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Abstract

In order to develop a statistical theory of quantum measurements including continuous
observables, a concept of a posteriori states is introduced, which generalizes the notion of
regular conditional probability distributions in classical probability theory. Its statistical
interpretation in measuring processes is discussed and its existence is proved. As an appli-
cation, we also give a complete proof of the Davies-Lewis conjecture that there are no (weakly)
repeatable instruments for non-discrete observables in the standard formulation of quantum
mechanics, using the notion of a posteriori states.

§ 1. Introduction

In the conventional theory of ideal measurements of discrete observables of

quantum systems, the state of an observed system at the instant after the measure-

ment leads a definite value is determined by the repeatability hypothesis and the

resulting state change is called the reduction of wave packets. However, the

repeatability hypothesis has been known to be doubtful, if we require that the

processes of measurements are described in quantum mechanics. In fact, Wigner

[20] pointed out that if there is an additive conservation law throughout the

measuring process then the measurement of the quantity which does not commute

with the conserved quantity cannot satisfy the repeatability hypothesis; see

Araki-Yanase [1], Ozawa [13] for general proofs of the above statement.

Moreover, we have shown in [13] that measurements of continuous observables

cannot statisfy the repeatability hypothesis if the measuring process can be

*) The results in Sections 3-4 were previously announced in part at IV USSR-Japan Sym-
posium on Probability Theory and Mathematical Statistics, Tbilisi, USSR, 1982.

* Communicated by H. Araki, October 12, 1983. Revised June 7, 1984.
Department of Information Sciences, Tokyo Institute of Technology, Oh-okayama,
Meguro-ku, Tokyo, Japan.
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described in quantum mechanics.

These results seem to show that if we shall investigate a quantum measure-

ment not as only an ideal matter but as a quantum mechanical intervention

consistent with the Hamiltonian formalism, we should abandon the repeatability

hypothesis, as proposed by Davies-Lewis [7]. Such an approach to quantum

measurements is much statistical in nature, and yet mathematical tools for those

investigations have not been provided enough so far.

The purpose of this paper is to provide a concept of conditional probability

naturally arising in measurements of continuous quantum observables. A

concept of conditional expectation in quantum measurements appeared first in

Nakamura-Umegaki [11], and formal theory of such conditional expectation has

been much developed by Umegaki [19] in the theory of operator algebras.

However, this concept of conditional expectation can be applied only to measure-

ments of discrete observables as shown by Arveson [2]. Thus we must begin

with the original statistical interpretation of quantum mechanical conditional

probability in quantum measuring processes. Our approach of determining

the a posteriori states from an a priori state is a variant of Bayes principle in

probability theory which first appeared in von Neumann [12; pp. 337-346]

in quantum mechanics.

In Section 2, we review the mathematical description of quantum mechanical

measuring processes obtained in our previous paper [13]. In Section 3, the

statistical interpretation of conditional probability in quantum measuring

processes is investigated and the concept of a posteriori states is established in

quamtum mechanics as well as their existence. In Section 4, the concept of a

posteriori states is considered in a more general framework of operational

quantum probability theory and some conditions for their existence are given.

In Section 5, the close relation between the existence of a posteriori states and

the non-existence of repeatable measurements for continuous observables is

established. In particular, we shall give a complete proof of the Davies-Lewis

conjecture [7; p. 247] that in the standard formulation of quantum mechanics

there are no (weakly) repeatable instruments for non-discrete observables.

In Davies [6; pp. 57-60], an attempt to resolve the conjecture is done by

somewhat indirect manner through the conventional concept of quantum

mechanical conditional expectation. But, the new concept of conditional

probability, as will be developed in this paper, seems indispensable for the com-

plete solution.
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Our concept of a posteriori states has close connection with Cycon and

Hellwig's conditional expectation [5] in operational quantum probability theory.

We shall clear this connection in the forthcoming paper. Applications of the

notion of a posteriori states to determining the amount of information obtained

from quantum measurements also will be discussed elsewhere.

§ 28 State Changes Caused by Measuring Processes

In [13], the following description of a measuring process of an observable

with continuous spectrum of a quantum system is considered. The observed

system / and the apparatus // are described by separable Hilbert spaces 3?l

and ^u respectively. Let X be an observable in I to be measured and let X be

the observable in II to show the value of X on a scale, i.e., the position of the

pointer of the measuring apparatus. Denote by X(dx) and X(dx) their spectral

measures respectively. The measurement is carried out by the interaction during

a finite time interval from time 0 to f. Let Hf and H u be the Hamiltonians of

the systems / and // respectively and let Hint be the interaction between / and

//. Then the time evolution of the composite system / + // from time 0 to f is

described by the unitary operator U on ^}
1®^>

U such that

(2.1) C/ = exp(-iX//r®l + l®tfj/ + tf/IIf)).

At the instant before the interaction the observed system / is supposed to be in

the (unknown) state p and the apparatus // to be in the (prepared) state cr, where

p and a are density operators on ^j and 3fn respectively. Then the composite

system I + 11 is in p®a at time 0 and in U(p®a)U* at time t by the interaction.

The result of this measurement can be predicted by the probability distribution

Prob (X e clx) of the value of observable X at time t such that

(2.2) Prob (X E 6/x) =

We may interprete this result to be the value of the measured observable X at

the initial state p. Thus we should impose the requirement

(2.3) Tr [C/(p®a)C/*(i®.?(flf.v))] = Tr [pX(dx)] .

Eq. (2.3) is our sole requirement for the above interaction to be a measurement of

X in the initial state p. We shall call any 4-tuple <^Jjr5 X, a, 17 > consisting of a

separable Hilbert space 3t?H, a self-adjoint operator X on jj?n, a density operator

cr on Jtfjj and a unitary operator 17 on Jj?j®3t?n satisfying Eq. (2.3) for any
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density operator p on ^ to be (a mathematical description of) a measuring

process of an observable X in the observed system / (cf. [13; Definition 3.1]).

By the above description of a measuring process, we can determine the state

change of the system / caused by this measurement. Let B be a Borel set of

the real line. Denote by pB the state, at the instant after this measurement, of

the subensemble of the measured system / in which the result of this measurement

lies in B. The state change of the system / caused by this measurement is the

transformation p-*pB for any density operator p in / and any Borel set B such

that Tr [pX(B)'] =£ 0. In particular, the usual state change p->p' of the whole

ensemble is determined by p' = pR\ we call the transformation p-*pR the total

state change of the system / caused by this measurement. In order to determine

the state pB, suppose that the observer were to measure the simultaneously

measurable observables Y in / and X in // at time £, where Y is an arbitrary

observable in / (cf. [12; p. 440]). Then we have the joint probability distribution

of the values of Y and X :

(2.4) Prob (7e dy, X E B) = Tr [,V(p®<r)U*(Y(dy)®g(B)y] ,

and the conditional probability distribution of the value of 7 conditioned by the

probabilistic event X e B.

(2.5) Prob ( YE dy\Xe B) = (l/Tr [pX(B)]) Tr

for B such that Prob (X E B) ̂  0. Eq. (2.5) is calculated by the following formula

in the usual probability theory :

(2.6) Prob (7e dy\X E 5) = Prob (7e dy, X E 5)/Prob (X E B) .

On the other hand, we should adopt the following statistical interpretation of

the state pB :

(2.7) Prob ( 7e dy\X E B) = Tr [pB 7(rfy)] ,

since the right hand side can be interpreted as the probability distribution of the

observable 7 at the state pB and since the condition X E B implies the considered

ensemble is in the state pB. By the arbitrariness of 7, we can determine the

state pB uniquely by Eq. (2.5) and Eq. (2.7) as follows:

(2.8) pB = (l/Tr [pX(B)]) Tr" [l7(p®<r)i7*(l®*(B))] ,

where Tr7/ is the partial trace over jetl (cf. [13 ; Lemma 2.1, Eq. (3.9)]). There-

fore, we have determined the state change p-»pB by Eq. (2.8). The total state
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change p-+p' = pR is obtained by putting B = R as follows:

(2.9) p/ = pJ, = Tr"[C/(p®(T)t/*].

Now we shall consider the problem of the mathematical characterization of

all possible state changes p-+pB caused by some measuring processes of the ob-

servable X. We define a map J on the Borel <7-field &(R) of the real line with

values in the transformations on the space ^(jff) of all trace class operators

on 3?l by the relation

(2.10) ^(B)p = Tr" [l/(p®<j)l/*(l®£(B))] ,

for all B in &&(R) and p in ^(jfj). Then .f has the following properties:

(2.11) For each B in &(K)9 <#(B) is a completely positive linear map on

(2.12) For each countable family {BJ of disjoint Borel sets in

where the sum is convergent in the strong operator topology on the space

of all bounded linear transformations on

(2.13) For each p in Jf ( Jf7), Tr [./( tf )p] - Tr [p] .

(2.14) For each B in ^(fl), ^(B)*l = X(B)9 where ./(B)* :

is the dual map of S(B): ^Jpf)-*^^).

We shall call any map J\ ^(E}-^^(^(^e^) with the above properties (2.11)-

(2.13) a CP-instrument (cf. Davies-Lewis [7] and Davies [6]). A CP-

instrument J is called X-compatible if it further enjoys the property (2.14)

(cf. [13; Sect. 4]). We used in [13], the notations p./(B) and y(B)a, for p

in ^"(Jfr) and a in JSf(jf/), instead of j^(B)p and ^(B)*a respectively in this
paper.

The first answer to the characterization problem is the following.

Theorem 2.1. Let X be an observable in I. The relation

(2.15) P* = d/Tr [p*(B)]»(B)p,

/or a// density operators p in jff and B in &(R) such that Tr \_pX(B)~] ^ 0?

s^fs w/? a one-to-one correspondence between all possible state changes p-»p#

caused by some measuring processes of the observable X in I and all X-com-

patible CP-instruments J .
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Proof. Let p-»pB be the state change caused by a measuring process

<jf//, X, <T, 17 > of X. Then Eq. (2.10) determines an X-compatible CP-

instrument S satisfying Eq. (2.15). Conversely, let </ be any X-compatible

CP-instrument. Then by [13; Theorem 5.1, Corollary 5.2], we can construct

a measuring process <^//, X, cr, C7> of X satisfying Eq. (2.10) and Eq. (2.15).

Q.E.D.

A completely positive linear map r:Jr(jfi)->5r(jf/) is called an operation
if it is trace preserving, i.e.,

(2.16) Tr[Tp] = Tr[p],

for any p in 3T(^. Denote by T* the dual map 7*: ^(^-^(jf,) of
T; then T* is a unit preserving normal completely positive linear map on

An operation Tis called X-compatible if the range of T* is contained in {X(B)\

Be&(R)}', or equivalently T[e~itXpeitX'] = T[p'] for all r in R. The second

answer to the characterization problem is simpler than the first as follows.

Theorem 2.2. Let X be an observable in I. The relation

(2.17) pB=

for all density operators p on ^ and all B in &(R) such that Tr

sets up a one-to-one correspondence between all possible state changes p-+pB

caused by some measuring processes of an observable X and all X-compatible

operations T.

Proof. The assertion follows from [13; Proposition 4.4, Theorem 2.1];

see also [13; Theorem 5.5]. (In [13], the notation Ta for all a in J^(^f7) is used

instead of T*a in this paper.) Q. E. D.

As a corollary we can simplify Eq. (2.8) which determines pB.

Corollary 2.3. For any measuring process <«#//, X, a, £/> of an

observable X in /, we have

(2.18) PB = d/Tr [pX(B)]) Tr" [l7(pX(B)®(7)C7*] ,

for any density operator p in Jf7/ and B in &(R) such that Tr [pX(BJ] ^0.

Proof. Let T be an X -compatible operation satisfying Eq. (2.17). Then

putting B = R, we have by Eq. (2.9)
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for all density operator p and hence we have

T[pX(B)] =Tr" [y(pX(B)®a)V*],

whence Eq. (2.18) follows from Eq. (2.17). Q.E.D.

§ 3. A Posteriori States in Quantum Measuring Processes

In the preceding section, we have determined the state change p-»p# caused

by a measuring process of an observable X. In the conventional theory of quan-

tum measurements for discrete observables, the state change p-»pB can be

described by the state change p->px indexed by the result x of the measurement,

as follows. Let X=J^ixi\^i> <£;| be an observable with simple discrete

spectrum xl5 x 2 , - - - . Then the conventional ideal measurement leads the state

change p->px. such that p*, — | c / > < C / I f°r all '• ^n this case, the state change
of the form p-*pB is obtained by

(3.1) pB = (1/Prob (X e B))£X|6lJ Prob (X = x,)pXi,

since pXl = p(Xl\ (cf. [13; §9]). In this section, we shall consider the continuous

analogue of this type of state changes p-+px. Since we allow the observable

with continuous spectrum, we cannot hope that Eq. (3.1) is retained; because it

may occur that Prob(X = x) = 0 for all x in R. Moreover, we can neither hope

that px is uniquely determined. But as shown in the following, the problem has

much similar analogy in the usual probability theory of continuous random

variables. We shall refer to [4; Chapter 4] for the background ideas in pro-

bability theory.

Our problem is to determine a family {px; x e R] of density operators unique

up to almost everywhere with respect to the probability distribution of results of

a measurement. Of course, the families {px\ xe R} and {ps; jBe^(^)} must

have plausible connection under statistical interpretation of quantum mechanics.

Consider the whole ensemble S at the instant after the measurement of an ob-

servable X. Let • • • , [*_!, x0), [x0, xt), [xl5 x2), ••• be a partition of R. Then

we can divide the ensemble S into the sequence • • • , S[X_ l f JCO)» S[jc0jXl), S[JC1>X2), •••

of subensembles, where 5[JCn>JCri+1) is the subensemble of S in which the results

of the measurement lie in [x,n x,I + 1). If the error of this measurement is less

than s then we can take x,/s so that xn+1 — xn<s. Since we can suppose to get

the value of the pointer position X in an arbitrary small error e, we can divide the

ensemble S into 5[Xn>X|i+l)'s with xn+l—xn<e for arbitrary small e. Thus we can
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expect to make a limit process

{%-.xB + 1 ) :" = 0> ±1' ±2>-> - >{Sx',xeR},

as e-»0. In this limit process, Sx will be a limit of the sequence of the sub-

ensembles SLXniVn} with xn-+x, yn-+x and xe[x,T, yn). In symbols, we can write

(3.2) Sx = lim% )X+£),
£10

and in this case Sx will be the subensemble of S in which the result of the measure-

ment is x, i.e., X = x. Now we can regard px as the state of the ensemble Sx at

the instant after the measurement. Then by Eq. (3.2), we have in symbols

(3.3) Tr lpxY(A)l = lim Tr [><„„ £) Y(A)] ,
eiO

for an arbitrary observable Y in / and A in &(R). By Eq. (2.6) and Eq. (2.7)

we have

(3.4) lim
eiO

= lim Prob (Ye A, J?e[x, x + e))/Prob (X e [x, x + e)).
r i O

Then the right hand side of Eq. (3.4) is the intuitive definition of the conditional

probability Prob(YeA\X = x) (cf. [4; p. 68, Eq. (4.4)]), i.e.,

(3.5) Prob(7e/4|l = x)

= lim Prob ( Y e A, X e [x, x + e))/Prob (X e [x, x + e)) .
E l O

Thus combining Eqs. (3.3)-(3.5) we obtain the following statistical interpretation

of the state px :

(3.6) Prob (7e >1| J? = x) = Tr [pxY(A}] ,

for any observable Yin / and A in @(R). Unfortunately, the limits in Eqs. (3.3)-

(3.5) does not exist in general, and hence these equations have only intuitive

meanings. In probability theory the precise definition of the conditional

probability Prob(7ey4|X = x) is a Borel function x-*Prob(YeA\X = x) such

that

(3.7)

for any Borel set B in R. Eq. (3.7) determines a function x-»Prob (Ye A\X = x)

unique up to almost everywhere with respect to Prob(Xedx). Thus we can

determine only a function x->px unique up to almost everywhere with respect to
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Prob (X e rfx).

Our precise definition of the required family {pA; x e R} is as follows:

(Al) For any x in R, px is a density operator on ^fj.

(A2) The function x-»p.x is strongly Borel measurable.

(A3) For any observable Y in / and any Borel sets /I and B.

Tr [px FC4)] Prob (X € dx) = Prob (YeA9XeB).
r

We call any family {px.; xe R] of density operators on jfj satisfying Conditions

(Al)~(A3) a family of a posteriori stales for an a priori state p with respect to a

measuring process < ̂ u, X, a, 17 > of an observable X in /.

Let «/ be the CP-instrument corresponding to the measuring process

<•#//, X, v, Uy. Then Condition (A3) is equivalent to

(A3') For any observable 7 in / and any Borel sets A and B,

( Tr [px7G4)] Tr [^(dx)p] = Tr [(«/(B)p)y(v4)] .
JB

Thus the family of a posteriori states is completely determined by the CP-

instrument corresponding to the measuring process.

ff there is a family of a posteriori states then by Eq. (3.6), the conditional

expectation Ex(Y\X = x) of Y with respect to X is obtained by the following

relations :

(3.8) Ex(Y|J? = x) = yProb(Yzdy\X =
)R

R
= Tr[p.vY],

(cf. [4; p. 79, Proposition 4.35]).

Now we shall prove the existence of a family of a posteriori states for any

measuring process.

Theorem 3.1. For any observable X in /, any measuring process <^//,

X9 a, Uy of X and any density operator p on J>fh there is a family {px;

xe R} of a posteriori states for the a priori state p.

Proof. Let /* be a probability measure on R such that ju(dx) = Tr [pX(dx)].

By Eq. (2.3), /*(£) = 0 if and only if Tr[C7(p®rj)l7*(l®J?(B))] = 0 for all B in

Thus by the spectral multiplicity theory, there is a projection E in
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X( <%(R))" such that EX(@(R))" ~L°°(J?, ju), and that Tr \U(p®a)U*(l®E^'] = 0.

Thus we can extend the map a®f-+a®EX(f) for a in ^(^^ and /in L°°(J?, ^)

to a normal * -representation of jgf(jfV)®L00(«, i/), where £Jf(/)=( /(*>
JK

EX(dx). It follows that the relation

for all a in ^f(«^j) and/in L°°(J?5 ji), defines a normal state on

Then by [16; Theorem IV.7.17], there is a family {px; x e R} in L1^, ji,

such that

= Tr

for all a in -S î) and B in ^(J?). Since p"(a®%B) = Tr [C7(p® a)C/*(a

= Tr [^(5)p] for all B in &(R\ the assertion follows immediately. Q. E. D.

In the next section, we shall consider the concept of a posteriori states in

operational quantum probability theory and generalise the above theorem to

not necessarily completely positive instruments. This generalisation enables

us to resolve the Davies-Lewis conjecture completely.

§ 4. A Posterior! States in Quantum Probability Theory

In this section we shall study the concept of a posteriori states within the

framework of operational quantum probability theory due to Davies-Lewis [7].

Our setting for operational quantum probability theory consists of a von

Neumann algebra Jit and a Borel space (A, &(A)). Denote by ̂  the predual

of ^, and by ̂ +(^) the space of all positive linear transformations on ^.

Denote by < • , • > the duality pairing between Jit* (or ^*) and Jt. A map

J\ ^(A)~^^+(^^) is called an instrument for (^, A), if it satisfies the following

conditions (I1)-(I2):

(11) For each p in uf*, (S(A)p, !> = <p, 1>.

(12) For each disjoint sequence {J5J in £&(A),

where the sum is convergent in the strong operator topology of j^+(u^#).

An instrument J is called a CP-instrument if it further enjoys the following

condition (13) :
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(13) For each B in ^(A), S(B) is completely positive.

Let <# be an instrument. Now we fix a normal state p on Jt . Then we can

associate a probability distribution \i on (A, &(A)) such that

We call this /( the probability distribution associated with (./, p).

Definition 4.1. A family {p,,; x e /I} of normal states on Jt is called a family

of a posteriori states with respect to («/", p) if it has the following properties

(F1HF2):

(Fl) For any a in Jt* the function x-><px, a> is //-measurable.

(F2) For any a in ^ and B in ^(/l),

( <p.x, ayi*(dx) = <S(B)p, ay.
)B

Moreover, it is called proper if it satisfies the following:

(F3) For any a in ^ with a >0? if (S(A)p, a> = 0 then <p.x, 0> = 0 for all

x in A.

A family {px; xe/l} of a posteriori states is called &(A)-measurable if the

function x-»px is ^(/Immeasurable in the sense that there is a sequence Fn of

^(yl)-measurable ^-valued simple functions such that limn ||px — Fn(x)||=0

for every x in /I.

Let {px; xe/1} and {p'x\ xeA} be two families of a posteriori states with

respect to («/, p). By Condition (F2), they are equivalent in the sense that

<px, fl> = <pi, 0>, /j-a.e. for all a in Jt . If they are both ^(/Immeasurable then

Px
 = Px A*~a-e-> since their ranges are separable.

Denote by M°°(/i) the space of all bounded complex- valued /^-measurable

functions on A. A lifting $ of M00^) is a *-isomorphism from M°°(//) into

M00^) such that 0"1(0) = {/eMGO(A£); /=0 ^-a.e.} and that #(/)=/ ^-a.e.

for all/eM00^). For the existence of the lifting, we shall refer to [18]. For

Banach spaces A and B with A* = B or A = B*, denote by M°%u, A, [B]) the

vector space of all functions/: A-^A having the following properties:

i) f(A)^A is relatively a(A, jB)-compact;

ii) </( - ), (?) E M°°Gu) for every <p in B.

For the case A = B*y Condition i) follows from Condition ii). If A is separable,
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every function in M°°(/z, A, [£]) is strongly measurable. We shall also denote

by # the linear lifting of M°%u, A, [£]) associated with the lifting 0 of M^O)

(cf. [18; pp. 75-76]).

Let p be a normal state on Jt and J be an instrument for (^, A). For

any a in ^, and B in ^(yl), we have |<e/(J3)p, a>| < ||a||ju(B). Thus the function

jB-»<«/(J5)p, 0> is a finite signed measure on (A, 38(A)) absolutely continuous

with respect to \i. Let/eL1^, u). Since the ^-valued measure J(dx)p is

countably additive in norm, the relation

> = f(x)<S(dx)p,a>
JA

defines a positive linear operator £: L^/l, u)-*^%. We have that

for all / > 0 in Ll(A, u), i.e., **(!) = 1 .

In the following, we shall give some conditions for the existence of a family

of a posteriori states.

Theorem 4.2. Lei <? be an instrument for (^f, A) and p a normal state on

*J{ . If , for any decreasing sequence {pn} of projections in ^ with inf,,|?n = 0,

we have

limn
JA

uniformly for all f in L\A, JLI) with ||/||<1, then there is a &(A)-measurable

proper family {px\ xeA} of a posteriori states with respect to (./, p).

Proof. By assumption and [16; Theorem III.5.4], & is a weakly compact

operator. Thus by the Dunford-Pettis-Phillips theorem [18; p. 89, Corollary 2],

we have a family {px
m, xeA} in M00^, ^, [-^]) such that $(px(a)) = px(a)

and that

for all a in Jt. Then it is straightforward to check that {px; xeA} is a proper

family of a posteriori states. By [18; Theorem 3, p. 92], it is strongly meas-

urable and hence by redefining px as px = S(A)p on a ^-null set, we have a

^(yl)-measurable family of a posteriori states. Q. E. D.

Theorem 4.3. Let Jt be the enveloping von Neumann algebra of some
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C*-algebra <stf . If the sequential weak closure a(jtf) of $# in ̂  coincides with

cx*f, then for any instrument ^ for (^, A) and any normal state p on ̂  there

is a proper family {px\ xeA} of a posteriori states with respect to (</, p).

Proof. Since <f e &(L\A, \i), j*r*), by the Dunford-Pettis theorem

[18, p. 89, Corollary 1], we have a family {px; xeA} in M°%u, .*/*,

such that $(px(a)) = px(a) and that

(4.1) <*(/),*> = f(x)p£a)v(dx)
JA

for all 0 in J3f. By the relation <P(px(a)) = px(a), and by the relation

PJC is a normal positive linear functional on Jt for all x in A. By the bounded

convergence theorem, the set of all a in JK for which Eq. (4.1) holds contains the

weak sequential closure of $0 , and hence we have

/l

Thus there is a //-null set TV such that px(l)=l on A — N. Redefine px for x in

N as /?JC = j?r(yl)p. Then it is obvious that {px; xeA] is a required family of a

posteriori states. Q. E. D.

Remark. The assumption CT(«^) = J^** is statisfied if

(1) «*/ * is separable, or

(2) j& is separable and the center of ,c/** is countably decomposable

(cf. [21]).

If J3f* is separable then the family {px\ xe A] is strongly measurable and hence

we can obtain a ^(yl)-measurable proper family of a posteriori states. The

case ^ = eSf(^f) for separable 3ft* is included in this case, so that we have

reproved Theorem 3.1.

Theorem 4.4. Lei *fl be the enveloping von Neumann algebra of some

C*-algebra s#. If $# is an ideal of *// , then there is a proper family {px\ xeA}

of a posteriori states with respect to (./", p).

Proof. Since <f e <e(Ll(A, ^), uf *), by the Dunford-Pettis theorem

[18; p. 89, Corollary 1], we have a family {px;xeA} in M°°(

such that ®(px(a)) = px(a) and thai

J/i

for all a in *#. Let ^i be the singular part of ^*, Since $0 is an ideal of



292 MASANAO OZAWA

^, we have uf i = ja^° in ^*, where jaf° is the polar of $# (cL [16; Proposition

III.2.17]). Let {wj be an increasing approximate identity in jaf . Then we have

wa) = supa p;(Mj = supa px(u9) ,

where p" stands for the normal part of px and the last equality follows from

: = j3f°. Since $(px(ux)) = px(ua), the function x->supapx(wa) is /(-measurable

and

JA a "JA

by [18; p. 40, Theorem 3]. Thus we have

||pSll/l(dx)=( ;
A JA

= supa<

It follows that p" = px //-a.e., so that there is a //-null set N such that px is a

normal state for all x in A — N. By redefining px as px = J(A)p on JV, the con-

clusion follows immediately. Q. E. D.

Remark. The condition that ^ is an ideal in ja/** is equivalent to that $/

is isomorphic to C(oo)-direct sum of a family of the C*-algebras of compact

operators on Hilbert spaces (cf. [16; p. 157]). Thus the case ^' = £?(#?} is

included for any Hilbert space 3?.

Theorem 4.5. Let Jt' = &(&) for some Hilbert space jf, and J be a CP-

instrument for (^, A). Then for any normal state p on J{, there is a &(A)~

measurable family {pv; xeA] of a posteriori states with respect to (J~, p}.

Proof. By [13; Theorem 5.1] the proof of Theorem 3.1 works. Q. E. D.

In spite of the existence for the case t//f = j^f(jf?), the following example

suggests that some classes of instruments do not have its family of a posteriori

states. Let P be the Lebesgue measure on [0, 1], and let ̂  be an instrument for

<L°°([05 1], P), [0, 1]> such that j^(B)/= &,/for all Borel set B in [0, 1] and

/ in LK[0, 1], P). Then /i = P for p = l in ^([Q, 1]). If foeLKCO, 1], P);

x e [0, 1]} is a family of a posteriori states, then by Condition (F2) we have for

all g in C([0, 1])

' g ( x ) a.e.
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Since C([0, 1]) is separable, we can choose a common null set outside of which

the above equality holds for all g in C([0, 1]). However, this contradicts the

fact that px e ^([O, 1]). Thus the above instrument do not have a family of a

posteriori states with respect to p = I.

The above consideration will be generalized in the next section, and we prove

that non-discrete weakly repeatable instruments have no families of a posteriori

states.

§ 5. Repeatability

In [7], Davies and Lewis conjectured the non-existence of repeatable

instruments for continuous observables in the standard formulation of quantum

mechanics. We have proved this conjecture among CP-instruments in [13].

In this section, we shall show the close connection between the existence of a

family of a posteriori states and the non-existence of non-discrete weakly re-

peatable instruments and as a consequence we shall resolve Davies and Lewis's

conjecture completely.

Let Jt be a von Neumann algebra and (A, &(A)) be a standard Borel space.

An instrument J for (Jt, A) is called discrete if there is a countable subset A0

such that «/(/! — /10)* = 0. An instrument «/ is called weakly repeatable if

S(B)*S(C)*1=S(B D C)*l for all B, C in

Theorem 5.1. Let Jt be a von Neumann algebra and (A, 38(A)) be a

standard Borel space. Let J> be a weakly repeatable instrument for (^f, A).

Ifj for a faithful normal state p on e^f, there is a family {px; xeA} of a pos-

teriori states with respect to (</", p), then <? is discrete.

Proof. Let p be a faithful normal state on „# and {pv; x e A] a family of a

posteriori states with respect to (./", p), where J is weakly repeatable. Let

X(dx) = Jf(dx)*l and n(dx) = (p, X(dx)y and let {Bn\ n = l, 2 , - - -} be a countable

subfield of 38(A) which generates 38(A). Denote by dx the point mass of x in A.

By the weak repeatability of J^, we have for all B in 38(A) and all n,

JB

It follows that for any n, there is a /z-null set Nn such that <p^, X(Bn)y =
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for any x in A — Nn. Let A0 = A-\J™==1 Nn. Then ^(A-A0) = Q, since p

is faithful. Let xeA0. Since px is a normal state, B-*(px, X(B)y is a pro-

bability measure and hence we have <px, X(B)y = dx(B) for all B in ^(/l). It

follows that <px, X({x})> = ! so that X({x})^0 for all x in A0. Since p is

faithful, we have <p, Z({x})>^0 for all x in yl0. Thus A0 is a countable set.
Q.E.D.

Remark. In the above proof we have only to assume the faithfulness of p

on {S*(B)l;Bea(A)}.

Theorem 5.2. Let 3? be a separable Hilbert space and (A, &(A)) a

standard Borel space. Every weakly repeatable instrument J for (^(^)9 A)

is discrete.

Proof. Since 3F is separable, there is a faithful normal state p on ^(^).

By Theorem 4.3, there is a family {px; xeA} of a posteriori states with respect

to («/, p). Thus by Theorem 5.1, any weakly repeatable instrument J is discrete.

Q.E.D.
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