proved for the complex analytic case by

the author (in §§1 and 2 of [43]):

Theorem (4.5). Let the situation be as above. (/) The one-dimensional

part of ISingfFj)! is a straight line in F2, call it £?, in the same sense. ( / / )

Let \l/2'- F2->Ft /?e the blowing-up of Vl with center the defining ideal .fB of B.

Then F2 is normal and i//2 is the normalization of V}.

Proof, (i) Let i//: !?->F be a resolution as in (3.2) and (3.3). By (4.3),

we have the inequality pa(Y^}^ 1. Hence the condition pa= 1 implies the equality

pa(YlJ/) = \. We know the fact that (C, p) is a hypersurface of multiplicity two of

(/c2, o) and so the equalities 2 = P(Ctp}(k) = H(Ctp)(k) for / c^ l hold. By the

formula (3.4), we obtain the following equality:

(4.5.1) *Or*(OcO/0Cl)=l.

We can assume that V and // intersect tangentially at /?, and that C\ is a

Cartier divisor on Ft with the relation C] = F1 fl Ht (by the same argument as

(4.2)). Let B be the one-dimensional part of |Sing(Fj)|. Since Vl is a non-

normal hypersurface, B is non-empty by Serrc's criterion. By the Bcrtini the-

orem over algebraically closed ground licld (Theorem (8.18) and Remark (8.18.1),

Chapter IT [17]), we can assume that B n HI is a finite union of zero-dimensional

reduced points. Blow up Ft with center the ideal ./#, which is the defining ideal

of B, we shall write it asc: F2->F1. In addition, assume that n~l(j?^) is an inver-

tible 0^-ideal. Now we can obtain the following diagram as same as in (4.2):
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the center of £ is JB

We know that C2 is also reduced and therefore one of the following equalities

(A), (B) holds:

(A) l(Oc,)-z(0C2)=\ and

(B) *(0C,)-*(0C2) = 0 and

However, (A) does not occur (since if (A) holds, we can show that Vv is normal

by the arguments in the proof of (4.2) (ii)). Hence we obtain (B).

Let I B n C J be the set {qi,...,qs}. Since B n C^=B {\Hl n V1=B n HI,

the morphism c|Cz: C2-+Cl is the blowing-up of C\ with center the products
S 6

0 /H« of maximal ideals ([21]), From the formula (1.3), the equality X
i=l i=l

[Z {^(cl!,[)(
/c)~^(Ci^)(/c)}]=:1 is obtained. Since (Cl5 ^) for i = l,...,s are

fc^O

one-dimensional reduced (hence Cohen-Macaulay), there is one point, say ql9

where the following equalities hold :

^(C1.fll)(
0)-^(r1.,1)(°) = 1. p(c^)(V = H(Cl,qi}(k) f o r f c ^ l ,

and P(Cl,qi)(k) = H(Cl^(k) for fc^O, i=2,...,s.

Hence (C,, #,-) for / = 2,..., s are regular, and (F1? ^/) for / = 2,..., s are also

regular, since C, is a Cartier divisor on Fj (by the same arguments in the proof

of (4.2)). This means that 5=1, since B is contained in Sing(K1). B is one-

dimensional reduced and of degree one in P2, hence is a straight line.

(ii) F2 is also a local hypersurface. Fx is normally flat along B, since

multg F! =two for any q e B (Theorem 2 of Chapter 2 [19]). Hence dim ij/2 l(q)

is constant for q e B. \//2 is a finite map. The fact which we have to prove is

the normality of V2. We shall show that V2 has only isolated singularities.

Then the normality of V2 follows from Serre's criterion.

Here we note the following fact: Since (C1? q^) is a hypersurface of

multiplicity two, the equality H$ltqi) = H$\iqi) can be easily checked, Hence, by

(1.11) and (1.12), C2 is a Cartier divisor on F2 with the relation C2 = H2 n F2, if
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H1 does not contain B.

Let us separate the proof into the following two cases:

Case 1. There is a liber/of 0(
2
2)-*B such that \E2 D f\ consists of distinct

two points.

Then E2 fl / is a union of the reduced two points. Hence E2 is regular in

a neighborhood of E2 fl /. Since E2 does not contain any fiber of 0(
2

2)-*B,

f intersects with all the irreducible components of E2. Hence E2 has only

isolated singularities. Since E2 is a Cartier divisor on V2, V2 also has only

isolated singularities (cf. the proof of (4.2)).

Case 2. \E2 n f\ is one point for any fiber/ of 0(
2

2)-»B.

Since 1 \E2\ ft f\ = \E2ft f\, \E2\ is irreducible. E2 is written as E2 = 2\E2\

m 0(
2
2). Le t |£ 2 | n f f 2 = {^'). Since \E2\ nC2 = | £ 2 | nH 2 n V2 = \E2\ n H2 and

multq> (E2 ftH2) = 2, \E2\ n C2 is a reduced point. Blow up F2 with center the

ideal J>\E2\, which defines |£2|. We already have the equality %(Oc) — i(QC2} = ®

in (B) of the proof of (i).

Now the remaining part of the proof of the normality of V2 is parallel with

the proof of (4.2) (ii); hence we shall omit it.

Combining Theorems above, we obtain the following:

Theorem (4.6). Let (V, p) be a normal two-dimensional Gorenstein sin-

gularity with pa(V, p) = l. Then Z.C.R. is obtained by the composition of

blowing-ups as follows:

U= U0 <-*!- U{ +**- U2 < . . .<!£_£/*
(*) Ull Ull Uil Ull Ull

V= F0 <— V, < V2 ^— ... <— VN

where Kc U is the minimal embedding, *//,- the blowing-up of l / /_ i with smooth

center F /czl/._1, and V{ the strict transform of F,_ l 5 l^i^N. Moreover we

have: There is an integer M (^N} such that (/) V, is normal for f^M, (//) i//,

/v a blowing-up with point center /?, such thai (V-^ ,, /?,-) is Gorenstein of maximal

embedding dimension of multiplicity ^.3 for / ^M, ( / / / ) at each stage, in which

Vj is normal, there is at most one non-rational singularity, (iv) mul t f / K M :g2

for any point qe VM, (v) in Z.C,R, for the singularities of VM, each normali-

zation is trivial or is obtained by one blowing-up along (reduced) P1.

Proof. We shall prove only (iii), since the other parts are the combination
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of the results which we have already proved.

Let us consider the following situation. Let \j/: (F, A)-+(V, p) be a res-

olution. Suppose there are two effective divisors on V, say Dt and D2, whose

supports |Dj| and |D2| are contained in A with the condition |Dj| n|D2 | = ^.

Then there is an effective divisor £>3 such that [DJ n \D3\ and \D2\ fl \D3\ are both

non-empty and discrete, and that pfl(D3)^0. The inequality pa(D1+D2-i-D3)

= Pa(Di) + Pa(^2) can be easily checked. Hence we obtain the inequality pa(V9 p)

^ Z pa(Vt> 4) for the normal V{. Q.E.D.
qeVt

(4.7) Let us compactify Vi9 / = !,..., N, of diagram (*) of (4.6) as in (2.1.1).

We shall see the behavior of the integers #(0F.), i' = l,..., N. Let the set of in-

tegers {Ji = l<~-<JM = M<jM+1<-~<jF} be the subset of {!,..., N} such that

\l/j. is the blowing-up with point center of multiplicity greater than or equal to

three, or the blowing-up with center P1.

Proposition (4.8). Let (V, p) be a normal two-dimensional Gorenstein

singularity such that Z.C.R, for (F, p) is obtained with the diagram (*) of

(4.6) (not necessarily pa=\) and {y l5..., jF}> the index set as above. Then the

following equalities hold', (i) #(OF.) — x(0Fi ,)= — 1 for /=JI , . . - , , /F- ("')
— ^(0T | ._ J) = 0 for other index i. Therefore we obtain the equality

Proof. The assertion about (ii) follows from (i) of (2.5). The assertion of

the cases /=.//„ for / i=l, . . . , M, has been checked in (ii) of (2.2). Now let us

consider the cases / = //„ for h=M + l,..., F (i.e., rt = Pl). By (2.7), we have the

following :

i Pi

\-\(PI-\}
= -^Wjh - i • Wjh + -y (W^h)2 +1 (by Theorem (4.5)).

Now we shall show the equality Wjh,i = WJh. Let us consider the following

commutative diagram:
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We obtain the following equalities:

(/r.J^o^^/K^-.^^^C^.J-X/K^-.^^^C^^O2^,^^^.
Since I9uh)-O0y^ — Irj -O0y^-\\ we obtain lv^ -O0y*> =00y^ . This means

that VJh n &yh
h^i is an empty set so W J h _ , = Wjh holds.

By Theorem (2.7) of [46], (Wjh-l)
2=-2 holds. The assertion follows

from these equalities. Q. E. D.

§ 5. Calculation of the Canonical Divisor

(5.1) The purpose of this section is to establish the adjunction formula

(5.4) which gives the following theorem as a corollary:

Theorem (5.2). Let (K p) be a normal two-dimensional Gorenstein

singularity which has a resolution with the conditions in (4.6) (not necessarily

Ull Ull Ull Ull

Let the set of integers {j\ JPg(v,P)} De the subset of {!,..., N} defined in

(4.7) (cf. (4.8)). Then the canonical divisor KYj^ in this resolution is written

as follows:

PI,
KV;v=I ~WJlt.

Comparing this with "the formula of the canonical divisor by the sum-

mation of the elliptic sequence" (by S. S. -T. Yau [48], see Section 6 of the

present paper), we obtain Theorem (7.8) and Corollary (7.9), by which we can

deduce some precise results on the resolution process of the maximally elliptic

singularity (in [45]).

Theorem (5.2) follows from Theorem (5.4) directly (see (5.5)). In the proof

of Theorem (5.4), we shall construct a syzygy of the Rees algebra of the sin-

gularity, which has a self-dual property in the T. N. -isomorphy sense. This is

done by the following Wahl-Sally's method for "the lifting of the syzygy from the

tangent cone to the original local ring [47], [40]". Their method is essential in

our proof of Theorem (5.4).

(5.3) To make the problem clear, let us fix the situation. Let (V, p) be a
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normal isolated Gorenstein singularity embedded in a regular scheme U with

codimension r. Let us consider the following resolution diagram :

U= U0 ̂ - U, ̂ ~ U2 < ---- «*i. UN

(5.3.1) Ull Ull Ull Ull Uil
V= F0 <— V, <— F2 < ---- *— VN.

where \l/t is the blowing-up of Ui-l with smooth center Ft contained in the sin-

gular locus Sing(l^-_l) of Vi-i and Vt the strict transform of Vi,1 for i = 1,..., N.

Let i/r : £/#-» U be the morphism which is the composition of ^rf 's and J£F]V the

canonical divisor on VN whose supports are contained in \i//~1(p) fl VN\ (cf.

§2 of [43] or [18] for the existence of such a divisor). We shall consider in the

neighborhood of the inverse image of {p} in each stage.

Problem (5.3.2). Find a divisor D on UN of the form D= £ <*i'@iN\
i=l

where ^e Z for i = \.,...,N, which satisfies the condition D\VN~KVN (i.e.,

OvN&D'\)®OVN([KVvy), where [D] denotes the line bundle associated to the

divisor D).

This is equivalent to the following:

Problem (53.3). Find a divisor G on UN of the form G= £ fti&\N\ where

P,eZ for i = l,.. . ,N, which satisfies the condition Extr
0uir(OyN, 0Uri([G]))\Vjf

Indeed the equivalence of these problems is seen as follows. Let E be the

divisor on UN defined by the functional determinant of \l/\ UN-+U. Actually E
N

is written by E= X ((codimr. t / . J — l)'(^i+i°'"o^N)~l(0(
i
i)) and satisfies the

i=l
equality Q$N^OUN([E])9 where R is the dimension of UN. Here we note the

equality Ext'0uif (OyN, Q$N)\Vjr = Or „(&?„]). Hence if (5.3.3) is solved by the
divisor G, then the divisor E — G satisfies the condition of (5.3.2). The converse

is also clear.

If (F, p) is a hypersurface in 17, the answer is well-known. In fact the

equality Ext*0uif(OVN, 0Uw([-7w]))|Ky ^ OVN holds and ^(/K) = ft (^1+1°

•••o^N)-i(/0c0)pi-/F^ is trivial in the neighborhood of $~l(p). Such an

argument is seen in the proof of Satz 1 [8]. (See (2.6) for notations.).

We have an answer under the following conditions below :

Condition (5.3.4). There is an integer Mf (rgAT) such that the following

conditions are satisfied: (i) Vk is normal isolated Gorenstein at every point of
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Vkfor k^M'. (//') \l/k is a blowing-up with point center Fk9 which is also de-

noted by pk, for k^M'. (Hi) (F f c_1 ? pk) is not a hypersurface for k^M'.

(iv) All singularities of VM> are hypersurface singularities, (v) Qrmv P] •

(OVk_lip1) is Gorenstein for k^M'. (vi) Let (Vk_l, p/tt^CW^-i, pk} be the min-

imal embedding to a regular scheme Wk_l at pk for k^M'. Let Sk denote

yrmwk-ltpk(Owk-i,Pk)' The condition (vi} is the existence of a graded free

Sk-resolution of grmVk_ltPk(0Vk_ltpk) of the form

0 _> S k ( - » - f c — Sk(-a^)b^^ — »

---- > SfcC-aO*1 - > Sk - > grmrk_ltPk(Ov^ipk) - > 0,

where Q<a1<a2<--<as^ whose localization at ( m W k _ ^ p l t ) - S k is a minimal

resolution for k^M'. Here the integer sk is the codimension of Vk^{ in W k _ {

(by (v)).

Theorem (5.4). Assume that the condition (5.3.4) is satisfied in (5.3.1).

Let G be the divisor on 17 Y of the form G= X (as. + r-s^)'(\l/i4.^"^\l/N)~l(0(
i
i)}.

1=1
Here, for the case of /^M' + l, the integer aSi is defined as the multiplicity of

Vi-l at points in a Zariski open set of center r,- and the integer s,- the embedding

dimension of Vi_l at the points in the center Ft (i.e., s^dim Vi_l + l). Then

we obtain the equality Extr
0uN(OyN, 0UN([G]))\Vlf^OVN.

(5.5) Proof of (5.2). By Sally's analysis [39], [40], the conditions of

(5.4.3) are satisfied under the assumption of (5.2). The divisor E — G cited after

(5.3.3) is written by

E-G= S ^
i= l

by Theorem (5.4). Since (K f e _ l 5 pk) is Gorenstein of maximal embedding

dimension, we have the equality aSk = multpk Vk^l from Sally's computation

[40] . By noting the equality sk = dim Vk-1+ multpfc Vk _ t — 2 from the

assumption of such a situation, we can see that (5.2) follows directly.

Q.E.D.

The rest of this section is devoted to the proof of Theorem (5.4).

(5.6) First of all, we shall localize the problem.

Lemma (5,6.1). Let the integer i satisfy 1 ^ / ̂  M'. Let & be an invertible
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Ov -module sheaf. Suppose the triviaUzation &\&i = 0Vi\&l and ~2?|^2 =

Ovt\&-> /s given for an open covering {^15 <%2} °f Vi sucn tnat ^l = Vi — 0(
i
i)

fl Vi and <%2 an open neighborhood of V*{ n 0
(
t
l) in V{. Then we have the isomor-

phism ^~0Vi over YI.

Proof. There is an open neighborhood f^ of pt in F^ such that (^;|

E%- Since F^ is normal, we obtain the following:

t)-
l( n), oVi) — > r(#! n GM^rK n), oVi)

i\\ C\ n

By assumption, there is //^eF^-, ^f) which is nowhere-vanishing over

^/,-, for /= 1, 2. By the diagram above h^jh2 and /?2//'i extend to the sections g

and g' over OAilO'H ^3) w^h the relation g-g' — i. Hence # is nowhere

vanishing over (^i\y^~l( ^) and so is g - h2- Then h1 and g - h2 define a nowhere
vanishing section of <£ over Vt. Q. E. D.

Lemma (5.6.2). Let 3? be an invert ible 0VN-module sheaf. Suppose

that the triviaUzation ^\?/. = Ov^\?/. is given for an open covering (^19 ^2)

of VN such that <%l = VN — ( W 0\N)) n VN and <%2 an open neighborhood of
N i=M' + l

( \J 0\N)) n VN. Then we have the isomorphism 3?^OV over VN.
i = M' + 1

The proof is similar to the proof of (5.6.1), hence we shall omit it.

Suppose F is an invertible Ov._ ̂ module sheaf such that Extr
0u.

(OF ._ l 5 F)\v._l^0yi_l for some integer / such that 1 rgigM'. If we prove the

isomorphism Extr
0ut(0Vi, 0Ui(bl0<

i
i^))\yt^Oyi in a neighborhood of <9j-° n 7,

for some integer b, we obtain the isomorphism Extr
0u. (OFi, (^/)-1F®

^i/^E^f1^]))!^^^^ over K' by (5.6.1). Furthermore, we have the isomorphism
Extr

0u(0v, 0V)\V^0V by the Gorenstein-ness of V. Hence, by (5.6.1) and

(5.6.2), the proof of (5.4) can be deduced to the proof of the following two

statements :

(5.6.3). The isomorphism Extr
0ui(OVi, OUi((ai + r-si)[0(

i
i)]))\v.^OVi holds

in a neighborhood of V{ n 0\^ for £ = !,..., M' .

(5.6.4). Theorem (5.4) holds under the assumption embdim^ F=dim V+ 1.

(5.7) In this paragraph, we shall prove (5.6.3) under the assumption

W0=U for i = l. We denote W0 by Z and its strict transform by Zj as usual.

To construct the desired isomorphism, we use the following:
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Lemma (5.7.1) (Artin-Rees-Wahl, Lemma i.6 [47]). Let (Oz>p, m) be a

local ring with the maximal ideal m and E^F finitely generated Oz^p'modules.

Give F the m-adic filtration and E the induced filtration: En = Er\mn-F so

that gr E^gr F. If gr E is generated by homogeneous elements of degree q,

then E r\ mll+qF — mn - E for all n^.0. The elements el,...,et of E minimally

generate E if and only if their Initial forms £,,..., et minimally generate gr E.

Corollary (5.7.2) ([47], see also [40]). Let (Oz>p, m) be a local ring as

above and let I be an ideal of OZp such that 0ZJI has homological codimension

s over Oz p. If

0 —> Fs —> -—> F,. -i, FM —> ..-
— F0 = S —> grm(0zjl) —> 0

is a free resolution for gi'm(0z p/I) over grm(0z) (which we denote by S,) of the

form Fj = S( — aj)bJ which satisfies the condition (vi) of (5,3.4), there is a minimal

0Zp-free resolution ofOZjp/I

0 _> F, — > . » — * Fj -^ F._t —,.-

>Fo = 0Zip >0Zip/I ,0

such that (Kef dj) ftmn+aJ - Fj = mn-(Ker dj) for n,j^0. This induces the

former graded resolution of grin(OZfp/I). (See the proof of Theorem 1.7 o/[47].)

Let us apply the Corollary above to our situation as 1 = /F. Set S= 0 mn

H^O

and (Fj)n by (Fy)w = 0 for n<aj and (Fj)tt = mtt'aJ'Fj for n^aj. We denote

0 (Fj)n by Fj. Then by (5.7.2), we obtain the complex of graded S-modules
n§;0

0 > F. -±+ !?,_, > > Fj -*-» f ;_,

(5.7.3) > F0 = S , 0 m'-0Vip > 0
»^0

which is an exact sequence in the sense of T. N.-isomorphism over S. Here

the degree preserving graded S-morphism dj is defined by dj = © (<//)„, where

(dj)n = dj\(Fj)n. Note the equality Fj = S(-aj).

We shall consider the dual complex (Homs(F., S( — asj)).

Assertion (5.7.4). There is a surjective S-morphism d: Homs(Fs, S( — as))

-> © m" - Ov p such that
»^o

0 >Homs(F0,S(-as)) >-.

> Homs(Fj.i9 S(~as)) ^ Hom5(F7, S(-a,)) > •-

> Homs (Fa9 S(-aJ) -^U © m" • Ov _ —> 0
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is exact in the sense of T. N. -isomorphism over S.

Proof of (5.7.4). Note first the following two important facts: The first

thing is the symmetry among the integers {at} such that ai + as,i = as for O^f :gs,

where we define aQ by 0, due to the Gorenstein property of grm(Ov>p) (see p. 179

of [40]). The second is the following fact below due to the Gorenstein property

There is a system of 0ZjJ7-bilinear non-degenerate pairings {$J

®oz pFs-i~*Fs f°r 0 = ' = 5> which induces the isomorphism of complex
A 17 p m t ip dj p

s j j — 1

(5.7.5) ..[ a J a ' / - . I a
4r 4- 4,

a

by defining t{ as ^: F^Hom0z p(Fs_^ Fi) = (Fs_|.)*; a^^^a, ) (see Theorem

1.5 pp. 454-455 of [9]).

We shall lift {rj to the correspondence between (5.7.3) and (5.7.4). By the

symmetry ai^-as,i = as for Ogz'^s, we can easily check the following canonical

isomorphisms Hom5(Fs_f, Fs)^ © Hom0^ p(Fs-i, (Fs)n) for O^zgs. Let us
weZ

define the isomorphism (tt)n: (Ff)n->Hom0z p(Fs_h (Fs)n) by the Oz>p-bilinear

pairing 0f, which is nothing but the restriction of tt to (Ft)n. By using those we

obtain the S-isomorphisms tt: Fi-^Homs(Fs_i, Fs) as t{= © (tt)n for O^i^s.
neZ

The remaining point which we have to check is the commutativity of the

following :

0 - > F, - >•"-i
0 —» Homs(f0, F.)

, Fs
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For any element © fne Fh where /„ e Fi9 we have the relations t^^df^ ® /„))

= r,.1( © ^(ff® ^i-i(d^fn\ )€0Hom02ip(Fs. l+1,(Fs) l l+fl.. l+1)lyIthe
/i ^ a i ii ̂  a i n

definitions of ti-l and d{. Furthermore, we have t£ © /„)= © 0f(/n, )e
n 5: a i n ̂  a j

© Hom0z>p (Fs_(., (Fs)n+fl^l). Looking at the following commutative diagram:

/ n+as- i + i—as-i—ai + as

by the symmetry of afs

we obtain the equality © 7rll = (rfs_I-+1)*(^ l-( © /„)), where nn is defined by the
n^ai n^at

above diagram and actually is contained in Hom0^ p (Fs_i+l, (Fs)n+as_. + i). By

the commutativity of (5.7.5), we obtain nn = (dB-t+i)*(<l>jJn, )) = 0,--i(^(/»? ))•
This completes the proof of the assertion (5.7.4).

On Proj(S), (5.7.4) induces an isomorphism Extr
0ui(OVl9 OZl(as[6)(

1
1)]))|Fl

= OVl in a neighborhood of &[i} n V^

(5.8) Now we shall discuss (5.6.3) for / = ! when Fc=L7 is not necessarily

the minimal embedding. We use the notations Z and Zl instead of W0 and its

strict transform as in (5.7). We have the following:

(0Vl, Ext*0ui(0Zl, Ou

for any integer b ((2.9.2) [2]).

Since Fx and Z{ are Cohen-Macaulay, this degenerates and induces the

isomorphism

We can show the equality Exfg£(0Zl, O(/1((r-s)[6)(
1

1)]))^0Zl easily. (Actu-

ally this is well-known. We note that this can be shown by the same arguments

in (5.7) if we consider the couple Z^ and U^ instead of the couple V1 and Zt.)

By this isomorphism, the proof of (5.6.3) is obtained.

(5.9) Proof of (5.6.4). We have already seen (5.6.4) for the case where V

is a hypersurface in V (5.3). Here we shall discuss about (5.6.4) when Fc U

is not necessarily the minimal embedding. We shall use the notations Z and Zi
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for / = I,..., AT, instead of W0 and its strict transform in Ul for / = !,..., N. Sim-

ilar to (5.8), we have the following:

for the divisor G' on 17*. ((2.9.2) [2]). This degenerates too. Hence, for the

proof of (5.6.4), we have to show the isomorphism Extro£N (Oz/v, (^

0ZN for the divisor G' '= £ (r-s)(^+1o».o^N)-i(0|«). Here s = dim V+\. For

the proof of the above isomorphism, we localize the arguments. Actually by

noting the equalities Hf . (Oz._1) = 0for7 = 0, 1 and for / = !,..., A/", we can prove

a localization lemma which is similar to (5.6.1) by a way similar to the proof of

(5.6.1). The proof at each step after the localization which is corresponding to

(5.7), is easy. Details are left to the reader.

This completes the proof of Theorem (5.4).

§ 6. On Yau's Elliptic Sequence

(6.1) For the study of the singularity satisfying the condition pa=l, the

elliptic sequence introduced by S. S.-T. Yau [48] is very effective. The elliptic

sequence is originally the set of divisors on the minimal good resolution with some

special properties (Definition (3.3) of [48]). In this section, we shall extend the

definition of elliptic sequence to all resolution of the singularity with the condition

pa = l, and characterize them among all the effective divisors by some numerical

conditions (Theorem (6.4)). This characterization will play an important role

in our studies.

(6.2) Let (V, p) be a normal two-dimensional singularity and i//: (V, A)

-+(V, p) a resolution of (V, p). Let B be a reduced connected divisor of Fsuch

that B^A. We denote the Artin's fundamental cycle on B by ZB. Before we

proceed to define the elliptic sequence, let us note the following :

Proposition (6.2.1). Let {Q; / = !,..., r} be the set of reduced connected

divisors on V such that Ct£=A and that Ct and Cj have no common irreducible

component for any couple of integers (i, j) with i^j. Then the following

inequality holds:

This easily follows from "Laufer's computation sequence methods" (see



Aps-FORMULA AND ELLIPTIC SINGULARITIES 339

[28], [48]). Here we shall omit the proof of (6.2.1).

Definition (6.3) (the elliptic sequence). Let the situation be as in (6.2).

Let us assume the condition pa(Z0)=l (cf. Remark (6.5)). We shall define the

set of reduced connected divisors {Bt} on Kby the following canonical inductive

procedure, (i) Set B± by A = B^ (ii) Define Bi+l from Bt as follows: Put

Bt by Bt=^jAj^Bt such that zB l-^=o AJ- Decompose Bt into the connected com-
~ mi

ponents as Bt= \J Dijf If the condition pfl(ZD..)^0, 7'=!,..., mh hold, stop.
j= i IJ

The set of divisors {ZBh; /? = ] , . . . , /} is called the elliptic sequence. If there

exists a component, say Dn, such that pa(ZDi1)={, set Bi+i by Bi+l=Dn.

Here note that there is at most one component as above by (6.2.1).

Clearly Bh+1 is properly contained in Bh for any h. Therefore, the process

above stops in finite steps.

The following statement gives an intrinsic characterization of the elliptic

sequence:

Theorem (6.4). Let the situation be as in (6.3). Let {ZBk; fc = l,..., /} be

the elliptic sequence on (F, A). Then the following equality holds:

(D; non-zero effective divisor on V such that (i) \D\^A

j=l,...Jm (Hi) pa(D) = Pa(V, p)H(i ZBi; fc=l,. . . , /} .

The divisor ^ ZB. is characterized as the unique maximal element among
i=i

the set {D; pa(D) = !9 D>Q and |D|g^l}.

Proof (cf. the proof of Theorem (3.7) of [48]). First we shall show the

inclusion relation that the former set g the latter set. Let F be a non-zero

effective divisor on V which belongs to the former set. By the definition of

fundamental cycle Z0, the divisor F—Z0 is effective. If Z0 — F = 0, this agrees

with our assertion. Hence we may consider the case of F — Z0>0. We have

the following:

AiO'i P) = Pa(F) ^y the assumption of F)

= pa(F- Z0)-f(F- Z0)- Z0 (by pa(Z0) = 1)

- Z0). Z0 (by the definition of

Since (F — Z0) • Z0 ^ 0, we obtain the relations prt(F — ZQ) = pa( F, p) and ZQ • A 7- = 0
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forany^.glF-Zol, i.e., |F-Z0|s5i-
Next we shall show the equality F-Z0 = B2. Let B' be any reduced

connected divisor on Fsuch that B'^A. Then we have the following:

^pa(V, p) + (F-Z0)-B'-l (by pa(

This means the inequality (F— Z0)-B'^ 1. Hence |F— Z0| is connected. There-

fore |F— Z0\ is contained in B2 by the definition of the elliptic sequence. Let

AJ be any irreducible component of B2. Then we have the following:

(F-ZJ-Aj^F-Aj-Zo-Aj^F-Aj^O.

Hence we have \F— Z0\=B2. Therefore we have checked that F— Z0 belongs

to the set {D; non-zero effective divisor on V such that (i) \D\^B2 (ii)D-Aj^O

for any Aj£B2 (iii) pa(D)=Pa(V, p)}.

Repeating the arguments above, we can obtain the desired inclusion relation.

Now we shall show the converse inclusion relation. We already know that
k

Pa(K P) = 1 above and pa( £ ZB.) = 1 for fc = 1,..., /. Hence, the only thing which
i=i

A,

we must show is the fact that £ ZBi-Aj^Q for / = !,..., m, fc=l,...3 /. Before

we proceed to prove it, we must note the following fact (see [46] p. 443):

Fact (6.4.1). Let (W, p) be the normal two-dimensional singularity and

\l/\ (W, A)-*(W, p) a resolution of (W, p) with the decomposition into the ir-
m

reducible components of the exceptional set A= W A,-. Then there is an effective
j=i

divisor D0 on W whose support is contained in A such that pa(D0) = pa(W, p)

and pa(D0 + E)< pa(W, p) for any non-zero effective divisor E whose support

is contained in A. Moreover for such a divisor D0, we can easily check the

relation D0- Aj^Qfor j= 1,..., m.

We take DQ as in (6.4.1) in our situation. Then D0 is written as D0 =
/C0

2 ZB. for some integer k0 g / by the former arguments. In fact k0 is equal to
i=l
/ as follows: If /c0^/, the equality pa(DQ + ZBko+1) = /?fl(D0) contradicts the

condition in (6.4.1). Hence we obtain the relation ^ ZB. -Aj^O forj = I,. . . , m.
i=l

k
Let us discuss the divisor X ZBt for k<l. If AJ is contained in 5fc+1, then

k I
2 ZB. • AJ = 0. If AJ is not contained in Bk+ ^ , we have £ ZBi • A,- ̂  0. Hence
i=l i=k + l
we obtain
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The remaining assertion is clear from the arguments above. Q. E. D.

Remark (6.5). As we mentioned in the proof, we have checked the state-

ment "pfl(K p)=l if pa(Z0) = V\ which is originally stated in [46] and proved

by many authors (cf. Remark (2.2) of [43]).

Remark (6.6). With the aid of our theorem, we can change the procedure

from Bt to Bi+1 in (6.3) in the following way: Assume that we have already

defined {Bk; fc = l,..., /}. Put Lt by L f =U , A,-. Choose
Aj^A such that E ZBk'Aj=Q

the connected component, say L f + l J of Lf such that pa(ZLi+l) = l. Suppose that

such a divisor Li+ 1 exists. Clearly Bi+ 1 is contained in Li+1. However we can

check the equality Bi+l=Li+1 as follows. We have the following equality :

pa(t ^Bk + ZLt + l) = pa(± ZBk) + pa(ZLi + 1)+(± ZBk)-ZLi + l-l
h=l k=l k=l

k=l

= 1.

Hence we obtain £ ZBk + ZLl^^Y Z^ by (6.4). Hence ZLj+1g £ ZBk.
k=l k=l k=i + l

Therefore we obtain the relation about the supports of each side of this in-

equality Li+l^Bi+l. Hence Li+l=Bi+l. This equality means that the Laufer

sequence in [51] is nothing but the elliptic sequence. (This fact was already

proved by J. Stevens in the appendix to §1 of [57].)

For the arguments in the next section, let us note the following statements:

Even if the statement below seems differ from the original in the reference, it is

only an easy modification of the original. Hence we shall only give the out-

line of the proof of it here.

Corollary (6.6.1) (Proposition (2.1) [49]). Let (7, p) be a normal two-

dimensional singularity with pa=l and \l/:(V, A)-*(V9 p) a resolution. Let

{ZB.; i = l,..., /} be the elliptic sequence on (F, A). Then the inequalities

yfor ;=!,..., 1-1, hold.
j+l

Proof. X ^Bi'Ah^Q for any irreducible component of A. Hence
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Q.E.D.

Proposition (6.7). Let (V, p) be a normal two-dimensional singularity with

pa(V9 p)=\. Let us consider the resolution diagram as in (3.7).

Let (ZB.\ 7 = 1,..., /} (resp. [ZB^ / = !,..., /'}) be the elliptic sequence on (V9 A)

(resp. on (V'9 A')). Then the following equalities hold. 1 = 1' and i:~l(ZB) =

Proof. First of all, t~1(ZBl)= ZB> is well-known by Proposition (2.9) of

[46]. Hence ZBl-Aj=ZB' 'i~1(Aj) holds for any irreducible component Aj

of A. Then we can easily check the relation r~1(S1) = 5/
1. Therefore the

procedure to define {Bi9 / = !,...,/} is parallel with the procedure for {B\\

/=!, . . . , / ' ] . Q.E.D.

Here recall that (V, p) is called numerically Gorenstein if there exists a
m

divisor K' of the form K'= £ d j - A j 9 where d ; - eZfo r ./=!,..., m, such that

K ' - A j = Q p ' A j holds for ./ = ] , . . . , / ? ? for some (hence for every) resolution i//:

(K X)-»(K p) (in the usual notations).

Theorem (6.8) (Theorem 3.10 of [48]). Let (V, p) be a normal two-

dimensional numerical Gorenstein singularity with p f l (Kp)=l- Let i^:

(V9 A)-+(V9 p) be the minimal resolution and {ZB.; i=\9...9 1} the elliptic se-

quence over (K, A). Then —Kf=^ ZB. holds and ZBl is equal to the minimal

elliptic cycle E on (K, /I).

Outline of the proof. It is well-known that — K' is contained in the former

set of Theorem (6.4). Hence there is an integer /c0 such that — K'=J£ ZB.

holds. Fn fact k0 = / as follows. Tf fr0 ̂  /. the equality

contradicts the fact pa(ZBkQ+,) = 1. The remaining part of the assertion is cheked

as follows: By the uniqueness of the minimal elliptic cycle /?, we have the

relation E£ZBl. With the aid of Lemma (3.3) of [28], we can easily check
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that — K' — E is contained in the former set of Theorem (6.4). Hence there is
fci

an integer k j such that — Kf — E= £ ZBi. Then ki must be / — 1 from the above

equality for K'. ' Q.E.D.

Theorem (6.9) (Theorem 3.9 of [48], Proposition 2.2 of [51]). Let (V, p)

be a normal two-dimensional singularity with pa(V, p) = l and {ZBt\ i =

1,..., /] the elliptic sequence on some resolution of (F, p). Then the inequality

Pg(V> P) = the length of the elliptic sequence I holds.

This is nothing but Proposition (2.2) of [51] by Remark (6.6).

According to S. S.-T. Yau, we introduce the following:

Definition (6.10) (Definition 3.10 of [48]). A normal two-dimensional

singularity (V, p) with pa(V, p)=l is called maximally elliptic if (F, p) is a

numerical Gorenstein singularity with the condition pg(V, p) = the length of the

elliptic sequence.

Theorem (6.11) (Theorem 3.11 of [48]). Every maximally elliptic sin-

gularity is Gorenstein.

§ 7. The Correspondence of Zariski's Canonical Resolution

and the Minimal Resolution

(7.1) Based on the results of the previous sections, we discuss the relation

between Zariskfs canonical resolution and the minimal resolution of the normal

two-dimensional Gorenstein singularity with /?„ = !.

(7.2) Let (F, p) be a normal two-dimensional Gorenstein singularity with

pa= 1. Let us consider the diagram (*) of Theorem (4.6)

77 IT 0« JJ »/M; f j 0y \ JTU — UQ < U! < '' < U A/ < • • • < UN

(7.2.1) Ull Ull Ull Uli Ull

K= F0 < F, < < VM <- < F^

which is the decomposition of Zariskfs canonical resolution of ( f x , j?) into the

composition of the blowing-ups with smooth centers, (cf. Theorem (4.6)

for the various conditions and the notations about this diagram.)

The first problem in this section is '"When does this resolution give the

minimal resolution of (F, p)T\ Then we also discuss the absolute isolatedness

of (F, p). We note the following well-known fact:
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Theorem (7.3). Let (F, p) be a normal two-dimensional singularity of

multiplicity two. Then (V, p) is absolutely isolated if and only if (F, p) is

rational.

This is proved by many authors (D. Kirby [23], E. Brieskorn [8], G. N.

Tjurina [42], J. Lipman [30], M. Reid [35], E. Horikawa [22]). Here we note

that this follows also from Theorem (4.3) and our ^-formula of Section 2.

Hence the normal two-dimensional Gorenstein singularity with pa=l is

absolutely isolated if and only if the singularities of VM are rational in diagram

(*) of Theorem (4.6).

Theorem (7.4). Let (F, p) be a normal two-dimensional Gorenstein sin-

gularity with pa=l, \//: (F, A)-+(V, p) the minimal resolution of (F, p) and E

the minimal elliptic cycle on (F, A). Then the following numerical criteria

hold:

(/) (F, p) is absolutely isolated if and only if the inequality (E)2^ — 3

holds.

(ii) Zariski's canonical resolution of (F, p) gives the minimal resolution

of (F, p) if and only if the inequality (E)2"^ —2 holds.

Proof. Let 0: FN-»Fbe the Z.C.R. which is obtained in (4.6). First of

all, we shall show the fact that F dominates FM as follows: If M = 0 (i.e.,

FM = F), this is trivial. If M^l (i.e., mult, F^ 3), the equalities pfl(7^) =

Pa(K p) = l are obtained in the proof of (4.6). Hence by (3.10), ^~l(mVip) is
an invertible Op-ideal sheaf. We obtain the morphism f i l : F-^Fj such that the

relation \l/ = nl°\l/l holds. Indeed u1 gives the minimal resolution of the sin-
gularities of Fj. Repeating this argument, we obtain the following diagram:

F

Here ju^ is the morphism which commutes the above diagram and gives the

minimal resolution of the singularities of Vi for i = 1,..., M.

(i) Suppose (F, p) is not absolutely isolated. There is a singularity
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PM+I on VM witri Pa(VM> P M + I ) = I - Trien by tne uniqueness of the minimal
elliptic cycle E on (V, A\ we obtain the relation of supports \E\^\^(pM+l}\.

Hence the inequalities -(E)2^ -(Z,M-i(rM + i ) l)
2^multp V follow by (6.6.1),

(6.8) and Theorem (2.7) of [46].

Conversely suppose there is no non-rational point on VM. Then

Pg(^M-i9 PM) = ! by (4.8), so that (FM_1? pM) is a minimally elliptic singularity.
In general, Z.C.R. of the rational singularity gives the minimal resolution

([30]). Hence $ gives the minimal resolution of (FM_ l 9 pM). By Theorem

(5.2), the canonical line bundle on VN is written as [— WM~] in the neighborhood

°f \(I!/MO'"OII/N)~I(PM)\' By Theorem (3.4) of [28], the divisor WM coincides

with the minimal elliptic cycle on (FN, K^M0'"0^)"1^]^)!)- Hence the unique-
ness of the minimally elliptic cycle on VN=V implies the equality E=WM.

Therefore the equalities -(E)2 = -(WM)2 = -multpM FM_j ̂ 3 hold by Theorem

(2.7) of [46].

(ii) We have already seen that Z.C.R. 0 of (F, p) gives the minimal

resolution of (K, /;) if and only if $ gives the minimal resolution of the sin-

gularities of VM in the above diagram. Hence the problem is in the case where

there is a singular point pM + 1 in VM with pa(VM, pM + \)= 1- Then the relations

2 = multpM + jFM^ — (Z^-ijp ,|)2^ ~(EY hold by the uniqueness of E over

(K A).

Suppose the inequality (E)2^— 2 holds. Then we obtain multpM + i VM =

-(Z\^(PM + ̂ 2' B^ Theorem (2.7) of [46], i^(mVMtpM^) is an invertible

Oy-ideal in the neighborhood of l/^A/CpM+i)!- Therefore V dominates the
normalization of VM +1. Repeating this argument, the equality VN=V follows.

Conversely suppose the equality Fyy=K holds. Let us assume that \l/jj is

the final blowing-up with the center P{. The natural morphism V— V^-^

VjVi-2 induces the minimal resolution of the singularity ( V j p t _ 2 , pji} _ j ) . By

the same argument in the later half of proof of (i) the equality E= Wj follows.

On the other hand the equality Wjp ,1 = Wjp is proved in (4.8). Therefore we

obtain (E)2-(^ /Vj/_1)2- -mult^^ _ ( F J > y _ 2 = - 2 by Theorem (2.7) of [46].

Q.E.D.

Remark (7.5). (i) of Theorem (7,4) extends the results in [28] and [50]

about the absolute isolatedness in the case of p <2.j y

(7.6) Second, we consider the relation of the ZBC0R8 and the minimal
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resolution without the condition on the integer (E)2 in the minimal resolution.

We shall represent the relation in correspondence with the inverse images

{W{\ /= 1,.. , N} of the center of the blowing-ups on VN and the elliptic sequence

{Z^; / = ],.. , /} on the minimal resolution (K, A). To state our result, we need

the following terminologies. Let us consider the diagram (*) of (4.6). Let the

set of integers { j l 9 . . . J p t l } be the subset of {!,..., N} defined in (4.7) (cf. (4.8)).
In particular Vjh is normal for /i = l,...,pr Then we shall call the following

Pg(Y-> P) normal points:

Definition (7.7) (Definition 7 of [44]). In diagram (*) of (4.6), the normal

point q is a starting point if q is one of the following points.

(i) (V, p}. (ii) Point q on Vjh which satisfies the condition pa(Vjh, #) = 1.

Let the set of integers {/15..,, ipg} be the subset of {!,..., JV} such that

\l/ih is the blowing-up with the center "a starting point", for h = 1,..., pg, and that

the inequality ih<ih+l holds for all h. In particular the relations il = l and ih

=A-i + l for /? = 2,..., pg, follow from the definition of the starting points.

Combining with (ii) of Theorem (7.4), the following statements extend the

results about the description of the maximal ideal cycle by S. S. -T. Yau (Theorem

3.15 of [48], Theorem 2.1 of [50]):

Theorem (7.8). Let (F, p) be a normal two-dimensional Gorenstein sin-

gularity over C with pa = l. Let i//: (K, A)-*(V, p) be the minimal resolution of

(V, p) and {ZB.\ /=! , . . . , /] the elliptic sequence on (V, A). Let us consider

ZariskVs canonical resolution $: VN-*V and the following commutative

diagram'.

(/) There is a sequence of the integers \^kl<--<kpri — l such that the

following equalities hold:
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E Zfl, = T*(^)=...=T^.J.
l—kpg- 1+ 1

(//) The equality kpg-i = l— 1 /i0/ds. Hence the divisor i%(Wir ) ( = • • •
= T*(^7P ) ^ (0) is */?e minimal elliptic cycle on (K, A) (cf. (6.8)).

Corollary (7.9). Let (V, p) be a maximally elliptic singularity over C

and \l/: (K, A)-+(V, p) the minimal resolution of (V, p). Then the maximal

ideal cycle Y^ coincides with the fundamental cycle Z0.

Proof of (7.9). By the definition of maximally elliptic singularity (6.10),

we have the relation / = p/K p) in (7.8). Hence the equalities A-,-— /, for / =

1,. . . , pr follow. Q. E. D.

The rest of this paper is devoted to the proof of Theorem (7.8). The proof of

(i) is divided into three parts as follows. First of all, we shall show the following

claim: In the proof of this, we shall use the assumption that the singularity is

defined over C

Claim (7.10). The equalities T+(^1)=-.-=T J | l(FF / 1) hold.

Proof of Claim. If the multiplicity of V at p is greater than or equal to

three, the equality /1=71 holds by the definition of the indexes {ih} and {jh}.

We shall consider the case of multiplicity two. As we have seen in (4.8), the

equality Wh _ l = Wh holds. Hence if V{ is non-normal (i.e., j\ — 1 = 1 holds), the

equality W} = Wh induces our claim.

Tn the rest of this paragraph, we shall discuss the case that Vl is normal.

Let us represent the singularity (K, p) in the following form:

(K p) = (((x, y, z)eC|z2-0(x, y) = 0}9 o).

(Cf. §1 of [43] about this description in detail.) We shall employ the notations

of §1 of [43].

By using the projection n from V to (x, y)- plane H9 which is defined by

H = {z = 0}, the following diagram is induced from Z.C.IL of (K p).

TT * rr ^i ]ju < c/j < ••• <— uT(n)+7n

Ull Ull Ull

r
TTn 4
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Let us denote the discriminant locus {g = 0} in H of n by D. Here multp D

= three by the assumption that Vl is normal. The discriminant locus for n1 is

(D)1 UE{1\ where (/)), denotes the strict transform of D by \//l and E [ l ) the

exceptional locus of i//1 in Hl (i.e., 0{l) (}Hl=E{1)). The computations by

E. Horikawa and D. Kirby (Lemma 5 of [22], §§2.7-2.8 of [23]) say "// the

condition mult^D)! uE\l)^3 holds for all points of (D)^ n E[l\ then (V, p)

is an absolutely isolated singularity (hence a rational singularity).'" Since

pa(V, p)=l holds by our assumption, there is a point of (D)i nJE^, say q0,

such that multqo(D)1 U £(
1

1)^4 holds. In fact the conditions multw(D)1 = 3,

(/>)i nE^^teo) and mult<?o(D)1 U£ ( , 1 ) = 4 hold. In particular the equality
q0 = p2 holds. Blow up Kx at p2, say i//2: K2-^K1. Then F2 has the singularity

along Pl. The normalization of K2 is obtained by the blowing-up of V2 along

this P1, say t^3: K3->F2, as in (4.5). This means that j± is three. Hence we

have the following diagram:

I-
•tv

*Ai U!l *A2

^

//< / / j< #2 .

The discriminant locus of n2 is (D)2(J E{2) U 2-E(
2
2\ Here (D)2 (resp.

denotes the strict transform of (D)1 (resp. E[l)) by ^2 and E2
2) the exceptional

locus on H2 of i^2 (i.e., E(
2
2) = H2 n 6>2

2)). Then the equality 0<2) nH2= E{2)

holds in this diagram (see §1 of [43]). The discriminant locus of n3 is

(D)2 U £(!2). As we have seen in (4.8), the intersection 0(
2

3) n F3 is the empty

set. Applying the arguments of (4.8) to the data (H, E, D), we can see that the

emptyness of £(
1
2) n (D)2 follows from the equality multpD = mult1,2(D)1.

Hence F3 is non-singular in 0{?>} U 02
3\ Therefore we obtain the relation

where F = 0[N){]VN. Hence the supports \F\ and \W3\ have no common

irreducible component.

Furthermore, by Theorem (5.2), we have the relation

-*KW=!! WJh on VN.
h=l

The adjunction formula induces the equalities
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-Ky = r*(-KVN)= f ^(WJh) on V.
h=l

Then the equalities of the supports ^ = 1—^1 = 1^(1^)1 on V means that |F|

is contracted by i. Hence the equality i*(Wl) = i*(W^) follows.

Finally our claim is established.

(7.11) By using the claim above, we shall show the existence of the integer
k l 0f( i) .

First we note the following well-known relation:
T*(Wf,) - AJ= Y,/, • ̂ 4 /_0 for any irreducible component Aj of A.

By Lemma (3.8), the equality

Pa( wj^ = P«(T*( wj<))""(non-negative integer)

holds. We already have checked the equality pa(Wjl) = [ in Section 4. Hence
the equality pa(-c^(Wjl))= 1 holds. Since the equality t^(Wh} = T*(Wh) holds,

ki
there is an integer ki such that T#(^-I)= £ ZB. holds by Theorem (6.4).

(7.12) We shall discuss the divisors t#(Wjh) for h^2. As we mentioned
in (7.10), the equality

-Kr=%t*(WJh) on V
h=l

holds. Furthermore by a theorem of Yau ((6.8) in the present paper), the
following equality holds.

-K9=^ZBi on V.
i=l

/ Pg
Hence by the result of (7.11), we obtain the equality £ ZB.= ]£ THc(FF/J) on

i = k, + 1 ' fc = 2

V. In particular we obtain the equality of supports

(7.12.1) Bkl + i = \^(WJ2)\ on V.

Let a: V"jl-*Vji be the proper modification of Vjl which is induced from the
minimal resolution of the singularities of KjV Let us consider the following
commutative diagram:
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Here ft and y are canonically induced.

Clearly the equality T*(Wi2) = y*(P*(Wi2)) holds. In fact P*(Wh) is the

maximal ideal cycle of the singularity (Vjl9 ph} with respect to the resolution a.

Then we have the relations of supports

IrKia^DI^IW^HIa-^)! on V^.

We shall show that these three sets are indeed the same as the one below.

By (7.12.1) and the definition of the elliptic sequence (6.3), we have the relations

^(WjJ-T^W^Q for ft ^2, on V.

Moreover, by Claim (7.10) they imply the relations

T*(^.)-Tsl!(^/h) = 0 for ft ^2, l g / ^ A on V.

On VN, the divisor i~l(i^(Wi)) is written in the following form:

T-I(T*(»r,))=Wl + F, on VN,

where the divisor Ft is not necessarily effective but the support |F,-| is contracted

by T. Hence the equality Fr-c~l(r^(WJh)) = 0 follows for ft^l and for all /.

We obtain the equalities

(7.12.2) Wrr-^(Wjh)) = Q for ft^2, 1^/^A on VN.

Lemma (7.12.3). Let (X, p) be a normal two-dimensional singularity

and i//: (X, A)^(X, p) a resolution of (X, p) such that ^~l(mx>p) is 0%-

invertible. Let us consider the following diagram:

XI-
•x,

Here \l/^\ X1-^X is the blowing-up of X with center mx,p followed by the

normalization, and v the induced natural morphism.

Then an irreducible component Aj of A is contracted to a single point of

Xl by v if and only if the equality Aj> 7^ = 0 holds.

This is well-known (cf. [42]).

In general we have the relation W^-Aj^Q for any irreducible component

Aj of A in our situation. Hence (7.12.2) for i = 1 induces the relations

Wl'Aj = Q for any irreducible component Aj of If^T^FTj^))!.

By (7.12.3) and the connectedness of |T"l(T*(W>2))|, |T-l(T*(Ffj2))| is contracted
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to a point of Vl. By the same argument as above, the support |T~~1(T:|C(JF/2))| is

contracted to a point of V} for 2^i^j1. Hence we obtain the equality

(7.12.4) \y-l(\**(Wj2m = \*-l(P,>)\.

Since the neighborhood system of \oi~l(ph)\ in K"-, blows down to the

singularity (Vh, p,s), there exists the elliptic sequence {ZB>> ;/ = !,...,/"} on

(F"v lor1^))) such that the condition B" = \<x-l(pi2)\ holds (cf. Definition

(6.3)). Then the elliptic sequence on (F'jl5 ly"1^)!) is the set of the divisors of

the form {y~l(ZB); 7 = 1,..., 7} by Proposition (6.7). Hence by the relation

(7.12.4) and the definition of the elliptic sequence (6.3), we obtain the equalities

7 -<(ZB f c i + ,)=ZB: for I r S / r g / " on Vh.

We apply the arguments in (7.10) and (7.1 1) to the resolution a of the singularity

(F / t , pi2). Then we obtain the equality /?*(V^-2) = ^(M/
/2) and the integer /c2 such

that the relation P+(Wi2)= £ 7~l(ZBt) holds. Therefore we obtain the

equalities T*(W/2) = y*CS,(lFjS and

T*(^,) = y«(/»*(^i,))= E y*(y-1(ZBi)) = I, zBt.i=fc!+l i=kl+l

Repeating the arguments in this paragragh (7.12), the assertion of (i) follows.

(7.13) Proof of (//). Let 0: FN-»Fbe the Z.CJL of (F, p) and £VN
 lhe

minimal elliptic cycle on (VN9 \<t>~~^(p)\). By the same arguments as the later

half of proof of (i) of Theorem (7.4), we can obtain the equality Wjp _ , =

Wj =£VN on VN. The equality pa(i~
l(E)} = \ implies the relation fl(E)

^£VN on VN by the definition of minimal elliptic cycle. Hence the following
relations hold:

T*(EVN) = ̂ (WJp!i) on V.

Therefore the integer A:p9_ t should equal to the integer /— 1 by the equality E—

ZBl (6.8) and (i) of Theorem (7.8).

This completes the proof of Theorem (7.8).
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