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Conditions for Well-Posedness in Gevrey
Classes of the Cauchy Problems for

Fuchsian Hyperbolic Operators

By

Hitoshi URYU*

§ 1. Introduction

Let us consider the following operator.

where / and s are non-negative integers and a is non-zero constant. It is well-

known that if s j > / — 1, the Cauchy problem for P is well-posed in C°° (see

Oleinik [11]). Ivrii [6] showed the following. When 0 ^ s < / — 1, the Cauchy

problem for P is well-posed in Gevrey class y\*l if and only if I^K <(2l — s)/

(J — s — 1). This simple example shows us a delicate relation among the well-

posed class, the order of degeneracy of a principal part and that of a lower

order term for non-strictly hyperbolic operators. Hence in this paper we shall

consider whether this fact is valid for more general non-strictly hyperbolic

operators.

In the case of non-characteristic operators the well-posedness in Gevrey

class is studied by Ohya [10], Leray and Ohya [9], Beals [1], Bronstein [3],

Ivrii [5], Kajitani [7], Komatsu [8], Steinberg [12], Trepreau [14], Wakabayashi

[17] and others. Igari [4] extends Ivrifs example to higher order non-strictly

hyperbolic operators with double characteristics under some assumptions on

coefficients of the operators.

On the other hand Baouendi and Goulaouic [2] define Fuchsian partial

differential operators and discuss Cauchy Kowalevski's type theorem. Tahara
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[13] considers the Cauchy problems for Fuchsian hyperbolic operators in smooth

function space. Here we shall note that Fuchsian partial differential operators

are the natural extension of non-characteristic operators.

Hence we shall discuss the well-posedness of the Cauchy problems for

Fuchsian hyperbolic operators in the Gevrey class. And we shall get a close

connection among an admissible class of the Cauchy problem, a principal part

and lower order terms.

Let (r, x) e [0, T] x R» and (Dt9 Dx) = (Dt, DXl,..., DXn)=(-J^Tdt,

— *J — ldXl,..., —^J — \dXi). Let us denote by (T, £) the dual variable of (t, x).

Next we shall define function spaces used in this paper.

Definition 1. (y/£}
c; ft^l) We define y\*\ the set of functions /(x)e

C^R") satisfying the property that for any compact set KaR" there exist

constants c, R > 0 such that for any multi-indices a

(1.1) \D$f(x)\^cRW(M\)K for xeK.

Definition 2, (y(K)i 7<^1) We denote by y(K) the set of functions /(x)e

Cx(Rn) with the following property. There exist constants c, R>Q such that

for any multi-indices a

(1.2) |Dj/(x)|^c£H(|a|!)K for xeR".

Definition 3, (HK >; jc^l) We say /(xJeH* ( = r\Hs(Rn)) belongs to
s

F<K) if there exist constants c, R>0 such that

(1.3)

for any multi-indices aeN", where || || is L2-norm with respect to x.

Now we shall define Fuchsian partial differential operators according to

Baouendi-Goulaouic [2]. Let

P(t, x, Dt, Dx) = tkD? + P1(t, x, Djr)^-1Dr1 + -
+ Pk(t, x, Dx)Df-k + Pk+1(t, x, D^Df-^ + .-.+P^t, x, Dx)

be a partial differential operator satisfying the following.

(A-I)

(A-II)

(A-4II) ordP/0,Jc,D,) = 0 for l^j^k

Then P is said to be of Fuchsian type with weight m — k with respect to t. From

(A-III) we shall set P/0, x, DJC) = a/x) for l^j^/ t . Let ^(A, x) be a charac-
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teristic polynomial

Its roots, called characteristic exponents, are denoted by A = 0, 1,..., m — k— 1,

PiW.---.PfcW-

(A-IV) there exists a constant c> 0 such that

for Ae Z, X~£.m — k.

Under these assumptions, we can consider the following Cauchy problem for P

P(t, x, Dt, Dx~)u(t, x)=f(t, x)
(1.4)

Baouendi-Goulaouic [2] study the Cauchy problem for P in the analytic function

space and Tahara [13] investigate in C°°-function space. Since our function

space is Gevrey class, we assume that coefficients of P belong to ^([0, T], y (K))

i.e.

(A-V) P/f, x, Dx) = ^

where ajtft(t9 x)e#([0, TJ, y(*>).

Next we shall consider a leading term of P.

fc m

(A-VI) T-+Z Zfly.^,^"^^+ E Z fly,^
J = l |j8| = j j = fc^-l |/J| = j

*, x, 0)

where />0 is a rational number and A7-(r3 x, c) are real valued functions with

the property:

If i^j9 L^Xj for any (t, x)e[0, T] x J?11, |c| = l and for any 6^0, a, ^ei¥'z

there exists a constant c = cXi^b such that

|D|Df DjA/t, x, €)l ̂  c for (t, x) 6 [0, T] x R",\t\ = 1 .

Finally we shall assume on lower order terms of P.

(A-VII) For lg |^ |^j- l ,2gj^m

(1.5) a j , f ( t , x ) = t « J > n & J f f ( t , x )

where 7(7, ^) is a non-negative integer and &Jif(t, x) e ^([0, T], y(K)).



358 HITOSHI URYU

We can easily see from (A-III) that 7(7, ft) ̂  1 for 2 g j <; fc, 1 ^ 1 0| g 7 - 1 . Here

we shall define a number as follows.

K/,/0 if
(1.6)

y(j,fi+j-k if

Let us note that a(m— 7 + |]B|, /J)^ I.
Here we shall define the important number a^l which determines admissible

data classes of the Cauchy problems. For any 7 (1^7^771 — 1) let kj(l^kj

<;ra-l) be the lowest integer such that </, P)ll-\P\ + kj>0 for any /? (1^|/?|

^ 7 — 1). Next we set

<TJ= max {|£| -</,£)//, 0} and v= max {<7f//c;] .
1^101^.7-1 l ^ i ^ w - l

Next we define a ̂  1 such that

cr = max {(/qv + m — i)/(m — /)} .

Then we obtain the main theorem.

Theorem 1. Under the assumptions (A-I)~(A-VII), for any w/x) e //Sj.

(Q^j<^m — k — 1) and for any f ( t , x)e^([0, T], y{;^) r/^re gx/5^5 fl/t unique

solution u(t, .x)e^([0, T], yisJ.) 0/f/te equation

I P(t, x, Dt, DJu(t, x)=f(t, x)

/or (3713; K (1 g K: < cr/(cr — 1)), i.e. £/ie Cauchy problem (1.7) is well-posed in y{j"J.

^. (1) In the case of o-=l the Cauchy problem (1.7) is well-posed in

C°°-function space (see Tahara [13]). (2) From the definition of v we have

Finally we shall state some examples of Theorem 1 .

Example 1. Let P be a second order partial differential operator

c(t, x)

where /, s are non-negative integers and coefficients a, b, c belong to ^([0, 7"],

7(K)). In the case of s ^ / — 1 the Cauchy problem for P is well-posed in y\*\

(Igjc). When Ogs</ - l the Cauchy problem for P is well-posed in yj;£
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Example 2. Let P be a Fuchsian hyperbolic operator satisfying (A-IV)

P = t2D*-t2lD* + a(t, x)tDt + b(t, x)tsDx + c(t, x)

where /, s are positive integers and a, 6, c e ^([0, T], y (K)). If s ̂  / the Cauchy

problem for F is well-posed in yjjj. for any fc^ l . In the case of Q<*s<l, yfa}
c

(1 ^K<(2/ — s)/(/ — s)) is admissible data classes of the Cauchy problem for P.

Next example is the generalization of example 1.

Example 3. Let P = P(t, x, Dt, Dx) be an operator of orer m whose coef-

ficients belong to #([0, T], y^>),

Its principal symbol Pw(f, x, T, c) can be factored smoothly in the form;

Pw(r, x, T, c)= fl ( t -f 'A/f , x, c))
j = = t

where / is non-negative integer, A7- is real valued function and A^A,. when

Furthermore for any 6^0 and any multi-indices a, /? there exists a constant

r = ca§0<ft such that

for (/, ;c)e[0, T]xR\ |c| = l.

We assume thai each lower order term P,-(f, .v, T, c)(0= f = m~ U is represented
as follows.

where s(/, /i) is a non-negative integer and fl/>/?(f, x)e^([0, T], 7 ( K ) ) - Then we
have easily seen that a(/, /i) = s(i, f*) + m — i + \p\. Therefore applying Theorem

1, we can obtain admissible data classes of the Cauchy problem for P.

§ 2. Sketch of the Proof of Theorem 1

Let us start with the following theorem.

Theorem 2, Under the assumptions (A-l) — (A-VII), assertions K and 1

are realized.

1° For any ut(x)en^ (Og/g /H-fc -1) and any f ( t , x)e #([0, 71], T< K >)

there exists a unique solution w(f , x)e^([0, T], r<K )) o/ (1.7) /or
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2° // supp(u£x))cK (O^igm-fc-1) and supp(f(t, x))cQ(K) hold for

some compact set KciR", u(t, x) also satisfies supp(u(t,

Here we denote by

C,(K) = {(t, x) e [0, T] x /?», min \x-y\ g

f, x, £)|; (*, *, £>e[0, T] x I?" x R", |£| = 1} .

Now we shall show that Theorem 2 implies Theorem 1.

Proof of Theorem 1. We shall begin with the existence of a solution of

(1.7). Let {<l>p(x)} be a partition of unity. Namely, $p(x) is compactly sup-

ported y (K) functions satisfying (i) 0:g0p(x)^l, (ii) the summation Z $P(X) is
locally finite and (iii) 2>p(x) = 1 on 1?". For any ut(x) e y<fc\ (0 ̂  / g m - k - 1)

and any /(*, x) e #([0, T], y{;i) we set ui
p(x) = (l)p(x)ui(x), fp(t9 x) = (/)p(x)x

f(t,x). Then we can easily see u*(x)er^ and /p(r, x) e #([0, T], r<K>).
Therefore from 1° of Theorem 2 we can find a solution wp(f, x) e ^([0, T], F<K>)

of the equation

P(t, x,Dt, Dx)up(t,x)=fp(t,x)

From Sobolev's lemma we have F ( K )G}>(K>. Therefore solutions up(t, x)e

^([0, T], y(K)). Furthermore since the summation X w/^ ^) i§ locally finite,
the function i*(f, x) = Z np(f, x) belongs to ^([0, T], 7^}

c) and satisfies the
equation (1.7).

Secondly we shall consider the uniqueness of the solutions. Let u(t9 x)

E &([Q, T], y\*l) be a solution of the equation

P(f,x,D,,D>(f, .x) = 0

D\u(t, x) | f = 0 = 0, 0^ /^ m - k - 1 .

Following Tahara [13], we shall show u(t, x) = 0 for (t, x)e [0, T] x fl» by two
steps. The first step is to prove that u(t, x)=0 in a neighbourhood of {0} x Rn.

Let 0(x) be a compactly supported y(^ -function such that 0(x) = l in a neigh-

bourhood of some point x0eR". Then P(t, x, Dt, Dx)0(x)w(r, x)e ,̂ ([03 T],
F<K>). Therefore the solution w(f, x) of

t, x, Df? DJw(f, x) = P(*, x, Df, Dx)cl)(x)u(t, x)
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can be found in #([0, T], r<*>) and from 2° of Theorem 2 w(t, x) = 0 in a

neighbourhood of (0, x0). Here put u(t, x) = (j)(x)u(t9 x) — w(t, x). Then from
the above the function u(t, x) satisfies the equation

(f, x, Dt, Dx)ii(r, x) = 0

and u(t, x) = u(t, x) in a neighbourhood of (0, x0). Hence it follows from 1° of

Theorem 2 that u(t, x) = 0 in [0, T]xRn. Therefore u(t9 x) = 0 in a neigh-

bourhood of (0, x0). The second step is to show the uniqueness in [0, T] x Rn.

Take any (f0, x0)e(0, T] x Rn and put K = Dl(t0, x0) n {^ = 0} where Dfa, x0)

= {(t, x)e[0, T]x Rn'9 |x-x0 |<Amax(^-rO/0- From the first step we have
u(t, x) = 0 in a neighbourhood of [0, e] x K for a sufficiently small e>0. Since

P is regularly hyperbolic in [e, T] we obtain u(t, x) = 0 in a neighbourhood of

£*/(*()> *o)- Therefore u(t0, x0) = 0. The proof of Theorem 1 is completed.
Q.E.D.

In order to prove Theorem 2 we shall decompose the operator P as follows.

(2.1) P(t, x, Dt, Dx) = Q(t, x, Dt, Dx) + R(t, x, Dt, Dx)

where

(2.2) C =

" / o(^5 x)th-JD™-J + ) a.- 0(r,
=i j

(2.3)
j=2 1

We shall demonstrate the existence of a solution by method of successive itera-
tion. Hence we consider the following scheme.

t, x)=f(t, x)
(2.4)0

f 2w//3x)=»^ J-_1( / , .v)
(2-4),

for j ^ J .

Here we refer Tahara's result [13].
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Proposition 2.1. Under the assumptions (A-I)~(A-VI) assertions 1° and

2° are realized.

1° For any ufa)EH™(Rn) and any f ( t , x)e^([0, T], H™(Rn)) there exists

a unique solution u(t, x)e^([0, T], H^(R")) of the equation

I Q(t, x, Dt, DJu(t, x)=f(t, x)
(2.5)

2° If supp (ut(x)) c K (0 ̂  i g 771 - k - I) and supp (f(t, x)) c C,(K) hold for any

compact set KcR", then u(t, x) also satisfies supp(u(t, x^cC/OK).

Since F^cH^R") u0(t, x), solution of (2.4)0, belongs to ^([0, T], H°°(Rn))

by Proposition 2.1. Noting that R = R(t, x, Dt, Dx) is a differential operator,

we have Ru0(t, x)e ^([0, 7], //*(»")). Therefore it follows from (2.4)t and

Proposition 2.1 that u^t, x) also belongs to ^([0, T], #%£«)). Successive

use of these steps brings us to M//, x)e^([0, T], H°°(Rn)) for any j^O. A

formal solution of (1,7) is given in the form

(2.6) u(t,x)= £ uAt,x).
j=o

Accordingly we must show that the summation (2.6) is convergent in some sense.

Our plan is as follows. In §3 we shall get an energy inequality of the

equation

{ Q(t, x, Df, Dx)v(t, x) = g(t, x)
.

where Q = tm~kQ(t, x, Dr, Dv), s is a sufficiently large integer and g(t, x)e^([Q,

T], r (K)). In §4 we shall estimate derivatives of a solution of (2.7) and in §5

we obtain estimates of R(t, x, Dt, Dx)v(t, x) where R = tm~kR(t, x, D,, Dv). By

the consideration of §4 and 5 we shall prove Theorem 2 in §6.

§ 3, Energy Estimates for Solutions of (2.7)

First we shall define symbol classes of pseudo-differential operators used

in this section.

Definition. 1° For real m Sm is the symbol class of classical pseudo-

differential operators.

2° For positive integer v and real m ^v([0, T], Sm) is the set of functions
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a(f, x, £) which are represented in the form

fl(f,x,£)= t *v'fl,(f, x, £)1=1

where vt- = vj /v (vj is a non-negative integer), qeN and «,-(*, x, £)e^([0, T],

Sm).

The purpose of this section is to show the following lemma.

Lemma 3.1. Let <P(t) be

HI— 1 m— 1— /

where A is the pseudo-differential operator with symbol <c>=( l -f|£|2) l /2.

Then //ic?re ex/sf constants c{, c2>® such that

(3.1)
Jo

/or y(f, x)e^([0, T], H°°(l?")), D/t;(r, x)| f=0 = 0 Ogj^s-

cf + 1 fl«^/ cf /s the lowest integer greater than or equal to c2.

Here we whall note the properties of operator Q(t, x, Dr, £>v).

Lemma 3.2. 1° The partial differential operator Q(t, x, Dt, Dx) =

tm~kQ(t, x, Dr, D^) is decomposed into the sum of Q{(t, x, Dt, Dx) and 02(t, x,
Dr, Dx) where

,

+ f Z aj *(t,x)tJ-ktm-J°D
y = f c + i i / ^ i = y

Z «y o(^, -v)rIM--''D7l-/+ f a,- 0(^, x)tJ-ktj=\ j=k+\ J'

2° The functions ajtft(t, x)(lg j^/c) anc/ tj-kajtf(t, x)

represented by

j.̂ , x) /or l^fc,

tJ-'aj^t, x) = t'W6jJt, x) /or fc

w/iere a^(t, x)6^([0, T], 7<K0, 1^7^'"-
3° 5,(f, x, T, 0 /?«.•> the following form.
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Proof. Multiplying tm~k by Q we can easily obtain 1° from the equality

(2.2). 3° is a direct conclusion of the assumpsion (A- VI). We have 2° by

expanding the right hand side of 3°.

Following Uryu [15], [16] we shall prove Lemma 3.1. From assumption

(A-VI) if i^j, ht^lj for any (f, x) e [0, T] x Rn, |£| = 1. Here modifying

/Lf(r, x, £) near £ = 0, we may suppose that for any /', j (i ̂ j) there exists a constant

c such that

(3.2) |(A,-A,)(f,x,

where A f(f, x, £) e ^([0, T], S1). Furthermore let us note the following.

Since / is a positive rational number, / can be written in the form of irreducible

fraction / = v'/v, v, v' e /¥, Let dj = tDt — tlkj(t, x, Z)v) where

, x, £)fl(f, £)d£.

We define the modules W^ (Q^jn^m — 1) over the ring of pseudo-differential

operators in x of order zero. 17W is the operator in the form of nm = did2'-dm.
V

Let Wm-i be the module generated by the momomial operators njd^d^d^'-di

"•dm of order m — 1 and let Wm_2 be the module generated by the operators

njdfdj (i^j) and so on.

In order to prove Lemma 3.1 we prepare several lemmas.

Lemma 3.3. For any /, j there exist pseudo-differential operators Aijf

Bitp Cije&v([0, T], S°) such that

(3-3) tftidjl^Audt + Btjdj + Cu

where [ , ] is commutator.

Proof. Let cr0([df, djj) be the principal symbol of [df, 3y]. Then, by the

formula of product of pseudo-differential operators, we obtain

*o([?* 8j])= ± {Def(tto
a=0

where £>;_/(, x, ̂ )e^v([0, T], S1). Here we used the notations x0 = t, £O=T. If we

define functions AltJ{t, x, £) and B;j((, x, 0 by A,j(t, x, £) = D,Jt, x, £)/(A,.-l;)

and BtJ(t, x, ®=Di,j(t, x, 0/(A,-Ay) respectively, then X,j, Bue0&0, T], S°)
and the equality
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holds. Then we obtain

for some Cu(f, x, 0 e <f v([0, T], S°). Q. E. D

Lemma 3.4. For any monomial co*e W^ (Ogjug/n — J) f/iere ex/'sf

M

(3.4) a ro»« = o)J+] + Z L Cr.X+i-;
/=i y

where cyj(t, x, Oe^v([0, T], 5°), a>J + 1 _ 7 e ^ i+ l_ ;,

/. For any wJ = 3yi---5^ (Ji<j2 <"'<jfl) there exists some

./V) 1 = 7 = /77- Since [3f, 3/]=>4^I- + jB^/-c)/ + C f t /- by Lemma 3.3 we have imme-
diately (3.4). Q. E. D.

Lemma 3,5. Let W(t) be

nO= f E IK-^ll /^' <r, x) G c°°([0, T] x *-) .
y=i «

we /?at;e the following energy inequality.

Proof. By Lemma 3.4

M+l
(3.5) 3fo)Ji; = Q)J + 1i;+ E S

y=i y

Using M for coju and gf for the right hand side of (3.5), we obtain a first order

hyperbolic equation d{u = g. Then

, x,

Therefore we can easily obtain the following inequality.

,1 f+i
(3.6) /^-||co«o||^const. {||o)«»||+ Z Z N;+1-7»||} + K+1i;||ar j=i y

By the definition of ^(f), the desired inequality holds. Q. E. D.

Lemma 386. Under the assumptions of Theorem 2, there exist symbols of
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pseudo-differential operators c^j(t, x, £) e ,^v([0, T], S°) and monomial oper-

ators oj^jE Wm_j such that

^ m

(3.7) Q-n,n= ;£ 2>aj;o>«_;.

Proof. We shall show (3.7) by two steps. The first step is to show the

following. Let n^ — d^d^-d^ (I^il<i2<"'<i^^m). Then ff(fl^), the

symbol of II^ can be written in the form:

^
(3.8)

J=i * •

n-j
where Rfl-j(t, x, T, <!;)= Z V/*> *' £)tll*(t?Y~j-P and bpj(t, x, t)e ,̂,([0, T],

/?=o
S").

We carry out the proof of (3.8) by induction on ju. When /<= I (3.8) is trivial.

Assume that (3.8) is valid for /*. Since ZIM+1 = n^dj we have the following by

the product formula for two pseudo-differential operators.

Therefore by the assumption of induction we can easily get (3.8) with

The second step is to show (3.7). From (3.8) with ]n = m

"

where c{J(t, x, ^)e^v([0, T], S1'). Let the principal symbol of Q — Um be

m- 1

P.,.,^, x, ft, {)= Z fM(r, x, {)r "(ft)--'-' .
;=o

We want to determine /4/r, x, £)e^v([0, T], S°) so that

^ IM- 1

(3.9) P,,,_,(r, x, ft, 0= I X/f, x, c) n (ft-/'l,.(r, x, £)).
=

Since ^.^(r, x, t'A/t, x, {), 0 = rI(«-1'X/*, x, {) where X/r, x, <D€^V([0, T],

S'"-1), the equality (3.9) gives tl<*-»Kfi,x, & = Aj(t,x,
Then we can find

Aj(t, x, 0 = {O (1,- !,•)}-%•(*, x, c)

in J'/CO, T], S°). Applying (3.8) for // = m - 1, we have

^s. Wl Wl /« — J

*(Q-nm- Z ^na*)«= S Z rf,.X*. *. «»"(<T)"-'->
7=1 i*J J=2 i=0
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where ditj(t, x, £)e#v([0, T], 5')- Repeating these steps we arrive at the

relation (3.7). Q. E. D.

Lemma 3,7. There exists a constant c t >0 such that

(3.10) cKO^nO-

Proof. It is sufficient to show

/"^ll/t'D/^ll^const. ^(0 for O^ jgm- i , Og/^m-1- / .

Since the symbol of f1' '"*"•' /I'D/ is lil+J (&?•*, by the same method of the proof of

Lemma 3.6 we have

,
i= \ a

where d^t, x, {)e#v([0, T], S°), a>J_,G Wm_,. Hence /''+'||X'/)/i;||£const.

x<F(0- Q.E.D.

Now we proceed to prove Lemma 3.1. It can be easily seen from Lemma

3.6 that

^ const.

This inequality combined with Lemma 3.5 directly shows

t-~~ ^(t) ^ c2 *F(t) + || Qv || for some c2 > 0 .

From this inequality

(3.13) -jTr<>V(t)^rc*-i\\Qu\\.

Let us note D{v(t, x)| r=0 = 0 for O^y ' ^ s— 1, s^cf +i. Therefore we can get

the following by integration of both sides of (3.13) from 0 to t.

,
Jo

Finally using Lemma 3.7 we complete the proof of Lemma 3. 1. Q. E. D.

§ 4. Estimate for Solutions of (2.7)

Assume the existence of solutions of (2.7)
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(2.7)
[ D\v(t, x)|,=0 = 0 for

where g(t, x) e ̂ ([0, T], r<K>). Then we have

(4.1) D\g(t, x)| f=0 =

Therefore we may assume the following on g(t, x). For any r^O there exist

constants c, R, K>Q such that

(4.2) \\Arg(t, x)\\^cRrr\Kts exp (Kr*tl)

where r!=r(r+l) and r* is the lowest integer greater than or equal to r. For

simplification we use the notation wr(s, t, R) = Ri'r!KtsQxp(Kr*tl).

Now we shall prove the basic lemma of this section.

Lemma 4.1. Let <l>r(i) be

m— 1 m—l—j

(4.3) *,(*)= E S
j=0 1=0

Then for any rg:0 ̂ /zere ^x/sf constants A, s0>Q such that for sufficiently large

R, K and for

(4A)

Proof. We carry out the proof by induction on r. When r = 0, it follows

from Lemma 3.1 and (4.2) that for any s^N1

<P0(i)^c1\ fC2T~C2~1cw0(s, T, R)dt
Jo

gc1(s-c2)-
1cw0(s, r, jR).

Here we make s sufficiently large such that s — c2 ^ s/2, then we have

^0(0^^5-^0(5, t, R)

where A^2cl9 s^s0 = max(2c2, ATX). Assuming that (4.4) is valid for any

O^r^w, we shall demonstrate that (4.4) is valid also for n<r^n + l. For r>0

operating the pseudo-differential operator Ar on both sides of Qv(t, x)=g(t, x),
we get

QA'v(t, x) = A"g(t, x) + [S, A'Wt, x).

We shall estimate the commutator [2, Ar~\v(t9 x). From 1° and 2° of Lemma
3.2
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^ m x

62= Z a./,o(f, x)tm~JDf-j.

Therefore

y=i \P\=J
m+ z c^j,05 Ar]tm~jDT~J .

By use of a product formula of pseudo-differential operators (Lemma A-l in

Appendix) we obtain for 0^ |j?| ̂  m

N-l „

where N = r* + 1 /?| and

, ^ ,0= Z |
|a| = i cx-

Then from Lemma A-3 there exist constants c, R>Q such that

\\gi(t, x, DJC)ii||g85'-l/'l(i
for i = l, 2,..., r*,

f(r, x, DJC)ii||g«^-l^(i-|/J|)!*

for i = r* + l,..., JV-l and

where u e ^([0, T], Hm(Rn)) .

It follows from this estimate that

cRrr\Ktm-j \\Df~Jv\\

and for |J8|=;^1

__
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From the assumption of induction we have that

wr-i+l(s, t, R)

for i = 2, 3,. . . ,r*,

WQ(S,t, R)

(4.6)

for /=l , 2,...,r*-l and
m~-/ || D?-JV || ̂ cs^woC?, r, ^

Hence it follows from (4.6) that

^1*'̂ ^ ',

j, r, R)

0(S, t, R)}.

'n«(r-i)l«r\-«wr(S, t, R)
V /

i=r*+l

Here let us calculate /= RHlw,.^ t, R).
i=l V

1=1

Since K^l if we make R^2R9 then we obtain /g const. wr(s, f, J^). Therefore

7^,0 = const. cAs^^w^s, t, R).

Next we shall calculate J= £ 5l'"-/0'-7)!IC(^*Vr-H.1(s, r, R) .

\Kr\-Kwr(s, t, R)
i=2

_

Let R^2R9 then we get J^ const. r*wr(s, t, R). Hence the following estimate

holds.

+ const. cAs~ltlr*wr(s, t, R) .

Noting that

(4.7) IICa^M^f [ij.o+
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there exist constants c3, c>0 such that

(4.8) ||[Q, A^v\\^Cir*tl<Pr(t) + ccAs-lr*tlwr(s, f, R)

-\-ccAs~lwr(s, t, R).

By the way, since QArv = Arg + [Q, Ar~]v we can see from Lemma 3.1 that

Let /(O be

f r
/(0=C1C \ f^T-^-^HvCs, T, R)+C^S"1r*T /Wr(59 T, 1?)

Jo
+ c>ls~1wr(5, T,

then from (4.8)

(4.9)
o

Here it follows from Lemma A-4 in appendix that

(4.10) 0 r(r) g/(0 + cr* r^-c^1+f exp

where c = c1c3. Noting that wr(s, /, /?) = K''r!Kr5exp(K"r*f /), we have

{(S™c2)-1wr(ls, r, K)+c^s-1r*(Xr*0-Jwr(s, f, K)

Here we make X and 5 sufficiently large, then

Therefore from (4.10)

- - X ( s , t, V + cr^Kl-fy*}-1^--*-1*^, t, R).

Let K be sufficiently large a number such that c(Kl — c)"1^!, then

twJts, f, J?). Q. E.D.

Lemma 4,2. For aw.v ?"^0 and O^ i+ j^w — 1 f/i^re exisr constants A,

s t >0 swc/i that for sufficiently large K, K and for any s^.si

(4.11) f"+J'Mr+ii>/0|| gc^j-^-^^w^j, f, R) .

Proo/. It follows from Lemma 4,1 that for any s^s0



372 HITOSHI URYU

(4.12) til+m-1-i\\Ar+iD?-1-iv\\£c3s-1wr(s, t, R) .

For any integer p^ 1 we can see

where t1 = t. Here let w(t, x) and p be w(t, x) = Ar+iDj
tv(t, x) and p = m-

— i— j respectively, then we have from (4.12)

\\Ar+iD{v
o Jo

(sl2)-*wr(s-p' + p9 t, R)

where p' = il + m — l — i and s is sufficiently large such that s — p'^s/2. There-

fore we conclude that

til+J\\Ar+iDiv\\£c(2PA)s-<m-i-»wr(s, t, R).

Q.E.D.

Now we shall state the main proposition of this section.

Proposition 4,3. For any integers l^j^m — l,Q^i^j9 l^k^j and any

real 0^g:gl there exist constants A and st such that

(4.13) tJ-^A^Dl'^^cAs-^-J^^^^s-il + ̂ ql, t, R)

where s^.s^ and R9 K are sufficiently large numbers.

For the proof of this proposition we need the following lemma of Igari [4].

Lemma 4.4. // p ̂  0, q ̂  0 and p + q = l, then

Proof of Proposition 4.3. Let the left hand side of (4.13) be Tr(t\ then it

follows from Lemma 4.2 that

f (4.14)! Tr(t)^cAs-(m-J+Vwr+K(s-(i-k)l, t, R)

(4.14)2 TM^cAs-^-^-Vwr+t-^s-^-k + iy, t, R)

(4.14)* +1 Tr(f)^cAs-(m-^wr(s-il, t, R).

From Lemma 4.4 we immediately have

Combining two inequalities (4.14)x and (4.14)2> we can verify that
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(4.14)1 Tr(t)^cAs-^-J+*-rtwr+ic_p(s-(i-k)l-pl t, R).

In the same way, combining (4.14)n and (4.14)n+1 for n = 2,..., k, we obtain

(4.14)i

Next we apply the above process to inequalities (4.l4)i,...3 (4.14)$, then

(4.14)? Tr(t)^cAS-(™-^-^wr+k_2p(s-(i-k)l-2pl t, R)

(4.14)5 T^^cAs-^-^-^P^^.^^s-^-k + l^l-Ipl t, R)

wr+2-2p(s-(i-2)l-2pl, t, R) .

Repeating these steps, we finally attain to Ihe only one inequality as follows.

wr+^kp(s-(i-k)l-kpl, t, R)

r+tq(s-il + kql, t, R) .

Q.E.D.

§5B Estimate for Rv

We begin with the following lemma.

Lemma Sol. The partial differential operator R = tm~kR(t, x, Dt9 Dx) is

represented in the form:

"R(t, x, Dt, Ac)=
l

Proof. From (2.3), (1.5) and (1.6) we have

— -7'""1

Let us replace m —j +1/?| with j. Hence we can get the desired result. Q, E. B.

It follows from Lemma 4.3 that for any integer l ^ f c / ^ j and real Orgggl
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Then owing to Lemma 5.1, we have

(5.1) \\ArRv\\^cABm±l Z J-O---/+M)
;=i 101=1

O\ ft), t, R)

where B>0 is independent of r. Here let l^kj^j be the smallest integer

satisfying the inequalities :

(5.2) *(j9p)ll-\p\ + kj>Q for any /

Next we shall remember the definition of er,- and v.

<FJ= max {|£|-a(j, £)//, 0], v= max {<jry/ky] .
i = i 0 | g - -

Then we can verify that

(5.3) -

Since 0^v<l we make Q^q^l satisfying q>v. Hence it follows from (5.1)

and (5.3) that

^ Ht— 1

(5.4) \\A'Rv\\ £ cAB ̂  s-^'^^^+^s + Cg-v)/, r, K).J

Furthermore let 9 be a positive number so that for 1 ̂  j g m — 1

(5.5)

then

(5.6) ||.

Let us summarize the above results.

Lemma 5.2. Let v(t, x) be the solution of the equation

(2.7)

where s^s1 and g(t, x) satisfies the following inequality.

(4.2) \\Arg\\ gcwr(s, t, R).

is^ constants A, B>Q which are independent of r such that for

sufficiently large R and K

(5.7) \\A'v\\ ^cAs~mwr(s, r, R)£cAwr(s, t, R),
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(5.8) \\A'Rv\\^cAB^ *-"""> wr+kjll(s + (q-v)l, f, R),

where q>v, O ^ ^ ^ l and 0(>0) satisfies the property that for l^j^m—

§ 6. Proof of Theorem 2

We shall first prepare the following basic lemma.

Lemma 6.1. Under the assumptions (A-I)~(A-VI), the assertions 1°

and T hold.

1° For any u!(x)er<K> and any /(?, x)e J>([0, T], r<K )) satisfying

£>}/(?, x) | f = 0 = 0 ( O g / ^ m — k— 1) there exists a unique solution w(£, x ) e «

T], r^O of the equation

~ r, x, Dr,
(6.1)

2° Especially if ul(x) = Q for Ogigm-fc-1 an^f Dj/(f, x)|f,0 = 0 /or 0^?

^m-lc-1-fs we ofofani r/?ar Dfw(r, x) | f ^ 0 ==0 /or Ogr ^m~/c~ l4 - s wfeere

5 /s a non-negative integer.

Proof. 1" From the assumption /(f, x) = t'"~"kh(t, x) where /i(f, x) belongs

to ^([0, T], F ( f l ))- Therefore we have the equation equivalent to (6.1)

(6.2)

Applying Proposition 2.1, we know the unique existence of the solution w( f , x)e

#([0, T], Hy(R")) of (6.2). Hence let us show that «(/, .v) belongs to ^([0, T],

r (K)). It follows from (A-IV) that we can calculate the derivatives of u(t, x)

at Z = 0 and each derivative belongs to F ( K ) . Here for any integer s^l let

ws(f, x) be

then w s(/, x) satisfies the equation

(K(r, x)=/(r, x)~Q(5£ fV'W}u(r, x)U0)= /;(f5 x).
i=l

Hence we have that/s(£, x)e ^([0, T], nw)) and
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^x) | t = 0 = 0 for O^j fgs — 1,

We can reduce (6.1) to the equation

Qus(t, x)=/s(f, x)
(6-3)

DJ
tus(t, x)\t=0 = Q for O^j^s-1.

From Lemma 5.2 we can see that us(t, x)e^([0, T], F(K>). Consequently

u(t, x) belongs to ^([0, T], r^). Assertion 2° is clear from (A-IV).

Q.E.D.

Let us consider the scheme (2.4);. Then (2.4); is equivalent to the following

scheme.

(6.4)0
( D'WoO, x)|f=0 = w''(x),

f gll/f, X) = -&!,-!(*, X) = /,-_!(*, X)

(6-4)y
1 Djw/f, x)|,=0 = 0, 0^igm-/c-l for j^l .

Lemma 6.2. Let w/f, x) 6e rfte solution of (6A)J9 then Uj(t9 x)e

T], r(K)) /or j^O awd t/iere exists a« integer s^l SMC/I that /or j^

From Lemma 6.1 we have u0(t, x)e^([0, T], r^O- Since R =

t'"-kR(t, x, Dr, DJ, f0(t, x) satisfies that /0(r, x)e ^([0, T], r<K0 and for O^i

^m — k—l Dl
tfQ(t, x)| f=0 = 0. Therefore it follows from Lemma 6.1 that u^t,

x)e^([0, T], HK>). Repeating these steps, w/r, x)e^([0, T], F(*>) for j^O.

Let us consider the second assertion. From 2° of Lemma 6.1 we can verify

that D{M t(r, jc ) | f s = 0 = 0 for O g f g m - f c - 1 . Put S = min {«(./, /7); l^y^m-1,

Ig|j8|g;}^l. Then it follows from Lemma 5.1 that Df/^r, x)| f = 0 = 0 for

0^1^77? — fe—l+s. By Lemma 6.1 we obtain Djw2(^ x)| f = 0 = 0 for

gm — fc — 1+s. Successive use of these steps brings us to

Q.E.D.

The following lemma is the direct consequence of Lemma 6.2.

Lemma 6.3e For any s^O there exists N = N(s)eZ such that for any
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Now let us demonstrate the proof of Theorem 2. By Lemma 6.2 and

Lemma 6.3 we may assume that for any r^O

(6.5) M'Su^n^cwXs, *, R)

where c and R are positive constants. Hence the following lemma holds.

Lemma 6A Under (6.5) // K<6 there exist constants A, B, R which

are independent of r such that

(6.6) \\AruN+n\\^cB2anntK-9)*wr(s + n(q-v)l, t, R)

for n = 0, 1,..., where q, v, 9 are the same as in Lemma 5.2.

Proof. It follows from Lemma 5.2 and (6.5) that

^ — m- 1
\\A'RuN\\£cAB s-k'«ewr+kjq(s + (q-v)l, t, R) .

Next applying Lemma 5.2 to (6.4)N+l3

-v)J, t, R)

-v)l, t, R).

Inductively we obtain that for any n^O

(6.7) \\A'uN+n\\£cA«-"B» Z1 - "Z ekii_ kin
i i=l »„=! l

xw r + ( k l i + ...+ki|i)g(s + n(q-v)/, t, R)

where efcl l,..jkfn = {s + (?-v)/(n-l)}~* |n««x ••• xs~ki^°.

Let us make s sufficiently large, then eki Ai is estimated as follows.

^ f c l l , . . . , A , l l ^ ^ " w - A « « 9 ° ( n - l ) " ^ ' M - i < ' 0 x - • • x l - ^ . i f l o

for some constant D > 0. Furthermore from Lemma A-5 in Appendix

(6.8) ektiimmmtkin£AlR
tt

1D
nrr<k>i+-+k'n)<io

Using Lemma A-7, the estimates (6.7) and (6.8) imply that

m- 1 m— 1
x Z '•• Z n^i+-^^K-^wr(s + n(q-v)l t, R1),

f i = l - in=l

Here let us make K < 9, then it follows from the above inequality that
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v)l9 t, )

for some constants A, B, R. Q. E. D.

CO

Now we shall prove the convergence of summation ]T u ;(t,x).
j=0

UO

Lemma 6.5. If K satisfies l^K<al(cr—\), the series u(t, x) = ]T u.-(t9 x) is
j=o

convergent in ^([0, T], r<">). Hence u(t, x) belongs to ^([0, T], F<K>).

Proof. First of all we shall show that if 1 g K < a/(<7 — 1) there exist constants

q, 9 satisfying (6.9)~(6.11).

(6.9) q>v, Ogg^ l

(6.10) J«0

(6. 1 1) For any l^j^m — l, kjq9 ^ m —j -f kj-q.

If {^K<al(ff— 1) we have

for I g j g m - l .

Then for any K<kf>v there exist constants q>v, 9>K so as 9^kji(1. These q

and 0 satisfy (6.9)^(6.11). Therefore we can apply Lemma 6.4. Here let us

decompose u(t, x) by

"('• *)= ? M/^, -v) + Z^ w/r, .x)

r5 x).

From Lemma 6.4 the series u%(t, x) is convergent in ^([0, T], r^) and w^(r, x)

belongs to ^([0, 71], r<*>). Since n/r, x)e^([0, 7], r<*>) for l^j^N-1

we can see w(r, x) e ^([0, T], r<K>). Q. E. D.

Consequently we have established the existence of a solution in Theorem 2.

Next we shall show the uniqueness of solutions.

Lemma 6.6. Under the assumptions of Theorem 2, let u(t, x)

T], r (K)) be a solution of a homogeneous equation;

(6.12)
DJw(f, x)| r=0-0 for 0^ /gm-k -

l^K'<cr/ (<T— 1). T/iew w(f, x) vanishes identically.

Proof. From the assumption (A- VI) u(t, x) is flat at f = 0. Hence w(f, x)

satisfies the following.
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Qu(t, x)=-Rit(t, x)
(6.B)

for any z ^ O .

We may assume that for sufficiently large s there exist constants c and R such

that

|| Arit || g cwf(s, f , R) for any r ̂  0 .

By Lemma 6.4 we can get from the above estimate that

\\A'u\\£cB3nntt<«-9**wr(s + n(q-v)l, t, R) .

Let n be infinity, then we conclude w(f , x)~0. Q. E. D.

Finally we shall demonstrate that T of Theorem 2 is realized by convergence

of (2.6) and 2° in Proposition 2.1. From Proposition 2.1 and (2.4)0 if supp

(w£(x)) ci K and supp (/(r, x)) c C,(K) for some compact set K c Rn, supp (w0(f, *))

cCf(^). Since R(t, x, Dr, Dx) is a differential operator, we get supp(.Rw0(r, x))
c:C,(K). Therefore it follows from (2.4)j and Proposition 2.1 that supp

(w x(r , x)) belongs to Ct(K). Repeating these steps we have supp (ufo, x))

c Ct(K) for any j^O. From the convergence of (2.6) we conclude supp (w(f, x))

c Ci(K). The proof of Theorem 2 is completed.

Appendix

Following Jgari [4], we introduce a certain class of pseudo-differential

operators.

Definition. 1) For any meR1 and K>1 we denote by SmM the set of

functions /i(x, £) € C°°( Rn x R"} satisfying the property that for any muUi-

indices a, /?, there exist constants ca and R such that

|d|D£Ji(x, C)I^QR^I(|/i |!)K<O'M~ | a ! for (x, &ERnxR».

2) For any /i(x, f)eSm(K) we s/ir?// ^/^/??ie semi-norms of h(x, £) such that for

any integer /^O

sup |

We define a pseudo-differential operator with a symbol /?(x, f ) e Sm(?c) by
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Hence we have a composition formula of pseudo-differential operators.

Lemma A-l. (See Igari (4)). Let h(x, f) e Sm(K) and r ̂ 0. Then

e(A'H) = Z
1 = 1 |y| = i

where N = r* + m and hy(x, £) = DJ/i(x, £). Then for any integer /^O there

exist constants ch R>Q such that

(A.I) \h7(x, SKt>-m\i£clRM-'*(M-my*

(A.2) \rN(x, f)|,£c£K'r!*.

The following lemma is well known.

Lemma A-2. For any h(x, £) 6 S° there exists constant c and non-

negative integer I dependent only on dimension n such that

(A.3) \\H(x, Dx)U\\^c\h(x, 0|,||H||.

Lemma A-3. Under the assumptions of Lemma A-l we denote ht(x, £}

by

/sr c,

*" /or l^ i^
(A-4)

(A.5)

Proof. (A.5) is a direct consequence of (A.2) and Lemma A-2. For the

proof of (A.4) it is sufficient to show the following inequalities.

for 1^ i

\ht(x, f)<O~m~ r + ili^£fi i~m(i- 'w)! I C for

for some constant c.

We can easily see that for any |a'| ^ I

" l a ' l for l^i^r*,

(A.6) V

(A.7)
' for

where ^4 is independent of r and L
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Now we shall estimate the absolute value of

,01 = 1 Z
'

I I

It follows from (A.I) and (A.7)

•v I .. / V y I „ I , < ~ j.

-m)!XO |a | i= I, 2,..., r f,

for some constant B. The proof is completed. Q. E. D.

Lemma A-4 Let cj)(t) and \l/(t) e C°([0, T]). Assume that the following

integral inequality is satisfied.

n

~ Jo

where c and I are positive constants. Then we obtain

(A.8) 0(f)=slKO + c\ T*"1^
Jo

Ct
Proof. Let $>(i) be ^(r)= \ T^VWdt, then

Jo

Hence we can easily see (A.8). Q. E. D.

Lemma A-5. Let i L , . . , 9 in (n = l, 2,...) fr? elements of {1, 2,..., m — 1).

f/?ere exfsf constants Al9 R1 such that

(A.9) rc^"--^^!^ I«i2^..

Proof. Put S = w^+-+i»/1^2^»n1 '". Then

Stirling's formula yields
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nl^^/2 n"+l/2e~n as 7?->oo.

Therefore there exist some constants Al9 Rl such that S^A1R
r{.

Q.E.D.

Lemma A-6. Let il9...,ine{l92,...9m — l} for n = l,2,... and O^

Then the following inequality holds.

for some constants A2, R2>Q which are independent of n.

Proof. There exists /42>0 so as xl^A2x
x for any x>0. Therefore

(q(fl + .~+in)} l £ A 2 { q ( f l + -+in)}<i*+'"+i^

Let A2 = A2, R2 = {q(m-l)}^-^, then we have (A-10). Q.E.D.

Lemma A-7. Let il9...9in (n=l9 2,...) be elements of {I, 2,..., m — 1} and

O ^ ^ ^ l . Then there exists A3, R3, R' which are independent q/r^O such that

(A.11) wr+(ii+...+ in}(s, t, R)^A3R$ n^+"'+i^Kwr(s9 t, R1) .

Proof. From the definition in §4,

Let us note the following facts.

Then it follows from Lemma A-4 that

Therefore we obtain

Q. E. D.
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