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Examples of Absolutely
Operators In

By

Akira IWATSUKA*

§ 1. Introduction

In this paper we shall consider the two-dimensional Schrodinger operator

H which is the self-adjoint realization in Jf = L2(R2) of the differential operator

where a and b are the operators of multiplication by real- valued C°° functions

fl(x, y) and b(x9 y), respectively. The spectral property of H depends not

directly on the vector potential (a, b) but on the magnetic field

(2) B(x,y)=^(x,y)-^-(x,y),

i.e., all H with (a, b) satisfying (2) with common B are unitarily equivalent to

each other (gauge invariance: see, e.g., Leinfelder [5]).

Extensive studies have been made in the case where B is asymptotically
constant, that is,

B ( x 9 y ) >B0 as Jx2 + y2 > oo ,

where B0 is some constant. In the case where B0 = 0, the essential spectrum

^ss(H) = {Ae^|dimRan(£p-6, A + e))):=oo for all s>0} of H is [0, oo)

(see [5]), where E denotes the spectral measure associated with H. Moreover,
-1 Xx

if B is short-range (i.e., B = O(^/x2 + y2 > for some <?>0), H is absolutely

continuous, i.e., the subspace of absolute continuity j^ac = {ue^\\\E((—co,

A])w||2 is absolutely continuous} for H fills up the whole space 3? (see Ikebe and

Saito [2]). In the long-range case, there is an example of H with pure point
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spectrum in the sense that jf is spanned by the eigenvectors of H (see Miller and

Simon [7]). On the other hand, in the case where B0^Q, the operator H shows

a completely different spectral behavior. Namely, we have shown in [3] that

<?ess(H) = {(2k + \)\B0\ \k is an integer ^0} ,

which implies that H has pure point spectrum (see also Avron, Herbst and

Simon [1]). However, as far as we know, the case where B is not asymptotically

constant has not been studied very well. We shall consider the case where B

satisfies the following property:

(B) B(x, y) depends only on x (i.e., B(x, y) = B(x)\ B(x) is a C°° function

such that there exist constants M+ satisfying 0<M_ ^B(x)^M+ <oo

for all x.

Let H be the operator in jf = L2(R2) defined on the space C$(R2) of all
C°° functions with compact support by

Hu = Lu for we

Let H be the closure of H. Then H is essentially self-adjoint (see Leinfelder and

Simader [6]) and hence H is the unique self-adjoint extention of H. Therefore,

the adjoint operator H* of H equals to H and, by examining H*, one can obtain

Hf=Lf for f e D ( H ) 9

where and in the sequel differentiation is understood in the distribution sense.

The aim of the present paper is to show that H is absolutely continuous if either

of the following (Bl) or (B2) holds:

(Bl) In addition to (B), lim sup B(x) < lim inf B(x) or limsupB(x)<
x->-oo X-++OD x- »+oo

liminfB(x).
x-»— oo

(B2) In addition to (B), B(x) = B0 for some constant B0 if |x| is sufficiently

large, and there exists a point x such that B'(x;):gO for x^x and

#'(x)^0 for x^x (or £'(x)^0 for xgx and B'(x)^Q for x^x) and

B'(x) is not identically 0.

Theorem. Suppose that either (Bl) or (B2) holds. Then H is absolutely

continuous.
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§ 2. Reduction to One-Dimensional Hamiltonians

Under the assumption (B), we can take the vector potential (a, b) of the

form

(4) a = 0, b = b(x) = (* B(t)dt

in view of (2). Therefore, since we shall assume (B) throughout the paper, we

shall henceforth consider the differential operator

(5) L= * +(4- * -b(x}}
2.ex2 \ i dy /

Let H1 be the operator in 3? defined on the Schwartz space ^(R2) of rapidly

decreasing C°° functions by

H iii = Lit for uE<f(R2)

(note that Lueje for ue^(R2) by the estimate |6(x)|^M + |x| obtainable from

(4) and (B)). Then HaHi and H^H by (3). Thus H^ is essentially self-

adjoint since PI is so. Let Lbe the differential operator

(6) (i/u.Y, f)= {- -j

Then it is clear that L^u = ̂ Lu for u e ̂ (R2) where & is the partial Fourier

transformation

ty*u(x, y)dy .

Let /?! be the operator in M =L2(RX x R*) defined by Hlf=Lf for /e />(#!> =

^(RxxR^), and let /? be the closure of /?,. Then Hl=^Hl^-1 and hence,

since ^ is unitary and //t is essentially self-adjoint, f?l is essentially self-adjoint.

Therefore, H is self-adjoint and H = Jrf/Jr~~l. Thus we have

Lemma 2,1. Assume that (B) holds. Let H be the self-adjoint operator

defined above. Then H is unitarily equivalent to H.

Lemma 2.2. C™(Rxx R%) is a core for H and

Hf=Lf for f e D ( f t ) .
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Proof. Let £ e Cjfttf, x J^) such that £(x, £) = ! for jx2 + £2^l and

O ^ C ^ l - Then it is not difficult to verify that, for fe^(RxxR^), £„/->/,
L(Cw/)-»L/ strongly in ^ as n-> oo, where f „ is the operator of multiplication by

CCx/n, £/n) for n = l, 2,... . Hence, since &(Rxx R£ is a core for H, C$(RX

x R^) is a core for jff. Moreover, it follows that H coincides with the adjoint

operator of B\c%(RxxR^( \ denotes the restriction), from which (7) follows. Q

L can be written as

(8) L/(x,O

where L(£) is a second-order ordinary differential operator

(9) L($=--j^+(b(x)-&.

Let jfr(f) be the operator in L2(RX) defined by /?(£)<£ = £(£W> for <£e £(#(£))

= Q?(J?X), and let#(£) be the closure of #(£). Then, since L(£) is in the limit

point case at + oo (see, e.g., [8], Appendix to X.I), ff(£) is essentially self-adjoint

and hence H(£) is self-adjoint.

Lemma 2»3. Assume that (B) holds. Let £ be a real number and let H(^)

be the self-adjoint operator defined above. Then there exists a complete

orthonormal system {i//n(x9 c)},,=i,2,... in L2(RX) of eigenf unctions for /?(£):

( }

50 that, for n = l, 2,...,

( i ) each Xn(^) is non-degenerate,

(ii) (2w-l)M_^AB(0^(2n-l)M+ ,
(iii) A,,(^) depends analytically on ^,

(iv) ^w( • , 0 e D(/?(0)) awe/ depends analytically on £ with respect to the graph

norm \\\u\\\ ^(\\u\\2+ \\R(0)u\W*9

(v) i^,,(x, ^) is a real-valued continuous function of x and C, a/i(i, moreover,

il/n(x, ^) /s infinitely differentiate in x for each £ and is analytic in £

for each x.

Proof. First part ((i) and (ii)) : Since db(x)/dx = B(x) ^ Af _ > 0 by (B) and

(4), b(x) is a strictly increasing function of x such that lim b(x)= ±00. Thus
jc-*±oo

the equation b(x) = % has a unique solution for each £, which we shall denote by

x% (i.e., x^^b"1^)). Then we have
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(11) b(x)-£= ("X B(t)dl.

Hence we have from the assumption (B)

x^) for x^x^

M _ (x — x^ ^ b(x) — ̂  M + (x — x§) for x ̂  x^ ,

from which we obtain the following inequality for all x :

(12) M2(x - x^)2 ^ (b(x) - £)2 ̂  Ml(x - x^)2 .

Since (6(x)-£)2 is smooth and tends to oo as |x|-»oo by (12), H(£) has compact

resolvent and a complete set of eigenfunctions {\l/n(- , f )}«=!, 2,... wn"n eigenvalues

U,«)}n=i.2,... such that ^({) ^ A2(£) ^ A3(f) ^ - - - -> o> (see, e.g., [9], Theorems
XIII. 64 and XIII. 67). The proof of the non-degeneracy of An(£) needs a

proposition concerning the eigenfunctions of second order differential equations,

which we shall prove in the next section (Proposition 3.1). By Proposition 3.1

with q(x} = (b(x)-®2-ln(& and J = [x0, oo) where x0 = x^^/I^j/M. (q(x)

^0 on f by (12)), any square integrable real- valued solution of the differential

equation

(13)

satisfies the inequality

(14) u'(x)u(x) < 0 ' denotes

for x^x0. On the other hand, since L(g) is of second order, the multiplicity

of An(£) is 1 or 2. If the multiplicity is 2, all the solutions of (13) would belong to

L2(RX). But this is impossible because we can solve the equation (13) with given

initial value of (u, u'), say, (1, 1) at the point x0, which contradicts (14). This

implies that the multiplicity of AH(£) is 1, i.e., (i) holds and hence

Next, from (12) and a comparison theorem based on the min-max principle

(see, e.g., [9], p, 270, Lemma), we have (ii) since the n-th eigenvalue of the

harmonic oscillator Hamiltonian - -7-5- +M2
±(x-x^2 is (2n — l)M±.

For the remainder of the proof of Lemma 2.3, we need a lemma (Lemma

2.4 below). Let @ denote the space D(H(QJ) equipped with the graph norm

III • HI, Pn(0 the projection onto the n-ih eigenspace of /?(£) and B(X9 Y) the space
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of bounded operators from X to Y for Banach spaces X and 7.

Lemma 2.4. (a) The operator b is relatively bounded with relative bound

0 with respect to H(0).

(b) D(R(&) equipped with its graph norm \\u\\ D{B(^ = (\\u\\2 + \\B(f)u\\2)l/2

coincides with & for all £ e R .

(c) 2 is a subspace of C0(R) = {f\f is a continuous function on R, |/(x)|->0

as |x|->oo} and the inclusion map: @-+C0(R) belongs to B(@, C0(R)),

where CQ(R) is equipped with the norm |/|o> = sup \f(x)\ .
jceJR

(d) Pn(£) is a B(J?9 &)-valued analytic function of ^E R.

Proof, (a) We have in view of (9)

\\bu\\2 = (b2

for all u E CQ(R) and for all e>0, where ( , ) denotes the inner product of L2(RX).

This inequality implies that the operator b is relatively bounded with relative

bound 0 with respect to H(G) and hence with respect to /?(0) = the closure of //(O).

(b) We have by (9)

It is not difficult to verify, by using (a) and (15) with Co^O* that the norm ||| • |||

and the norm || • \\D(g(^) are equivalent on Co(R). Therefore, since D(/f(c))

coincides with the completion of CQ(R) with respect to the norm || • \\D(H(&) by

the definition of closure of an operator, we have (b).

(c) Since we have a Sobolev inequality

I/U^C(J|/| |+ -jj-f\)

for/e CQ(R) where C is a constant and we have in view of (9)

d

for/6Cf(«), we obtain

Co'C/J). From this inequality it follows that the identity map on C™(R)

can be extended to a continuous one to one map from the completion & of
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C$(R) with respect to the norm ||| • ||| into the completion X of Cj?(J?) with

respect to the norm | • U. Since it is not difficult to check that X is C0(R)9 we

obtain (c).

(d) Fix C0. Then it is clear by (b) that (H(Co)-A)-1 is a B(je, <^)-valued

continuous (analytic) function of A^cj(/?(t0)). Let F be a circle (A| |A —

^n(Co)l =fi} m tne complex plane C for some integer n with sufficiently small e>0

such that cr(/?(£0)) n {A e C| |A-A,,(£0)| ̂ 2e} = {A^0)}. Then, there exists a

constant A>0 such that \\(H(^o)-k)-l\\B(^t&}^K for AeT . Let zl = {c"eC|

|C — £ol<£} with sufficiently small £>0 such that \\V(£, £o)lln<i7,jn = 2K ^or

C e < d , where V(£, Co) *s as ul (15). Then the Neumann series

j=o

converges in B(jj?, Jf) uniformly for (A, c)eFxA, and hence becomes a

Jf)-valued continuous function of (A, ̂ )eTxA which is analytic in £

Hence, we have by (15)

for (A, ̂ ) eTx A, which is a J?(Jf, S)-valucd continuous function of (A,

r x A, analytic in c. Consequently Pn(£) is a J(^f, ^)-valued analytic function

of g 6 A, since we have ([9], Theorem XII. 5) for £ e A

Thus, since £'0 was arbitrary, we obtain (d). Q

Proo/ of Lemma 2.3. Second part ((hi), (iv) and (v)): D(R(£)) =

by (b) of Lemma 2.4 and H(£)u is analytic in c for all u e D(//(0)). Hence,

is an analytic family of type (A) (see [4], p. 345). Thus AM (c) depends analytically

on Q ([4], p. 370, Theorem 1.8) since A;j(c;) is non-degenerate by (i) . This

proves (iii).

For (iv) and (v), we first show the existence of an jf -valued analytic function

\l/n( • , £ ) of £ e R such that *//„( • , £) is a real and normalized eigenfunction of

H(c) with eigenvalue An(£). Since //(£) is real (i.e., commutes with the complex

conjugation C: Cu = u), it follows from (16) that Pn(c;) is real. Moreover,

Pn(0 is a projection and a B(Jf, Jf )-valued analytic function of c by (d) of

Lemma 2.4 since the inclusion map: ££~-»Jf is continuous. Thus we can make

use of Theorem XII. 12 of [9] which guarantees the existence of an analytic
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family £/„(£) of unitary operators such that

(17)

By examining the construction of £/„(£) (see tne proof of Theorem XII. 12 in
[9]), it is not difficult to verify that, if CPM(<OC = Pn(0 for all real & CUn(&C =

l/,,(£) for all real £. Therefore, if we let \j/n( • , 0) be a real and normalized element

of Ran(Pn(0)) and let \l/tt( • , £) = Un(^in( • , 0), then it is not difficult to check

that \l/n( • , £) is real, normalized, analytic in £ and an eigenfunction of H(£,)

with eigenvalue AB(£) since ^n( • , £) belongs to Ran(Pw(0) by (17). Thus (iv)

holds by (d) of Lemma 2.4 since ^(-, {) = PJI({) ̂ (-, 0-
Finally (v) can be shown as follows : i/^( • , £) is real-valued as it has been

shown in the above. By (iv) and (c) of Lemma 2.4 \j/n( • , £) is a C0(J?)-valued

analytic function of £, from which it follows that *l/n(x, C) is continuous in x

and £, and analytic in £ for each x. The smoothness of ij/n(x, £) in x for each £

follows from (10) and the smoothness of b(x). D

Lemma 2.5. Assume that (B) holds. Let jfn be the sub space of J^ =

L2(Rxx Redefined by

jrn = Wn(x9 0/(OI/«)6L2(*4)} (n = l, 2,...)

w/z^re ^n(x, ^) is as in Lemma 2.3. Then we have:

( i ) Jf = 0 j?B (orthogonal sum).

(ii) /? is reduced by tfn.

(iii) H|^n (£/?e restriction of H to J4?n) is unitarily equivalent to the operator

of multiplication by AB(<J) OM L2(R^.

Proof. Since {^n( • , £)} is a complete orthonormal system in L2(RX) by

Lemma 2.3, (i) holds.

It follows from (8) and (10) that

(18)

The right-hand side of (18) belongs to L2(Rxx R%) since AB(^) is bounded in £

by Lemma 2.3 (ii). Hence /e D(S) and Hf=l,n(£)f for /e jpw by (7) and (18).

Thus we have that jencD(ft) and B(jfn)cjen. This implies that R is reduced

by $n. Hence we obtain (ii).

If we define Tn: L
2(R^L2(Rxx R^) such that TJ(x, £) = «*, 0/(0,

then HTnf=Tn{knf} by (18) where A,, denotes the operator of multiplication by

Afl(£). Thus we have (iii) since Tn is an isometry with the range $n and HGn =
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* = TnA.nT*9 where Gn denotes the orthogonal projection onto j f n . This

completes the proof of the lemma. Q

Lemma 2.6. Assume that (B) holds. Then H is absolutely continuous if

no An(£) is constant, where AH(£) is as in Lemma 2.3.

Proof. By Lemma 2.1 and Lemma 2.5, it suffices to show that, for each n,

kn is absolutely continuous if A,?(£) is not constant. Since AB(£) is analytic and

non-constant, A = <^| —^ An(<!;) = 0> is discrete and closed. Hence, if we let

{lj}jej be the connected components of R\A, then I,- are open intervals, J is

at most countable, and

L2(R) = ® L2(I ,) (orthogonal sum) .
jeJ

Hence it suffices to show that the operator Aj of multiplication by An(<!;) on L2(Ij)

is absolutely continuous for each j e J. On each interval Ip An(£) is strictly

monotone, either increasing or decreasing. Consider the case where it is

increasing. Let a denote the inverse function of the restriction of Art(£) to Ijf

Then a is a strictly increasing smooth function on An(//)- Let E^ be the spectral

measure associated with Ap Then we have

(a = inf/y)

for ueL2(Ij), where ./H(x)= \ \u(^)\2d^ and where we extend a to all the real

line so that a(/0 = sup/y if /^sup A,,(/j) and a(/0 = « if /*^inf A^//). Therefore
one can verify without difficulty that the absolute continuity of a (which follows

from the smoothness) and the monotonicity of a together with the absolute

continuity of/„ imply the absolute continuity of H J E ^ w l l 2 . Thus Aj is an ab-

solutely continuous operator. D

§3. Properties of ^n(x, £) and 2n(i)

Throughout this section, we suppose (B) alone, use the notations in Lemma

2.3 and let n be fixed. In addition, we put

(19) QM
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Then, by (10), we have

(20) <//;;(x, c) = a,,cW«*? c) (' denotes -

In this section we shall invesigate some detailed properties of the eigenfunctions

^,,(x, c) and the eigenvalues /„(£) °f ^(£)- The following arguments are similar

to those in [10] (p. 110 and p. 165 IT.)-

Proposition 3.1. Let / = [x0, oo)((— oo, x0]). Let u be a real-valued C2

function and q a non-negative continuous function on I. Suppose that u satisfies

(21) u"(x) = q(x)u(x),

UEL2(I) and u=£Q. Then u(x)u'(x)<Qfor x E 1 (u(x)u'(x)>0forxel).

Proof. Let / = [x0, GO) (the case of / = ( — oo, x0] can be treated quite

similarly). From (21) we have

(22) (uu'y = u'2 + uu" = u'2 + qu2^Q,

and hence u(x)u'(x) increases for x^x0. Suppose that u(x) = Q for some x^x0.

If u'(x) = Q, u =0 by the uniqueness theorem. Thus by the assumption u'(x)^Q.

If w'(x)>0, then w(x)>0 for x near x and larger than x. This implies n(x)u'(x)

>0for x>x and hence u '(x) increases for x>x by (21). Thus u'(x)^u'(x)~c>Q

and i/(x)g:c(x — x) for x^x. But this contradicts the assumption that u e L2(I).

A similar argument holds in the case where u'(x)<Q. Thus we obtain w(x)^0

for x^x0. Consider the case where w(x)>0 for xel (the case where w(x)<0

for x 6 / can be treated similarly). Suppose that w'(x)g:0 for some x e /. Then

)^0 for x^x by (22), and hence w'(x)^0 for x^x. But this implies

for x^x, which contradicts the assumption u E I2(/). Thus u'(x)

has to be negative for all x E /, and hence w(x)w'(x)<0 for x E I. Q

Lemma 3.2. ^fl(x, c)^'n(x, ^)<0 if x ̂  x^ + LM, \l/tt(x, Wn(x, ^)>0 // x^

-Lfl, where x^ = b'l(^) and Ln = ̂ /(2n- 1)M + /M_ .

Proof. By (12), (19) and (ii) of Lemma 2.3, we have

(23) (?,J>,(x)

if \x — x^Ln. Therefore, by (20) and Proposition 3.1, we have the assertion of

the lemma since i//,f e L2(RX). D

Lemma 3.3. i/^(x, c)-»0, ^ ,',(*» c)~>0 as x-> ± oo.
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Proof. By Lemma 3.2, i//n(x, £)/0 for x^x*-t-L,r Suppose that \l/n(x, C)

>0 for x^x, + L,,. Then \l/'n(x, c)<0 by Lemma 3.2. This implies that lim
S x-»oo

\l*n(x, c) exists and ^0. Since \l/neL2(Rx), this limit must be 0. Moreover,

by (20) and (23), i//,;(x, f)^0 for x^ + L,,. Thus lim ̂ 'B(x, 0 exists and gO.
.x-*oo

This limit must be zero since ^;J(
X» 0~*0 as X-+GO. The case where i/>,,(x, c)<0

can be treated similarly. A similar argument shows that the limits of i//n(x, c)

and ^J,(x, £) as x-» — oo exist and must be zero. D

Lemma 3.4. Let

(24) /„(*, a = MX, a2 - e,,,;(-x)'//,,(.v, a2 ,
where Qn^ f.s as /;? (19) «/?(/ /ef x(* = 6~1(c). T/?en we /?ai;e ihe following:

( \ ) /w(x, c) /,s strictly decreasing for x>x* and strictly increasing for x<x^.

( i i ) /n(x, C)-^0 a.v .v->±oo.

(iii) / n (x ,g)>0.

Proof. We have

(25) /;(x, «=2^;(x, OWU, c)-C».^)W^ c)] -e;

by (20), (19) and (11). Hence, by (11), (B) and the fact that, for each c,

, c) = 0] cannot have an accumulation point, we have (i).

By Lemma 3.2, \l/n(x, 0>0 for all x^.x. + I,,, or \l/n(x9 c)<0 for all

L,,. Consequently, by (20) and (23), we have \j/"n(x, (J)^0 for all x^x,

+ LH, or ^',;(^, 0^0 for all x^x^ + L,,. Thus \l/'n(x, 0 is increasing or decreasing

for x^x. + L,, and tends to 0 as x-*oo by Lemma 3.3, from which follows that

i//;;(x, £)-»0 as x-»oo. Hence, by (24), (20) and Lemma 3.3, /,,(x, £) = \l/'H(x, c)2

— \l/'n(x, £)\j/n(x, %)-*Q as x-tao. Similarly, we have /,,(x, <^)-»0 as x-» — oo.

Thus, we have obtained (ii). (i) and (ii) imply (iii). Q

Lemma 3.5. \\l/n(x9 ^)\^0n(x — x^) where x* = b~l(£) and

if \x\^Ln

&nto <, /^p + i/4 1 M-n I r x 2 l :f
'*n exP 1 -^r~M*l ^n) ( U

with A+ = (2w-l)M+, L^

Proof. First, we have
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(26) Wn(x, 0| ^V2 A for all x.

In fact, we have by multiplying (10) by <An(x, £) and integrating by parts,

J— 00 J— 00

where we have used Lemma 3.3, ||^n( • , £)|| L2 = 1 and (ii) of Lemma 2.3. There-

fore, we obtain (26) since
l/2Cx /Cx

,02 = 2 ^(x, 0<An(x, Odx^2( #,
J-oo \J-oo

Next, by (iii) of Lemma 3.4, we have i//;,(x, f)2 > Qn^(x)il/n(x, I;)2. Hence,
we have

for

by Lemma 3.2 and (23). Therefore, we obtain

(27) |Wx, 01 ^ I Wx, 01 exp { -
(

n (or if ^gx^x^ — Ln). Since we have by (23)

Q^(x)^M*(\x-Xs\2-L^M*(\x-Xs\-Ln)2

if |x- jc4| ̂ LB, it follows from (26) and (27) that

if |x — x5| ^ L,r This completes the proof of the lemma. Q

Lemma 3.6. -* A,,(0= jl™ (" -|M- ',,(x, &dx where l,,(x, a is as in
*

Lemma 3.4.

Proo/. Since -^ !„(« = (- î ^( • , 0, ,̂,( -,{)), we have

B(x)

$:v-
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where we used (25). Hence we obtain the desired equality by integration by

parts with the aid of Lemma 3.4 (ii). D

§ 4, Proof of the Theorem

We start the proof of the theorem by the following two lemmas, which assert

that the asymptotic behavior of An(£) as <!;-» ± oo is determined by that of B(x)

as x-> + oo:

Lemma 41. Suppose that B^x) and B2(x) satisfy the assumption (B).

Let Hj(l;) be ihe operator H(^) in Lemma 2.3 with B replaced by Bf and let

A;/}(0 be the n-th eigenvalue of fif/£) (7=1, 2). Assume that B1(t)-B2(t)~»V

as r-^oo (/-*-QO). Then, for each n, Ai1)(b1(s))-A[l
2)(^2(s))-^0 as s-»oo

(s-> — oo, respectively), where bf(x)=\ Bj(t)dl (7=1, 2).

Proof. We show that the Lemma holds under the assumption B1(t) — B2(t)

-»0 as t-*co. The case where B1(^) — B2(0-»0 as f-» — oo can be treated similarly.

Let n be fixed and let j, k^n. Let

(28) ayt(s) = (ff2(

where (j/^^x, 0 is the eigenfunction of /?j(0 with the eigenvalue A^'CO as in

Lemma 2.3. Then, since

where <5;/t =1 ( j = fc) and 0 ( j ^ /c), we have

(29) MS)

On the other hand, we have by (B) with B = B1 or B2,

(30) \(b2(x)-b2(s)Y-(bl(x)-b1(s)Y\

Moreover, we have, by Lemma 3.5 and by noting that

*„(*),

(31) WWx.b&MZQJLx-s) (7 = 1, 2,. ..,«)
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Thus, from (29), (30) and (31), we obtain for j, k^n

(32) Ms)-W,Wil

g2M+r \\x-s\ {* (BM-BJWt <?„(*-.9)4 rfx.
J-& ( Js )

Let 8>0. Then there exists a real number R such that sup \Bl(t) — B2(t)\ ^
R g r

by the assumption. Hence, by (32) and (B), we have for s^jR,

(33) Mti-WVtWdjJ

R °° \x-s\2$tt(x-s)2dx

x20n(x)2dx.

Hence, by noting that <£„(*) depends only on H, M_ and M + , and x2$n(x)2 is
integrable on 1?, we have by (33)

for sufficiently large s and for j, k^n, where C is a constant dependent only on

77, M_ and M + . Let Kn(s) be the linear subspace of L2(RX) spanned by {\l/(jl\ -,

bi(s))}j=lt_tn and let Rn(s) be the orthogonal projection onto Vn(s). Then we
have by (28)

, (ayk(s)) is the Hermitian symmetric matrix of

(35) \ Rn(s)ft2(b2(s))RH(s)\Vn(st with respect to the basis

Let jUi(s)^r" = j"«(s) be the eigenvalues of (ocjk(s)). Then we have by (35)
and by applying the min-max principle to the operator B2(b2(s)) (see [9], p. 270,

Lemma)

(36) Aj2>(fe2(s))^/i/s) (7 = 1,..., w).

On the other hand we have by (34)

(37) |̂ .(s)

for sufficiently large 5. Thus for any e>0, the following inequality holds for

sufficiently large s by (36) and (37):

(38) ^(biW^Wh^ + C'e (7=1,-, n),

where C' is a constant dependent only on w, M_ and M+. By interchanging



SCHRODINGER OPERATORS IN MAGNETIC FlELDS 399

the subscripts 1 and 2 in the above argument, we have

(39) ^'(^(^^(^(sfl + C'e (7 = 1,-.., n)

for sufficiently large s. By (38) and (39), for each ??,

- > 0 as s - > oo .

This proves the lemma. Q

Lemma 4.2. (2n - 1) lim infB(x) £ lim inf An(0 an d Jim sup !„(£) £ (2w - 1)
.x-» ± oo £-» ± oo |-> ± oo

lim sup J3(x).
,x-+±oo

Proof. Let B _ = lim inf B(x) and let e > 0. Then, there exists a real number
jc-*oo

R such that £(x)^jB_ — e for x^R and hence there exists a C°° function 5(x)
satisfying the assumption (B) and such that Bl(x) = B(x) for x^R and 5t(x)
^ B _ — 2e for all x. Then, by applying Lemma 4.1 to this Bt(x) and B2(x)==
B(x\ we have that, for each ?i,

(40) W(bi(*y> ~ ti2\b2(s)) — > 0 as s — > oo .

On the other hand, Lemma 2.3 (ii) applies to B^x) with M_ replaced by B_ — 2e
since B1(x)^B^ — 2e for all x. Thus we have

(41)

for alU e « and for n = 1, 2,. . . . It follows from (40) and (41) that

lim inf A<2)(62(s)) ̂  (2n - 1 ) (B _ - 2e) .

Thus, since e was arbitrary and since A^2)(^) = AB(£) and 52(
s)->0° as 5->oo,

we have

lim inf A,,(£) ̂  (2n - 1)B _ = (2n - 1) lim inf B(x) ,
(^-»00 ^->00

which proves the first inequality where the double sign is +. We can obtain
the remaining inequalities by an argument similar to the above. Q

Proof of the Theorem. Note that, by Lemma 2.6, it suffices to show that,
for each n, An(£) is not constant.

In the case where the assumption (Bl) holds, Aw(^) is not constant since
lim sup Aw(£)<lim inf An(£) by Lemma 4.2 and (Bl).

Let us consid~er the case where (B2) holds. Let B'(x) g 0 for x g x, B'(x) ^ 0
for x^x, and let R be a constant such that B(x) = B0 for |x| ̂ R. Then we have
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(« B'(x) , (R B'(x) , 1
\ —f\?—\~T~ t*A — \ —^7—\~5~ MA — rj/

J—oo J j \ X j j — R f j \ X } *'V.—

Hence we obtain by Lemma 3.6

(42)

On the other hand, if we let £ be so large that x%>R (note that, since b(x) =
Cx

\ B(t)dt-+co as ;c-»oo, ^ = h~1(0-*oo as £-»oo), then ln(x, £) is strictly in-
Jo _
creasing in [ — jR, R~] by (i) of Lemma 3.4. Thus we have that ln(x, £) — ln(x, {) < 0

for x<x, ln(x,®-ln(x, 0>0 for x>x and hence B'(x)(ln(x, ®-ln(x, £)) is
non-negative and does not vanish identically for x e [ — JR, .R] by the assumption

(B2). Consequently, we have by (42) that -jfe- 4(£) >0. Thus An({) is non-

constant for all n. The case where Br(x)^Q for x<x, B'(x)^0 for x>x can be

treated similarly. This completes the proof of the theorem. Q

Finally, we remark that, by examining the above argument, one is able to

determine the spectrum of H in the case where B(x) is assumed to be monotone
in addition to (B). In fact, if we let, e.g., B(x) be increasing, then Lemma 2.3

(ii) holds with M± replaced by B±= lim B(x) and hence sup AIJ(f) = (2n — !)£+,

inf An(<J) = (2n — 1)B_ by Lemma 4.2. Thus we have by Lemma 2.1 and Lemma

2*5
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