Examples of Absolutely Continuous Schrödinger Operators in Magnetic Fields

By

Akira Iwatsuka*

§1. Introduction

In this paper we shall consider the two-dimensional Schrödinger operator H which is the self-adjoint realization in $\mathcal{H} = L^2(\mathbb{R}^2)$ of the differential operator

(1)
$$L = \left(\frac{1}{i}\frac{\partial}{\partial x} - a\right)^2 + \left(\frac{1}{i}\frac{\partial}{\partial y} - b\right)^2$$

where a and b are the operators of multiplication by real-valued C^{∞} functions a(x, y) and b(x, y), respectively. The spectral property of H depends not directly on the vector potential (a, b) but on the magnetic field

(2)
$$B(x, y) = \frac{\partial b}{\partial x}(x, y) - \frac{\partial a}{\partial y}(x, y),$$

i.e., all H with (a, b) satisfying (2) with common B are unitarily equivalent to each other (gauge invariance: see, e.g., Leinfelder [5]).

Extensive studies have been made in the case where B is asymptotically constant, that is,

$$B(x, y) \longrightarrow B_0$$
 as $\sqrt{x^2 + y^2} \longrightarrow \infty$,

where B_0 is some constant. In the case where $B_0=0$, the essential spectrum $\sigma_{ess}(H) \equiv \{\lambda \in \mathbb{R} | \dim \operatorname{Ran}(E((\lambda - \varepsilon, \lambda + \varepsilon))) = \infty \text{ for all } \varepsilon > 0\} \text{ of } H \text{ is } [0, \infty)$ (see [5]), where E denotes the spectral measure associated with H. Moreover, if B is short-range (i.e., $B = O(\sqrt{x^2 + y^2}^{-1-\delta})$ for some $\delta > 0$), H is absolutely continuous, i.e., the subspace of absolute continuity $\mathscr{H}_{ac} \equiv \{u \in \mathscr{H} | \|E((-\infty, \lambda])u\|^2$ is absolutely continuous} for H fills up the whole space \mathscr{H} (see Ikebe and Saito [2]). In the long-range case, there is an example of H with pure point

Communicated by S. Matsuura, February 15, 1984.

^{*} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

spectrum in the sense that \mathscr{H} is spanned by the eigenvectors of H (see Miller and Simon [7]). On the other hand, in the case where $B_0 \neq 0$, the operator H shows a completely different spectral behavior. Namely, we have shown in [3] that

$$\sigma_{ess}(H) = \{(2k+1) | B_0 | | k \text{ is an integer } \geq 0\},\$$

which implies that H has pure point spectrum (see also Avron, Herbst and Simon [1]). However, as far as we know, the case where B is not asymptotically constant has not been studied very well. We shall consider the case where B satisfies the following property:

(B) B(x, y) depends only on x (i.e., B(x, y) = B(x)), B(x) is a C^{∞} function such that there exist constants M_{\pm} satisfying $0 < M_{-} \leq B(x) \leq M_{+} < \infty$ for all x.

Let \dot{H} be the operator in $\mathscr{H} = L^2(\mathbb{R}^2)$ defined on the space $C_0^{\infty}(\mathbb{R}^2)$ of all C^{∞} functions with compact support by

$$\dot{H}u = Lu$$
 for $u \in C_0^{\infty}(\mathbb{R}^2)$.

Let *H* be the closure of \dot{H} . Then \dot{H} is essentially self-adjoint (see Leinfelder and Simader [6]) and hence *H* is the unique self-adjoint extention of \dot{H} . Therefore, the adjoint operator \dot{H}^* of \dot{H} equals to *H* and, by examining \dot{H}^* , one can obtain

(3)
$$\begin{cases} D(H) = \{ f \in \mathcal{H} | Lf \in \mathcal{H} \}, \\ Hf = Lf \quad \text{for} \quad f \in D(H), \end{cases}$$

where and in the sequel differentiation is understood in the distribution sense. The aim of the present paper is to show that H is absolutely continuous if either of the following (B1) or (B2) holds:

- (B1) In addition to (B), $\limsup_{x \to -\infty} B(x) < \liminf_{x \to +\infty} B(x)$ or $\limsup_{x \to +\infty} B(x) < \lim_{x \to +\infty} \inf B(x)$.
- (B2) In addition to (B), $B(x) = B_0$ for some constant B_0 if |x| is sufficiently large, and there exists a point \bar{x} such that $B'(x) \le 0$ for $x \le \bar{x}$ and $B'(x) \ge 0$ for $x \ge \bar{x}$ (or $B'(x) \ge 0$ for $x \le \bar{x}$ and $B'(x) \le 0$ for $x \ge \bar{x}$) and B'(x) is not identically 0.

Theorem. Suppose that either (B1) or (B2) holds. Then H is absolutely continuous.

§2. Reduction to One-Dimensional Hamiltonians

Under the assumption (B), we can take the vector potential (a, b) of the form

(4)
$$a=0, b=b(x)=\int_0^x B(t)dt$$

in view of (2). Therefore, since we shall assume (B) throughout the paper, we shall henceforth consider the differential operator

(5)
$$L = -\frac{\partial^2}{\partial x^2} + \left(\frac{1}{i}\frac{\partial}{\partial y} - b(x)\right)^2.$$

Let H_1 be the operator in \mathscr{H} defined on the Schwartz space $\mathscr{S}(\mathbb{R}^2)$ of rapidly decreasing C^{∞} functions by

$$H_1 u = L u$$
 for $u \in \mathscr{S}(\mathbb{R}^2)$

(note that $Lu \in \mathscr{H}$ for $u \in \mathscr{S}(\mathbb{R}^2)$ by the estimate $|b(x)| \leq M_+|x|$ obtainable from (4) and (B)). Then $\dot{H} \subset H_1$ and $H_1 \subset H$ by (3). Thus H_1 is essentially self-adjoint since \dot{H} is so. Let \tilde{L} be the differential operator

(6)
$$(\tilde{L}f)(x,\,\tilde{\zeta}) = \left\{-\frac{\partial^2}{\partial x^2} + (b(x) - \tilde{\zeta})^2\right\} f(x,\,\tilde{\zeta}).$$

Then it is clear that $\tilde{L}\mathscr{F}u = \mathscr{F}Lu$ for $u \in \mathscr{S}(\mathbb{R}^2)$ where \mathscr{F} is the partial Fourier transformation

$$\mathscr{F}u(x,\,\zeta) = (2\pi)^{-1/2} \int e^{-iy\zeta} u(x,\,y) dy \,.$$

Let \tilde{H}_1 be the operator in $\tilde{\mathscr{H}} = L^2(\mathbb{R}_x \times \mathbb{R}_z)$ defined by $\tilde{H}_1 f = \tilde{L}f$ for $f \in D(\tilde{H}_1) \equiv \mathscr{S}(\mathbb{R}_x \times \mathbb{R}_z)$, and let \tilde{H} be the closure of \tilde{H}_1 . Then $\tilde{H}_1 = \mathscr{F}H_1\mathscr{F}^{-1}$ and hence, since \mathscr{F} is unitary and H_1 is essentially self-adjoint, \tilde{H}_1 is essentially self-adjoint. Therefore, \tilde{H} is self-adjoint and $\tilde{H} = \mathscr{F}H\mathscr{F}^{-1}$. Thus we have

Lemma 2.1. Assume that (B) holds. Let \tilde{H} be the self-adjoint operator defined above. Then H is unitarily equivalent to \tilde{H} .

Lemma 2.2. $C_0^{\infty}(\mathbf{R}_x \times \mathbf{R}_{\xi})$ is a core for \tilde{H} and

(7)
$$\begin{cases} D(\widetilde{H}) = \{ f \in \widetilde{\mathscr{H}} | \widetilde{L}f \in \widetilde{\mathscr{H}} \} \\ \widetilde{H}f = \widetilde{L}f \quad for \quad f \in D(\widetilde{H}) . \end{cases}$$

Proof. Let $\zeta \in C_0^{\infty}(\mathbb{R}_x \times \mathbb{R}_{\xi})$ such that $\zeta(x, \xi) = 1$ for $\sqrt{x^2 + \xi^2} \leq 1$ and $0 \leq \zeta \leq 1$. Then it is not difficult to verify that, for $f \in \mathscr{S}(\mathbb{R}_x \times \mathbb{R}_{\xi})$, $\zeta_n f \to f$, $\tilde{L}(\zeta_n f) \to \tilde{L}f$ strongly in \mathscr{H} as $n \to \infty$, where ζ_n is the operator of multiplication by $\zeta(x/n, \xi/n)$ for $n = 1, 2, \ldots$. Hence, since $\mathscr{S}(\mathbb{R}_x \times \mathbb{R}_{\xi})$ is a core for \widetilde{H} , $C_0^{\infty}(\mathbb{R}_x \times \mathbb{R}_{\xi})$ is a core for \widetilde{H} . Moreover, it follows that \widetilde{H} coincides with the adjoint operator of $\widetilde{H}|_{C_0^{\infty}(\mathbb{R}_x \times \mathbb{R}_{\xi})}(|$ denotes the restriction), from which (7) follows.

 \tilde{L} can be written as

(8)
$$\widetilde{L}f(x,\,\xi) = (\widetilde{L}(\xi)f(\,\cdot\,,\,\xi))(x),$$

where $\tilde{L}(\xi)$ is a second-order ordinary differential operator

(9)
$$\tilde{L}(\xi) = -\frac{d^2}{dx^2} + (b(x) - \xi)^2.$$

Let $\tilde{\tilde{H}}(\xi)$ be the operator in $L^2(\mathbb{R}_x)$ defined by $\tilde{\tilde{H}}(\xi)\phi = \tilde{L}(\xi)\phi$ for $\phi \in D(\tilde{\tilde{H}}(\xi))$ $\equiv C_0^{\infty}(\mathbb{R}_x)$, and let $\tilde{H}(\xi)$ be the closure of $\tilde{\tilde{H}}(\xi)$. Then, since $\tilde{L}(\xi)$ is in the limit point case at $\pm \infty$ (see, e.g., [8], Appendix to X.1), $\tilde{\tilde{H}}(\xi)$ is essentially self-adjoint and hence $\tilde{H}(\xi)$ is self-adjoint.

Lemma 2.3. Assume that (B) holds. Let ξ be a real number and let $\tilde{H}(\xi)$ be the self-adjoint operator defined above. Then there exists a complete orthonormal system $\{\psi_n(x, \xi)\}_{n=1,2,...}$ in $L^2(\mathbf{R}_x)$ of eigenfunctions for $\tilde{H}(\xi)$:

(10)
$$\begin{cases} \tilde{H}(\xi)\psi_n(x,\,\xi) = \lambda_n(\xi)\psi_n(x,\,\xi) \\ 0 < \lambda_1(\xi) < \lambda_2(\xi) < \lambda_3(\xi) < \dots \to \infty \end{cases}$$

so that, for n = 1, 2, ...,

- (i) each $\lambda_n(\xi)$ is non-degenerate,
- (ii) $(2n-1)M_{-} \leq \lambda_{n}(\xi) \leq (2n-1)M_{+},$
- (iii) $\lambda_n(\xi)$ depends analytically on ξ ,
- (iv) $\psi_n(\cdot, \xi) \in D(\tilde{H}(0))$ and depends analytically on ξ with respect to the graph norm $|||u||| \equiv (||u||^2 + ||\tilde{H}(0)u||^2)^{1/2}$,
- (v) $\psi_n(x, \xi)$ is a real-valued continuous function of x and ξ , and, moreover, $\psi_n(x, \xi)$ is infinitely differentiable in x for each ξ and is analytic in ξ for each x.

Proof. First part ((i) and (ii)): Since $db(x)/dx = B(x) \ge M_- > 0$ by (B) and (4), b(x) is a strictly increasing function of x such that $\lim_{x\to\pm\infty} b(x) = \pm \infty$. Thus the equation $b(x) = \xi$ has a unique solution for each ξ , which we shall denote by x_{ξ} (i.e., $x_{\xi} \equiv b^{-1}(\xi)$). Then we have

(11)
$$b(x) - \xi = \int_{x_{\xi}}^{x} B(t) dt.$$

Hence we have from the assumption (B)

$$\begin{split} &M_{-}(x-x_{\xi}) \leq b(x) - \xi \leq M_{+}(x-x_{\xi}) \quad \text{for} \quad x \geq x_{\xi}, \\ &M_{-}(x-x_{\xi}) \geq b(x) - \xi \geq M_{+}(x-x_{\xi}) \quad \text{for} \quad x \leq x_{\xi}, \end{split}$$

from which we obtain the following inequality for all x:

(12)
$$M_{-}^{2}(x-x_{\xi})^{2} \leq (b(x)-\xi)^{2} \leq M_{+}^{2}(x-x_{\xi})^{2}.$$

Since $(b(x) - \xi)^2$ is smooth and tends to ∞ as $|x| \to \infty$ by (12), $\tilde{H}(\xi)$ has compact resolvent and a complete set of eigenfunctions $\{\psi_n(\cdot, \xi)\}_{n=1,2,...}$ with eigenvalues $\{\lambda_n(\xi)\}_{n=1,2,...}$ such that $\lambda_1(\xi) \leq \lambda_2(\xi) \leq \lambda_3(\xi) \leq \cdots \to \infty$ (see, e.g., [9], Theorems XIII. 64 and XIII. 67). The proof of the non-degeneracy of $\lambda_n(\xi)$ needs a proposition concerning the eigenfunctions of second order differential equations, which we shall prove in the next section (Proposition 3.1). By Proposition 3.1 with $q(x) = (b(x) - \xi)^2 - \lambda_n(\xi)$ and $I = [x_0, \infty)$ where $x_0 = x_{\xi} + \sqrt{\lambda_n(\xi)}/M_- (q(x))$ ≥ 0 on I by (12)), any square integrable real-valued solution of the differential equation

(13)
$$\widetilde{L}(\xi)u(x) = \lambda_n(\xi)u(x)$$

satisfies the inequality

(14)
$$u'(x)u(x) < 0$$
 $\left(' \text{ denotes } \frac{d}{dx} \right)$

for $x \ge x_0$. On the other hand, since $\tilde{L}(\xi)$ is of second order, the multiplicity of $\lambda_n(\xi)$ is 1 or 2. If the multiplicity is 2, all the solutions of (13) would belong to $L^2(\mathbb{R}_x)$. But this is impossible because we can solve the equation (13) with given initial value of (u, u'), say, (1, 1) at the point x_0 , which contradicts (14). This implies that the multiplicity of $\lambda_n(\xi)$ is 1, i.e., (i) holds and hence $\lambda_1(\xi) < \lambda_2(\xi) < \lambda_3(\xi) < \cdots$.

Next, from (12) and a comparison theorem based on the min-max principle (see, e.g., [9], p. 270, Lemma), we have (ii) since the *n*-th eigenvalue of the harmonic oscillator Hamiltonian $-\frac{d^2}{dx^2} + M_{\pm}^2(x-x_{\xi})^2$ is $(2n-1)M_{\pm}$.

For the remainder of the proof of Lemma 2.3, we need a lemma (Lemma 2.4 below). Let \mathscr{D} denote the space $D(\widetilde{H}(0))$ equipped with the graph norm $\|\|\cdot\|\|$, $P_n(\xi)$ the projection onto the *n*-th eigenspace of $\widetilde{H}(\xi)$ and $\mathcal{B}(X, Y)$ the space

of bounded operators from X to Y for Banach spaces X and Y.

Lemma 2.4. (a) The operator b is relatively bounded with relative bound 0 with respect to $\tilde{H}(0)$.

- (b) $D(\tilde{H}(\zeta))$ equipped with its graph norm $||u||_{D(\tilde{H}(\zeta))} \equiv (||u||^2 + ||\tilde{H}(\zeta)u||^2)^{1/2}$ coincides with \mathcal{D} for all $\zeta \in \mathbb{R}$.
- (c) \mathscr{D} is a subspace of $C_0(\mathbf{R}) \equiv \{f | f \text{ is a continuous function on } \mathbf{R}, |f(x)| \to 0$ as $|x| \to \infty$ and the inclusion map: $\mathscr{D} \to C_0(\mathbf{R})$ belongs to $\mathcal{B}(\mathscr{D}, C_0(\mathbf{R}))$, where $C_0(\mathbf{R})$ is equipped with the norm $|f|_{\infty} \equiv \sup |f(x)|$.
- (d) $P_n(\xi)$ is a $B(\mathcal{H}, \mathcal{D})$ -valued analytic function of $\xi \in \mathbf{R}$.

Proof. (a) We have in view of (9)

$$||bu||^2 = (b^2 u, u) \leq (\tilde{L}(0)u, u) \leq \varepsilon ||\tilde{L}(0)u||^2 + \frac{1}{2\varepsilon} ||u||^2,$$

for all $u \in C_0^{\infty}(\mathbf{R})$ and for all $\varepsilon > 0$, where (,) denotes the inner product of $L^2(\mathbf{R}_x)$. This inequality implies that the operator b is relatively bounded with relative bound 0 with respect to $\hat{H}(0)$ and hence with respect to $\tilde{H}(0)$ = the closure of $\hat{H}(0)$. (b) We have by (9)

(15)
$$\begin{cases} \tilde{H}(\xi) = \tilde{H}(\xi_0) + V(\xi, \xi_0) \\ V(\xi, \xi_0) = -2(\xi - \xi_0)(b(x) - \xi_0) + (\xi - \xi_0)^2. \end{cases}$$

It is not difficult to verify, by using (a) and (15) with $\xi_0 = 0$, that the norm $||| \cdot |||$ and the norm $||| \cdot ||_{D(\tilde{H}(\xi))}$ are equivalent on $C_0^{\infty}(\mathbf{R})$. Therefore, since $D(\tilde{H}(\xi))$ coincides with the completion of $C_0^{\infty}(\mathbf{R})$ with respect to the norm $|| \cdot ||_{D(\tilde{H}(\xi))}$ by the definition of closure of an operator, we have (b).

(c) Since we have a Sobolev inequality

$$|f|_{\pi} \leq C \left(\|f\| + \left\| \frac{d}{dx} f \right\| \right)$$

for $f \in C_0^{\infty}(\mathbf{R})$ where C is a constant and we have in view of (9)

$$\left\|\frac{d}{dx}f\right\|^{2} = -\left(\frac{d^{2}f}{dx^{2}}, f\right) \leq (\tilde{L}(0)f, f) \leq \frac{1}{2}(\|f\|^{2} + \|\tilde{L}(0)f\|^{2})$$

for $f \in C_0^{\infty}(\mathbf{R})$, we obtain

$$|f|_{\infty} \leq C |||f|||$$

for $f \in C_0^{\infty}(\mathbf{R})$. From this inequality it follows that the identity map on $C_0^{\infty}(\mathbf{R})$ can be extended to a continuous one to one map from the completion \mathcal{D} of

 $C_0^{\infty}(\mathbf{R})$ with respect to the norm $||| \cdot |||$ into the completion X of $C_0^{\infty}(\mathbf{R})$ with respect to the norm $|\cdot|_{\infty}$. Since it is not difficult to check that X is $C_0(\mathbf{R})$, we obtain (c).

(d) Fix ξ_0 . Then it is clear by (b) that $(\tilde{H}(\xi_0) - \lambda)^{-1}$ is a $\mathcal{B}(\mathscr{H}, \mathscr{D})$ -valued continuous (analytic) function of $\lambda \notin \sigma(\tilde{H}(\xi_0))$. Let Γ be a circle $\{\lambda \mid |\lambda - \lambda_n(\xi_0)| = \varepsilon\}$ in the complex plane C for some integer n with sufficiently small $\varepsilon > 0$ such that $\sigma(\tilde{H}(\xi_0)) \cap \{\lambda \in C \mid |\lambda - \lambda_n(\xi_0)| \le 2\varepsilon\} = \{\lambda_n(\xi_0)\}$. Then, there exists a constant K > 0 such that $\|(\tilde{H}(\xi_0) - \lambda)^{-1}\|_{\mathcal{B}(\mathscr{H},\mathscr{P})} \le K$ for $\lambda \in \Gamma$. Let $\Delta = \{\xi \in C \mid |\xi - \xi_0| < \delta\}$ with sufficiently small $\delta > 0$ such that $\|V(\xi, \xi_0)\|_{\mathcal{B}(\mathscr{D},\mathscr{H})} \le \frac{1}{2K}$ for $\xi \in \Delta$, where $V(\xi, \xi_0)$ is as in (15). Then the Neumann series

$$(1+V(\xi,\,\zeta_0)(\tilde{H}(\xi_0)-\lambda)^{-1})^{-1}=\sum_{j=0}^{\infty} \{V(\zeta,\,\zeta_0)(\tilde{H}(\zeta_0)-\lambda)^{-1}\}^j$$

converges in $B(\mathscr{H}, \mathscr{H})$ uniformly for $(\lambda, \xi) \in \Gamma \times \Delta$, and hence becomes a $B(\mathscr{H}, \mathscr{H})$ -valued continuous function of $(\lambda, \xi) \in \Gamma \times \Delta$ which is analytic in $\xi \in \Delta$. Hence, we have by (15)

$$(\tilde{H}(\xi) - \lambda)^{-1} = (\tilde{H}(\xi_0) - \lambda)^{-1} (1 + V(\xi, \xi_0) (\tilde{H}(\xi_0) - \lambda)^{-1})^{-1},$$

for $(\lambda, \zeta) \in \Gamma \times \Delta$, which is a $B(\mathcal{H}, \mathcal{D})$ -valued continuous function of $(\lambda, \zeta) \in \Gamma \times \Delta$, analytic in ζ . Consequently $P_n(\zeta)$ is a $B(\mathcal{H}, \mathcal{D})$ -valued analytic function of $\zeta \in \Delta$, since we have ([9], Theorem XII. 5) for $\zeta \in \Delta$

(16)
$$P_n(\zeta) = -\frac{1}{2\pi i} \int_{I} (\tilde{H}(\zeta) - \lambda)^{-1} d\lambda.$$

Thus, since ξ_0 was arbitrary, we obtain (d).

Proof of Lemma 2.3. Second part ((iii), (iv) and (v)): $D(\tilde{H}(\zeta)) = D(\tilde{H}(0))$ by (b) of Lemma 2.4 and $\tilde{H}(\zeta)u$ is analytic in ζ for all $u \in D(\tilde{H}(0))$. Hence, $\tilde{H}(\zeta)$ is an analytic family of type (A) (see [4], p. 345). Thus $\lambda_n(\zeta)$ depends analytically on ζ ([4], p. 370, Theorem 1.8) since $\lambda_n(\zeta)$ is non-degenerate by (i). This proves (iii).

For (iv) and (v), we first show the existence of an \mathscr{H} -valued analytic function $\psi_n(\cdot, \xi)$ of $\xi \in \mathbb{R}$ such that $\psi_n(\cdot, \xi)$ is a real and normalized eigenfunction of $\widetilde{H}(\xi)$ with eigenvalue $\lambda_n(\xi)$. Since $\widetilde{H}(\xi)$ is real (i.e., commutes with the complex conjugation $C: Cu = \overline{u}$), it follows from (16) that $P_n(\xi)$ is real. Moreover, $P_n(\xi)$ is a projection and a $\mathcal{B}(\mathscr{H}, \mathscr{H})$ -valued analytic function of ξ by (d) of Lemma 2.4 since the inclusion map: $\mathfrak{D} \to \mathscr{H}$ is continuous. Thus we can make use of Theorem XII.12 of [9] which guarantees the existence of an analytic

family $U_n(\xi)$ of unitary operators such that

(17) $U_n(\xi)P_n(0) = P_n(\xi)U_n(\xi).$

By examining the construction of $U_n(\xi)$ (see the proof of Theorem XII. 12 in [9]), it is not difficult to verify that, if $CP_n(\xi)C = P_n(\xi)$ for all real ξ , $CU_n(\xi)C = U_n(\xi)$ for all real ξ . Therefore, if we let $\psi_n(\cdot, 0)$ be a real and normalized element of Ran $(P_n(0))$ and let $\psi_n(\cdot, \xi) \equiv U_n(\xi)\psi_n(\cdot, 0)$, then it is not difficult to check that $\psi_n(\cdot, \xi)$ is real, normalized, analytic in ξ and an eigenfunction of $\tilde{H}(\xi)$ with eigenvalue $\lambda_n(\xi)$ since $\psi_n(\cdot, \xi)$ belongs to Ran $(P_n(\xi))$ by (17). Thus (iv) holds by (d) of Lemma 2.4 since $\psi_n(\cdot, \xi) = P_n(\xi)\psi_n(\cdot, \xi)$.

Finally (v) can be shown as follows: $\psi_n(\cdot, \xi)$ is real-valued as it has been shown in the above. By (iv) and (c) of Lemma 2.4 $\psi_n(\cdot, \xi)$ is a $C_0(\mathbb{R})$ -valued analytic function of ξ , from which it follows that $\psi_n(x, \xi)$ is continuous in xand ξ , and analytic in ξ for each x. The smoothness of $\psi_n(x, \xi)$ in x for each ξ follows from (10) and the smoothness of b(x).

Lemma 2.5. Assume that (B) holds. Let $\tilde{\mathscr{H}}_n$ be the subspace of $\tilde{\mathscr{H}} = L^2(\mathbb{R}_x \times \mathbb{R}_{\xi})$ defined by

$$\widetilde{\mathscr{H}}_{n} = \{ \psi_{n}(x, \,\xi) f(\xi) \mid f(\xi) \in L^{2}(\boldsymbol{R}_{\xi}) \} \qquad (n = 1, \, 2, \ldots)$$

where $\psi_n(x, \xi)$ is as in Lemma 2.3. Then we have:

- (i) $\widetilde{\mathscr{H}} = \bigoplus \widetilde{\mathscr{H}}_n$ (orthogonal sum).
- (ii) \tilde{H} is reduced by $\tilde{\mathcal{H}}_{n}$.
- (iii) $\widetilde{H}|_{\widetilde{\mathscr{X}}_n}$ (the restriction of \widetilde{H} to $\widetilde{\mathscr{K}}_n$) is unitarily equivalent to the operator of multiplication by $\lambda_n(\xi)$ on $L^2(\mathbf{R}_{\xi})$.

Proof. Since $\{\psi_n(\cdot, \xi)\}$ is a complete orthonormal system in $L^2(\mathbf{R}_x)$ by Lemma 2.3, (i) holds.

It follows from (8) and (10) that

(18)
$$\widetilde{L}\{\psi_n(x,\,\zeta)f(\zeta)\} = \lambda_n(\zeta)\psi_n(x,\,\zeta)f(\zeta).$$

The right-hand side of (18) belongs to $L^2(\mathbf{R}_x \times \mathbf{R}_{\xi})$ since $\lambda_n(\xi)$ is bounded in ξ by Lemma 2.3 (ii). Hence $\tilde{f} \in D(\tilde{H})$ and $\tilde{H}\tilde{f} = \lambda_n(\xi)\tilde{f}$ for $\tilde{f} \in \tilde{\mathcal{H}}_n$ by (7) and (18). Thus we have that $\tilde{\mathcal{H}}_n \subset D(\tilde{H})$ and $\tilde{H}(\tilde{\mathcal{H}}_n) \subset \tilde{\mathcal{H}}_n$. This implies that \tilde{H} is reduced by $\tilde{\mathcal{H}}_n$. Hence we obtain (ii).

If we define $T_n: L^2(\mathbf{R}_{\xi}) \to L^2(\mathbf{R}_x \times \mathbf{R}_{\xi})$ such that $T_n f(x, \xi) = \psi_n(x, \xi) f(\xi)$, then $\widetilde{H}T_n f = T_n\{\lambda_n f\}$ by (18) where λ_n denotes the operator of multiplication by $\lambda_n(\xi)$. Thus we have (iii) since T_n is an isometry with the range $\widetilde{\mathscr{H}}_n$ and $\widetilde{H}G_n =$

 $\widetilde{H}T_nT_n^* = T_n\lambda_nT_n^*$, where G_n denotes the orthogonal projection onto $\widetilde{\mathscr{H}}_n$. This completes the proof of the lemma.

Lemma 2.6. Assume that (B) holds. Then H is absolutely continuous if no $\lambda_n(\xi)$ is constant, where $\lambda_n(\xi)$ is as in Lemma 2.3.

Proof. By Lemma 2.1 and Lemma 2.5, it suffices to show that, for each n, λ_n is absolutely continuous if $\lambda_n(\xi)$ is not constant. Since $\lambda_n(\xi)$ is analytic and non-constant, $A \equiv \left\{ \xi \mid \frac{d}{d\xi} \lambda_n(\xi) = 0 \right\}$ is discrete and closed. Hence, if we let $\{I_j\}_{j \in J}$ be the connected components of $\mathbb{R} \setminus A$, then I_j are open intervals, J is at most countable, and

$$L^2(\mathbf{R}) = \bigoplus_{i \in J} L^2(I_i)$$
 (orthogonal sum).

Hence it suffices to show that the operator Λ_j of multiplication by $\lambda_n(\xi)$ on $L^2(I_j)$ is absolutely continuous for each $j \in J$. On each interval I_j , $\lambda_n(\xi)$ is strictly monotone, either increasing or decreasing. Consider the case where it is increasing. Let α denote the inverse function of the restriction of $\lambda_n(\xi)$ to I_j . Then α is a strictly increasing smooth function on $\lambda_n(I_j)$. Let E_{μ} be the spectral measure associated with Λ_j . Then we have

$$\|E_{\mu}u\|^{2} = \int_{\{\xi \in I_{J} \mid \lambda_{n}(\xi) < \mu\}} |u(\xi)|^{2} d\xi$$
$$= \int_{a}^{\alpha(\mu)} |u(\xi)|^{2} d\xi \qquad (a = \inf I_{j})$$
$$= f_{u}(\alpha(\mu))$$

for $u \in L^2(I_j)$, where $f_u(x) = \int_a^x |u(\xi)|^2 d\xi$ and where we extend α to all the real line so that $\alpha(\mu) = \sup I_j$ if $\mu \ge \sup \lambda_n(I_j)$ and $\alpha(\mu) = a$ if $\mu \le \inf \lambda_n(I_j)$. Therefore one can verify without difficulty that the absolute continuity of α (which follows from the smoothness) and the monotonicity of α together with the absolute continuity of f_u imply the absolute continuity of $||E_{\mu}u||^2$. Thus Λ_j is an absolutely continuous operator.

§3. Properties of $\psi_n(x, \xi)$ and $\lambda_n(\xi)$

Throughout this section, we suppose (B) alone, use the notations in Lemma 2.3 and let n be fixed. In addition, we put

(19)
$$Q_{n,\xi}(x) \equiv (b(x) - \xi)^2 - \lambda_n(\xi).$$

Then, by (10), we have

(20)
$$\psi_n''(x, \xi) = Q_{n,\xi}(x)\psi_n(x, \xi) \qquad \left(\text{'denotes } \frac{d}{dx} \right).$$

In this section we shall investgate some detailed properties of the eigenfunctions $\psi_n(x, \xi)$ and the eigenvalues $\lambda_n(\xi)$ of $\tilde{H}(\xi)$. The following arguments are similar to those in [10] (p. 110 and p. 165 ff.).

Proposition 3.1. Let $I = [x_0, \infty)((-\infty, x_0])$. Let u be a real-valued C^2 function and q a non-negative continuous function on I. Suppose that u satisfies

(21)
$$u''(x) = q(x)u(x),$$

 $u \in L^2(I)$ and $u \not\equiv 0$. Then u(x)u'(x) < 0 for $x \in I$ (u(x)u'(x) > 0 for $x \in I$).

Proof. Let $I = [x_0, \infty)$ (the case of $I = (-\infty, x_0]$ can be treated quite similarly). From (21) we have

(22)
$$(uu')' = u'^2 + uu'' = u'^2 + qu^2 \ge 0,$$

and hence u(x)u'(x) increases for $x \ge x_0$. Suppose that $u(\bar{x}) = 0$ for some $\bar{x} \ge x_0$. If $u'(\bar{x}) = 0$, $u \equiv 0$ by the uniqueness theorem. Thus by the assumption $u'(\bar{x}) \ne 0$. If $u'(\bar{x}) > 0$, then u(x) > 0 for x near \bar{x} and larger than \bar{x} . This implies u(x)u'(x) > 0 for $x > \bar{x}$ and hence u'(x) increases for $x > \bar{x}$ by (21). Thus $u'(x) \ge u'(\bar{x}) \equiv c > 0$ and $u(x) \ge c(x - \bar{x})$ for $x \ge \bar{x}$. But this contradicts the assumption that $u \in L^2(I)$. A similar argument holds in the case where $u'(\bar{x}) < 0$. Thus we obtain $u(x) \ne 0$ for $x \ge x_0$. Consider the case where u(x) > 0 for $x \in I$ (the case where u(x) < 0 for $x \in I$ can be treated similarly). Suppose that $u'(\bar{x}) \ge 0$ for some $\bar{x} \in I$. Then $u(x)u'(x) \ge 0$ for $x \ge \bar{x}$, which contradicts the assumption $u \in L^2(I)$. Thus u'(x)has to be negative for all $x \in I$, and hence u(x)u'(x) < 0 for $x \in I$. \Box

Lemma 3.2. $\psi_n(x, \zeta)\psi'_n(x, \zeta) < 0$ if $x \ge x_{\xi} + L_n$, $\psi_n(x, \zeta)\psi'_n(x, \zeta) > 0$ if $x \le x_{\xi} - L_n$, where $x_{\xi} = b^{-1}(\zeta)$ and $L_n = \sqrt{(2n-1)M_+}/M_-$.

Proof. By (12), (19) and (ii) of Lemma 2.3, we have

(23)
$$Q_{n,\xi}(x) \ge M_{-}^{2}(x-x_{\xi})^{2} - (2n-1)M_{+} \ge 0$$

if $|x - x_{\xi}| \ge L_n$. Therefore, by (20) and Proposition 3.1, we have the assertion of the lemma since $\psi_n \in L^2(\mathbf{R}_x)$.

Lemma 3.3. $\psi_n(x, \xi) \rightarrow 0, \psi'_n(x, \xi) \rightarrow 0$ as $x \rightarrow \pm \infty$.

Proof. By Lemma 3.2, $\psi_n(x, \xi) \neq 0$ for $x \ge x_{\xi} + L_n$. Suppose that $\psi_n(x, \xi) > 0$ for $x \ge x_{\xi} + L_n$. Then $\psi'_n(x, \xi) < 0$ by Lemma 3.2. This implies that $\lim_{x\to\infty} \psi_n(x, \xi)$ exists and ≥ 0 . Since $\psi_n \in L^2(\mathbb{R}_x)$, this limit must be 0. Moreover, by (20) and (23), $\psi''_n(x, \xi) \ge 0$ for $x \ge x_{\xi} + L_n$. Thus $\lim_{x\to\infty} \psi'_n(x, \xi)$ exists and ≤ 0 . This limit must be zero since $\psi_n(x, \xi) \to 0$ as $x \to \infty$. The case where $\psi_n(x, \xi) < 0$ can be treated similarly. A similar argument shows that the limits of $\psi_n(x, \xi)$ and $\psi'_n(x, \xi)$ as $x \to -\infty$ exist and must be zero.

Lemma 3.4. Let

(24)
$$l_n(x, \xi) = \psi'_n(x, \xi)^2 - Q_{n,\xi}(x)\psi_n(x, \xi)^2$$

where $Q_{n,\xi}$ is as in (19) and let $x_{\xi} = b^{-1}(\xi)$. Then we have the following:

- (i) $l_n(x, \zeta)$ is strictly decreasing for $x > x_{\xi}$ and strictly increasing for $x < x_{\xi}$.
- (ii) $l_n(x, \xi) \rightarrow 0$ as $x \rightarrow \pm \infty$.
- (iii) $l_n(x, \zeta) > 0.$

Proof. We have

(25)
$$l'_{n}(x, \xi) = 2\psi'_{n}(x, \xi) \{\psi''_{n}(x, \xi) - Q_{n,\xi}(x)\psi_{n}(x, \xi)\} - Q'_{n,\xi}(x)\psi_{n}(x, \xi)^{2}$$
$$= -Q'_{n,\xi}(x)\psi_{n}(x, \xi)^{2}$$
$$= -2B(x)(b(x) - \xi)\psi_{n}(x, \xi)^{2}$$

by (20), (19) and (11). Hence, by (11), (B) and the fact that, for each ξ , $\{x|\psi_n(x,\xi)=0\}$ cannot have an accumulation point, we have (i).

By Lemma 3.2, $\psi_n(x, \xi) > 0$ for all $x \ge x_{\xi} + L_n$, or $\psi_n(x, \xi) < 0$ for all $x \ge x_{\xi} + L_n$. Consequently, by (20) and (23), we have $\psi''_n(x, \xi) \ge 0$ for all $x \ge x_{\xi} + L_n$, or $\psi''_n(x, \xi) \le 0$ for all $x \ge x_{\xi} + L_n$. Thus $\psi'_n(x, \xi)$ is increasing or decreasing for $x \ge x_{\xi} + L_n$ and tends to 0 as $x \to \infty$ by Lemma 3.3, from which follows that $\psi''_n(x, \xi) \to 0$ as $x \to \infty$. Hence, by (24), (20) and Lemma 3.3, $l_n(x, \xi) = \psi'_n(x, \xi)^2 - \psi''_n(x, \xi)\psi_n(x, \xi) \to 0$ as $x \to \infty$. Similarly, we have $l_n(x, \xi) \to 0$ as $x \to \infty$. Thus, we have obtained (ii). (i) and (ii) imply (iii).

Lemma 3.5.
$$|\psi_n(x, \xi)| \leq \Phi_n(x - x_{\xi})$$
 where $x_{\xi} = b^{-1}(\xi)$ and

$$\Phi_n(x) = \begin{cases} \sqrt{2} \lambda_n^{+1/4} & \text{if } |x| \leq L_n \\ \sqrt{2} \lambda_n^{+1/4} & \exp\left\{-\frac{M_-}{2}(|x| - L_n)^2\right\} & \text{if } |x| \geq L_n \end{cases}$$

with $\lambda_n^+ = (2n-1)M_+, \ L_n = \sqrt{\lambda_n^+}/M_-$.

Proof. First, we have

Akira Iwatsuka

(26)
$$|\psi_n(x,\xi)| \leq \sqrt{2} \lambda_n^{+1/4}$$
 for all x .

In fact, we have by multiplying (10) by $\psi_n(x, \xi)$ and integrating by parts,

$$\int_{-\infty}^{\infty} \psi_n'(x,\,\xi)^2 dx + \int_{-\infty}^{\infty} (b(x)-\xi)^2 \psi_n(x,\,\xi)^2 dx = \lambda_n(\xi) \int_{-\infty}^{\infty} \psi_n(x,\,\xi)^2 dx \leq \lambda_n^+$$

where we have used Lemma 3.3, $\|\psi_n(\cdot, \xi)\|_{L^2} = 1$ and (ii) of Lemma 2.3. Therefore, we obtain (26) since

$$\psi_n(x,\,\xi)^2 = 2\int_{-\infty}^x \psi'_n(x,\,\xi)\psi_n(x,\,\xi)dx \leq 2\left(\int_{-\infty}^x \psi'_n^2dx\right)^{1/2}\left(\int_{-\infty}^x \psi_n^2dx\right)^{1/2}.$$

Next, by (iii) of Lemma 3.4, we have $\psi'_n(x, \xi)^2 > Q_{n,\xi}(x)\psi_n(x, \xi)^2$. Hence, we have

$$\frac{\psi'_n(x,\xi)}{\psi_n(x,\xi)} < -\sqrt{Q_{n,\xi}(x)} \quad \text{for} \quad x \ge x_{\xi} + L_n$$
$$\left(\frac{\psi'_n(x,\xi)}{\psi_n(x,\xi)} > \sqrt{Q_{n,\xi}(x)} \quad \text{for} \quad x \le x_{\xi} - L_n\right)$$

by Lemma 3.2 and (23). Therefore, we obtain

(27)
$$|\psi_n(x,\,\xi)| \leq |\psi_n(\bar{x},\,\xi)| \exp\left\{-\left|\int_{\bar{x}}^x \sqrt{Q_{n,\xi}(t)}dt\right|\right\}$$

if $x \ge \bar{x} \ge x_{\xi} + L_n$ (or if $x \le \bar{x} \le x_{\xi} - L_n$). Since we have by (23)

$$Q_{n,\xi}(x) \ge M_{-}^{2}(|x-x_{\xi}|^{2}-L_{n}^{2}) \ge M_{-}^{2}(|x-x_{\xi}|-L_{n})^{2}$$

if $|x - x_{\xi}| \ge L_n$, it follows from (26) and (27) that

$$|\psi_n(x, \xi)| \leq \sqrt{2} \lambda_n^{+1/4} \exp\left\{-\frac{M_-}{2}(|x-x_{\xi}|-L_n)^2\right\}$$

if $|x - x_{\xi}| \ge L_n$. This completes the proof of the lemma.

Lemma 3.6. $\frac{d}{d\xi} \lambda_n(\xi) = \lim_{\substack{A \to \infty \\ A' \to -\infty}} \int_{A'}^{A} \frac{B'(x)}{B(x)^2} l_n(x, \xi) dx \text{ where } l_n(x, \xi) \text{ is as in}$ Lemma 3.4.

Proof. Since
$$\frac{d}{d\xi} \lambda_n(\xi) = \left(\frac{dH(\xi)}{d\xi} \psi_n(\cdot, \xi), \psi_n(\cdot, \xi)\right)$$
, we have

$$\frac{d}{d\xi} \lambda_n(\xi) = 2 \int_{-\infty}^{\infty} (\xi - b(x)) \psi_n(x, \xi)^2 dx$$

$$= 2 \int_{-\infty}^{\infty} -\frac{(b(x) - \xi)B(x)\psi_n(x, \xi)^2}{B(x)} dx$$

$$= \lim_{\substack{A \to \infty \\ A' \to -\infty}} \int_{A'}^{A} \frac{1}{B(x)} l'_n(x, \xi) dx,$$

where we used (25). Hence we obtain the desired equality by integration by parts with the aid of Lemma 3.4 (ii). \Box

§4. Proof of the Theorem

We start the proof of the theorem by the following two lemmas, which assert that the asymptotic behavior of $\lambda_n(\xi)$ as $\xi \to \pm \infty$ is determined by that of B(x) as $x \to \pm \infty$:

Lemma 4.1. Suppose that $B_1(x)$ and $B_2(x)$ satisfy the assumption (B). Let $\tilde{H}_j(\xi)$ be the operator $\tilde{H}(\xi)$ in Lemma 2.3 with B replaced by B_j and let $\lambda_n^{(j)}(\xi)$ be the n-th eigenvalue of $\tilde{H}_j(\xi)$ (j=1, 2). Assume that $B_1(t) - B_2(t) \rightarrow 0$ as $t \rightarrow \infty$ $(t \rightarrow -\infty)$. Then, for each n, $\lambda_n^{(1)}(b_1(s)) - \lambda_n^{(2)}(b_2(s)) \rightarrow 0$ as $s \rightarrow \infty$ $(s \rightarrow -\infty$, respectively), where $b_j(x) = \int_0^x B_j(t) dt$ (j=1, 2).

Proof. We show that the Lemma holds under the assumption $B_1(t) - B_2(t) \rightarrow 0$ as $t \rightarrow \infty$. The case where $B_1(t) - B_2(t) \rightarrow 0$ as $t \rightarrow -\infty$ can be treated similarly.

Let *n* be fixed and let *j*, $k \leq n$. Let

(28)
$$\alpha_{jk}(s) \equiv (\tilde{H}_2(b_2(s))\psi_j^{(1)}(\cdot, b_1(s)), \psi_k^{(1)}(\cdot, b_1(s)))$$

where $\psi_j^{(1)}(x, \xi)$ is the eigenfunction of $\tilde{H}_1(\xi)$ with the eigenvalue $\lambda_j^{(1)}(\xi)$ as in Lemma 2.3. Then, since

$$(\tilde{H}_1(b_1(s))\psi_j^{(1)}(\cdot, b_1(s)), \psi_k^{(1)}(\cdot, b_1(s))) = \lambda_j^{(1)}(b_1(s))\delta_{jk}$$

where $\delta_{jk} = 1$ (j = k) and 0 $(j \neq k)$, we have

(29)
$$|\alpha_{jk}(s) - \lambda_{j}^{(1)}(b_{1}(s))\delta_{jk}|$$

$$\leq \int_{-\tau}^{\infty} |(b_{2}(x) - b_{2}(s))^{2} - (b_{1}(x) - b_{1}(s))^{2}||\psi_{j}^{(1)}(x, b_{1}(s))||\psi_{k}^{(1)}(x, b_{1}(s))|dx.$$

On the other hand, we have by (B) with $B = B_1$ or B_2 ,

(30)
$$|(b_{2}(x) - b_{2}(s))^{2} - (b_{1}(x) - b_{1}(s))^{2}|$$
$$= \left| \left(\int_{s}^{x} (B_{1}(t) + B_{2}(t)) dt \right) \left(\int_{s}^{x} (B_{1}(t) - B_{2}(t)) dt \right) \right|$$
$$\leq 2M_{+} |x - s| \left| \int_{s}^{x} (B_{1}(t) - B_{2}(t)) dt \right|.$$

Moreover, we have, by Lemma 3.5 and by noting that $\Phi_1(x) < \Phi_2(x) < \cdots < \Phi_n(x)$,

(31)
$$|\psi_j^{(1)}(x, b_1(s))| \leq \Phi_n(x-s)$$
 $(j=1, 2, ..., n).$

Thus, from (29), (30) and (31), we obtain for $j, k \leq n$

(32)
$$|\alpha_{jk}(s) - \lambda_{j}^{(1)}(b_{1}(s))\delta_{jk}| \\ \leq 2M_{+} \int_{-\infty}^{\infty} \left\{ |x-s| \left| \int_{s}^{x} (B_{1}(t) - B_{2}(t))dt \right| \Phi_{n}(x-s)^{2} \right\} dx.$$

Let $\varepsilon > 0$. Then there exists a real number R such that $\sup_{\substack{R \le t \\ R > 0}} |B_1(t) - B_2(t)| \le \varepsilon$ by the assumption. Hence, by (32) and (B), we have for $s \ge R$,

(33)
$$|\alpha_{jk}(s) - \lambda_{j}^{(1)}(b_{1}(s))\delta_{jk}|$$

$$\leq 4M_{+}^{2} \int_{-\infty}^{R} |x-s|^{2} \Phi_{n}(x-s)^{2} dx + 2M_{+}\varepsilon \int_{R}^{\infty} |x-s|^{2} \Phi_{n}(x-s)^{2} dx$$

$$\leq 4M_{+}^{2} \int_{-\infty}^{R-s} x^{2} \Phi_{n}(x)^{2} dx + 2M_{+}\varepsilon \int_{-\infty}^{\infty} x^{2} \Phi_{n}(x)^{2} dx .$$

Hence, by noting that $\Phi_n(x)$ depends only on n, M_- and M_+ , and $x^2\Phi_n(x)^2$ is integrable on \mathbf{R} , we have by (33)

(34)
$$|\alpha_{jk}(s) - \lambda_j^{(1)}(b_1(s))\delta_{jk}| \leq C\varepsilon$$

for sufficiently large s and for j, $k \leq n$, where C is a constant dependent only on n, M_{-} and M_{+} . Let $V_n(s)$ be the linear subspace of $L^2(\mathbf{R}_x)$ spanned by $\{\psi_j^{(1)}(\cdot, b_1(s))\}_{j=1,...,n}$ and let $R_n(s)$ be the orthogonal projection onto $V_n(s)$. Then we have by (28)

(35)
$$\begin{cases} (\alpha_{jk}(s)) \text{ is the Hermitian symmetric matrix of} \\ R_n(s)\tilde{H}_2(b_2(s))R_n(s)|_{V_n(s)} \text{ with respect to the basis} \\ \{\psi_j^{(1)}(\cdot, b_1(s))\}_{j=1,\dots,n}. \end{cases}$$

Let $\mu_1(s) \leq \cdots \leq \mu_n(s)$ be the eigenvalues of $(\alpha_{jk}(s))$. Then we have by (35) and by applying the min-max principle to the operator $\tilde{H}_2(b_2(s))$ (see [9], p. 270, Lemma)

(36)
$$\lambda_j^{(2)}(b_2(s)) \leq \mu_j(s)$$
 $(j=1,...,n).$

On the other hand we have by (34)

(37)
$$|\mu_j(s) - \lambda_j^{(1)}(b_1(s))| \leq C' \varepsilon$$
 $(C' = nC, j = 1, ..., n)$

for sufficiently large s. Thus for any $\varepsilon > 0$, the following inequality holds for sufficiently large s by (36) and (37):

(38)
$$\lambda_j^{(2)}(b_2(s)) \leq \lambda_j^{(1)}(b_1(s)) + C'\varepsilon$$
 $(j=1,...,n)$

where C' is a constant dependent only on n, M_{-} and M_{+} . By interchanging

the subscripts 1 and 2 in the above argument, we have

(39)
$$\lambda_j^{(1)}(b_1(s)) \leq \lambda_j^{(2)}(b_2(s)) + C'\varepsilon$$
 $(j=1,...,n)$

for sufficiently large s. By (38) and (39), for each n,

$$\lambda_n^{(1)}(b_1(s)) - \lambda_n^{(2)}(b_2(s)) \longrightarrow 0 \text{ as } s \longrightarrow \infty.$$

This proves the lemma.

Lemma 4.2. $(2n-1) \liminf_{x \to \pm \infty} B(x) \leq \liminf_{\xi \to \pm \infty} \lambda_n(\xi) \text{ and } \limsup_{\xi \to \pm \infty} \lambda_n(\xi) \leq (2n-1)$ $\limsup_{x \to \pm \infty} B(x).$

Proof. Let $B_{-} \equiv \liminf_{x \to \infty} B(x)$ and let $\varepsilon > 0$. Then, there exists a real number R such that $B(x) \ge B_{-} - \varepsilon$ for $x \ge R$ and hence there exists a C^{∞} function $B_{1}(x)$ satisfying the assumption (B) and such that $B_{1}(x) = B(x)$ for $x \ge R$ and $B_{1}(x) \ge B_{-} - 2\varepsilon$ for all x. Then, by applying Lemma 4.1 to this $B_{1}(x)$ and $B_{2}(x) \equiv B(x)$, we have that, for each n,

(40)
$$\lambda_n^{(1)}(b_1(s)) - \lambda_n^{(2)}(b_2(s)) \longrightarrow 0 \text{ as } s \longrightarrow \infty.$$

On the other hand, Lemma 2.3 (ii) applies to $B_1(x)$ with M_- replaced by $B_- -2\varepsilon$ since $B_1(x) \ge B_- -2\varepsilon$ for all x. Thus we have

(41)
$$\lambda_n^{(1)}(\xi) \ge (2n-1)(B_- - 2\varepsilon)$$

for all $\xi \in \mathbf{R}$ and for $n = 1, 2, \dots$ It follows from (40) and (41) that

$$\liminf_{s\to\infty}\lambda_n^{(2)}(b_2(s)) \ge (2n-1)(B_--2\varepsilon).$$

Thus, since ε was arbitrary and since $\lambda_n^{(2)}(\xi) = \lambda_n(\xi)$ and $b_2(s) \to \infty$ as $s \to \infty$, we have

$$\liminf_{\xi\to\infty}\lambda_n(\xi)\geq (2n-1)B_-=(2n-1)\liminf_{x\to\infty}B(x),$$

which proves the first inequality where the double sign is +. We can obtain the remaining inequalities by an argument similar to the above.

Proof of the Theorem. Note that, by Lemma 2.6, it suffices to show that, for each n, $\lambda_n(\xi)$ is not constant.

In the case where the assumption (B1) holds, $\lambda_n(\xi)$ is not constant since $\lim \sup \lambda_n(\xi) < \lim \inf \lambda_n(\xi)$ by Lemma 4.2 and (B1).

Let us consider the case where (B2) holds. Let $B'(x) \leq 0$ for $x \leq \overline{x}$, $B'(x) \geq 0$ for $x \geq \overline{x}$, and let R be a constant such that $B(x) = B_0$ for $|x| \geq R$. Then we have

399

$$\int_{-\infty}^{\infty} \frac{B'(x)}{B(x)^2} dx = \int_{-R}^{R} \frac{B'(x)}{B(x)^2} dx = \frac{1}{B(-R)} - \frac{1}{B(R)} = 0.$$

Hence we obtain by Lemma 3.6

(42)
$$\frac{d}{d\xi}\lambda_n(\xi) = \int_{-R}^{R} \frac{B'(x)}{B(x)^2} (l_n(x,\,\xi) - l_n(\bar{x},\,\xi)) dx \, .$$

On the other hand, if we let ξ be so large that $x_{\xi} > R$ (note that, since $b(x) = \int_{0}^{x} B(t)dt \to \infty$ as $x \to \infty$, $x_{\xi} = b^{-1}(\xi) \to \infty$ as $\xi \to \infty$), then $l_n(x, \xi)$ is strictly increasing in [-R, R] by (i) of Lemma 3.4. Thus we have that $l_n(x, \xi) - l_n(\bar{x}, \xi) < 0$ for $x < \bar{x}$, $l_n(x, \xi) - l_n(\bar{x}, \xi) > 0$ for $x > \bar{x}$ and hence $B'(x)(l_n(x, \xi) - l_n(\bar{x}, \xi))$ is non-negative and does not vanish identically for $x \in [-R, R]$ by the assumption (B2). Consequently, we have by (42) that $\frac{d}{d\xi} \lambda_n(\xi) > 0$. Thus $\lambda_n(\xi)$ is non-constant for all n. The case where $B'(x) \ge 0$ for $x < \bar{x}$, $B'(x) \le 0$ for $x > \bar{x}$ can be treated similarly. This completes the proof of the theorem.

Finally, we remark that, by examining the above argument, one is able to determine the spectrum of H in the case where B(x) is assumed to be monotone in addition to (B). In fact, if we let, e.g., B(x) be increasing, then Lemma 2.3 (ii) holds with M_{\pm} replaced by $B_{\pm} \equiv \lim_{x \to \pm \infty} B(x)$ and hence $\sup_{\xi} \lambda_n(\xi) = (2n-1)B_+$, $\inf_{\xi} \lambda_n(\xi) = (2n-1)B_-$ by Lemma 4.2. Thus we have by Lemma 2.1 and Lemma 2.5

$$\sigma(H) = \bigcup_{n=1}^{\infty} \left[(2n-1)B_-, (2n-1)B_+ \right].$$

References

- Avron, J., Herbst, I. and Simon, B., Schrödinger operators with magnetic fields I. General interactions, *Duke Math. J.*, 45 (1978), 847–883.
- [2] Ikebe, T. and Saitō, Y., Limiting absorption method and absolute continuity for the Schrödinger operators, J. Math. Kyoto Univ., 7 (1972), 513-542.
- [3] Iwatsuka, A., The essential spectrum of two-dimensional Schrödinger operators with perturbed constant magnetic fields, J. Math. Kyoto Univ., 23 (1983), 475–480.
- [4] Kato, T., *Perturbation Theory for Linear Operators*, Springer, Berlin-Heidelberg-New York, 1976.
- [5] Leinfelder, H., Gauge invariance of Schrödinger operators and related spectral properties, J. Op. Theory, 9 (1983), 163-179.
- [6] Leinfelder, H. and Simader, C. G., Schrödinger operators with singular magnetic potentials, Math. Z., 176 (1981), 1–19.
- [7] Miller, K. and Simon, B., Quantum magnetic Hamiltonians with remarkable spectral properties, *Phys. Rev. Lett.*, 44 (1980), 1706–1707.

- [8] Reed, M. and Simon, B., *Methods of Modern Mathematical Physics*, Vol. II, Academic Press, New York, 1975.
- [9] —, Methods of Modern Mathematical Physics, Vol. IV, Academic Press, New York, 1978.
- [10] Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I (Second Edition), Oxford Univ. Press, London-New York, 1962.