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Conditions for Well-Posedness in Gevrey
Classes of the Cauchy Problems for
Fuchsian Hyperbolic Operators

By

Hitoshi Uryu*

§1. Introduction

Let us consider the following operator.
P=0}—12102+atd,

where | and s are non-negative integers and a is non-zero constant. It is well-
known that if s=/—1, the Cauchy problem for P is well-posed in C® (see
Oleinik [117). Ivrii [6] showed the following. When 0<s</—1, the Cauchy
problem for P is well-posed in Gevrey class y{¥) if and only if 1<k <(2I—s)/
(I—s—1). This simple example shows us a delicate relation among the well-
posed class, the order of degeneracy of a principal part and that of a lower
order term for non-strictly hyperbolic operators. Hence in this paper we shall
consider whether this fact is valid for more general non-strictly hyperbolic
operators.

In the case of non-characteristic operators the well-posedness in Gevrey
class is studied by Ohya [10], Leray and Ohya [9], Beals [1], Bronstein [3],
Ivrii [5], Kajitani [7], Komatsu [8], Steinberg [12], Trepreau [14], Wakabayashi
[17] and others. Igari [4] extends Ivrii’s example to higher order non-strictly
hyperbolic operators with double characteristics under some assumptions on
coefficients of the operators.

On the other hand Baouendi and Goulaouic [2] define Fuchsian partial
differential operators and discuss Cauchy Kowalevski’s type theorem. Tahara
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[13] considers the Cauchy problems for Fuchsian hyperbolic operators in smooth
function space. Here we shall note that Fuchsian partial differential operators
are the natural extension of non-characteristic operators.

Hence we shall discuss the well-posedness of the Cauchy problems for
Fuchsian hyperbolic operators in the Gevrey class. And we shall get a close
connection among an admissible class of the Cauchy problem, a principal part

and lower order terms.

Let (1, x)e[0, TIxR" and (D, D,)=(D, D,,,..., D,)=(—+/—10,
- —=10,,,..., —/—10,,). Let us denote by (z, £) the dual variable of (z, x).
Next we shall define function spaces used in this paper.

Definition 1. (y$*); k=>1) We define p!¥) the set of functions f(x)e

loc»> loc

C®(R") satisfying the property that for any compact set K< R" there exist
constants ¢, R>0 such that for any multi-indices o«

(1.1) |D%f(x)| < cRI*I(Jar] )* for xeKk.

Definition 2. (y™®*); k=1) We denote by ™) the set of functions f(x)e
C*®(R"™) with the following property. There exist constants ¢, R>0 such that
for any multi-indices «

1.2) |D%f(x)| £ cRI=I(Jar] 1)* for xeR".

Definition 3. (I'*®); k=1) We say f(x)e H* (= HS(R") belongs to
I'®) if there exist constants ¢, R>0 such that ’
(1.3) [IDgf(x)| S cRI=I(Jarf )
for any multi-indices « € N, where || | is L?-norm with respect to x.

Now we shall define Fuchsian partial differential operators according to
Baouendi-Goulaouic [2]. Let

P(t, x, D,, D)=t"D?"+ P (t, x, D )t+= D=1 4...
+Pk(t= X, Dx)D'r"_k+Pk+1(t= X, Dx)D't"—k“1 T+ +Pm(t» X, Dx)

be a partial differential operator satisfying the following.

(A-D) ke Z, 0=ZkZm
(A-TI) ord Pi(t, x, D)= j
(A-I0) ord P(0, x, D,)=0  for 1<j<k

Then P is said to be of Fuchsian type with weight m —k with respect to t. From
(A-III) we shall set P;0, x, D,)=a;(x) for ISj<k. Let ¥(4, x) be a charac-
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teristic polynomial
G, x)=MA—1)-(A—m+1)+ia ()A(A—-1)---(A-m+2)
+ kg ()AMA—1)--(A—m+k+1).
Its roots, called characteristic exponents, are denoted by A=0, 1,..., m—k—1,
1oy PA(X).
(A-IV) there exists a constant ¢>0 such that
l(A—p1 (%)) (A= p)| 2 ¢[AA—1)---(A—m+ k+1)
forle Z, Azm—k.
Under these assumptions, we can consider the following Cauchy problem for P

P(1, x, D;, Du(t, x)=f(t, x)
(1.4) .
Diu(t, X) |=o=uix), 0=Zj=m—k—1.

Baouendi-Goulaouic [2] study the Cauchy problem for P in the analytic function
space and Tahara [13] investigate in C*-function space. Since our function
space is Gevrey class, we assume that coefficients of P belong to £([0, T], y*?)
ie.

(A_V) Pj(t'; X, Dx)= Z aj,ﬁ(ts X)Dg
1B1=J

where a; 4(t, x) € 2([0, T], y©).

Next we shall consider a leading term of P.

k m
(A-VD) ™Y Y a;(t, X)L Y X a; (%)
Jj=118 j=k+1|B|=j

[=J

R ) n
x tj—kTm—Jéﬂ = 1__[ (’L’—lllj(t, X, 6))
i=1

where />0 is a rational number and A,(t, x, ¢) are real valued functions with
the property:

If i#j, L#4; for any (1, x)e [0, T]x R", |{¢|=1 and for any b=0, a, f N"
there exists a constant c=c, 5, such that

IDDPDEL (L, x, &)|Sc  for (1, x)e[0, T]x R, |¢|=1.
Finally we shall assume on lower order terms of P,
(A-VII) For 1=|BISj—1,2Z5jEm
(1.5) a; g(t, x)=t"0:Pa; ,(t, x)

where y(j, B) is a non-negative integer and &; 4(t, x) € Z([0, T], y).
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We can easily see from (A-III) that y(j, f)=1 for 2< j<k, 1 S|B|<j—1. Here
we shall define a number as {ollows.

U, B) if 25j<k

(1.6) a(m—j+|Bl, B)= _ .
yj, By+j—k if k+1£jsm.

Let us note that a(m—j+ (B}, f)=1.

Here we shall define the important number ¢>1 which determines admissible
data classes of the Cauchy problems. For any j(1<j<m—1) let k; (1=k;
<m—1) be the lowest integer such that o(j, f)/I—|f|+k;>0 for any g (1=|p]
<j—1). Next we set

o;= max 1 {IBl—a(j, /I, 0} and v= max {a;/k;].

T sipisi- 1<ism—1
Next we define 6 =1 such that

o= max {(ky+m—i)/(m—i)}.
1

15ism—
Then we obtain the main theorem.

Theorem 1. Under the assumptions (A-1) ~(A-VII), for any u;(x)e i,
(0L jSm—k—1) and for any f(t, x)e Z([0, T1, yic)) there exists an unique
solution u(t, x)e #([0, T], yi%)) of the equation

P(t, x, Dy, Du(t, x)=f(t, x)
(L.7) ,

D{u(ta x)|t=0=uj(x)7 0§.j§m—k—1
for any k (1=x<ga/(a—1)), i.e. the Cauchy problem (1.7) is well-posed in y{x)
(1=k<o0/(c-1)).

Note. (1) In the case of o=1 the Cauchy problem (1.7) is well-posed in
C>-function space (see Tahara [13]). (2) From the definition of v we have
0sv<l.

Finally we shall state some examples of Theorem 1.
Example 1. Let P be a second order partial differential operator
P=DZ—12ID2+a(t, x)D,+ b(t, X\)t*D + c(t, x)

where [, s are non-negative integers and coefficients a, b, ¢ belong to #([0, 17,
p®)). In the case of s=[—1 the Cauchy problem for P is well-posed in y{x)
(1£Kx). When 0<s<I—1 the Cauchy problem for P is well-posed in y{x
(1=2x<@2l-s)/(I—5s=1)).
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Example 2. Let P be a Fuchsian hyperbolic operator satisfying (A-IV)
P=12D2?—12'D2+ a(t, x)tD,+ b(t, x)tD, + c(t, x)

where I, s are positive integers and a, b, ce Z([0, T], y). If s=1 the Cauchy
problem for P is well-posed in yi) for any kx=1. In the case of 0<s</, y{¥)

loc

(1=k<(2l—=s)/(I—s)) is admissible data classes of the Cauchy problem for P.
Next example is the generalization of example 1.

Example 3. Let P=P(t, x, D,, D,) be an operator of orer m whose coef-
ficients belong to ([0, T], y™),

P=Pm+‘Pm—1+'”+P0'

Its principal symbol P,(t, x, 7, &) can be factored smoothly in the form;
Pm(t) X, 1, L.:)= ].,—"I (t_rl'lj(t’ X, é))
j=1

where [ is non-ncgative integer, 4; is real valued function and 4;#4; when i#j.
Furthermore for any b=0 and any multi-indices «, f there exists a constant
c=c, . such that

IDiDDEA L, x, Ol=c for (1.x)e[0, TIx R [¢|=1.
We assume that each lower order term P(1, x, 7, ¢)(0=<i=<m—1) is represented
as follows.

i R
Pty x, 1, &)= 3 a;4(t, x)+0-FgimIBICh
181=0

where s(i, f8) is a non-negative integer and a; 4(t, x) € ([0, T], y**)). Then we
have easily seen that a(i, f)=s(i, f)+m—i+|f|. Therefore applying Theorem
1, we can obtain admissible data classes of the Cauchy problem for P.

§2. Sketch of the Proof of Theorem 1

Let us start with the following theorem.

Theorem 2. Under the assumptions (A-1)~(A-VII), assertions 1° and 2
are realized.
1° For any n(x)el'™) (0ism—k—1) and any f(1, x)e ([0, T], I'"*))
there exists a unique solution u(t, x)e #([0, T], I'*") of (1.7) for any 1<k
<o/(e—1).
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2° If supp(ux))cK (0<ism—k—1) and supp(f(t, x))=C(K) hold for
some compact set K< R", u(t, x) also satisfies supp (u(t, x)) = C(K).
Here we denote by C(K)

Ci(K)={(t, x) € [0, T]x R", min |X — y| < A, lt|'/1}
where .
Amax =max {2, x, O)|; (1, x, &) € [0, T]x R"x R, |&]=1}.
Now we shall show that Theorem 2 implies Theorem 1.

Proof of Theorem 1. We shall begin with the existence of a solution of
(1.7). Let {¢,(x)} be a partition of unity. Namely, ¢,(x) is compactly sup-
ported y) functions satisfying (i) 0= ¢,(x)<1, (ii) the summation 3} ¢,(x) is
locally finite and (iii) X ¢,(x)=1 on R". For any uy(x)ey{) (0<ism—k—1)
and any f(t, )€ B([0, T1, 7(5)) we set ui(x)=, (), fy(t, x)= b, (x) X
f(t, x). Then we can easily see uj(x)el'™ and f,(t, x)e Z([0, T], I'™).
Therefore from 1° of Theorem 2 we can find a solution u,(t, x) € ([0, T], I'*®)
of the equation

P(t, x, D,, D,Ju,(t, x)=f,(t, x)

Diuy(t, x)|,—o=ui(x), 0Li<m—k—1.
From Sobolev’s lemma we have I'™cy®. Therefore solutions u(t, x)e
#([0, T], y*). Furthermore since the summation ¥ u,(t, x) is locally finite,
the function u(t, x)=23 u,(t, x) belongs to #([0, T], yik.) and satisfies the
equation (1.7).

Secondly we shall consider the uniqueness of the solutions. Let u(¢, x)
e #([0, T], y¥)) be a solution of the equation

P(t, x, D,, D u(t, x)=0
Diu(t, x)|;=0=0, 0Zig<m—k—1.

Following Tahara [13], we shall show u(t, x)=0 for (¢, x)e[0, T] x R" by two
steps. The first step is to prove that u(t, x)=0 in a neighbourhood of {0} x R".
Let ¢(x) be a compactly supported y{¥)-function such that ¢(x)=1 in a neigh-
bourhood of some point x,e€ R". Then P(t, x, D,, D.)p(x)u(t, x)e Z([0, T1,
). Therefore the solution w(t, x) of

P(t, x, D,, D)w(t, x)=P(t, x, D,, D.)¢(x)u(t, x)

Diw(t, x)|,0=0, 0<i<m—k—1
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can be found in #([0, T], I'®)) and from 2° of Theorem 2 w(t, x)=0 in a
neighbourhood of (0, x,). Here put i(t, x)=@(x)u(t, x)—w(t, x). Then from
the above the function (¢, x) satisfies the equation

P(t, x, D,, D)ii(t, x)=0

Dii(t, x)|,=o=0, 0sism—k—1
and #i(t, x)=u(t, x) in a neighbourhood of (0, x,). Hence it follows from 1° of
Theorem 2 that #(¢, x)=0 in [0, T]x R". Therefore u(t, x)=0 in a neigh-
bourhood of (0, x;). The second step is to show the uniqueness in [0, T] x R™.
Take any (t,, xo) €(0, T]x R" and put K=D/(ty, xo) N {t=0} where Dt,, x,)
={(t, x)€[0, T]x R"; |x —xo| <Ama.x(th—1")/1}. From the first step we have
u(t, x)=0 in a neighbourhood of [0, ¢] x K for a sufficiently small é>0. Since
P is regularly hyperbolic in [¢, T] we obtain u(t, x)=0 in a neighbourhood of
D(ty, xo). Therefore u(ty, x,)=0. The proof of Theorem 1 is completed.

Q.E.D.

In order to prove Theorem 2 we shall decompose the operator P as follows.
(2‘1) P(t’ x’ Dt7 D¥)=Q(’a X’ Dt’ D.\,)+R(t7 -Ys Dt’ D\)

where

k m
(2.2) Q=tsDr+ Y WE a; 5(t, X)t*IDriDE+ % % a; 41, x)
IEISTiE,

J=k+1 |B]=]
) k i . m )
X D't"_"Dg+ Z aj,o(r, x)t""’D’,"_f + Z (lj,o(t, x)D',"_f
j=1 Jj=k+1
k
(2.3) R=3 3 a4t x)t*IDriDt
j=21s)81=i-1 7

+ > aj4(t, x)DriDE

J=ktU1IZ|pI=j-1

We shall demonstrate the existence of a solution by method of successive itera-
tion. Hence we consider the following scheme.

Quo(t, x)=f(t, x)
Diug(t, X)|,_o=uix), 0Si<m—k—1,
[ Quitt, )= =Ru; (1, )

| Diy(t, )1i=0=0, Osism—k—1,
for j=1.

(2.4),

2.4);

Here we refer Tahara’s result [13].
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Propositien 2.1. Under the assumptions (A-1)~(A-VI) assertions 1° and
2° are realized.
1° For any uy(x)e H*(R") and any f(t, x)e #([0, T], H*(R")) there exists
a unique solution u(t, x) e Z([0, T], H*(R™) of the equation
Q(tS x, Dt’ Dx)u(t’ x) =f(t, x)

Diu(t, x)|,=o=u(x), 0sism—k—1.

2.5)

2° If supp(ux))cK (0=igm—k—1) and supp (f(t, x)) = C(K) hold for any
compact set K< R", then u(t, x) also satisfies supp (u(t, x))= C(K).

Since I'*®) = H®(R") uq(t, x), solution of (2.4),, belongs to #Z([0, T], H*(R"))
by Proposition 2.1. Noting that R=R(t, x, D,, D,) is a differential operator,
we have Ruy(t, x)e #([0, T], H*(R")). Therefore it follows from (2.4); and
Proposition 2.1 that u,(z, x) also belongs to #([0, T], H*(R")). Successive
use of these steps brings us to u(t, x)e #([0, T], H*(R")) for any j=20. A
formal solution of (1.7) is given in the form

2.6) u(t, X)= 3 uft, x).
i=o

Accordingly we must show that the summation (2.6) is convergent in some sense.
Our plan is as follows. In §3 we shall get an energy inequality of the
equation

O(t, x, D, D)u(t, x)=g(t, x)

Div(t, x)|,=o=0, 0=Zi<s—1

2.7)

where O =1""%Q(1, x, D,, D,), s is a sufficiently large integer and g(t, x) € #([0,
T], I'™). In §4 we shall estimate derivatives of a solution of (2.7) and in §5
we obtain estimates of R(t, x, D,, D.)u(t, x) where R=1""*R(t, x, D,, D). By
the consideration of §4 and 5 we shall prove Theorem 2 in §6.

§3. Energy Estimates for Solutions of (2.7)

I“irst we shall define symbol classes of pscudo-differential operators used
in this section.

Definition. 1° For real m S™ is the symbol class of classical pseudo-
differential operators.
2° For positive integer v and real m ([0, T], S™) is the set of functions
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a(t, x, &) which are represented in the form
a(t, X, é)-:' i IViai(t, X, f)
i=1
where v;=v}/v (v{ is a non-negative integer), g e N and ayt, x, &)e Z([0, T],
Sm).
The purpose of this section is to show the following lemma.
Lemma 3.1. Let &(¢) be
m=tm—-1-j .
o()=3 2 1" ADv]
j=0 i=0
where A is the pseudo-differential operator with symbol (&> =(1+]|&?)V/2,
Then there exist constants ¢y, ¢;>0 such that

(3.1) o(nse, || e Qulds
0
for u(t, x)e #([0, T], H*(R")), Div(t, x)|;=0=0 0L j<s—1 where s=N,=
c%+1 and c% is the lowest integer greater than or equal to c,.
Here we whall note the properties of operator O(1, x, D,, D).

Lemma 3.2. 1° The partial differential operator Q(t, x, D,, D)=
tm=kQ(t, x, D,, D) is decomposed into the sum of Q,(t, x, D,, D) and 0,(t, x,
D,, D,) where

A k . .
Qi=1mDp+ 3 3 a1, X)riDp=i D}
J= =J

-

n . . .
+ Z ‘aj.ﬁ(’. x)ﬂ"‘?‘""’D;"_-’Dﬁ,

Jj=k+1 |B|=j

- h ) ) m . ) i
0,= 2 a;o(t, )" DI+ 3 a;o(t, x)ti=km=ipp=i
j=1 J=ht+1
2° The functions a;y(t, x)(1Zj<k) and ti~ka; (1, x) (k+1<j<m) are
represented by
a;4t, x)=1"181a, ,(t, x)  for 1=Zj<k,
t=ka; o(t, x)=2t!1814,; ,(t, x)  for k+1=<j<m,
where a; 4(t, x) € Z([0, T], y™), 1S j=m.
3° Q4(t, x, 1, &) has the following form.

0.1, x, 7, €)=J_'Iill(tr—t’l,-(t, x, &)
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Proof. Multiplying t"~* by Q we can easily obtain 1° from the equality
(2.2). 3° is a direct conclusion of the assumpsion (A-VI). We have 2° by
expanding the right hand side of 3°.

Following Uryu [15], [16] we shall prove Lemma 3.1. From assumption
(A-VD) if i#j, A;#4; for any (¢, x)e[0, T]x R", |¢|=1. Here modifying
A(t, x, &) near £ =0, we may suppose that for any i, j (i #j) there exists a constant
¢ such that

(3.2 I(Zi—=2) (1, x, D2 <&

where A(t, x, £)e #([0, T], S'). Furthermore let us note the following.
Since [ is a positive rational number, [ can be written in the form of irreducible
fraction I=v'/v, v, Ve N. Let 0;=tD,—t'A(t, x, D,) where

2,0t % DJu(t, =) { e+ 2, x, D, e

We define the modules W, (0Su<m—1) over the ring of pseudo-differential
operators in x of order zero. II,, is the operator in the form of I1,,=0,0,:-:0,,.
Let W,,_, be the module generated by the momomial operators H,,,/ai=6162---5i
---0,, of order m—1 and let W,,_, be the module generated by the operators
I1,/0,0; (i+#J) and so on.

In order to prove Lemma 3.1 we prepare several lemmas.

Lemma 3.3. For any i, j there exist pseudo-differential operators A;
C.;€ #[0, T1, S° such that

5J?
Bi,j,
(3.3) [6,, aj]=A,’15,+Bl’10]+C,’J
where [ , ] is commutator.

Proof. Let 6o([0;, 0;]) be the principal symbol of [d;, 6;]. Then, by the
formula of product of pseudo-differential operators, we obtain

0o((0 0,1)= 3} (D¢ (1= 1405, (10— 1'1))

—Dg (180 —1'2;)0, (180 —1'2,)}
=t'D; (t, x, &)
where D; (1, x, §) € #,([0, T], S*). Here we used the notations xo =1, {o=1. If we
define functions 4; j(t, x, £) and B; (t, x, &) by 4, ;(t, x, &)=D; (t, x, &)[(A;—4)
and B; j(t, x, §)=D; (t, x, &)/(;—4;) respectively, then 4; ;, B; ;€ #,([0, T], S°)
and the equality

i,jo
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A; j(t, x, E) (1&g —112)+ By (8, x, E) (1&g —1'2))=1'D; (8, x, &)
holds. Then we obtain
[a,-, aj] = A,',ja,' + B‘-’jaj + Ci.j
for some C, (t, x, &) e #([0, T], S°). Q.E.D.

Lemma 3.4. For any monomial wze W, (0Su=m~—1) there exist d; and
wh, €W, such that

Bt1

(3.4) diwi=wh, + ) ‘)L: Cy iy
=15

where ¢, (t, x, £)e B,[0, T], 8°), 0}, - ;€ Wi

Proof. Forany wi=0;,-0;, (j1<i,<--<j,) there exists some je& {/,...,
Juy 1S j<m. Since [0, 0;]1=A; ;0;+B; ;0;+C; ; by Lemma 3.3 we have imme-
diately (3.4). Q.E.D.

Lemma 3.5. Let ¥(t) be
Y(f)= 21 Ylwi_pl  for ut, x)eC=([0, TTx R").
=1 a
Then we have the following energy inequality.
tj—t‘P(t)gconst. W(1)+ | 1,0
Proof. By Lemma 3.4
5 n+1
(3.5) 5,-wﬁv=0)u+1l}+ Z] ;Cy,j(l);/‘+l_jv.
=

Using u for w?%v and g for the right hand side of (3.5), we obtain a first order
hyperbolic equation du=g. Then

A = ( d )
tdt lul>=2Re tTu,u

=2Re (/= 11'A(t, x, DYu+./—1g, u)
<const. [u]2+2]g] x [lull.

Therefore we can easily obtain the following inequality.
(3.6) td gl < const. {|jwiv] + Z Z leop+ 1 - oll} + Nl 4 10l

By the definition of ¥(¢), the desired inequality holds. Q.E.D.

Lemma 3.6. Under the assumptions of Theorem 2, there exist symbols of
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pseudo-differential operators c, (t, x, £) e #([0, T], S°) and monomial oper-
ators w%_;€ W,,_; such that

(3'7) Q_Hm: _'Z"‘ Z cm,ngr—j .
j=

x

Proof. We shall show (3.7) by two steps. The first step is to show the
following. Let I1,=0;0;,--0;, (1Si,<iy<---<i,<m). Then o(Il,), the
symbol of II,, can be written in the form:

Lm

(3.8) o(11,)=]

I
j=

1 (tT—tlA,il)+Ru_1+"‘+R0

where R,_ (1, x, T, &)='3' by (t, x, OtF(tcy=i~0 and b, (1, x, &) e Z([0, T1,
#=0

Sh).

We carry out the proof of (3.8) by induction on u. When =1 (3.8) is trivial.

Assume that (3.8) is valid for u. Since I, , =1I,0; ,, we have the following by

tp+1

the product formula for two pseudo-differential operators.

o(Il)=0a(ll,) (t1—1t'2; )+ > Dio(Ill,) 0%(tt—1t'4;,, ).
a#0

Therefore by the assumption of induction we can easily get (3.8) with u+1.
The second step is to show (3.7). From (3.8) with u=m

where c; (t, x, £)e #,([0, T], S'). Let the principal symbol of 0-1, be
P, _\(t, x, tt, &)= g; Cia(t, x, O(trym=1-1

We want to determine A (1, x, &) e ([0, T], S° so that
(39) Pty x, 17, ="5 A1, x, O TT (=141, x, &).
Jj=1 i*j

Since Pm—l(t’ X, tu’j(t, X, é): 6)=tl(m—1)Kj(ta X, f) Where Kj(ta X, 6) Egv([os T]3
Sm=1), the equality (3.9) gives /" DK (t, x, )=At, x, OtV TT (4;,—4).
Then we can find i

Aj(ts X, €)={II;I_) (j'j—/ll')}—lKj(t’ X, é)

in #,[0, T], S°. Applying (3.8) for u=m~—1, we have

Ht

0(Q-M,~ 3 4;T10)= 3 % di (1, x, O oy
J=1 i 2 i=0

j=2 i=
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where d; (t, x, £)e #,([0, T], S'). Repeating these steps we arrive at the
relation (3.7). Q.E.D.

Lemma 3.7. There exists a constant ¢,>0 such that
(3.10) D(H=Ze, P
Proof. 1t is sufficient to show
ti+i|AiDiv|| Sconst. W(1)  for 0Zj<m—1,0Zism—1—j.

Since the symbol of /i AiD{ is ti1+i{E>iti, by the same method of the proof of
Lemma 3.6 we have

L m
HHIAD = 3 ¥ d, 05
X

i=1
where d, (t, x. £) e B([0, T], S°), w:_,e W, _,. Hence t1i'*i|AiDiv| <const.
x Y(1). Q.E.D.

Now we proceed to prove Lemma 3.1. It can be easily seen from Lemma
3.6 that

||nmv|| = “(Hm_é)0+ 60“
<111, — Q)oll + 11 Qvll
<const. ¥()+ || 0v| .

This inequality combined with Lemma 3.5 directly shows
f7d; W(t)<c, (1) +|0v|  for some ¢;>0.
From this inequality
d . —e1 ()
(3.13) A AUEL I

Let us note Diuv(t, X)|,—o=0 for 0L j<s—1, s=cf¥+1. Therefore we can get
the following by integration of both sides of (3.13) from 0 to .

W(r)ég; terr=cr1 Q|| dv

Finally using Lemma 3.7 we complete the proof of Lemma 3.1. Q.E.D.

§4. Estimate for Solutions of (2.7)

Assume the existence of solutions of (2.7)
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Qu(t, x)=g(t, x)
2.7
Div(t, x)|,=0=0 for 0<is<s—1
where g(t, x) e Z([0, T], I'®). Then we have
4.1 Dig(t, x)|,=0=0 for 0giss—1.
Therefore we may assume the following on g(t, x). For any r=0 there exist
constants ¢, R, K>0 such that
4.2) |Arg(t, x)|| < cR7r!*ts exp (Kr*t)
where r!=I'(r+1) and r* is the lowest integer greater than or equal to r. For
simplification we use the notation w,(s, ¢, R)=R"r!*ts exp (Kr*t}).
Now we shall prove the basic lemma of this section.

Lemma 4.1. Let &,(t) be

til+j” Ar+iD{D” .

m—1m—1—j
0

4.3) 2,)="%,

i=

Then for any r=0 there exist constants A, so>0 such that for sufficiently large
R, K and for s=s,

4.4) P (< Acs 'w,(s, t, R).
Proof. We carry out the proof by induction on ». When r=0, it follows
from Lemma 3.1 and (4.2) that for any s= N,
[ NOEYN S; tezrc2"lew (s, T, R)dt
Zci(s—cy)) lewy(s, t, R).
Here we make s sufficiently large such that s—c, =s/2, then we have
D() S Acs™wy(s, t, R)

where A=2¢;, s=so=max (2c,, N;). Assuming that (4.4) is valid for any
0=r=n, we shall demonstrate that (4.4) is valid also for n<r<n+1. Forr>0
operating the pseudo-differential operator A" on both sides of Qu(t, x)=g(t, x),
we get

04ru(t, x)=Arg(t, x)+[Q, ATo(t, x).

We shall estimate the commutator [0, A™]Ju(t, x). From 1° and 2° of Lemma
3.2
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~ m R . .
Q1=I"'D;"+ Zl Iﬂlz . aj,p(’; x)zllﬂl-hn JD'," _IDI;
3= =J
m

Q.= a;(t, x)tm=iDr=i

-
I
-

Therefore
[0, 471= £ 5 [4;,D8, 4]t on i Dy
+ f’; [4;.0, AT]em=3 Dp=i
By use of a product formula of pseudo-differential operators (Lemma A-1 in
Appendix) we obtain for 0Z|f|<m
n N=1
a([ai,ﬁDfﬁ Ar])= - igl gf(ta X, 5)—r§(t, X, 6)

where N=r*+|f| and

g, x, 5)— Z a, WE™DLa j,p(2, x)EE .
Then from Lemma A-3 there exist constants &, R >0 such that

lg?(t, x, D ul SER-101Gi— | B | A7+171~tu
for i=1,2,..., r¥,

lgé, x, Dx)uu<@ =IB1(i — | B|) 1< || Ar+181 =iy |
for i=r*+1,..., N—1 and

I74(t, x, Dul < eRrrI«<|ul|

where ue Z([0, T], H*(R")).

It follows from this estimate that
I; o= |[a;,0, A"J(e™ I DI iv)|
-1 r* . . .
em:x(i )t""’” Ar=iDm=iy|
=1

eRrr V< gm=i| Dy

lIA
™

and for |f|=j=1
I; ;= I [&N,Dﬁ, Ar](tl|ﬂ|+m—jD1tn—-jv)”

r* A . * . . . N N
<5 eRiG= (] ) rsmi| artimippin]

J+re—1 P B I .. -
+ Z ¢Ri J(l_])!xtljﬂn J”AH-] lDitn ]v”

i=rk+1

+ eRrp1xglitm=i| pm=iyp|),
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From the assumption of induction we have that

(HHUTDAmmi || Ar+imiDpiv || S des™ W44 (8, 8, R)
fori=2,3,..., r*,
ttu=Drm=j| grti=ipm=ip|| < Aes™'wy(s,t, R)
4.6) fori=r*+1,..., j+r*—1,
I AriDP iy || S AesT w, (s, ,R)
fori=1, 2,...,r*—1 and
=i Dmiv|| £ Aes™wg(s, t, R) .

Hence it follows from (4.6) that

r¥ =1 . * ~

LoSteds (T R'i!K(; )w,_i(s,t,R)+R’r!"wo(s, t, R)),
pl

I, S eRp*1i+m=i| Ar+i=1 pr-ip)|

o, %
+ecds L E RIG=DH(] Wi, 1, B
=2
J4r¥—

1. ~
> RFI(E—j)%wo(s t, R)+ Rrrtewo(s, ¢, R)}.

i=r¥+1

r¥¢—=1 _ *
Here let us calculate /= ) R'i !KG )w,_,-(s, t, R).
i=1

e

1<’s (R/R)i(;*)i!n(r—i) Ir1=*w (s, 7, R)

=5 @R (Y, .

Since xk>1 if we make R=2R, then we obtain I <const. w,(s, t, R). Therefore
I; o=const. cAs~'w,(s, t, R).

reoo . *
Next we shall calculate J = zz R‘”J(i—j)!"<; )w,_,-H(s, t, R).

r¥ -~ %
53 R“fR(R/R)iG )(i—j) 5(r—i+1) 1515w (s, t, R)

<r* i;Z*z ﬁ‘iR(R/R)"(;*_ 1)(:,'_ I>_nw,(s, t, R).

Let R>2R, then we get J<const. r*w,(s, t, R). Hence the following estimate
holds.
I; S ERp¥glitm=i|| Ar+i=1 pmiy||
+const. cAs~1tlr*w, (s, t, R).
Noting that

“.7) L0, WIS 3 (L0t 3 L),

1Bl=i
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there exist constants c¢3, ¢>0 such that

(4.8) 1[0, Arv|| S csr*tid (1) + ccAs™r¥tiw,(s, t, R)
+CeAs™'w,(s, t, R).

By the way, since QA"v=A"g +[Q, A ]v we can see from Lemma 3.1 that
o)Se, || et arg] + 1[0, Aolde.
Let f(¢) be
f®)=c,c S; teag=e2Hw (s, 7, R)+ EAs ' r*t'wy(s, 7, R)
+ ¢As™w,(s, 7, R)}dT,
then from (4.8)
(4.9) ®,() < f(1)+cycar* g; fear-ea1+1Gp (t)dr .
Here it follows from Lemma A-4 in appendix that
4100 ®,() = f(1)+irt S; terg-ert+iexp {C_fl (1" ——r’)} ft)de

where ¢=c,c;. Noting that w(s, 1, R)=R"r!*ts exp (Kr*¥t'), we have

S =cic{(s—cy) tw(ls, 1, R)+ CAs™ I (Kr¥l) 'wys, t, R)
+ A (s—c;) twis, t, R)}.

Here we make K and s sufficiently large, then

fO=-Shswis 1 R).

Therefore from (4.10)

0(0) S 5 wis, 1, R)y+er{(KI—8)r*) 1S s, 1, R).

Let K be sufficiently large a number such that ¢(KI—¢)~!<1, then &(f)<
cAs~w(s, t, R). Q.E.D.

Lemma 4.2. For any r=0 and 0Zi+j<m—1 there exist constants A,
5,>>0 such that for sufficiently large R, K and for any s=s,

(4.11) tiHi | Ar*iDjv|| S cAs~mi=Dw,(s, t, R).

Proof. 1t follows from Lemma 4.1 that for any s=s,
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(4.12) pittm=1=i|| Ar+i pm=1-ip|| < ¢ As~'w,(s, t, R).

For any integer p=1 we can see
ty (t2 tp
[w] = | D?w| dzdt,dt,_,---dt,
0 Jo 0 p="p

where t;=t. Here let w(t, x) and p be w(t, x)=A"+Div(t, x) and p=m—1
—i—j respectively, then we have from (4.12)

H/l"”D{v“ é g“ Stl
0 .Jo
ScAs 1 (s/2)Pw,(s—p'+p, t, R)

- Stp cAs7w,(s—p’, T, R)dtdt,--dt,
0

where p’=il+m—1—i and s is sufficiently large such that s—p’=s/2. There-
fore we conclude that

titi|| Ar+tiDiv|| < c(2PA)s~m=i=Dy (s, ¢, R) .
Q.E.D.
Now we shall state the main proposition of this section.

Proposition 4.3. For any integers 1< jSm—1,0=5i<j, 1<k<j and any
real 0= q =<1 there exist constants A and s, such that

(4.13) timi| AriD]~ip|| S cAs~mmitkoy, . (s—il+kql, t, R)
where s=s, and R, K are sufficiently large numbers.
For the proof of this proposition we need the following lemma of Igari [4].
Lemma 4.4. If p=0, q=0 and p+q=1, then
[Arul| < | AT Pul| 2] A" 9u|? .

Proof of Proposition 4.3. Let the left hand side of (4.13) be T (¢), then it
follows from Lemma 4.2 that

(4.14), T()ScAs™mi*Pw, , ((s—(i—k)l, 1, R)
(4.14), TS cAs~mi*k=Dy, o ((s—(i—k+1)L 1, R)
(4.14)¢ 4, T(t)ScAs~ ™ Dw(s—il, t, R).

From Lemma 4.4 we immediately have
TS T (07T, (07

Combining two inequalities (4.14), and (4.14),, we can verify that
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(4.14)} T(f)ScAs =ity o (s—(i— k)I-pl, t, R).
In the same way, combining (4.14), and (4.14), ., for n=2,..., k, we obtain

(4.14); T,(t) S cAs~ =i t=1=Py, o\ (s—(i—k+1)—pl, 1, R)

(4.14)¢ T(t)ScAs~m=iti=pnw, ., _ (s—(i—1)I—pl, t, R).
Next we apply the above process to inequalities (4.14)},..., (4.14);, then

(414)’1’ Tr(t)éCZS_(m_j+E—2p)Wr+IE—2p(S—(i_E)l_zpls z, R)
(@.14);  T,(0) ScAs~mitk=1=200y oo (s—(i—k+1)I—2p, 1, R)

(4.14);_, T()ScAs it v, (s—(i=2)I—2pl, 1, R).
Repeating these steps, we finally attain to the only one inequality as follows.
Tr(t) = cZS_(,'I—j+E_Ep)Wr+k—kp(S - (l - E)l— 12171, z, R)

=cAs~tmitkaly .. (s—il+kql, t, R).
Q.E.D.

§5. FEstimate for Rv
We begin with the following lemma.

Lemma 5.1. The partial differential operator R=t""kR(t, x, D,, D,) is
represented in the form:

m—1

~ J . . .
R(ty X, Dt, D ) 2 m+|ﬁ]—j,ﬂ(t9 x)ta("’ﬂ)-h’_lmD{_lng'
i

Proof. From (2.3), (1.5) and (1.6) we have

1 . . .
- a; 5(t, x)t7@-Brm=i pr=iph
m _,_1

a; p(t, x)t7U-B+i-k+tm=jpm=jpk
1Br=1

a;,4(t, x)1%m=i+18l.py+m=i pm=i Db

-+

j=k+

.
|
Lol

M .

2

Let us replace m—j+ || with j. Hence we can get the desired result. Q.E.D.
It follows from Lemma 4.3 that for any integer 1<k;<j and real 0<g<1
12U P+i=1B1|| ArDi= 181 DBy|| < ¢ Ag~ (m=itkin)
XWpik,q(s—|BlI+k;ql+a( ], B), t, R)
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Then owing to Lemma 5.1, we have

. - m—1 j .
(5.1) | A*Rv|| <cAB"S lﬁ §mm=i+k,a)
==

XW,,+qu(S—|ﬁ|l+qul+a(j, :B)a t, R)

where B>0 is independent of r. Here let 1=<k;=<j be the smallest integer
satisfying the inequalities:

(5.2) a(j, PII—1Bl+k;>0  forany B (1=|fl=j-1).
Next we shall remember the definition of ¢; and v.
o;= max {|fl—a(j, B)/I,0}, v= max {o,k;}.
1218]Sj-1 15jSm—1
Then we can verify that
(5.3) —Bll+kigl+o(j, By=(q—v)I.
Since 0<v<1 we make 0=<¢g =1 satisfying g>v. Hence it follows from (5.1)
and (5.3) that
- —_m=1
5.9 [ATRv|| £ cAB ¥ s™im=i*hiDy, ., (s+(g—V)l, 1, R).
Jj=1-1

Furthermore let 8 be a positive number so that for 1< j<m—1

(5.5 k;g0<m—j+k;q

then

(5.6) |47Roll < cAB"S, 5750w, s+ (g =)L, 1, R).
=1

Let us summarize the above results.
Lemma 5.2. Let v(t, x) be the solution of the equation

Ou(t, x)=g(t, x)

Div(t, x)|;=0=0 0=ZiZs—1

2n

where s=s, and g(t, x) satisfies the following inequality.
(4.2 [Argl| S cw,(s, t, R).

Then there exist constants A, B>0 which are independent of r such that for
sufficiently large R and K

(5.7 | Av|| £ cAs~mw,(s, t, R)< cAw,(s, t, R),
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(5.8) [ 4RO SCAB™E, 5590, .y s+ (g =l 1, R,
P2

where q>v, 0=5q=1 and 0(>0) satisfies the property that for 1< j<m—1
kig0=m—j+k,q.

§6. Proof of Theorem 2

We shall first prepare the following basic lemma.

Lemma 6.1. Under the assumptions (A-I)~(A-VI), the assertions 1°
and 2° hold.
1° For any ui(x)eI'™ and any f(t x)e&([0, T], ') satisfying
Dif(t, x)|,—0=0 (0L i<m—k—1) there exists a unique solution u(t, x) € #([0,
T1], I'®) of the equation
O(t, x, D, D)u(t, x)=F(t, x)

Diu(t, x)|,=o=ul(x), 0Zi<m—k—1.

(6.1)

2° Especially if ui(x)=0 for 0Si<m—k—1 and Dif(t, x)|,~o=0 for 0Zi
<m—k—1+4+3 we obtain that Diu(t, x)|,-0=0 for 0Zi<m—k—1+4+8§ where
§ is a non-negative integer.

Proof. 1" From the assumption f(t. x)=r""¥*n(t, x) where h(t, x) belongs
to 4([0, T], I'*™’). Therefore we have the equation cquivalent to (6.1)
o(t, x, D,, D, u(t, x)=h(t, x)
(6.2)
Diut, x)|=o=u'(x), 0Sism—k—1.

Applying Proposition 2.1, we know the unique existence of the solution u(t, x) e
#([0, T], H”(R™) of (6.2). Hence let us show that u(t, x) belongs to #Z([0, T],
ren. It follows from (A-1V) that we can calculate the derivatives of u(z, x)
at t=0 and each derivative belongs to I'*). Here for any integer s=1 let
u(t, x) be

u(t, X)=ult, )= 3 6/i%u(t, X))o,
i=0
then u (1, x) satisfies the equation
- N A5l
Qut, x)=f(t, x)— Q( Zl tHilotu(t, x)|i=o) = (1, X).

Hence we have that f(¢, x) e #([0, T, I'**)) and
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Diu(t, x)|,=o=0 for 0=ZLj<s—1,
Dif(t, x)|,—o=0 for 0<j<s—1.
We can reduce (6.1) to the equation

Ou(t, x)=f(t, x)

(63) |
Diu(t, x)];=0=0 for 0<jss—1.

From Lemma 5.2 we can see that uyt, x)e #([0, T], I'™®). Consequently
u(t, x) belongs to #([0, T], ™). Assertion 2° is clear from (A-1V).
Q.E.D.

Let us consider the scheme (2.4);. Then (2.4); is equivalent to the following

scheme.

Quq(t, x)=1""* f(t, x)
(6.4), . |
Df“o(t, x)lt=0=ul(x): Oglél‘n—k—la
64) l Qu(t, x)=—Ru;_,(t, X)=f;_(t, x)
- Diuft, x)|io=0, 0ism—k—1 for j1.

Lemma 6.2. Let uj(t, x) be the solution of (6.4);, then uyt, x)e #([0,
T], I'®) for j=0 and there exists an integer §=1 such that for j=1
Diujt, X)|;=o=0 for 0Sism—k—1+5(j—1).

Proof. From Lemma 6.1 we have uq(t, x)e #([0, T], I'*®). Since R=
t"kR(t, x, D,, D,), fo(t, x) satisfies that fy(t, x) € Z([0, T], ') and for 0<i
S<m—k—1 Dify(t, x)|;=0=0. Therefore it follows from Lemma 6.1 that u,(t,
x)e ([0, T], I'™). Repeating these steps, u(t, x) e ([0, T], I'™) for j=0.

Let us consider the second assertion. From 2° of Lemma 6.1 we can verify
that Diu,(1, x) |,=o=0 for 0Li<m—k—1. Put §=min {&(J, f); 1< j<m—1,
1=Z|Bl<j}z1. Then it follows from Lemma 5.1 that Difi(t, x)|,-q=0 for
0<i<m—k—1+35. By Lemma 6.1 we obtain Diu,(t, x)|,=o=0 for 0=Zi
Sm—k—1+5. Successive use of these steps brings us to

Diujt, X)|;=0=0 for 0gigsm—k—-1+5(j—-1).
Q.E.D.

The following lemma is the direct consequence of Lemma 6.2.

Lemma 6.3. For any s=0 there exists N=N(s)€ Z such that for any
JZN=1Diuy(t, x)|,-o=0, 0<i<s—1.
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Now let us demonstrate the proof of Theorem 2. By Lemma 6.2 and
Lemma 6.3 we may assume that for any »=0
(6.5) |A"Ruy_ || S cw(s, t, R)
where ¢ and R are positive constants. Hence the following lemma holds.

Lemma 6.4. Under (6.5) if k<0 there exist constants A, B, R which
are independent of r such that

(6.6) | ATyl £ cBAnnns=0ay (s4+n(qg—v)l, t, R)
for n=0, 1,..., where q, v, 0 are the same as in Lemma 5.2.
Proof. 1t follows from Lemma 5.2 and (6.5) that
[Aruyl| ScAws, t, R)
| ArRuy || < cAB jji shatw,  (s+(q=v)l, 4, R).

Next applying Lemma 5.2 to (6.4)y+ 5

- m—1
[ [Aruy s (| ScA?B 3 s*9%, . (s+(g—V)L, t, R)
Jj=1
~ - m—1
[ 14 Ry 1 8282 S {5+ (g = wl}hiaoshoes
i.j=1
X Wr+(ki+k,)q(s+2(q —-V)l, L R) .

Inductively we obtain that for any n=0

_ m—1 m—1
(6.7 [Auy i pll ScA™1B" 3 -

=1 in=1
X Wyt iy, 4o+l S (G — V)], £, R)
where e, i, ={s+(g—v)I(n—1)}7*ina%x ... x g7ki1d0,
Let us make s sufficiently large, then ¢, is estimated as follows.
he, SO TRa0(— 1) hen-a0 o [Thaat

for some constant D>0. Furthermore from Lemma A-5 in Appendix
(6.8) ke, S A RYD ™ eyt thin)al
Using Lemma A-7, the estimates (6.7) and (6.8) imply that

AUy ol S cAy A3 A" B"D" R} R

m=—1 m—1

X 3 e 3 pteatrk)e0ay (o4 n(g—v), ¢, R').

i1=1- in=1 - .

Here let us make x <0, then it follows from the above inequality that
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147y 4ol S cBAn=Omaw (s +n(g —v)l, 1, R)

for some constants 4, B, R. Q.E.D.

@0
Now we shall prove the convergence of summation Z u;(t,x).

Lemma 6.5. If k satisfies |l <k <o/(6—1), the series u(t, x)= Z ui(t, x) is
convergent in Z([0, T], I'®). Hence u(t, x) belongs to #([0, T], F("’)

Proof. First of all we shall show that if 1 £k <o¢/(o — 1) there exist constants
q, 0 satisfying (6.9) ~(6.11).

(6.9) g>v,0=g=1
(6.10) K<0
(6.11) Forany 1= jsm—1, kjgd<m—j+kq.

If 1Sk<oa/(c—1) we have
k<o/(c—1)S(kjy+m—jlky (=k;,) for 1£jsm-1.

Then for any k<k;, there exist constants g>v, 0>« so as 0<k;,. These q
and 0 satisfy (6.9)~(6.11). Therefore we can apply Lemma 6.4. Here let us
decompose u(t, x) by

N-1 D

u(t. x)= 3 ut, X)+ 3 uqt, x)
i=0 J=N
=ul(t, x)+ud(1, x).

From Lemma 6.4 the series u%(t, x) is convergent in Z([0, T], I'**)) and u(t, x)

belongs to #([0, T1, I'®). Since ut, x)e Z([0, T], I'®) for 1= j<N-—1
we can see u(t, x)e #([0, T], I'™). Q.E.D.

Consequently we have established the existence of a solution in Theorem 2.
Next we shall show the uniqueness of solutions.

Lemma 6.6. Under the assumptions of Theorem 2, let u(t, x)e &([0,
T], ') be a solution of a homogeneous equation;
[ P(t, x, D,, D)u(t, x)=0
(6.12) ‘
| Diu(t, ©)1,oy=0  for 0<ism—k—1
where 1<k <o/(6—1). Then u(t, x) vanishes identically.

Proof. From the assumption (A-VI) u(t, x) is flat at t=0. Hence u(t, x)
satisfies the following.
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Qu(t, x)=— Ru(t, x)
(6.13)
Diu(t, x)|,—=o=0 for any iz=0.

We may assume that for sufficiently large s there exist constants ¢ and R such
that
Arul| S cw(s, t, R) for any r=0.
By Lemma 6.4 we can get from the above estimate that
| Aru| € cBArnrt=81ay (s4+n(g—v)l, t, R).

Let n be infinity, then we conclude u(t, x)=0. Q.E.D.

Finally we shall demonstrate that 2" of Theorem 2 is realized by convergence
of (2.6) and 2° in Proposition 2.1. From Proposition 2.1 and (2.4), if supp
(u¥(x))= K and supp (f(t, x)) = C(K) for some compact set K < R", supp (u(t, X))
< C(K). Since R(t, x, D,, D,) is a differential operator, we get supp (Ruy(t, x))
= C(K). Therefore it follows from (2.4); and Proposition 2.1 that supp
(u,(t, x)) belongs to Cy(K). Repeating these steps we have supp (ut, x))

= C(K) for any j=0. From the convergence of (2.6) we conclude supp (u(, x))
< C(K). The proof of Theorem 2 is completed.

Appendix

Following Igari [4], we introduce a certain class of pseudo-differential
operators.

Definition. 1) For any me R' and k>1 we denote by S™(k) the set of
functions h(x, £)e C*(R" x R") satisfying the property that for any multi-
indices o, B, there exist constants ¢, and R such that

|02D5h(x, &)| S ¢, RIPI(IBIYCEI=1=l for (x, &)e R" x R".
2) For any h(x, &) e S™(x) we shall define semi-norms of h(x, &) such that for

any integer 120

|h(x, O)l,= max  sup |08DEh(x, E)IKETmHIl

Ja+B| =1 (x,E)eR"XR"

We define a pseudo-differential operator with a symbol h(x, £) e S™(x) by

H(x, D Ju=(2n)™ S eix-<h(x, E)AE)E .
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Hence we have a composition formula of pseudo-differential operators.

Lemma A-1. (See Igari (4)). Let h(x, £)e S™(x) and r=0. Then

N-1

ATH)='3, 3 1/yI0KE (%, &)+ ry(x, O

where N=r*+m and h,(x, §)=D}h(x, £). Then for any integer 120 there
exist constants ¢;, R>0 such that

(A.1) 1y (x, E)E>™ S e RIVIT™(ly] —m)!
(A.2) [rn(x, O ScRr!x.
The following lemma is well known.

Lemma A-2. For any h(x, £)eS° there exists constant ¢ and non-

negative integer | dependent only on dimension n such that
(A.3) [H(x, Dull <clh(x, O llul .

Lemma A-3. Under the assumptions of Lemma A-1 we denote h(x, &)
by
hi(x, &)= |le=' 110K & h(x, &).

Then there exist ¢, R>0 such that

I1#Gx, DJul seRG=m(7 )lamtul - for 1sisr
(A4 R
|G, DIl SR =)l Am=hull  for r*+1SiSN-1,
(A5)  IRyx, Dul SeRer¥ful

Proof. (A.5) is a direct consequence of (A.2) and Lemma A-2. For the
proof of (A.4) it is sufficient to show the following inequalities.

N *
i, XCEY™r 1,5 R =) ) for 1sise,
(A.6) [ i

lhi(x, &) (EY—m=r+i|, < ERi=m(i — m)!* for r*+1<i<N-1

for some constant ¢.
We can easily see that for any |a'| Z1

Ai(l?*)(o-la'l for 1<igr,

(A7) Z,1/Y!|52'{<5>_’+i62<5>'}|é[ _ ,
lv[=t A1 for r*+1<is<N-1,

where A is independent of » and i.
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Now we shall estimate the absolute value of
I, p=0%D%{h;(x, £)<Ey~m=r+i} for |a+pB|<!.
L=l 3 1y ) (<103
[y|=Te'sa o

=la

x 0F« DE{LEY ™R (x, O}
s 2 (%) 2,108 (<oyriacon
X |y (, E)KET™KEHT L
It follows from (A.1) and (A.7)
iniem( ¥\ e . .
BAtR! '”(. )(l—m)!"(£> Il i=1,2,..,r*%,
|Iaz,ﬂ[ é !
BAIRIm(i — m)I{¢H el i=rf+1,..,N-1
for some constant B. The proof is completed. Q.E.D.
Lemma A-4. Let ¢(t) and ¥(t)e C([0, T]). Assume that the following
integral inequality is satisfied.

SO SYN) +c S o=1g(t)de

where ¢ and | are positive constants. Then we obtain

(A.8) A1) Y1) +c S; T 1(7) exp {fl_(ﬂ -11)}d1.
Proof. Let &(1) be ¢(:)=g; Z-1¢(x)dx, then

_C;Ir_di(t)-—ct"ltp(t)§ (1)

Hence we can easily see (A.8). Q.E.D.

Lemma A-5. Let iy,..., i, (n=1,2,...) be elements of {1, 2,..., m—1}.
Then there exist constants A;, Ry such that

(A.9) phttin < 4 RY 1420 pin
Proof. Put S=nitt-+is/{iia...pin, Then

= (3 (8 xx(2)
(3 () 3=

Stirling’s formula yields
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nl~/2 n"*12e" as np—ooo.

Therefore there exist some constants A, R, such that S<A,R}.
Q.E.D.

Lemma A-6. Let i,...,i,e{l,2,....,m—1} for n=1,2,... and 0=q=1.

Then the following inequality holds.
(A.10) {q(i{+ -+ i)} S A,REpatirt+in)
for some constants A,, R,>0 which are independent of n.
Proof. There exists A,>0 so as x! < 4,x* for any x>0. Therefore

{q(il 4. +i”)} ! é/,{z{q(j’ R +l.,,)}“i+‘“+l'u)q
<A, {g(m—1)n}Gr+ting
égz{q(m-— 1)}("’_l”’qn("!*"'*‘in)q'

Let A,=A4,, R,={g(m—1)}(""14 then we have (A-10). Q.E.D.

Lemma A-7. Let iy,..., i, (n=1, 2,...) be elements of {1, 2,..., m—1} and
0<q=1. Then there exists A5, R;, R" which are independent of r =0 such that

(All) wr+(i1+---+i,,)(ss z, R)§A3R'3' n(i1+---+l'u)qxwr(s, Z, Rl) .
Proof. From the definition in §4,

Wt (irtorrinyg (85 £, R) = RIH 108 p 4 g(j 4o 44, )} 15
xtsexp (K{r+ @+ +i,)q}*t").

Let us note the following facts.

(A12) iy iGN S 2 (e
(A.13) (i 4+ +i)g<(m—1n
(A.14) {r+@,+-+i)g}*=r*+(m—1n

Then it follows from Lemma A—4 that
(A1S) (gl + - +i)} S ApRgnch=sina,
Therefore we obtain

wr+(i1+---+i,.)(ss t, R) -_<=A5{2(m—l ngR(m—l)eK(m—1):'}n
x plivt+inaky (g ¢ 2KR) .

Q.E.D.
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